summaryrefslogtreecommitdiff
path: root/rust/kernel/alloc/kbox.rs
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2024-11-27 01:00:26 +0300
committerLinus Torvalds <torvalds@linux-foundation.org>2024-11-27 01:00:26 +0300
commit798bb342e0416d846cf67f4725a3428f39bfb96b (patch)
tree66a4eda8cba9d7c6b0f535bb85760ef8bf3d2a49 /rust/kernel/alloc/kbox.rs
parente68ce9474a1dac72ea9b1eab25bcd7a5b28adc79 (diff)
parentb7ed2b6f4e8d7f64649795e76ee9db67300de8eb (diff)
downloadlinux-798bb342e0416d846cf67f4725a3428f39bfb96b.tar.xz
Merge tag 'rust-6.13' of https://github.com/Rust-for-Linux/linux
Pull rust updates from Miguel Ojeda: "Toolchain and infrastructure: - Enable a series of lints, including safety-related ones, e.g. the compiler will now warn about missing safety comments, as well as unnecessary ones. How safety documentation is organized is a frequent source of review comments, thus having the compiler guide new developers on where they are expected (and where not) is very nice. - Start using '#[expect]': an interesting feature in Rust (stabilized in 1.81.0) that makes the compiler warn if an expected warning was _not_ emitted. This is useful to avoid forgetting cleaning up locally ignored diagnostics ('#[allow]'s). - Introduce '.clippy.toml' configuration file for Clippy, the Rust linter, which will allow us to tweak its behaviour. For instance, our first use cases are declaring a disallowed macro and, more importantly, enabling the checking of private items. - Lints-related fixes and cleanups related to the items above. - Migrate from 'receiver_trait' to 'arbitrary_self_types': to get the kernel into stable Rust, one of the major pieces of the puzzle is the support to write custom types that can be used as 'self', i.e. as receivers, since the kernel needs to write types such as 'Arc' that common userspace Rust would not. 'arbitrary_self_types' has been accepted to become stable, and this is one of the steps required to get there. - Remove usage of the 'new_uninit' unstable feature. - Use custom C FFI types. Includes a new 'ffi' crate to contain our custom mapping, instead of using the standard library 'core::ffi' one. The actual remapping will be introduced in a later cycle. - Map '__kernel_{size_t,ssize_t,ptrdiff_t}' to 'usize'/'isize' instead of 32/64-bit integers. - Fix 'size_t' in bindgen generated prototypes of C builtins. - Warn on bindgen < 0.69.5 and libclang >= 19.1 due to a double issue in the projects, which we managed to trigger with the upcoming tracepoint support. It includes a build test since some distributions backported the fix (e.g. Debian -- thanks!). All major distributions we list should be now OK except Ubuntu non-LTS. 'macros' crate: - Adapt the build system to be able run the doctests there too; and clean up and enable the corresponding doctests. 'kernel' crate: - Add 'alloc' module with generic kernel allocator support and remove the dependency on the Rust standard library 'alloc' and the extension traits we used to provide fallible methods with flags. Add the 'Allocator' trait and its implementations '{K,V,KV}malloc'. Add the 'Box' type (a heap allocation for a single value of type 'T' that is also generic over an allocator and considers the kernel's GFP flags) and its shorthand aliases '{K,V,KV}Box'. Add 'ArrayLayout' type. Add 'Vec' (a contiguous growable array type) and its shorthand aliases '{K,V,KV}Vec', including iterator support. For instance, now we may write code such as: let mut v = KVec::new(); v.push(1, GFP_KERNEL)?; assert_eq!(&v, &[1]); Treewide, move as well old users to these new types. - 'sync' module: add global lock support, including the 'GlobalLockBackend' trait; the 'Global{Lock,Guard,LockedBy}' types and the 'global_lock!' macro. Add the 'Lock::try_lock' method. - 'error' module: optimize 'Error' type to use 'NonZeroI32' and make conversion functions public. - 'page' module: add 'page_align' function. - Add 'transmute' module with the existing 'FromBytes' and 'AsBytes' traits. - 'block::mq::request' module: improve rendered documentation. - 'types' module: extend 'Opaque' type documentation and add simple examples for the 'Either' types. drm/panic: - Clean up a series of Clippy warnings. Documentation: - Add coding guidelines for lints and the '#[expect]' feature. - Add Ubuntu to the list of distributions in the Quick Start guide. MAINTAINERS: - Add Danilo Krummrich as maintainer of the new 'alloc' module. And a few other small cleanups and fixes" * tag 'rust-6.13' of https://github.com/Rust-for-Linux/linux: (82 commits) rust: alloc: Fix `ArrayLayout` allocations docs: rust: remove spurious item in `expect` list rust: allow `clippy::needless_lifetimes` rust: warn on bindgen < 0.69.5 and libclang >= 19.1 rust: use custom FFI integer types rust: map `__kernel_size_t` and friends also to usize/isize rust: fix size_t in bindgen prototypes of C builtins rust: sync: add global lock support rust: macros: enable the rest of the tests rust: macros: enable paste! use from macro_rules! rust: enable macros::module! tests rust: kbuild: expand rusttest target for macros rust: types: extend `Opaque` documentation rust: block: fix formatting of `kernel::block::mq::request` module rust: macros: fix documentation of the paste! macro rust: kernel: fix THIS_MODULE header path in ThisModule doc comment rust: page: add Rust version of PAGE_ALIGN rust: helpers: remove unnecessary header includes rust: exports: improve grammar in commentary drm/panic: allow verbose version check ...
