summaryrefslogtreecommitdiff
path: root/arch/x86/crypto/aes-gcm-avx10-x86_64.S
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/crypto/aes-gcm-avx10-x86_64.S')
-rw-r--r--arch/x86/crypto/aes-gcm-avx10-x86_64.S1222
1 files changed, 1222 insertions, 0 deletions
diff --git a/arch/x86/crypto/aes-gcm-avx10-x86_64.S b/arch/x86/crypto/aes-gcm-avx10-x86_64.S
new file mode 100644
index 000000000000..97e0ee515fc5
--- /dev/null
+++ b/arch/x86/crypto/aes-gcm-avx10-x86_64.S
@@ -0,0 +1,1222 @@
+/* SPDX-License-Identifier: Apache-2.0 OR BSD-2-Clause */
+//
+// VAES and VPCLMULQDQ optimized AES-GCM for x86_64
+//
+// Copyright 2024 Google LLC
+//
+// Author: Eric Biggers <ebiggers@google.com>
+//
+//------------------------------------------------------------------------------
+//
+// This file is dual-licensed, meaning that you can use it under your choice of
+// either of the following two licenses:
+//
+// Licensed under the Apache License 2.0 (the "License"). You may obtain a copy
+// of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// or
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// 1. Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// 2. Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+//------------------------------------------------------------------------------
+//
+// This file implements AES-GCM (Galois/Counter Mode) for x86_64 CPUs that
+// support VAES (vector AES), VPCLMULQDQ (vector carryless multiplication), and
+// either AVX512 or AVX10. Some of the functions, notably the encryption and
+// decryption update functions which are the most performance-critical, are
+// provided in two variants generated from a macro: one using 256-bit vectors
+// (suffix: vaes_avx10_256) and one using 512-bit vectors (vaes_avx10_512). The
+// other, "shared" functions (vaes_avx10) use at most 256-bit vectors.
+//
+// The functions that use 512-bit vectors are intended for CPUs that support
+// 512-bit vectors *and* where using them doesn't cause significant
+// downclocking. They require the following CPU features:
+//
+// VAES && VPCLMULQDQ && BMI2 && ((AVX512BW && AVX512VL) || AVX10/512)
+//
+// The other functions require the following CPU features:
+//
+// VAES && VPCLMULQDQ && BMI2 && ((AVX512BW && AVX512VL) || AVX10/256)
+//
+// All functions use the "System V" ABI. The Windows ABI is not supported.
+//
+// Note that we use "avx10" in the names of the functions as a shorthand to
+// really mean "AVX10 or a certain set of AVX512 features". Due to Intel's
+// introduction of AVX512 and then its replacement by AVX10, there doesn't seem
+// to be a simple way to name things that makes sense on all CPUs.
+//
+// Note that the macros that support both 256-bit and 512-bit vectors could
+// fairly easily be changed to support 128-bit too. However, this would *not*
+// be sufficient to allow the code to run on CPUs without AVX512 or AVX10,
+// because the code heavily uses several features of these extensions other than
+// the vector length: the increase in the number of SIMD registers from 16 to
+// 32, masking support, and new instructions such as vpternlogd (which can do a
+// three-argument XOR). These features are very useful for AES-GCM.
+
+#include <linux/linkage.h>
+
+.section .rodata
+.p2align 6
+
+ // A shuffle mask that reflects the bytes of 16-byte blocks
+.Lbswap_mask:
+ .octa 0x000102030405060708090a0b0c0d0e0f
+
+ // This is the GHASH reducing polynomial without its constant term, i.e.
+ // x^128 + x^7 + x^2 + x, represented using the backwards mapping
+ // between bits and polynomial coefficients.
+ //
+ // Alternatively, it can be interpreted as the naturally-ordered
+ // representation of the polynomial x^127 + x^126 + x^121 + 1, i.e. the
+ // "reversed" GHASH reducing polynomial without its x^128 term.
+.Lgfpoly:
+ .octa 0xc2000000000000000000000000000001
+
+ // Same as above, but with the (1 << 64) bit set.
+.Lgfpoly_and_internal_carrybit:
+ .octa 0xc2000000000000010000000000000001
+
+ // The below constants are used for incrementing the counter blocks.
+ // ctr_pattern points to the four 128-bit values [0, 1, 2, 3].
+ // inc_2blocks and inc_4blocks point to the single 128-bit values 2 and
+ // 4. Note that the same '2' is reused in ctr_pattern and inc_2blocks.
+.Lctr_pattern:
+ .octa 0
+ .octa 1
+.Linc_2blocks:
+ .octa 2
+ .octa 3
+.Linc_4blocks:
+ .octa 4
+
+// Number of powers of the hash key stored in the key struct. The powers are
+// stored from highest (H^NUM_H_POWERS) to lowest (H^1).
+#define NUM_H_POWERS 16
+
+// Offset to AES key length (in bytes) in the key struct
+#define OFFSETOF_AESKEYLEN 480
+
+// Offset to start of hash key powers array in the key struct
+#define OFFSETOF_H_POWERS 512
+
+// Offset to end of hash key powers array in the key struct.
+//
+// This is immediately followed by three zeroized padding blocks, which are
+// included so that partial vectors can be handled more easily. E.g. if VL=64
+// and two blocks remain, we load the 4 values [H^2, H^1, 0, 0]. The most
+// padding blocks needed is 3, which occurs if [H^1, 0, 0, 0] is loaded.
+#define OFFSETOFEND_H_POWERS (OFFSETOF_H_POWERS + (NUM_H_POWERS * 16))
+
+.text
+
+// Set the vector length in bytes. This sets the VL variable and defines
+// register aliases V0-V31 that map to the ymm or zmm registers.
+.macro _set_veclen vl
+ .set VL, \vl
+.irp i, 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, \
+ 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31
+.if VL == 32
+ .set V\i, %ymm\i
+.elseif VL == 64
+ .set V\i, %zmm\i
+.else
+ .error "Unsupported vector length"
+.endif
+.endr
+.endm
+
+// The _ghash_mul_step macro does one step of GHASH multiplication of the
+// 128-bit lanes of \a by the corresponding 128-bit lanes of \b and storing the
+// reduced products in \dst. \t0, \t1, and \t2 are temporary registers of the
+// same size as \a and \b. To complete all steps, this must invoked with \i=0
+// through \i=9. The division into steps allows users of this macro to
+// optionally interleave the computation with other instructions. Users of this
+// macro must preserve the parameter registers across steps.
+//
+// The multiplications are done in GHASH's representation of the finite field
+// GF(2^128). Elements of GF(2^128) are represented as binary polynomials
+// (i.e. polynomials whose coefficients are bits) modulo a reducing polynomial
+// G. The GCM specification uses G = x^128 + x^7 + x^2 + x + 1. Addition is
+// just XOR, while multiplication is more complex and has two parts: (a) do
+// carryless multiplication of two 128-bit input polynomials to get a 256-bit
+// intermediate product polynomial, and (b) reduce the intermediate product to
+// 128 bits by adding multiples of G that cancel out terms in it. (Adding
+// multiples of G doesn't change which field element the polynomial represents.)
+//
+// Unfortunately, the GCM specification maps bits to/from polynomial
+// coefficients backwards from the natural order. In each byte it specifies the
+// highest bit to be the lowest order polynomial coefficient, *not* the highest!
+// This makes it nontrivial to work with the GHASH polynomials. We could
+// reflect the bits, but x86 doesn't have an instruction that does that.
+//
+// Instead, we operate on the values without bit-reflecting them. This *mostly*
+// just works, since XOR and carryless multiplication are symmetric with respect
+// to bit order, but it has some consequences. First, due to GHASH's byte
+// order, by skipping bit reflection, *byte* reflection becomes necessary to
+// give the polynomial terms a consistent order. E.g., considering an N-bit
+// value interpreted using the G = x^128 + x^7 + x^2 + x + 1 convention, bits 0
+// through N-1 of the byte-reflected value represent the coefficients of x^(N-1)
+// through x^0, whereas bits 0 through N-1 of the non-byte-reflected value
+// represent x^7...x^0, x^15...x^8, ..., x^(N-1)...x^(N-8) which can't be worked
+// with. Fortunately, x86's vpshufb instruction can do byte reflection.
