summaryrefslogtreecommitdiff
path: root/kernel/irq/affinity.c
diff options
context:
space:
mode:
authorMing Lei <ming.lei@redhat.com>2022-12-27 05:29:04 +0300
committerThomas Gleixner <tglx@linutronix.de>2023-01-17 20:50:06 +0300
commitf7b3ea8cf72f3d6060fe08e461805181e7450a13 (patch)
tree881e388957746dc03c706269601d02aa6e4ff2ed /kernel/irq/affinity.c
parent523f1ea76aad9025f9bd5258d77f4406fa9dbe5d (diff)
downloadlinux-f7b3ea8cf72f3d6060fe08e461805181e7450a13.tar.xz
genirq/affinity: Move group_cpus_evenly() into lib/
group_cpus_evenly() has become a generic function which can be used for other subsystems than the interrupt subsystem, so move it into lib/. Signed-off-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jens Axboe <axboe@kernel.dk> Link: https://lore.kernel.org/r/20221227022905.352674-6-ming.lei@redhat.com
Diffstat (limited to 'kernel/irq/affinity.c')
-rw-r--r--kernel/irq/affinity.c398
1 files changed, 1 insertions, 397 deletions
diff --git a/kernel/irq/affinity.c b/kernel/irq/affinity.c
index 54083331f1bc..44a4eba80315 100644
--- a/kernel/irq/affinity.c
+++ b/kernel/irq/affinity.c
@@ -7,403 +7,7 @@
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/cpu.h>
-#include <linux/sort.h>
-
-static void grp_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
- unsigned int cpus_per_grp)
-{
- const struct cpumask *siblmsk;
- int cpu, sibl;
-
- for ( ; cpus_per_grp > 0; ) {
- cpu = cpumask_first(nmsk);
-
- /* Should not happen, but I'm too lazy to think about it */
- if (cpu >= nr_cpu_ids)
- return;
-
- cpumask_clear_cpu(cpu, nmsk);
- cpumask_set_cpu(cpu, irqmsk);
- cpus_per_grp--;
-
- /* If the cpu has siblings, use them first */
- siblmsk = topology_sibling_cpumask(cpu);
- for (sibl = -1; cpus_per_grp > 0; ) {
- sibl = cpumask_next(sibl, siblmsk);
- if (sibl >= nr_cpu_ids)
- break;
- if (!cpumask_test_and_clear_cpu(sibl, nmsk))
- continue;
- cpumask_set_cpu(sibl, irqmsk);
- cpus_per_grp--;
- }
- }
-}
-
-static cpumask_var_t *alloc_node_to_cpumask(void)
-{
- cpumask_var_t *masks;
- int node;
-
- masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL);
- if (!masks)
- return NULL;
-
- for (node = 0; node < nr_node_ids; node++) {
- if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL))
- goto out_unwind;
- }
-
- return masks;
-
-out_unwind:
- while (--node >= 0)
- free_cpumask_var(masks[node]);
- kfree(masks);
- return NULL;
-}
-
-static void free_node_to_cpumask(cpumask_var_t *masks)
-{
- int node;
-
- for (node = 0; node < nr_node_ids; node++)
- free_cpumask_var(masks[node]);
- kfree(masks);
-}
-
-static void build_node_to_cpumask(cpumask_var_t *masks)
-{
- int cpu;
-
- for_each_possible_cpu(cpu)
- cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]);
-}
-
-static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
- const struct cpumask *mask, nodemask_t *nodemsk)
-{
- int n, nodes = 0;
-
- /* Calculate the number of nodes in the supplied affinity mask */
- for_each_node(n) {
- if (cpumask_intersects(mask, node_to_cpumask[n])) {
- node_set(n, *nodemsk);
- nodes++;
- }
- }
- return nodes;
-}
-
-struct node_groups {
- unsigned id;
-
- union {
- unsigned ngroups;
- unsigned ncpus;
- };
-};
-
-static int ncpus_cmp_func(const void *l, const void *r)
-{
- const struct node_groups *ln = l;
- const struct node_groups *rn = r;
-
- return ln->ncpus - rn->ncpus;
-}
-
-/*
- * Allocate group number for each node, so that for each node:
- *
- * 1) the allocated number is >= 1
- *
- * 2) the allocated number is <= active CPU number of this node
- *
- * The actual allocated total groups may be less than @numgrps when
- * active total CPU number is less than @numgrps.
- *
- * Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]'
- * for each node.