Diffstat (limited to 'rust/kernel/alloc/kbox.rs')
-rw-r--r--rust/kernel/alloc/kbox.rs456
1 files changed, 456 insertions, 0 deletions
diff --git a/rust/kernel/alloc/kbox.rs b/rust/kernel/alloc/kbox.rs
new file mode 100644
index 000000000000..9ce414361c2c
--- /dev/null
+++ b/rust/kernel/alloc/kbox.rs
@@ -0,0 +1,456 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Implementation of [`Box`].
+
+#[allow(unused_imports)] // Used in doc comments.
+use super::allocator::{KVmalloc, Kmalloc, Vmalloc};
+use super::{AllocError, Allocator, Flags};
+use core::alloc::Layout;
+use core::fmt;
+use core::marker::PhantomData;
+use core::mem::ManuallyDrop;
+use core::mem::MaybeUninit;
+use core::ops::{Deref, DerefMut};
+use core::pin::Pin;
+use core::ptr::NonNull;
+use core::result::Result;
+
+use crate::init::{InPlaceInit, InPlaceWrite, Init, PinInit};
+use crate::types::ForeignOwnable;
+
+/// The kernel's [`Box`] type -- a heap allocation for a single value of type `T`.
+///
+/// This is the kernel's version of the Rust stdlib's `Box`. There are several differences,
+/// for example no `noalias` attribute is emitted and partially moving out of a `Box` is not
+/// supported. There are also several API differences, e.g. `Box` always requires an [`Allocator`]
+/// implementation to be passed as generic, page [`Flags`] when allocating memory and all functions
+/// that may allocate memory are fallible.
+///
+/// `Box` works with any of the kernel's allocators, e.g. [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`].
+/// There are aliases for `Box` with these allocators ([`KBox`], [`VBox`], [`KVBox`]).
+///
+/// When dropping a [`Box`], the value is also dropped and the heap memory is automatically freed.
+///
+/// # Examples
+///
+/// ```
+/// let b = KBox::<u64>::new(24_u64, GFP_KERNEL)?;
+///
+/// assert_eq!(*b, 24_u64);
+/// # Ok::<(), Error>(())
+/// ```
+///
+/// ```
+/// # use kernel::bindings;
+/// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1;
+/// struct Huge([u8; SIZE]);
+///
+/// assert!(KBox::<Huge>::new_uninit(GFP_KERNEL | __GFP_NOWARN).is_err());
+/// ```
+///
+/// ```
+/// # use kernel::bindings;
+/// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1;
+/// struct Huge([u8; SIZE]);
+///
+/// assert!(KVBox::<Huge>::new_uninit(GFP_KERNEL).is_ok());
+/// ```
+///
+/// # Invariants
+///
+/// `self.0` is always properly aligned and either points to memory allocated with `A` or, for
+/// zero-sized types, is a dangling, well aligned pointer.
+#[repr(transparent)]
+pub struct Box<T: ?Sized, A: Allocator>(NonNull<T>, PhantomData<A>);
+
+/// Type alias for [`Box`] with a [`Kmalloc`] allocator.
+///
+/// # Examples
+///
+/// ```
+/// let b = KBox::new(24_u64, GFP_KERNEL)?;
+///
+/// assert_eq!(*b, 24_u64);
+/// # Ok::<(), Error>(())
+/// ```
+pub type KBox<T> = Box<T, super::allocator::Kmalloc>;
+
+/// Type alias for [`Box`] with a [`Vmalloc`] allocator.