+//
+// Second, forgoing the bit reflection causes an extra multiple of x (still
+// using the G = x^128 + x^7 + x^2 + x + 1 convention) to be introduced by each
+// multiplication. This is because an M-bit by N-bit carryless multiplication
+// really produces a (M+N-1)-bit product, but in practice it's zero-extended to
+// M+N bits. In the G = x^128 + x^7 + x^2 + x + 1 convention, which maps bits
+// to polynomial coefficients backwards, this zero-extension actually changes
+// the product by introducing an extra factor of x. Therefore, users of this
+// macro must ensure that one of the inputs has an extra factor of x^-1, i.e.
+// the multiplicative inverse of x, to cancel out the extra x.
+//
+// Third, the backwards coefficients convention is just confusing to work with,
+// since it makes "low" and "high" in the polynomial math mean the opposite of
+// their normal meaning in computer programming. This can be solved by using an
+// alternative interpretation: the polynomial coefficients are understood to be
+// in the natural order, and the multiplication is actually \a * \b * x^-128 mod
+// x^128 + x^127 + x^126 + x^121 + 1. This doesn't change the inputs, outputs,
+// or the implementation at all; it just changes the mathematical interpretation
+// of what each instruction is doing. Starting from here, we'll use this
+// alternative interpretation, as it's easier to understand the code that way.
+//
+// Moving onto the implementation, the vpclmulqdq instruction does 64 x 64 =>
+// 128-bit carryless multiplication, so we break the 128 x 128 multiplication
+// into parts as follows (the _L and _H suffixes denote low and high 64 bits):
+//
+// LO = a_L * b_L
+// MI = (a_L * b_H) + (a_H * b_L)
+// HI = a_H * b_H
+//
+// The 256-bit product is x^128*HI + x^64*MI + LO. LO, MI, and HI are 128-bit.
+// Note that MI "overlaps" with LO and HI. We don't consolidate MI into LO and
+// HI right away, since the way the reduction works makes that unnecessary.
+//
+// For the reduction, we cancel out the low 128 bits by adding multiples of G =
+// x^128 + x^127 + x^126 + x^121 + 1. This is done by two iterations, each of
+// which cancels out the next lowest 64 bits. Consider a value x^64*A + B,
+// where A and B are 128-bit. Adding B_L*G to that value gives:
+//
+// x^64*A + B + B_L*G
+// = x^64*A + x^64*B_H + B_L + B_L*(x^128 + x^127 + x^126 + x^121 + 1)
+// = x^64*A + x^64*B_H + B_L + x^128*B_L + x^64*B_L*(x^63 + x^62 + x^57) + B_L
+// = x^64*A + x^64*B_H + x^128*B_L + x^64*B_L*(x^63 + x^62 + x^57) + B_L + B_L
+// = x^64*(A + B_H + x^64*B_L + B_L*(x^63 + x^62 + x^57))
+//
+// So: if we sum A, B with its halves swapped, and the low half of B times x^63
+// + x^62 + x^57, we get a 128-bit value C where x^64*C is congruent to the
+// original value x^64*A + B. I.e., the low 64 bits got canceled out.
+//
+// We just need to apply this twice: first to fold LO into MI, and second to
+// fold the updated MI into HI.
+//
+// The needed three-argument XORs are done using the vpternlogd instruction with
+// immediate 0x96, since this is faster than two vpxord instructions.
+//
+// A potential optimization, assuming that b is fixed per-key (if a is fixed
+// per-key it would work the other way around), is to use one iteration of the
+// reduction described above to precompute a value c such that x^64*c = b mod G,
+// and then multiply a_L by c (and implicitly by x^64) instead of by b:
+//
+// MI = (a_L * c_L) + (a_H * b_L)
+// HI = (a_L * c_H) + (a_H * b_H)
+//
+// This would eliminate the LO part of the intermediate product, which would
+// eliminate the need to fold LO into MI. This would save two instructions,
+// including a vpclmulqdq. However, we currently don't use this optimization
+// because it would require twice as many per-key precomputed values.
+//
+// Using Karatsuba multiplication instead of "schoolbook" multiplication
+// similarly would save a vpclmulqdq but does not seem to be worth it.
+.macro _ghash_mul_step i, a, b, dst, gfpoly, t0, t1, t2
+.if \i == 0
+ vpclmulqdq $0x00, \a, \b, \t0 // LO = a_L * b_L
+ vpclmulqdq $0x01, \a, \b, \t1 // MI_0 = a_L * b_H
+.elseif \i == 1
+ vpclmulqdq $0x10, \a, \b, \t2 // MI_1 = a_H * b_L
+.elseif \i == 2
+ vpxord \t2, \t1, \t1 // MI = MI_0 + MI_1
+.elseif \i == 3
+ vpclmulqdq $0x01, \t0, \gfpoly, \t2 // LO_L*(x^63 + x^62 + x^57)
+.elseif \i == 4
+ vpshufd $0x4e, \t0, \t0 // Swap halves of LO
+.elseif \i == 5
+ vpternlogd $0x96, \t2, \t0, \t1 // Fold LO into MI
+.elseif \i == 6
+ vpclmulqdq $0x11, \a, \b, \dst // HI = a_H * b_H
+.elseif \i == 7
+ vpclmulqdq $0x01, \t1, \gfpoly, \t0 // MI_L*(x^63 + x^62 + x^57)
+.elseif \i == 8
+ vpshufd $0x4e, \t1, \t1 // Swap halves of MI
+.elseif \i == 9
+ vpternlogd $0x96, \t0, \t1, \dst // Fold MI into HI
+.endif
+.endm
+
+// GHASH-multiply the 128-bit lanes of \a by the 128-bit lanes of \b and store
+// the reduced products in \dst. See _ghash_mul_step for full explanation.
+.macro _ghash_mul a, b, dst, gfpoly, t0, t1, t2
+.irp i, 0,1,2,3,4,5,6,7,8,9
+ _ghash_mul_step \i, \a, \b, \dst, \gfpoly, \t0, \t1, \t2
+.endr
+.endm
+
+// GHASH-multiply the 128-bit lanes of \a by the 128-bit lanes of \b and add the
+// *unreduced* products to \lo, \mi, and \hi.
+.macro _ghash_mul_noreduce a, b, lo, mi, hi, t0, t1, t2, t3
+ vpclmulqdq $0x00, \a, \b, \t0 // a_L * b_L
+ vpclmulqdq $0x01, \a, \b, \t1 // a_L * b_H
+ vpclmulqdq $0x10, \a, \b, \t2 // a_H * b_L
+ vpclmulqdq $0x11, \a, \b, \t3 // a_H * b_H
+ vpxord \t0, \lo, \lo
+ vpternlogd $0x96, \t2, \t1, \mi
+ vpxord \t3, \hi, \hi
+.endm
+
+// Reduce the unreduced products from \lo, \mi, and \hi and store the 128-bit
+// reduced products in \hi. See _ghash_mul_step for explanation of reduction.
+.macro _ghash_reduce lo, mi, hi, gfpoly, t0
+ vpclmulqdq $0x01, \lo, \gfpoly, \t0
+ vpshufd $0x4e, \lo, \lo
+ vpternlogd $0x96, \t0, \lo, \mi
+ vpclmulqdq $0x01, \mi, \gfpoly, \t0
+ vpshufd $0x4e, \mi, \mi
+ vpternlogd $0x96, \t0, \mi, \hi
+.endm
+
+// void aes_gcm_precompute_##suffix(struct aes_gcm_key_avx10 *key);
+//
+// Given the expanded AES key |key->aes_key|, this function derives the GHASH
+// subkey and initializes |key->ghash_key_powers| with powers of it.
+//
+// The number of key powers initialized is NUM_H_POWERS, and they are stored in
+// the order H^NUM_H_POWERS to H^1. The zeroized padding blocks after the key
+// powers themselves are also initialized.
