summaryrefslogtreecommitdiff
path: root/drivers/net/e1000
diff options
context:
space:
mode:
authorJeff Kirsher <jeffrey.t.kirsher@intel.com>2011-04-07 18:42:33 +0400
committerJeff Kirsher <jeffrey.t.kirsher@intel.com>2011-08-11 07:03:27 +0400
commitdee1ad47f2ee75f5146d83ca757c1b7861c34c3b (patch)
tree47cbdefe3d0f9b729724e378ad6a96eaddfd5fbc /drivers/net/e1000
parentf7917c009c28c941ba151ee66f04dc7f6a2e1e0b (diff)
downloadlinux-dee1ad47f2ee75f5146d83ca757c1b7861c34c3b.tar.xz
intel: Move the Intel wired LAN drivers
Moves the Intel wired LAN drivers into drivers/net/ethernet/intel/ and the necessary Kconfig and Makefile changes. Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Diffstat (limited to 'drivers/net/e1000')
-rw-r--r--drivers/net/e1000/Makefile35
-rw-r--r--drivers/net/e1000/e1000.h361
-rw-r--r--drivers/net/e1000/e1000_ethtool.c1863
-rw-r--r--drivers/net/e1000/e1000_hw.c5824
-rw-r--r--drivers/net/e1000/e1000_hw.h3103
-rw-r--r--drivers/net/e1000/e1000_main.c4974
-rw-r--r--drivers/net/e1000/e1000_osdep.h109
-rw-r--r--drivers/net/e1000/e1000_param.c755
8 files changed, 0 insertions, 17024 deletions
diff --git a/drivers/net/e1000/Makefile b/drivers/net/e1000/Makefile
deleted file mode 100644
index 4a6ab1522451..000000000000
--- a/drivers/net/e1000/Makefile
+++ /dev/null
@@ -1,35 +0,0 @@
-################################################################################
-#
-# Intel PRO/1000 Linux driver
-# Copyright(c) 1999 - 2006 Intel Corporation.
-#
-# This program is free software; you can redistribute it and/or modify it
-# under the terms and conditions of the GNU General Public License,
-# version 2, as published by the Free Software Foundation.
-#
-# This program is distributed in the hope it will be useful, but WITHOUT
-# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
-# more details.
-#
-# You should have received a copy of the GNU General Public License along with
-# this program; if not, write to the Free Software Foundation, Inc.,
-# 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-#
-# The full GNU General Public License is included in this distribution in
-# the file called "COPYING".
-#
-# Contact Information:
-# Linux NICS <linux.nics@intel.com>
-# e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
-# Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-#
-################################################################################
-
-#
-# Makefile for the Intel(R) PRO/1000 ethernet driver
-#
-
-obj-$(CONFIG_E1000) += e1000.o
-
-e1000-objs := e1000_main.o e1000_hw.o e1000_ethtool.o e1000_param.o
diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h
deleted file mode 100644
index 24f41da8c4be..000000000000
--- a/drivers/net/e1000/e1000.h
+++ /dev/null
@@ -1,361 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2006 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-
-/* Linux PRO/1000 Ethernet Driver main header file */
-
-#ifndef _E1000_H_
-#define _E1000_H_
-
-#include <linux/stddef.h>
-#include <linux/module.h>
-#include <linux/types.h>
-#include <asm/byteorder.h>
-#include <linux/init.h>
-#include <linux/mm.h>
-#include <linux/errno.h>
-#include <linux/ioport.h>
-#include <linux/pci.h>
-#include <linux/kernel.h>
-#include <linux/netdevice.h>
-#include <linux/etherdevice.h>
-#include <linux/skbuff.h>
-#include <linux/delay.h>
-#include <linux/timer.h>
-#include <linux/slab.h>
-#include <linux/vmalloc.h>
-#include <linux/interrupt.h>
-#include <linux/string.h>
-#include <linux/pagemap.h>
-#include <linux/dma-mapping.h>
-#include <linux/bitops.h>
-#include <asm/io.h>
-#include <asm/irq.h>
-#include <linux/capability.h>
-#include <linux/in.h>
-#include <linux/ip.h>
-#include <linux/ipv6.h>
-#include <linux/tcp.h>
-#include <linux/udp.h>
-#include <net/pkt_sched.h>
-#include <linux/list.h>
-#include <linux/reboot.h>
-#include <net/checksum.h>
-#include <linux/mii.h>
-#include <linux/ethtool.h>
-#include <linux/if_vlan.h>
-
-#define BAR_0 0
-#define BAR_1 1
-#define BAR_5 5
-
-#define INTEL_E1000_ETHERNET_DEVICE(device_id) {\
- PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
-
-struct e1000_adapter;
-
-#include "e1000_hw.h"
-
-#define E1000_MAX_INTR 10
-
-/* TX/RX descriptor defines */
-#define E1000_DEFAULT_TXD 256
-#define E1000_MAX_TXD 256
-#define E1000_MIN_TXD 48
-#define E1000_MAX_82544_TXD 4096
-
-#define E1000_DEFAULT_RXD 256
-#define E1000_MAX_RXD 256
-#define E1000_MIN_RXD 48
-#define E1000_MAX_82544_RXD 4096
-
