diff options
author | Carlos Maiolino <cem@kernel.org> | 2025-03-04 13:25:46 +0300 |
---|---|---|
committer | Carlos Maiolino <cem@kernel.org> | 2025-03-04 13:25:46 +0300 |
commit | 4c6283ec9284bb72906dba83bc7a809747e6331e (patch) | |
tree | 6a2ed104fc86a90bb787ff0dbee020461e59ec14 /fs/xfs/libxfs/xfs_sb.c | |
parent | 0a1fd78080c8c9a5582e82100bd91b87ae5ac57c (diff) | |
parent | 9c477912b2f58da71751f244aceecf5f8cc549ed (diff) | |
download | linux-4c6283ec9284bb72906dba83bc7a809747e6331e.tar.xz |
Merge tag 'xfs-zoned-allocator-2025-03-03' of git://git.infradead.org/users/hch/xfs into xfs-6.15-zoned_devices
xfs: add support for zoned devices
Add support for the new zoned space allocator and thus for zoned devices:
https://zonedstorage.io/docs/introduction/zoned-storage
to XFS. This has been developed for and tested on both SMR hard drives,
which are the oldest and most common class of zoned devices:
https://zonedstorage.io/docs/introduction/smr
and ZNS SSDs:
https://zonedstorage.io/docs/introduction/zns
It has not been tested with zoned UFS devices, as their current capacity
points and performance characteristics aren't too interesting for XFS
use cases (but never say never).
Sequential write only zones are only supported for data using a new
allocator for the RT device, which maps each zone to a rtgroup which
is written sequentially. All metadata and (for now) the log require
using randomly writable space. This means a realtime device is required
to support zoned storage, but for the common case of SMR hard drives
that contain random writable zones and sequential write required zones
on the same block device, the concept of an internal RT device is added
which means using XFS on a SMR HDD is as simple as:
$ mkfs.xfs /dev/sda
$ mount /dev/sda /mnt
When using NVMe ZNS SSDs that do not support conventional zones, the
traditional multi-device RT configuration is required. E.g. for an
SSD with a conventional namespace 1 and a zoned namespace 2:
$ mkfs.xfs /dev/nvme0n1 -o rtdev=/dev/nvme0n2
$ mount -o rtdev=/dev/nvme0n2 /dev/nvme0n1 /mnt
The zoned allocator can also be used on conventional block devices, or
on conventional zones (e.g. when using an SMR HDD as the external RT
device). For example using zoned XFS on normal SSDs shows very nice
performance advantages and write amplification reduction for intelligent
workloads like RocksDB.
Some work is still in progress or planned, but should not affect the
integration with the rest of XFS or the on-disk format:
- support for quotas
- support for reflinks
Note that the I/O path already supports reflink, but garbage collection
isn't refcount aware yet and would unshare shared blocks, thus rendering
the feature useless.
Diffstat (limited to 'fs/xfs/libxfs/xfs_sb.c')
-rw-r--r-- | fs/xfs/libxfs/xfs_sb.c | 82 |
1 files changed, 75 insertions, 7 deletions
diff --git a/fs/xfs/libxfs/xfs_sb.c b/fs/xfs/libxfs/xfs_sb.c index 3dc5f5dba162..e42bfd04a7c6 100644 --- a/fs/xfs/libxfs/xfs_sb.c +++ b/fs/xfs/libxfs/xfs_sb.c @@ -30,6 +30,7 @@ #include "xfs_rtgroup.h" #include "xfs_rtrmap_btree.h" #include "xfs_rtrefcount_btree.h" +#include "xfs_rtbitmap.h" /* * Physical superblock buffer manipulations. Shared with libxfs in userspace. @@ -185,6 +186,8 @@ xfs_sb_version_to_features( features |= XFS_FEAT_PARENT; if (sbp->sb_features_incompat & XFS_SB_FEAT_INCOMPAT_METADIR) features |= XFS_FEAT_METADIR; + if (sbp->sb_features_incompat & XFS_SB_FEAT_INCOMPAT_ZONED) + features |= XFS_FEAT_ZONED; return features; } @@ -266,6 +269,9 @@ static uint64_t xfs_expected_rbmblocks( struct xfs_sb *sbp) { + if (xfs_sb_is_v5(sbp) && + (sbp->sb_features_incompat & XFS_SB_FEAT_INCOMPAT_ZONED)) + return 0; return howmany_64(xfs_extents_per_rbm(sbp), NBBY * xfs_rtbmblock_size(sbp)); } @@ -275,9 +281,15 @@ bool xfs_validate_rt_geometry( struct xfs_sb *sbp) { - if (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE || - sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) - return false; + if (xfs_sb_is_v5(sbp) && + (sbp->sb_features_incompat & XFS_SB_FEAT_INCOMPAT_ZONED)) { + if (sbp->sb_rextsize != 1) + return false; + } else { + if (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE || + sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) + return false; + } if (sbp->sb_rblocks == 0) { if (sbp->sb_rextents != 0 || sbp->sb_rbmblocks != 0 || @@ -435,6 +447,34 @@ xfs_validate_sb_rtgroups( return 0; } +static int +xfs_validate_sb_zoned( + struct xfs_mount *mp, + struct xfs_sb *sbp) +{ + if (sbp->sb_frextents != 0) { + xfs_warn(mp, +"sb_frextents must be zero for zoned file systems."); + return -EINVAL; + } + + if (sbp->sb_rtstart && sbp->sb_rtstart < sbp->sb_dblocks) { + xfs_warn(mp, +"sb_rtstart (%lld) overlaps sb_dblocks (%lld).", + sbp->sb_rtstart, sbp->sb_dblocks); + return -EINVAL; + } + + if (sbp->sb_rtreserved && sbp->sb_rtreserved >= sbp->sb_rblocks) { + xfs_warn(mp, +"sb_rtreserved (%lld) larger than sb_rblocks (%lld).", + sbp->sb_rtreserved, sbp->sb_rblocks); + return -EINVAL; + } + + return 0; +} + /* Check the validity of the SB. */ STATIC int xfs_validate_sb_common( @@ -523,6 +563,11 @@ xfs_validate_sb_common( if (error) return error; } + if (sbp->sb_features_incompat & XFS_SB_FEAT_INCOMPAT_ZONED) { + error = xfs_validate_sb_zoned(mp, sbp); + if (error) + return error; + } } else if (sbp->sb_qflags & (XFS_PQUOTA_ENFD | XFS_GQUOTA_ENFD | XFS_PQUOTA_CHKD | XFS_GQUOTA_CHKD)) { xfs_notice(mp, @@ -835,6 +880,14 @@ __xfs_sb_from_disk( to->sb_rgcount = 1; to->sb_rgextents = 0; } + + if (to->sb_features_incompat & XFS_SB_FEAT_INCOMPAT_ZONED) { + to->sb_rtstart = be64_to_cpu(from->sb_rtstart); + to->sb_rtreserved = be64_to_cpu(from->sb_rtreserved); + } else { + to->sb_rtstart = 0; + to->sb_rtreserved = 0; + } } void @@ -1001,6 +1054,11 @@ xfs_sb_to_disk( to->sb_rbmino = cpu_to_be64(0); to->sb_rsumino = cpu_to_be64(0); } + + if (from->sb_features_incompat & XFS_SB_FEAT_INCOMPAT_ZONED) { + to->sb_rtstart = cpu_to_be64(from->sb_rtstart); + to->sb_rtreserved = cpu_to_be64(from->sb_rtreserved); + } } /* @@ -1146,6 +1204,10 @@ xfs_sb_mount_rextsize( rgs->blocks = sbp->sb_rgextents * sbp->sb_rextsize; rgs->blklog = mp->m_sb.sb_rgblklog; rgs->blkmask = xfs_mask32lo(mp->m_sb.sb_rgblklog); + rgs->start_fsb = mp->m_sb.sb_rtstart; + if (xfs_sb_has_incompat_feature(sbp, + XFS_SB_FEAT_INCOMPAT_ZONE_GAPS)) + rgs->has_daddr_gaps = true; } else { rgs->blocks = 0; rgs->blklog = 0; @@ -1265,8 +1327,7 @@ xfs_log_sb( mp->m_sb.sb_ifree = min_t(uint64_t, percpu_counter_sum_positive(&mp->m_ifree), mp->m_sb.sb_icount); - mp->m_sb.sb_fdblocks = - percpu_counter_sum_positive(&mp->m_fdblocks); + mp->m_sb.sb_fdblocks = xfs_sum_freecounter(mp, XC_FREE_BLOCKS); } /* @@ -1275,9 +1336,10 @@ xfs_log_sb( * we handle nearly-lockless reservations, so we must use the _positive * variant here to avoid writing out nonsense frextents. */ - if (xfs_has_rtgroups(mp)) + if (xfs_has_rtgroups(mp) && !xfs_has_zoned(mp)) { mp->m_sb.sb_frextents = - percpu_counter_sum_positive(&mp->m_frextents); + xfs_sum_freecounter(mp, XC_FREE_RTEXTENTS); + } xfs_sb_to_disk(bp->b_addr, &mp->m_sb); xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF); @@ -1510,6 +1572,8 @@ xfs_fs_geometry( geo->flags |= XFS_FSOP_GEOM_FLAGS_EXCHANGE_RANGE; if (xfs_has_metadir(mp)) geo->flags |= XFS_FSOP_GEOM_FLAGS_METADIR; + if (xfs_has_zoned(mp)) + geo->flags |= XFS_FSOP_GEOM_FLAGS_ZONED; geo->rtsectsize = sbp->sb_blocksize; geo->dirblocksize = xfs_dir2_dirblock_bytes(sbp); @@ -1530,6 +1594,10 @@ xfs_fs_geometry( geo->rgcount = sbp->sb_rgcount; geo->rgextents = sbp->sb_rgextents; } + if (xfs_has_zoned(mp)) { + geo->rtstart = sbp->sb_rtstart; + geo->rtreserved = sbp->sb_rtreserved; + } } /* Read a secondary superblock. */ |