+//
+// This macro supports both VL=32 and VL=64. _set_veclen must have been invoked
+// with the desired length. In the VL=32 case, the function computes twice as
+// many key powers than are actually used by the VL=32 GCM update functions.
+// This is done to keep the key format the same regardless of vector length.
+.macro _aes_gcm_precompute
+
+ // Function arguments
+ .set KEY, %rdi
+
+ // Additional local variables. V0-V2 and %rax are used as temporaries.
+ .set POWERS_PTR, %rsi
+ .set RNDKEYLAST_PTR, %rdx
+ .set H_CUR, V3
+ .set H_CUR_YMM, %ymm3
+ .set H_CUR_XMM, %xmm3
+ .set H_INC, V4
+ .set H_INC_YMM, %ymm4
+ .set H_INC_XMM, %xmm4
+ .set GFPOLY, V5
+ .set GFPOLY_YMM, %ymm5
+ .set GFPOLY_XMM, %xmm5
+
+ // Get pointer to lowest set of key powers (located at end of array).
+ lea OFFSETOFEND_H_POWERS-VL(KEY), POWERS_PTR
+
+ // Encrypt an all-zeroes block to get the raw hash subkey.
+ movl OFFSETOF_AESKEYLEN(KEY), %eax
+ lea 6*16(KEY,%rax,4), RNDKEYLAST_PTR
+ vmovdqu (KEY), %xmm0 // Zero-th round key XOR all-zeroes block
+ add $16, KEY
+1:
+ vaesenc (KEY), %xmm0, %xmm0
+ add $16, KEY
+ cmp KEY, RNDKEYLAST_PTR
+ jne 1b
+ vaesenclast (RNDKEYLAST_PTR), %xmm0, %xmm0
+
+ // Reflect the bytes of the raw hash subkey.
+ vpshufb .Lbswap_mask(%rip), %xmm0, H_CUR_XMM
+
+ // Zeroize the padding blocks.
+ vpxor %xmm0, %xmm0, %xmm0
+ vmovdqu %ymm0, VL(POWERS_PTR)
+ vmovdqu %xmm0, VL+2*16(POWERS_PTR)
+
+ // Finish preprocessing the first key power, H^1. Since this GHASH
+ // implementation operates directly on values with the backwards bit
+ // order specified by the GCM standard, it's necessary to preprocess the
+ // raw key as follows. First, reflect its bytes. Second, multiply it
+ // by x^-1 mod x^128 + x^7 + x^2 + x + 1 (if using the backwards
+ // interpretation of polynomial coefficients), which can also be
+ // interpreted as multiplication by x mod x^128 + x^127 + x^126 + x^121
+ // + 1 using the alternative, natural interpretation of polynomial
+ // coefficients. For details, see the comment above _ghash_mul_step.
+ //
+ // Either way, for the multiplication the concrete operation performed
+ // is a left shift of the 128-bit value by 1 bit, then an XOR with (0xc2
+ // << 120) | 1 if a 1 bit was carried out. However, there's no 128-bit
+ // wide shift instruction, so instead double each of the two 64-bit
+ // halves and incorporate the internal carry bit into the value XOR'd.
+ vpshufd $0xd3, H_CUR_XMM, %xmm0
+ vpsrad $31, %xmm0, %xmm0
+ vpaddq H_CUR_XMM, H_CUR_XMM, H_CUR_XMM
+ vpand .Lgfpoly_and_internal_carrybit(%rip), %xmm0, %xmm0
+ vpxor %xmm0, H_CUR_XMM, H_CUR_XMM
+
+ // Load the gfpoly constant.
+ vbroadcasti32x4 .Lgfpoly(%rip), GFPOLY
+
+ // Square H^1 to get H^2.
+ //
+ // Note that as with H^1, all higher key powers also need an extra
+ // factor of x^-1 (or x using the natural interpretation). Nothing
+ // special needs to be done to make this happen, though: H^1 * H^1 would
+ // end up with two factors of x^-1, but the multiplication consumes one.
+ // So the product H^2 ends up with the desired one factor of x^-1.
+ _ghash_mul H_CUR_XMM, H_CUR_XMM, H_INC_XMM, GFPOLY_XMM, \
+ %xmm0, %xmm1, %xmm2
+
+ // Create H_CUR_YMM = [H^2, H^1] and H_INC_YMM = [H^2, H^2].
+ vinserti128 $1, H_CUR_XMM, H_INC_YMM, H_CUR_YMM
+ vinserti128 $1, H_INC_XMM, H_INC_YMM, H_INC_YMM
+
+.if VL == 64
+ // Create H_CUR = [H^4, H^3, H^2, H^1] and H_INC = [H^4, H^4, H^4, H^4].
+ _ghash_mul H_INC_YMM, H_CUR_YMM, H_INC_YMM, GFPOLY_YMM, \
+ %ymm0, %ymm1, %ymm2
+ vinserti64x4 $1, H_CUR_YMM, H_INC, H_CUR
+ vshufi64x2 $0, H_INC, H_INC, H_INC
+.endif
+
+ // Store the lowest set of key powers.
+ vmovdqu8 H_CUR, (POWERS_PTR)
+
+ // Compute and store the remaining key powers. With VL=32, repeatedly
+ // multiply [H^(i+1), H^i] by [H^2, H^2] to get [H^(i+3), H^(i+2)].
+ // With VL=64, repeatedly multiply [H^(i+3), H^(i+2), H^(i+1), H^i] by
+ // [H^4, H^4, H^4, H^4] to get [H^(i+7), H^(i+6), H^(i+5), H^(i+4)].
+ mov $(NUM_H_POWERS*16/VL) - 1, %eax
+.Lprecompute_next\@:
+ sub $VL, POWERS_PTR
+ _ghash_mul H_INC, H_CUR, H_CUR, GFPOLY, V0, V1, V2
+ vmovdqu8 H_CUR, (POWERS_PTR)
+ dec %eax
+ jnz .Lprecompute_next\@
+
+ vzeroupper // This is needed after using ymm or zmm registers.
+ RET
+.endm
+
+// XOR together the 128-bit lanes of \src (whose low lane is \src_xmm) and store
+// the result in \dst_xmm. This implicitly zeroizes the other lanes of dst.
+.macro _horizontal_xor src, src_xmm, dst_xmm, t0_xmm, t1_xmm, t2_xmm
+ vextracti32x4 $1, \src, \t0_xmm
+.if VL == 32
+ vpxord \t0_xmm, \src_xmm, \dst_xmm
+.elseif VL == 64
+ vextracti32x4 $2, \src, \t1_xmm
+ vextracti32x4 $3, \src, \t2_xmm
+ vpxord \t0_xmm, \src_xmm, \dst_xmm
+ vpternlogd $0x96, \t1_xmm, \t2_xmm, \dst_xmm
+.else
+ .error "Unsupported vector length"
+.endif
+.endm
+
+// Do one step of the GHASH update of the data blocks given in the vector
+// registers GHASHDATA[0-3]. \i specifies the step to do, 0 through 9. The
+// division into steps allows users of this macro to optionally interleave the
+// computation with other instructions. This macro uses the vector register
+// GHASH_ACC as input/output; GHASHDATA[0-3] as inputs that are clobbered;
+// H_POW[4-1], GFPOLY, and BSWAP_MASK as inputs that aren't clobbered; and
+// GHASHTMP[0-2] as temporaries. This macro handles the byte-reflection of the
+// data blocks. The parameter registers must be preserved across steps.
+//
+// The GHASH update does: GHASH_ACC = H_POW4*(GHASHDATA0 + GHASH_ACC) +
+// H_POW3*GHASHDATA1 + H_POW2*GHASHDATA2 + H_POW1*GHASHDATA3, where the
+// operations are vectorized operations on vectors of 16-byte blocks. E.g.,
+// with VL=32 there are 2 blocks per vector and the vectorized terms correspond
+// to the following non-vectorized terms:
+//
+// H_POW4*(GHASHDATA0 + GHASH_ACC) => H^8*(blk0 + GHASH_ACC_XMM) and H^7*(blk1 + 0)
+// H_POW3*GHASHDATA1 => H^6*blk2 and H^5*blk3
+// H_POW2*GHASHDATA2 => H^4*blk4 and H^3*blk5
+// H_POW1*GHASHDATA3 => H^2*blk6 and H^1*blk7
+//
+// With VL=64, we use 4 blocks/vector, H^16 through H^1, and blk0 through blk15.