+///
+/// # Examples
+///
+/// ```
+/// let b = VBox::new(24_u64, GFP_KERNEL)?;
+///
+/// assert_eq!(*b, 24_u64);
+/// # Ok::<(), Error>(())
+/// ```
+pub type VBox<T> = Box<T, super::allocator::Vmalloc>;
+
+/// Type alias for [`Box`] with a [`KVmalloc`] allocator.
+///
+/// # Examples
+///
+/// ```
+/// let b = KVBox::new(24_u64, GFP_KERNEL)?;
+///
+/// assert_eq!(*b, 24_u64);
+/// # Ok::<(), Error>(())
+/// ```
+pub type KVBox<T> = Box<T, super::allocator::KVmalloc>;
+
+// SAFETY: `Box` is `Send` if `T` is `Send` because the `Box` owns a `T`.
+unsafe impl<T, A> Send for Box<T, A>
+where
+ T: Send + ?Sized,
+ A: Allocator,
+{
+}
+
+// SAFETY: `Box` is `Sync` if `T` is `Sync` because the `Box` owns a `T`.
+unsafe impl<T, A> Sync for Box<T, A>
+where
+ T: Sync + ?Sized,
+ A: Allocator,
+{
+}
+
+impl<T, A> Box<T, A>
+where
+ T: ?Sized,
+ A: Allocator,
+{
+ /// Creates a new `Box<T, A>` from a raw pointer.
+ ///
+ /// # Safety
+ ///
+ /// For non-ZSTs, `raw` must point at an allocation allocated with `A` that is sufficiently
+ /// aligned for and holds a valid `T`. The caller passes ownership of the allocation to the
+ /// `Box`.
+ ///
+ /// For ZSTs, `raw` must be a dangling, well aligned pointer.
+ #[inline]
+ pub const unsafe fn from_raw(raw: *mut T) -> Self {
+ // INVARIANT: Validity of `raw` is guaranteed by the safety preconditions of this function.
+ // SAFETY: By the safety preconditions of this function, `raw` is not a NULL pointer.
+ Self(unsafe { NonNull::new_unchecked(raw) }, PhantomData)
+ }
+
+ /// Consumes the `Box<T, A>` and returns a raw pointer.
+ ///
+ /// This will not run the destructor of `T` and for non-ZSTs the allocation will stay alive
+ /// indefinitely. Use [`Box::from_raw`] to recover the [`Box`], drop the value and free the
+ /// allocation, if any.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let x = KBox::new(24, GFP_KERNEL)?;
+ /// let ptr = KBox::into_raw(x);
+ /// // SAFETY: `ptr` comes from a previous call to `KBox::into_raw`.
+ /// let x = unsafe { KBox::from_raw(ptr) };
+ ///
+ /// assert_eq!(*x, 24);
+ /// # Ok::<(), Error>(())
+ /// ```
+ #[inline]
+ pub fn into_raw(b: Self) -> *mut T {
+ ManuallyDrop::new(b).0.as_ptr()
+ }
+
+ /// Consumes and leaks the `Box<T, A>` and returns a mutable reference.
+ ///
+ /// See [`Box::into_raw`] for more details.
+ #[inline]
+ pub fn leak<'a>(b: Self) -> &'a mut T {
+ // SAFETY: `Box::into_raw` always returns a properly aligned and dereferenceable pointer
+ // which points to an initialized instance of `T`.
+ unsafe { &mut *Box::into_raw(b) }
+ }
+}
+
+impl<T, A> Box<MaybeUninit<T>, A>
+where
+ A: Allocator,
+{
+ /// Converts a `Box<MaybeUninit<T>, A>` to a `Box<T, A>`.
+ ///
+ /// It is undefined behavior to call this function while the value inside of `b` is not yet
+ /// fully initialized.
+ ///
+ /// # Safety
+ ///
+ /// Callers must ensure that the value inside of `b` is in an initialized state.
+ pub unsafe fn assume_init(self) -> Box<T, A> {
+ let raw = Self::into_raw(self);
+
+ // SAFETY: `raw` comes from a previous call to `Box::into_raw`. By the safety requirements
+ // of this function, the value inside the `Box` is in an initialized state. Hence, it is
+ // safe to reconstruct the `Box` as `Box<T, A>`.
+ unsafe { Box::from_raw(raw.cast()) }
+ }
+
+ /// Writes the value and converts to `Box<T, A>`.