- */
-static void alloc_nodes_groups(unsigned int numgrps,
- cpumask_var_t *node_to_cpumask,
- const struct cpumask *cpu_mask,
- const nodemask_t nodemsk,
- struct cpumask *nmsk,
- struct node_groups *node_groups)
-{
- unsigned n, remaining_ncpus = 0;
-
- for (n = 0; n < nr_node_ids; n++) {
- node_groups[n].id = n;
- node_groups[n].ncpus = UINT_MAX;
- }
-
- for_each_node_mask(n, nodemsk) {
- unsigned ncpus;
-
- cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
- ncpus = cpumask_weight(nmsk);
-
- if (!ncpus)
- continue;
- remaining_ncpus += ncpus;
- node_groups[n].ncpus = ncpus;
- }
-
- numgrps = min_t(unsigned, remaining_ncpus, numgrps);
-
- sort(node_groups, nr_node_ids, sizeof(node_groups[0]),
- ncpus_cmp_func, NULL);
-
- /*
- * Allocate groups for each node according to the ratio of this
- * node's nr_cpus to remaining un-assigned ncpus. 'numgrps' is
- * bigger than number of active numa nodes. Always start the
- * allocation from the node with minimized nr_cpus.
- *
- * This way guarantees that each active node gets allocated at
- * least one group, and the theory is simple: over-allocation
- * is only done when this node is assigned by one group, so
- * other nodes will be allocated >= 1 groups, since 'numgrps' is
- * bigger than number of numa nodes.
- *
- * One perfect invariant is that number of allocated groups for
- * each node is <= CPU count of this node:
- *
- * 1) suppose there are two nodes: A and B
- * ncpu(X) is CPU count of node X
- * grps(X) is the group count allocated to node X via this
- * algorithm
- *
- * ncpu(A) <= ncpu(B)
- * ncpu(A) + ncpu(B) = N
- * grps(A) + grps(B) = G
- *
- * grps(A) = max(1, round_down(G * ncpu(A) / N))
- * grps(B) = G - grps(A)
- *
- * both N and G are integer, and 2 <= G <= N, suppose
- * G = N - delta, and 0 <= delta <= N - 2
- *
- * 2) obviously grps(A) <= ncpu(A) because:
- *
- * if grps(A) is 1, then grps(A) <= ncpu(A) given
- * ncpu(A) >= 1
- *
- * otherwise,
- * grps(A) <= G * ncpu(A) / N <= ncpu(A), given G <= N
- *
- * 3) prove how grps(B) <= ncpu(B):
- *
- * if round_down(G * ncpu(A) / N) == 0, vecs(B) won't be
- * over-allocated, so grps(B) <= ncpu(B),
- *
- * otherwise:
- *
- * grps(A) =
- * round_down(G * ncpu(A) / N) =
- * round_down((N - delta) * ncpu(A) / N) =
- * round_down((N * ncpu(A) - delta * ncpu(A)) / N) >=
- * round_down((N * ncpu(A) - delta * N) / N) =
- * cpu(A) - delta
- *
- * then:
- *
- * grps(A) - G >= ncpu(A) - delta - G
- * =>
- * G - grps(A) <= G + delta - ncpu(A)
- * =>
- * grps(B) <= N - ncpu(A)
- * =>
- * grps(B) <= cpu(B)
- *
- * For nodes >= 3, it can be thought as one node and another big
- * node given that is exactly what this algorithm is implemented,
- * and we always re-calculate 'remaining_ncpus' & 'numgrps', and
- * finally for each node X: grps(X) <= ncpu(X).
- *
- */
- for (n = 0; n < nr_node_ids; n++) {
- unsigned ngroups, ncpus;
-
- if (node_groups[n].ncpus == UINT_MAX)
- continue;
-
- WARN_ON_ONCE(numgrps == 0);
-
- ncpus = node_groups[n].ncpus;
- ngroups = max_t(unsigned, 1,
- numgrps * ncpus / remaining_ncpus);
- WARN_ON_ONCE(ngroups > ncpus);
-
- node_groups[n].ngroups = ngroups;
-
- remaining_ncpus -= ncpus;
- numgrps -= ngroups;
- }
-}
-
-static int __group_cpus_evenly(unsigned int startgrp, unsigned int numgrps,
- cpumask_var_t *node_to_cpumask,
- const struct cpumask *cpu_mask,
- struct cpumask *nmsk, struct cpumask *masks)
-{
- unsigned int i, n, nodes, cpus_per_grp, extra_grps, done = 0;
- unsigned int last_grp = numgrps;
- unsigned int curgrp = startgrp;
- nodemask_t nodemsk = NODE_MASK_NONE;
- struct node_groups *node_groups;
-
- if (cpumask_empty(cpu_mask))
- return 0;
-
- nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk);
-
- /*
- * If the number of nodes in the mask is greater than or equal the
- * number of groups we just spread the groups across the nodes.