+//
+// More concretely, this code does:
+// - Do vectorized "schoolbook" multiplications to compute the intermediate
+// 256-bit product of each block and its corresponding hash key power.
+// There are 4*VL/16 of these intermediate products.
+// - Sum (XOR) the intermediate 256-bit products across vectors. This leaves
+// VL/16 256-bit intermediate values.
+// - Do a vectorized reduction of these 256-bit intermediate values to
+// 128-bits each. This leaves VL/16 128-bit intermediate values.
+// - Sum (XOR) these values and store the 128-bit result in GHASH_ACC_XMM.
+//
+// See _ghash_mul_step for the full explanation of the operations performed for
+// each individual finite field multiplication and reduction.
+.macro _ghash_step_4x i
+.if \i == 0
+ vpshufb BSWAP_MASK, GHASHDATA0, GHASHDATA0
+ vpxord GHASH_ACC, GHASHDATA0, GHASHDATA0
+ vpshufb BSWAP_MASK, GHASHDATA1, GHASHDATA1
+ vpshufb BSWAP_MASK, GHASHDATA2, GHASHDATA2
+.elseif \i == 1
+ vpshufb BSWAP_MASK, GHASHDATA3, GHASHDATA3
+ vpclmulqdq $0x00, H_POW4, GHASHDATA0, GHASH_ACC // LO_0
+ vpclmulqdq $0x00, H_POW3, GHASHDATA1, GHASHTMP0 // LO_1
+ vpclmulqdq $0x00, H_POW2, GHASHDATA2, GHASHTMP1 // LO_2
+.elseif \i == 2
+ vpxord GHASHTMP0, GHASH_ACC, GHASH_ACC // sum(LO_{1,0})
+ vpclmulqdq $0x00, H_POW1, GHASHDATA3, GHASHTMP2 // LO_3
+ vpternlogd $0x96, GHASHTMP2, GHASHTMP1, GHASH_ACC // LO = sum(LO_{3,2,1,0})
+ vpclmulqdq $0x01, H_POW4, GHASHDATA0, GHASHTMP0 // MI_0
+.elseif \i == 3
+ vpclmulqdq $0x01, H_POW3, GHASHDATA1, GHASHTMP1 // MI_1
+ vpclmulqdq $0x01, H_POW2, GHASHDATA2, GHASHTMP2 // MI_2
+ vpternlogd $0x96, GHASHTMP2, GHASHTMP1, GHASHTMP0 // sum(MI_{2,1,0})
+ vpclmulqdq $0x01, H_POW1, GHASHDATA3, GHASHTMP1 // MI_3
+.elseif \i == 4
+ vpclmulqdq $0x10, H_POW4, GHASHDATA0, GHASHTMP2 // MI_4
+ vpternlogd $0x96, GHASHTMP2, GHASHTMP1, GHASHTMP0 // sum(MI_{4,3,2,1,0})
+ vpclmulqdq $0x10, H_POW3, GHASHDATA1, GHASHTMP1 // MI_5
+ vpclmulqdq $0x10, H_POW2, GHASHDATA2, GHASHTMP2 // MI_6
+.elseif \i == 5
+ vpternlogd $0x96, GHASHTMP2, GHASHTMP1, GHASHTMP0 // sum(MI_{6,5,4,3,2,1,0})
+ vpclmulqdq $0x01, GHASH_ACC, GFPOLY, GHASHTMP2 // LO_L*(x^63 + x^62 + x^57)
+ vpclmulqdq $0x10, H_POW1, GHASHDATA3, GHASHTMP1 // MI_7
+ vpxord GHASHTMP1, GHASHTMP0, GHASHTMP0 // MI = sum(MI_{7,6,5,4,3,2,1,0})
+.elseif \i == 6
+ vpshufd $0x4e, GHASH_ACC, GHASH_ACC // Swap halves of LO
+ vpclmulqdq $0x11, H_POW4, GHASHDATA0, GHASHDATA0 // HI_0
+ vpclmulqdq $0x11, H_POW3, GHASHDATA1, GHASHDATA1 // HI_1
+ vpclmulqdq $0x11, H_POW2, GHASHDATA2, GHASHDATA2 // HI_2
+.elseif \i == 7
+ vpternlogd $0x96, GHASHTMP2, GHASH_ACC, GHASHTMP0 // Fold LO into MI
+ vpclmulqdq $0x11, H_POW1, GHASHDATA3, GHASHDATA3 // HI_3
+ vpternlogd $0x96, GHASHDATA2, GHASHDATA1, GHASHDATA0 // sum(HI_{2,1,0})
+ vpclmulqdq $0x01, GHASHTMP0, GFPOLY, GHASHTMP1 // MI_L*(x^63 + x^62 + x^57)
+.elseif \i == 8
+ vpxord GHASHDATA3, GHASHDATA0, GHASH_ACC // HI = sum(HI_{3,2,1,0})
+ vpshufd $0x4e, GHASHTMP0, GHASHTMP0 // Swap halves of MI
+ vpternlogd $0x96, GHASHTMP1, GHASHTMP0, GHASH_ACC // Fold MI into HI
+.elseif \i == 9
+ _horizontal_xor GHASH_ACC, GHASH_ACC_XMM, GHASH_ACC_XMM, \
+ GHASHDATA0_XMM, GHASHDATA1_XMM, GHASHDATA2_XMM
+.endif
+.endm
+
+// Do one non-last round of AES encryption on the counter blocks in V0-V3 using
+// the round key that has been broadcast to all 128-bit lanes of \round_key.
+.macro _vaesenc_4x round_key
+ vaesenc \round_key, V0, V0
+ vaesenc \round_key, V1, V1
+ vaesenc \round_key, V2, V2
+ vaesenc \round_key, V3, V3
+.endm
+
+// Start the AES encryption of four vectors of counter blocks.
+.macro _ctr_begin_4x
+
+ // Increment LE_CTR four times to generate four vectors of little-endian
+ // counter blocks, swap each to big-endian, and store them in V0-V3.
+ vpshufb BSWAP_MASK, LE_CTR, V0
+ vpaddd LE_CTR_INC, LE_CTR, LE_CTR
+ vpshufb BSWAP_MASK, LE_CTR, V1
+ vpaddd LE_CTR_INC, LE_CTR, LE_CTR
+ vpshufb BSWAP_MASK, LE_CTR, V2
+ vpaddd LE_CTR_INC, LE_CTR, LE_CTR
+ vpshufb BSWAP_MASK, LE_CTR, V3
+ vpaddd LE_CTR_INC, LE_CTR, LE_CTR
+
+ // AES "round zero": XOR in the zero-th round key.
+ vpxord RNDKEY0, V0, V0
+ vpxord RNDKEY0, V1, V1
+ vpxord RNDKEY0, V2, V2
+ vpxord RNDKEY0, V3, V3
+.endm
+
+// void aes_gcm_{enc,dec}_update_##suffix(const struct aes_gcm_key_avx10 *key,
+// const u32 le_ctr[4], u8 ghash_acc[16],
+// const u8 *src, u8 *dst, int datalen);
+//
+// This macro generates a GCM encryption or decryption update function with the
+// above prototype (with \enc selecting which one). This macro supports both
+// VL=32 and VL=64. _set_veclen must have been invoked with the desired length.
+//
+// This function computes the next portion of the CTR keystream, XOR's it with
+// |datalen| bytes from |src|, and writes the resulting encrypted or decrypted
+// data to |dst|. It also updates the GHASH accumulator |ghash_acc| using the
+// next |datalen| ciphertext bytes.
+//
+// |datalen| must be a multiple of 16, except on the last call where it can be
+// any length. The caller must do any buffering needed to ensure this. Both
+// in-place and out-of-place en/decryption are supported.