+ pub fn write(mut self, value: T) -> Box<T, A> {
+ (*self).write(value);
+
+ // SAFETY: We've just initialized `b`'s value.
+ unsafe { self.assume_init() }
+ }
+}
+
+impl<T, A> Box<T, A>
+where
+ A: Allocator,
+{
+ /// Creates a new `Box<T, A>` and initializes its contents with `x`.
+ ///
+ /// New memory is allocated with `A`. The allocation may fail, in which case an error is
+ /// returned. For ZSTs no memory is allocated.
+ pub fn new(x: T, flags: Flags) -> Result<Self, AllocError> {
+ let b = Self::new_uninit(flags)?;
+ Ok(Box::write(b, x))
+ }
+
+ /// Creates a new `Box<T, A>` with uninitialized contents.
+ ///
+ /// New memory is allocated with `A`. The allocation may fail, in which case an error is
+ /// returned. For ZSTs no memory is allocated.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let b = KBox::<u64>::new_uninit(GFP_KERNEL)?;
+ /// let b = KBox::write(b, 24);
+ ///
+ /// assert_eq!(*b, 24_u64);
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub fn new_uninit(flags: Flags) -> Result<Box<MaybeUninit<T>, A>, AllocError> {
+ let layout = Layout::new::<MaybeUninit<T>>();
+ let ptr = A::alloc(layout, flags)?;
+
+ // INVARIANT: `ptr` is either a dangling pointer or points to memory allocated with `A`,
+ // which is sufficient in size and alignment for storing a `T`.
+ Ok(Box(ptr.cast(), PhantomData))
+ }
+
+ /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then `x` will be
+ /// pinned in memory and can't be moved.
+ #[inline]
+ pub fn pin(x: T, flags: Flags) -> Result<Pin<Box<T, A>>, AllocError>
+ where
+ A: 'static,
+ {
+ Ok(Self::new(x, flags)?.into())
+ }
+
+ /// Forgets the contents (does not run the destructor), but keeps the allocation.
+ fn forget_contents(this: Self) -> Box<MaybeUninit<T>, A> {
+ let ptr = Self::into_raw(this);
+
+ // SAFETY: `ptr` is valid, because it came from `Box::into_raw`.
+ unsafe { Box::from_raw(ptr.cast()) }
+ }
+
+ /// Drops the contents, but keeps the allocation.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// let value = KBox::new([0; 32], GFP_KERNEL)?;
+ /// assert_eq!(*value, [0; 32]);
+ /// let value = KBox::drop_contents(value);
+ /// // Now we can re-use `value`:
+ /// let value = KBox::write(value, [1; 32]);
+ /// assert_eq!(*value, [1; 32]);
+ /// # Ok::<(), Error>(())
+ /// ```
+ pub fn drop_contents(this: Self) -> Box<MaybeUninit<T>, A> {
+ let ptr = this.0.as_ptr();
+
+ // SAFETY: `ptr` is valid, because it came from `this`. After this call we never access the
+ // value stored in `this` again.
+ unsafe { core::ptr::drop_in_place(ptr) };
+
+ Self::forget_contents(this)
+ }
+
+ /// Moves the `Box`'s value out of the `Box` and consumes the `Box`.
+ pub fn into_inner(b: Self) -> T {
+ // SAFETY: By the type invariant `&*b` is valid for `read`.
+ let value = unsafe { core::ptr::read(&*b) };
+ let _ = Self::forget_contents(b);
+ value
+ }
+}
+
+impl<T, A> From<Box<T, A>> for Pin<Box<T, A>>
+where
+ T: ?Sized,
+ A: Allocator,
+{
+ /// Converts a `Box<T, A>` into a `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then
+ /// `*b` will be pinned in memory and can't be moved.
+ ///
+ /// This moves `b` into `Pin` without moving `*b` or allocating and copying any memory.
+ fn from(b: Box<T, A>) -> Self {
+ // SAFETY: The value wrapped inside a `Pin<Box<T, A>>` cannot be moved or replaced as long
+ // as `T` does not implement `Unpin`.
+ unsafe { Pin::new_unchecked(b) }
+ }
+}
+
+impl<T, A> InPlaceWrite<T> for Box<MaybeUninit<T>, A>
+where
+ A: Allocator + 'static,
+{
+ type Initialized = Box<T, A>;
+
+ fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
+ let slot = self.as_mut_ptr();
+ // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
+ // slot is valid.