- */
- if (numgrps <= nodes) {
- for_each_node_mask(n, nodemsk) {
- /* Ensure that only CPUs which are in both masks are set */
- cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
- cpumask_or(&masks[curgrp], &masks[curgrp], nmsk);
- if (++curgrp == last_grp)
- curgrp = 0;
- }
- return numgrps;
- }
-
- node_groups = kcalloc(nr_node_ids,
- sizeof(struct node_groups),
- GFP_KERNEL);
- if (!node_groups)
- return -ENOMEM;
-
- /* allocate group number for each node */
- alloc_nodes_groups(numgrps, node_to_cpumask, cpu_mask,
- nodemsk, nmsk, node_groups);
- for (i = 0; i < nr_node_ids; i++) {
- unsigned int ncpus, v;
- struct node_groups *nv = &node_groups[i];
-
- if (nv->ngroups == UINT_MAX)
- continue;
-
- /* Get the cpus on this node which are in the mask */
- cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]);
- ncpus = cpumask_weight(nmsk);
- if (!ncpus)
- continue;
-
- WARN_ON_ONCE(nv->ngroups > ncpus);
-
- /* Account for rounding errors */
- extra_grps = ncpus - nv->ngroups * (ncpus / nv->ngroups);
-
- /* Spread allocated groups on CPUs of the current node */
- for (v = 0; v < nv->ngroups; v++, curgrp++) {
- cpus_per_grp = ncpus / nv->ngroups;
-
- /* Account for extra groups to compensate rounding errors */
- if (extra_grps) {
- cpus_per_grp++;
- --extra_grps;
- }
-
- /*
- * wrapping has to be considered given 'startgrp'
- * may start anywhere
- */
- if (curgrp >= last_grp)
- curgrp = 0;
- grp_spread_init_one(&masks[curgrp], nmsk,
- cpus_per_grp);
- }
- done += nv->ngroups;
- }
- kfree(node_groups);
- return done;
-}
-
-/*
- * build affinity in two stages for each group, and try to put close CPUs
- * in viewpoint of CPU and NUMA locality into same group, and we run
- * two-stage grouping:
- *
- * 1) allocate present CPUs on these groups evenly first
- * 2) allocate other possible CPUs on these groups evenly
- */
-static struct cpumask *group_cpus_evenly(unsigned int numgrps)
-{
- unsigned int curgrp = 0, nr_present = 0, nr_others = 0;
- cpumask_var_t *node_to_cpumask;
- cpumask_var_t nmsk, npresmsk;
- int ret = -ENOMEM;
- struct cpumask *masks = NULL;
-
- if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL))
- return NULL;
-
- if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL))
- goto fail_nmsk;
-
- node_to_cpumask = alloc_node_to_cpumask();
- if (!node_to_cpumask)
- goto fail_npresmsk;
-
- masks = kcalloc(numgrps, sizeof(*masks), GFP_KERNEL);
- if (!masks)
- goto fail_node_to_cpumask;
-
- /* Stabilize the cpumasks */
- cpus_read_lock();
- build_node_to_cpumask(node_to_cpumask);
-
- /* grouping present CPUs first */
- ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask,
- cpu_present_mask, nmsk, masks);
- if (ret < 0)
- goto fail_build_affinity;
- nr_present = ret;
-
- /*
- * Allocate non present CPUs starting from the next group to be
- * handled. If the grouping of present CPUs already exhausted the
- * group space, assign the non present CPUs to the already
- * allocated out groups.
- */
- if (nr_present >= numgrps)
- curgrp = 0;
- else
- curgrp = nr_present;
- cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
- ret = __group_cpus_evenly(curgrp, numgrps, node_to_cpumask,
- npresmsk, nmsk, masks);
- if (ret >= 0)
- nr_others = ret;
-
- fail_build_affinity:
- cpus_read_unlock();
-
- if (ret >= 0)
- WARN_ON(nr_present + nr_others < numgrps);
-
- fail_node_to_cpumask:
- free_node_to_cpumask(node_to_cpumask);
-
- fail_npresmsk:
- free_cpumask_var(npresmsk);
-
- fail_nmsk:
- free_cpumask_var(nmsk);
- if (ret < 0) {
- kfree(masks);
- return NULL;
- }
- return masks;
-}
+#include <linux/group_cpus.h>
static void default_calc_sets(struct irq_affinity *affd, unsigned int affvecs)
{