+//
+// |le_ctr| must give the current counter in little-endian format. For a new
+// message, the low word of the counter must be 2. This function loads the
+// counter from |le_ctr| and increments the loaded counter as needed, but it
+// does *not* store the updated counter back to |le_ctr|. The caller must
+// update |le_ctr| if any more data segments follow. Internally, only the low
+// 32-bit word of the counter is incremented, following the GCM standard.
+.macro _aes_gcm_update enc
+
+ // Function arguments
+ .set KEY, %rdi
+ .set LE_CTR_PTR, %rsi
+ .set GHASH_ACC_PTR, %rdx
+ .set SRC, %rcx
+ .set DST, %r8
+ .set DATALEN, %r9d
+ .set DATALEN64, %r9 // Zero-extend DATALEN before using!
+
+ // Additional local variables
+
+ // %rax and %k1 are used as temporary registers. LE_CTR_PTR is also
+ // available as a temporary register after the counter is loaded.
+
+ // AES key length in bytes
+ .set AESKEYLEN, %r10d
+ .set AESKEYLEN64, %r10
+
+ // Pointer to the last AES round key for the chosen AES variant
+ .set RNDKEYLAST_PTR, %r11
+
+ // In the main loop, V0-V3 are used as AES input and output. Elsewhere
+ // they are used as temporary registers.
+
+ // GHASHDATA[0-3] hold the ciphertext blocks and GHASH input data.
+ .set GHASHDATA0, V4
+ .set GHASHDATA0_XMM, %xmm4
+ .set GHASHDATA1, V5
+ .set GHASHDATA1_XMM, %xmm5
+ .set GHASHDATA2, V6
+ .set GHASHDATA2_XMM, %xmm6
+ .set GHASHDATA3, V7
+
+ // BSWAP_MASK is the shuffle mask for byte-reflecting 128-bit values
+ // using vpshufb, copied to all 128-bit lanes.
+ .set BSWAP_MASK, V8
+
+ // RNDKEY temporarily holds the next AES round key.
+ .set RNDKEY, V9
+
+ // GHASH_ACC is the accumulator variable for GHASH. When fully reduced,
+ // only the lowest 128-bit lane can be nonzero. When not fully reduced,
+ // more than one lane may be used, and they need to be XOR'd together.
+ .set GHASH_ACC, V10
+ .set GHASH_ACC_XMM, %xmm10
+
+ // LE_CTR_INC is the vector of 32-bit words that need to be added to a
+ // vector of little-endian counter blocks to advance it forwards.
+ .set LE_CTR_INC, V11
+
+ // LE_CTR contains the next set of little-endian counter blocks.
+ .set LE_CTR, V12
+
+ // RNDKEY0, RNDKEYLAST, and RNDKEY_M[9-5] contain cached AES round keys,
+ // copied to all 128-bit lanes. RNDKEY0 is the zero-th round key,
+ // RNDKEYLAST the last, and RNDKEY_M\i the one \i-th from the last.
+ .set RNDKEY0, V13
+ .set RNDKEYLAST, V14
+ .set RNDKEY_M9, V15
+ .set RNDKEY_M8, V16
+ .set RNDKEY_M7, V17
+ .set RNDKEY_M6, V18
+ .set RNDKEY_M5, V19
+
+ // RNDKEYLAST[0-3] temporarily store the last AES round key XOR'd with
+ // the corresponding block of source data. This is useful because
+ // vaesenclast(key, a) ^ b == vaesenclast(key ^ b, a), and key ^ b can
+ // be computed in parallel with the AES rounds.
+ .set RNDKEYLAST0, V20
+ .set RNDKEYLAST1, V21
+ .set RNDKEYLAST2, V22
+ .set RNDKEYLAST3, V23
+
+ // GHASHTMP[0-2] are temporary variables used by _ghash_step_4x. These
+ // cannot coincide with anything used for AES encryption, since for
+ // performance reasons GHASH and AES encryption are interleaved.
+ .set GHASHTMP0, V24
+ .set GHASHTMP1, V25
+ .set GHASHTMP2, V26
+
+ // H_POW[4-1] contain the powers of the hash key H^(4*VL/16)...H^1. The
+ // descending numbering reflects the order of the key powers.
+ .set H_POW4, V27
+ .set H_POW3, V28
+ .set H_POW2, V29
+ .set H_POW1, V30
+
+ // GFPOLY contains the .Lgfpoly constant, copied to all 128-bit lanes.
+ .set GFPOLY, V31
+
+ // Load some constants.
+ vbroadcasti32x4 .Lbswap_mask(%rip), BSWAP_MASK
+ vbroadcasti32x4 .Lgfpoly(%rip), GFPOLY
+
+ // Load the GHASH accumulator and the starting counter.
+ vmovdqu (GHASH_ACC_PTR), GHASH_ACC_XMM
+ vbroadcasti32x4 (LE_CTR_PTR), LE_CTR
+
+ // Load the AES key length in bytes.
+ movl OFFSETOF_AESKEYLEN(KEY), AESKEYLEN
+
+ // Make RNDKEYLAST_PTR point to the last AES round key. This is the
+ // round key with index 10, 12, or 14 for AES-128, AES-192, or AES-256
+ // respectively. Then load the zero-th and last round keys.
+ lea 6*16(KEY,AESKEYLEN64,4), RNDKEYLAST_PTR
+ vbroadcasti32x4 (KEY), RNDKEY0
+ vbroadcasti32x4 (RNDKEYLAST_PTR), RNDKEYLAST
+
+ // Finish initializing LE_CTR by adding [0, 1, ...] to its low words.
+ vpaddd .Lctr_pattern(%rip), LE_CTR, LE_CTR
+
+ // Initialize LE_CTR_INC to contain VL/16 in all 128-bit lanes.
+.if VL == 32
+ vbroadcasti32x4 .Linc_2blocks(%rip), LE_CTR_INC
+.elseif VL == 64
+ vbroadcasti32x4 .Linc_4blocks(%rip), LE_CTR_INC
+.else
+ .error "Unsupported vector length"
+.endif
+
+ // If there are at least 4*VL bytes of data, then continue into the loop
+ // that processes 4*VL bytes of data at a time. Otherwise skip it.
+ //
+ // Pre-subtracting 4*VL from DATALEN saves an instruction from the main
+ // loop and also ensures that at least one write always occurs to
+ // DATALEN, zero-extending it and allowing DATALEN64 to be used later.
+ sub $4*VL, DATALEN
+ jl .Lcrypt_loop_4x_done\@
+
+ // Load powers of the hash key.
+ vmovdqu8 OFFSETOFEND_H_POWERS-4*VL(KEY), H_POW4
+ vmovdqu8 OFFSETOFEND_H_POWERS-3*VL(KEY), H_POW3
+ vmovdqu8 OFFSETOFEND_H_POWERS-2*VL(KEY), H_POW2
+ vmovdqu8 OFFSETOFEND_H_POWERS-1*VL(KEY), H_POW1
+
+ // Main loop: en/decrypt and hash 4 vectors at a time.
+ //
+ // When possible, interleave the AES encryption of the counter blocks
+ // with the GHASH update of the ciphertext blocks. This improves
+ // performance on many CPUs because the execution ports used by the VAES
+ // instructions often differ from those used by vpclmulqdq and other
+ // instructions used in GHASH. For example, many Intel CPUs dispatch
+ // vaesenc to ports 0 and 1 and vpclmulqdq to port 5.
+ //
+ // The interleaving is easiest to do during decryption, since during
+ // decryption the ciphertext blocks are immediately available. For
+ // encryption, instead encrypt the first set of blocks, then hash those
+ // blocks while encrypting the next set of blocks, repeat that as
+ // needed, and finally hash the last set of blocks.
+
+.if \enc
+ // Encrypt the first 4 vectors of plaintext blocks. Leave the resulting
+ // ciphertext in GHASHDATA[0-3] for GHASH.