+ unsafe { init.__init(slot)? };
+ // SAFETY: All fields have been initialized.
+ Ok(unsafe { Box::assume_init(self) })
+ }
+
+ fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
+ let slot = self.as_mut_ptr();
+ // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
+ // slot is valid and will not be moved, because we pin it later.
+ unsafe { init.__pinned_init(slot)? };
+ // SAFETY: All fields have been initialized.
+ Ok(unsafe { Box::assume_init(self) }.into())
+ }
+}
+
+impl<T, A> InPlaceInit<T> for Box<T, A>
+where
+ A: Allocator + 'static,
+{
+ type PinnedSelf = Pin<Self>;
+
+ #[inline]
+ fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E>
+ where
+ E: From<AllocError>,
+ {
+ Box::<_, A>::new_uninit(flags)?.write_pin_init(init)
+ }
+
+ #[inline]
+ fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
+ where
+ E: From<AllocError>,
+ {
+ Box::<_, A>::new_uninit(flags)?.write_init(init)
+ }
+}
+
+impl<T: 'static, A> ForeignOwnable for Box<T, A>
+where
+ A: Allocator,
+{
+ type Borrowed<'a> = &'a T;
+
+ fn into_foreign(self) -> *const crate::ffi::c_void {
+ Box::into_raw(self) as _
+ }
+
+ unsafe fn from_foreign(ptr: *const crate::ffi::c_void) -> Self {
+ // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
+ // call to `Self::into_foreign`.
+ unsafe { Box::from_raw(ptr as _) }
+ }
+
+ unsafe fn borrow<'a>(ptr: *const crate::ffi::c_void) -> &'a T {
+ // SAFETY: The safety requirements of this method ensure that the object remains alive and
+ // immutable for the duration of 'a.
+ unsafe { &*ptr.cast() }
+ }
+}
+
+impl<T: 'static, A> ForeignOwnable for Pin<Box<T, A>>
+where
+ A: Allocator,
+{
+ type Borrowed<'a> = Pin<&'a T>;
+
+ fn into_foreign(self) -> *const crate::ffi::c_void {
+ // SAFETY: We are still treating the box as pinned.
+ Box::into_raw(unsafe { Pin::into_inner_unchecked(self) }) as _
+ }
+
+ unsafe fn from_foreign(ptr: *const crate::ffi::c_void) -> Self {
+ // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
+ // call to `Self::into_foreign`.
+ unsafe { Pin::new_unchecked(Box::from_raw(ptr as _)) }
+ }
+
+ unsafe fn borrow<'a>(ptr: *const crate::ffi::c_void) -> Pin<&'a T> {
+ // SAFETY: The safety requirements for this function ensure that the object is still alive,
+ // so it is safe to dereference the raw pointer.
+ // The safety requirements of `from_foreign` also ensure that the object remains alive for
+ // the lifetime of the returned value.
+ let r = unsafe { &*ptr.cast() };
+
+ // SAFETY: This pointer originates from a `Pin<Box<T>>`.
+ unsafe { Pin::new_unchecked(r) }
+ }
+}
+
+impl<T, A> Deref for Box<T, A>
+where
+ T: ?Sized,
+ A: Allocator,
+{
+ type Target = T;
+
+ fn deref(&self) -> &T {
+ // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized
+ // instance of `T`.
+ unsafe { self.0.as_ref() }
+ }
+}
+
+impl<T, A> DerefMut for Box<T, A>
+where
+ T: ?Sized,
+ A: Allocator,
+{
+ fn deref_mut(&mut self) -> &mut T {
+ // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized
+ // instance of `T`.
+ unsafe { self.0.as_mut() }
+ }
+}
+
+impl<T, A> fmt::Debug for Box<T, A>
+where
+ T: ?Sized + fmt::Debug,
+ A: Allocator,
+{
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ fmt::Debug::fmt(&**self, f)
+ }
+}
+
+impl<T, A> Drop for Box<T, A>
+where
+ T: ?Sized,
+ A: Allocator,
+{
+ fn drop(&mut self) {
+ let layout = Layout::for_value::<T>(self);
+
+ // SAFETY: The pointer in `self.0` is guaranteed to be valid by the type invariant.
+ unsafe { core::ptr::drop_in_place::<T>(self.deref_mut()) };
+
+ // SAFETY:
+ // - `self.0` was previously allocated with `A`.
+ // - `layout` is equal to the `Layout´ `self.0` was allocated with.
+ unsafe { A::free(self.0.cast(), layout) };
+ }
+}