+ _ctr_begin_4x
+ lea 16(KEY), %rax
+1:
+ vbroadcasti32x4 (%rax), RNDKEY
+ _vaesenc_4x RNDKEY
+ add $16, %rax
+ cmp %rax, RNDKEYLAST_PTR
+ jne 1b
+ vpxord 0*VL(SRC), RNDKEYLAST, RNDKEYLAST0
+ vpxord 1*VL(SRC), RNDKEYLAST, RNDKEYLAST1
+ vpxord 2*VL(SRC), RNDKEYLAST, RNDKEYLAST2
+ vpxord 3*VL(SRC), RNDKEYLAST, RNDKEYLAST3
+ vaesenclast RNDKEYLAST0, V0, GHASHDATA0
+ vaesenclast RNDKEYLAST1, V1, GHASHDATA1
+ vaesenclast RNDKEYLAST2, V2, GHASHDATA2
+ vaesenclast RNDKEYLAST3, V3, GHASHDATA3
+ vmovdqu8 GHASHDATA0, 0*VL(DST)
+ vmovdqu8 GHASHDATA1, 1*VL(DST)
+ vmovdqu8 GHASHDATA2, 2*VL(DST)
+ vmovdqu8 GHASHDATA3, 3*VL(DST)
+ add $4*VL, SRC
+ add $4*VL, DST
+ sub $4*VL, DATALEN
+ jl .Lghash_last_ciphertext_4x\@
+.endif
+
+ // Cache as many additional AES round keys as possible.
+.irp i, 9,8,7,6,5
+ vbroadcasti32x4 -\i*16(RNDKEYLAST_PTR), RNDKEY_M\i
+.endr
+
+.Lcrypt_loop_4x\@:
+
+ // If decrypting, load more ciphertext blocks into GHASHDATA[0-3]. If
+ // encrypting, GHASHDATA[0-3] already contain the previous ciphertext.
+.if !\enc
+ vmovdqu8 0*VL(SRC), GHASHDATA0
+ vmovdqu8 1*VL(SRC), GHASHDATA1
+ vmovdqu8 2*VL(SRC), GHASHDATA2
+ vmovdqu8 3*VL(SRC), GHASHDATA3
+.endif
+
+ // Start the AES encryption of the counter blocks.
+ _ctr_begin_4x
+ cmp $24, AESKEYLEN
+ jl 128f // AES-128?
+ je 192f // AES-192?
+ // AES-256
+ vbroadcasti32x4 -13*16(RNDKEYLAST_PTR), RNDKEY
+ _vaesenc_4x RNDKEY
+ vbroadcasti32x4 -12*16(RNDKEYLAST_PTR), RNDKEY
+ _vaesenc_4x RNDKEY
+192:
+ vbroadcasti32x4 -11*16(RNDKEYLAST_PTR), RNDKEY
+ _vaesenc_4x RNDKEY
+ vbroadcasti32x4 -10*16(RNDKEYLAST_PTR), RNDKEY
+ _vaesenc_4x RNDKEY
+128:
+
+ // XOR the source data with the last round key, saving the result in
+ // RNDKEYLAST[0-3]. This reduces latency by taking advantage of the
+ // property vaesenclast(key, a) ^ b == vaesenclast(key ^ b, a).
+.if \enc
+ vpxord 0*VL(SRC), RNDKEYLAST, RNDKEYLAST0
+ vpxord 1*VL(SRC), RNDKEYLAST, RNDKEYLAST1
+ vpxord 2*VL(SRC), RNDKEYLAST, RNDKEYLAST2
+ vpxord 3*VL(SRC), RNDKEYLAST, RNDKEYLAST3
+.else
+ vpxord GHASHDATA0, RNDKEYLAST, RNDKEYLAST0
+ vpxord GHASHDATA1, RNDKEYLAST, RNDKEYLAST1
+ vpxord GHASHDATA2, RNDKEYLAST, RNDKEYLAST2
+ vpxord GHASHDATA3, RNDKEYLAST, RNDKEYLAST3
+.endif
+
+ // Finish the AES encryption of the counter blocks in V0-V3, interleaved
+ // with the GHASH update of the ciphertext blocks in GHASHDATA[0-3].
+.irp i, 9,8,7,6,5
+ _vaesenc_4x RNDKEY_M\i
+ _ghash_step_4x (9 - \i)
+.endr
+.irp i, 4,3,2,1
+ vbroadcasti32x4 -\i*16(RNDKEYLAST_PTR), RNDKEY
+ _vaesenc_4x RNDKEY
+ _ghash_step_4x (9 - \i)
+.endr
+ _ghash_step_4x 9
+
+ // Do the last AES round. This handles the XOR with the source data
+ // too, as per the optimization described above.
+ vaesenclast RNDKEYLAST0, V0, GHASHDATA0
+ vaesenclast RNDKEYLAST1, V1, GHASHDATA1
+ vaesenclast RNDKEYLAST2, V2, GHASHDATA2
+ vaesenclast RNDKEYLAST3, V3, GHASHDATA3
+
+ // Store the en/decrypted data to DST.
+ vmovdqu8 GHASHDATA0, 0*VL(DST)
+ vmovdqu8 GHASHDATA1, 1*VL(DST)
+ vmovdqu8 GHASHDATA2, 2*VL(DST)
+ vmovdqu8 GHASHDATA3, 3*VL(DST)
+
+ add $4*VL, SRC
+ add $4*VL, DST
+ sub $4*VL, DATALEN
+ jge .Lcrypt_loop_4x\@
+
+.if \enc
+.Lghash_last_ciphertext_4x\@:
+ // Update GHASH with the last set of ciphertext blocks.
+.irp i, 0,1,2,3,4,5,6,7,8,9
+ _ghash_step_4x \i
+.endr
+.endif
+
+.Lcrypt_loop_4x_done\@:
+
+ // Undo the extra subtraction by 4*VL and check whether data remains.
+ add $4*VL, DATALEN
+ jz .Ldone\@
+
+ // The data length isn't a multiple of 4*VL. Process the remaining data
+ // of length 1 <= DATALEN < 4*VL, up to one vector (VL bytes) at a time.
+ // Going one vector at a time may seem inefficient compared to having
+ // separate code paths for each possible number of vectors remaining.
+ // However, using a loop keeps the code size down, and it performs
+ // surprising well; modern CPUs will start executing the next iteration
+ // before the previous one finishes and also predict the number of loop
+ // iterations. For a similar reason, we roll up the AES rounds.
+ //
+ // On the last iteration, the remaining length may be less than VL.
+ // Handle this using masking.
+ //
+ // Since there are enough key powers available for all remaining data,
+ // there is no need to do a GHASH reduction after each iteration.
+ // Instead, multiply each remaining block by its own key power, and only
+ // do a GHASH reduction at the very end.
+
+ // Make POWERS_PTR point to the key powers [H^N, H^(N-1), ...] where N
+ // is the number of blocks that remain.
+ .set POWERS_PTR, LE_CTR_PTR // LE_CTR_PTR is free to be reused.
+ mov DATALEN, %eax
+ neg %rax
+ and $~15, %rax // -round_up(DATALEN, 16)
+ lea OFFSETOFEND_H_POWERS(KEY,%rax), POWERS_PTR
+
+ // Start collecting the unreduced GHASH intermediate value LO, MI, HI.
+ .set LO, GHASHDATA0
+ .set LO_XMM, GHASHDATA0_XMM
+ .set MI, GHASHDATA1
+ .set MI_XMM, GHASHDATA1_XMM
+ .set HI, GHASHDATA2
+ .set HI_XMM, GHASHDATA2_XMM
+ vpxor LO_XMM, LO_XMM, LO_XMM
+ vpxor MI_XMM, MI_XMM, MI_XMM
+ vpxor HI_XMM, HI_XMM, HI_XMM
+
+.Lcrypt_loop_1x\@:
+
+ // Select the appropriate mask for this iteration: all 1's if
+ // DATALEN >= VL, otherwise DATALEN 1's. Do this branchlessly using the
+ // bzhi instruction from BMI2. (This relies on DATALEN <= 255.)
+.if VL < 64
+ mov $-1, %eax
+ bzhi DATALEN, %eax, %eax
+ kmovd %eax, %k1
+.else
+ mov $-1, %rax
+ bzhi DATALEN64, %rax, %rax
+ kmovq %rax, %k1
+.endif
+
+ // Encrypt a vector of counter blocks. This does not need to be masked.
+ vpshufb BSWAP_MASK, LE_CTR, V0
+ vpaddd LE_CTR_INC, LE_CTR, LE_CTR
+ vpxord RNDKEY0, V0, V0
+ lea 16(KEY), %rax
+1:
+ vbroadcasti32x4 (%rax), RNDKEY
+ vaesenc RNDKEY, V0, V0
+ add $16, %rax
+ cmp %rax, RNDKEYLAST_PTR
+ jne 1b
+ vaesenclast RNDKEYLAST, V0, V0
+
+ // XOR the data with the appropriate number of keystream bytes.
+ vmovdqu8 (SRC), V1{%k1}{z}
+ vpxord V1, V0, V0
+ vmovdqu8 V0, (DST){%k1}
+
+ // Update GHASH with the ciphertext block(s), without reducing.
+ //
+ // In the case of DATALEN < VL, the ciphertext is zero-padded to VL.
+ // (If decrypting, it's done by the above masked load. If encrypting,
+ // it's done by the below masked register-to-register move.) Note that
+ // if DATALEN <= VL - 16, there will be additional padding beyond the
+ // padding of the last block specified by GHASH itself; i.e., there may
+ // be whole block(s) that get processed by the GHASH multiplication and
+ // reduction instructions but should not actually be included in the
+ // GHASH. However, any such blocks are all-zeroes, and the values that
+ // they're multiplied with are also all-zeroes. Therefore they just add
+ // 0 * 0 = 0 to the final GHASH result, which makes no difference.
+ vmovdqu8 (POWERS_PTR), H_POW1
+.if \enc
+ vmovdqu8 V0, V1{%k1}{z}
+.endif
+ vpshufb BSWAP_MASK, V1, V0
+ vpxord GHASH_ACC, V0, V0
+ _ghash_mul_noreduce H_POW1, V0, LO, MI, HI, GHASHDATA3, V1, V2, V3
+ vpxor GHASH_ACC_XMM, GHASH_ACC_XMM, GHASH_ACC_XMM
+
+ add $VL, POWERS_PTR
+ add $VL, SRC
+ add $VL, DST
+ sub $VL, DATALEN
+ jg .Lcrypt_loop_1x\@
+
+ // Finally, do the GHASH reduction.
+ _ghash_reduce LO, MI, HI, GFPOLY, V0
+ _horizontal_xor HI, HI_XMM, GHASH_ACC_XMM, %xmm0, %xmm1, %xmm2
+
+.Ldone\@:
+ // Store the updated GHASH accumulator back to memory.
+ vmovdqu GHASH_ACC_XMM, (GHASH_ACC_PTR)
+
+ vzeroupper // This is needed after using ymm or zmm registers.
+ RET
+.endm
+
+// void aes_gcm_enc_final_vaes_avx10(const struct aes_gcm_key_avx10 *key,
+// const u32 le_ctr[4], u8 ghash_acc[16],
+// u64 total_aadlen, u64 total_datalen);
+// bool aes_gcm_dec_final_vaes_avx10(const struct aes_gcm_key_avx10 *key,
+// const u32 le_ctr[4],
+// const u8 ghash_acc[16],
+// u64 total_aadlen, u64 total_datalen,
+// const u8 tag[16], int taglen);
+//
+// This macro generates one of the above two functions (with \enc selecting
+// which one). Both functions finish computing the GCM authentication tag by
+// updating GHASH with the lengths block and encrypting the GHASH accumulator.
+// |total_aadlen| and |total_datalen| must be the total length of the additional
+// authenticated data and the en/decrypted data in bytes, respectively.
+//
+// The encryption function then stores the full-length (16-byte) computed
+// authentication tag to |ghash_acc|. The decryption function instead loads the
+// expected authentication tag (the one that was transmitted) from the 16-byte
+// buffer |tag|, compares the first 4 <= |taglen| <= 16 bytes of it to the
+// computed tag in constant time, and returns true if and only if they match.
+.macro _aes_gcm_final enc
+
+ // Function arguments
+ .set KEY, %rdi
+ .set LE_CTR_PTR, %rsi
+ .set GHASH_ACC_PTR, %rdx
+ .set TOTAL_AADLEN, %rcx
+ .set TOTAL_DATALEN, %r8
+ .set TAG, %r9
+ .set TAGLEN, %r10d // Originally at 8(%rsp)
+
+ // Additional local variables.
+ // %rax, %xmm0-%xmm3, and %k1 are used as temporary registers.
+ .set AESKEYLEN, %r11d
+ .set AESKEYLEN64, %r11
+ .set GFPOLY, %xmm4
+ .set BSWAP_MASK, %xmm5
+ .set LE_CTR, %xmm6
+ .set GHASH_ACC, %xmm7
+ .set H_POW1, %xmm8
+
+ // Load some constants.
+ vmovdqa .Lgfpoly(%rip), GFPOLY
+ vmovdqa .Lbswap_mask(%rip), BSWAP_MASK
+
+ // Load the AES key length in bytes.
+ movl OFFSETOF_AESKEYLEN(KEY), AESKEYLEN
+
+ // Set up a counter block with 1 in the low 32-bit word. This is the
+ // counter that produces the ciphertext needed to encrypt the auth tag.
+ // GFPOLY has 1 in the low word, so grab the 1 from there using a blend.
+ vpblendd $0xe, (LE_CTR_PTR), GFPOLY, LE_CTR
+
+ // Build the lengths block and XOR it with the GHASH accumulator.
+ // Although the lengths block is defined as the AAD length followed by
+ // the en/decrypted data length, both in big-endian byte order, a byte
+ // reflection of the full block is needed because of the way we compute
+ // GHASH (see _ghash_mul_step). By using little-endian values in the
+ // opposite order, we avoid having to reflect any bytes here.
+ vmovq TOTAL_DATALEN, %xmm0
+ vpinsrq $1, TOTAL_AADLEN, %xmm0, %xmm0
+ vpsllq $3, %xmm0, %xmm0 // Bytes to bits
+ vpxor (GHASH_ACC_PTR), %xmm0, GHASH_ACC
+
+ // Load the first hash key power (H^1), which is stored last.
+ vmovdqu8 OFFSETOFEND_H_POWERS-16(KEY), H_POW1
+
+.if !\enc
+ // Prepare a mask of TAGLEN one bits.
+ movl 8(%rsp), TAGLEN
+ mov $-1, %eax
+ bzhi TAGLEN, %eax, %eax
+ kmovd %eax, %k1
+.endif
+
+ // Make %rax point to the last AES round key for the chosen AES variant.
+ lea 6*16(KEY,AESKEYLEN64,4), %rax
+
+ // Start the AES encryption of the counter block by swapping the counter
+ // block to big-endian and XOR-ing it with the zero-th AES round key.
+ vpshufb BSWAP_MASK, LE_CTR, %xmm0
+ vpxor (KEY), %xmm0, %xmm0
+
+ // Complete the AES encryption and multiply GHASH_ACC by H^1.
+ // Interleave the AES and GHASH instructions to improve performance.
+ cmp $24, AESKEYLEN
+ jl 128f // AES-128?
+ je 192f // AES-192?
+ // AES-256
+ vaesenc -13*16(%rax), %xmm0, %xmm0
+ vaesenc -12*16(%rax), %xmm0, %xmm0
+192:
+ vaesenc -11*16(%rax), %xmm0, %xmm0
+ vaesenc -10*16(%rax), %xmm0, %xmm0
+128:
+.irp i, 0,1,2,3,4,5,6,7,8
+ _ghash_mul_step \i, H_POW1, GHASH_ACC, GHASH_ACC, GFPOLY, \
+ %xmm1, %xmm2, %xmm3
+ vaesenc (\i-9)*16(%rax), %xmm0, %xmm0
+.endr
+ _ghash_mul_step 9, H_POW1, GHASH_ACC, GHASH_ACC, GFPOLY, \
+ %xmm1, %xmm2, %xmm3
+
+ // Undo the byte reflection of the GHASH accumulator.
+ vpshufb BSWAP_MASK, GHASH_ACC, GHASH_ACC
+
+ // Do the last AES round and XOR the resulting keystream block with the
+ // GHASH accumulator to produce the full computed authentication tag.
+ //
+ // Reduce latency by taking advantage of the property vaesenclast(key,
+ // a) ^ b == vaesenclast(key ^ b, a). I.e., XOR GHASH_ACC into the last
+ // round key, instead of XOR'ing the final AES output with GHASH_ACC.
+ //
+ // enc_final then returns the computed auth tag, while dec_final
+ // compares it with the transmitted one and returns a bool. To compare
+ // the tags, dec_final XORs them together and uses vptest to check
+ // whether the result is all-zeroes. This should be constant-time.
+ // dec_final applies the vaesenclast optimization to this additional
+ // value XOR'd too, using vpternlogd to XOR the last round key, GHASH
+ // accumulator, and transmitted auth tag together in one instruction.
+.if \enc
+ vpxor (%rax), GHASH_ACC, %xmm1
+ vaesenclast %xmm1, %xmm0, GHASH_ACC
+ vmovdqu GHASH_ACC, (GHASH_ACC_PTR)
+.else
+ vmovdqu (TAG), %xmm1
+ vpternlogd $0x96, (%rax), GHASH_ACC, %xmm1
+ vaesenclast %xmm1, %xmm0, %xmm0
+ xor %eax, %eax
+ vmovdqu8 %xmm0, %xmm0{%k1}{z} // Truncate to TAGLEN bytes
+ vptest %xmm0, %xmm0
+ sete %al
+.endif
+ // No need for vzeroupper here, since only used xmm registers were used.
+ RET
+.endm
+
+_set_veclen 32
+SYM_FUNC_START(aes_gcm_precompute_vaes_avx10_256)
+ _aes_gcm_precompute
+SYM_FUNC_END(aes_gcm_precompute_vaes_avx10_256)
+SYM_FUNC_START(aes_gcm_enc_update_vaes_avx10_256)
+ _aes_gcm_update 1
+SYM_FUNC_END(aes_gcm_enc_update_vaes_avx10_256)
+SYM_FUNC_START(aes_gcm_dec_update_vaes_avx10_256)
+ _aes_gcm_update 0
+SYM_FUNC_END(aes_gcm_dec_update_vaes_avx10_256)
+
+_set_veclen 64
+SYM_FUNC_START(aes_gcm_precompute_vaes_avx10_512)
+ _aes_gcm_precompute
+SYM_FUNC_END(aes_gcm_precompute_vaes_avx10_512)
+SYM_FUNC_START(aes_gcm_enc_update_vaes_avx10_512)
+ _aes_gcm_update 1
+SYM_FUNC_END(aes_gcm_enc_update_vaes_avx10_512)
+SYM_FUNC_START(aes_gcm_dec_update_vaes_avx10_512)
+ _aes_gcm_update 0
+SYM_FUNC_END(aes_gcm_dec_update_vaes_avx10_512)
+
+// void aes_gcm_aad_update_vaes_avx10(const struct aes_gcm_key_avx10 *key,
+// u8 ghash_acc[16],
+// const u8 *aad, int aadlen);
+//
+// This function processes the AAD (Additional Authenticated Data) in GCM.
+// Using the key |key|, it updates the GHASH accumulator |ghash_acc| with the
+// data given by |aad| and |aadlen|. |key->ghash_key_powers| must have been
+// initialized. On the first call, |ghash_acc| must be all zeroes. |aadlen|
+// must be a multiple of 16, except on the last call where it can be any length.
+// The caller must do any buffering needed to ensure this.
+//
+// AES-GCM is almost always used with small amounts of AAD, less than 32 bytes.
+// Therefore, for AAD processing we currently only provide this implementation
+// which uses 256-bit vectors (ymm registers) and only has a 1x-wide loop. This
+// keeps the code size down, and it enables some micro-optimizations, e.g. using
+// VEX-coded instructions instead of EVEX-coded to save some instruction bytes.
+// To optimize for large amounts of AAD, we could implement a 4x-wide loop and
+// provide a version using 512-bit vectors, but that doesn't seem to be useful.
+SYM_FUNC_START(aes_gcm_aad_update_vaes_avx10)
+
+ // Function arguments
+ .set KEY, %rdi
+ .set GHASH_ACC_PTR, %rsi
+ .set AAD, %rdx
+ .set AADLEN, %ecx
+ .set AADLEN64, %rcx // Zero-extend AADLEN before using!
+
+ // Additional local variables.
+ // %rax, %ymm0-%ymm3, and %k1 are used as temporary registers.
+ .set BSWAP_MASK, %ymm4
+ .set GFPOLY, %ymm5
+ .set GHASH_ACC, %ymm6
+ .set GHASH_ACC_XMM, %xmm6
+ .set H_POW1, %ymm7
+
+ // Load some constants.
+ vbroadcasti128 .Lbswap_mask(%rip), BSWAP_MASK
+ vbroadcasti128 .Lgfpoly(%rip), GFPOLY
+
+ // Load the GHASH accumulator.
+ vmovdqu (GHASH_ACC_PTR), GHASH_ACC_XMM
+
+ // Update GHASH with 32 bytes of AAD at a time.
+ //
+ // Pre-subtracting 32 from AADLEN saves an instruction from the loop and
+ // also ensures that at least one write always occurs to AADLEN,
+ // zero-extending it and allowing AADLEN64 to be used later.
+ sub $32, AADLEN
+ jl .Laad_loop_1x_done
+ vmovdqu8 OFFSETOFEND_H_POWERS-32(KEY), H_POW1 // [H^2, H^1]
+.Laad_loop_1x:
+ vmovdqu (AAD), %ymm0
+ vpshufb BSWAP_MASK, %ymm0, %ymm0
+ vpxor %ymm0, GHASH_ACC, GHASH_ACC
+ _ghash_mul H_POW1, GHASH_ACC, GHASH_ACC, GFPOLY, \
+ %ymm0, %ymm1, %ymm2
+ vextracti128 $1, GHASH_ACC, %xmm0
+ vpxor %xmm0, GHASH_ACC_XMM, GHASH_ACC_XMM
+ add $32, AAD
+ sub $32, AADLEN
+ jge .Laad_loop_1x
+.Laad_loop_1x_done:
+ add $32, AADLEN
+ jz .Laad_done
+
+ // Update GHASH with the remaining 1 <= AADLEN < 32 bytes of AAD.
+ mov $-1, %eax
+ bzhi AADLEN, %eax, %eax
+ kmovd %eax, %k1
+ vmovdqu8 (AAD), %ymm0{%k1}{z}
+ neg AADLEN64
+ and $~15, AADLEN64 // -round_up(AADLEN, 16)
+ vmovdqu8 OFFSETOFEND_H_POWERS(KEY,AADLEN64), H_POW1
+ vpshufb BSWAP_MASK, %ymm0, %ymm0
+ vpxor %ymm0, GHASH_ACC, GHASH_ACC
+ _ghash_mul H_POW1, GHASH_ACC, GHASH_ACC, GFPOLY, \
+ %ymm0, %ymm1, %ymm2
+ vextracti128 $1, GHASH_ACC, %xmm0
+ vpxor %xmm0, GHASH_ACC_XMM, GHASH_ACC_XMM
+
+.Laad_done:
+ // Store the updated GHASH accumulator back to memory.
+ vmovdqu GHASH_ACC_XMM, (GHASH_ACC_PTR)
+
+ vzeroupper // This is needed after using ymm or zmm registers.
+ RET
+SYM_FUNC_END(aes_gcm_aad_update_vaes_avx10)
+
+SYM_FUNC_START(aes_gcm_enc_final_vaes_avx10)
+ _aes_gcm_final 1
+SYM_FUNC_END(aes_gcm_enc_final_vaes_avx10)
+SYM_FUNC_START(aes_gcm_dec_final_vaes_avx10)
+ _aes_gcm_final 0
+SYM_FUNC_END(aes_gcm_dec_final_vaes_avx10)