-#define E1000_MIN_ITR_USECS 10 /* 100000 irq/sec */
-#define E1000_MAX_ITR_USECS 10000 /* 100 irq/sec */
-
-/* this is the size past which hardware will drop packets when setting LPE=0 */
-#define MAXIMUM_ETHERNET_VLAN_SIZE 1522
-
-/* Supported Rx Buffer Sizes */
-#define E1000_RXBUFFER_128 128 /* Used for packet split */
-#define E1000_RXBUFFER_256 256 /* Used for packet split */
-#define E1000_RXBUFFER_512 512
-#define E1000_RXBUFFER_1024 1024
-#define E1000_RXBUFFER_2048 2048
-#define E1000_RXBUFFER_4096 4096
-#define E1000_RXBUFFER_8192 8192
-#define E1000_RXBUFFER_16384 16384
-
-/* SmartSpeed delimiters */
-#define E1000_SMARTSPEED_DOWNSHIFT 3
-#define E1000_SMARTSPEED_MAX 15
-
-/* Packet Buffer allocations */
-#define E1000_PBA_BYTES_SHIFT 0xA
-#define E1000_TX_HEAD_ADDR_SHIFT 7
-#define E1000_PBA_TX_MASK 0xFFFF0000
-
-/* Flow Control Watermarks */
-#define E1000_FC_HIGH_DIFF 0x1638 /* High: 5688 bytes below Rx FIFO size */
-#define E1000_FC_LOW_DIFF 0x1640 /* Low: 5696 bytes below Rx FIFO size */
-
-#define E1000_FC_PAUSE_TIME 0xFFFF /* pause for the max or until send xon */
-
-/* How many Tx Descriptors do we need to call netif_wake_queue ? */
-#define E1000_TX_QUEUE_WAKE 16
-/* How many Rx Buffers do we bundle into one write to the hardware ? */
-#define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */
-
-#define AUTO_ALL_MODES 0
-#define E1000_EEPROM_82544_APM 0x0004
-#define E1000_EEPROM_APME 0x0400
-
-#ifndef E1000_MASTER_SLAVE
-/* Switch to override PHY master/slave setting */
-#define E1000_MASTER_SLAVE e1000_ms_hw_default
-#endif
-
-#define E1000_MNG_VLAN_NONE (-1)
-
-/* wrapper around a pointer to a socket buffer,
- * so a DMA handle can be stored along with the buffer */
-struct e1000_buffer {
- struct sk_buff *skb;
- dma_addr_t dma;
- struct page *page;
- unsigned long time_stamp;
- u16 length;
- u16 next_to_watch;
- u16 mapped_as_page;
-};
-
-struct e1000_tx_ring {
- /* pointer to the descriptor ring memory */
- void *desc;
- /* physical address of the descriptor ring */
- dma_addr_t dma;
- /* length of descriptor ring in bytes */
- unsigned int size;
- /* number of descriptors in the ring */
- unsigned int count;
- /* next descriptor to associate a buffer with */
- unsigned int next_to_use;
- /* next descriptor to check for DD status bit */
- unsigned int next_to_clean;
- /* array of buffer information structs */
- struct e1000_buffer *buffer_info;
-
- u16 tdh;
- u16 tdt;
- bool last_tx_tso;
-};
-
-struct e1000_rx_ring {
- /* pointer to the descriptor ring memory */
- void *desc;
- /* physical address of the descriptor ring */
- dma_addr_t dma;
- /* length of descriptor ring in bytes */
- unsigned int size;
- /* number of descriptors in the ring */
- unsigned int count;
- /* next descriptor to associate a buffer with */
- unsigned int next_to_use;
- /* next descriptor to check for DD status bit */
- unsigned int next_to_clean;
- /* array of buffer information structs */
- struct e1000_buffer *buffer_info;
- struct sk_buff *rx_skb_top;
-
- /* cpu for rx queue */
- int cpu;
-
- u16 rdh;
- u16 rdt;
-};
-
-#define E1000_DESC_UNUSED(R) \
- ((((R)->next_to_clean > (R)->next_to_use) \
- ? 0 : (R)->count) + (R)->next_to_clean - (R)->next_to_use - 1)
-
-#define E1000_RX_DESC_EXT(R, i) \
- (&(((union e1000_rx_desc_extended *)((R).desc))[i]))
-#define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i]))
-#define E1000_RX_DESC(R, i) E1000_GET_DESC(R, i, e1000_rx_desc)
-#define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc)
-#define E1000_CONTEXT_DESC(R, i) E1000_GET_DESC(R, i, e1000_context_desc)
-
-/* board specific private data structure */
-
-struct e1000_adapter {
- struct timer_list tx_fifo_stall_timer;
- struct timer_list watchdog_timer;
- struct timer_list phy_info_timer;
- unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
- u16 mng_vlan_id;
- u32 bd_number;
- u32 rx_buffer_len;
- u32 wol;
- u32 smartspeed;
- u32 en_mng_pt;
- u16 link_speed;
- u16 link_duplex;
- spinlock_t stats_lock;
- unsigned int total_tx_bytes;
- unsigned int total_tx_packets;
- unsigned int total_rx_bytes;
- unsigned int total_rx_packets;
- /* Interrupt Throttle Rate */
- u32 itr;
- u32 itr_setting;
- u16 tx_itr;
- u16 rx_itr;
-
- struct work_struct reset_task;
- u8 fc_autoneg;
-
- /* TX */
- struct e1000_tx_ring *tx_ring; /* One per active queue */
- unsigned int restart_queue;
- u32 txd_cmd;
- u32 tx_int_delay;
- u32 tx_abs_int_delay;
- u32 gotcl;
- u64 gotcl_old;
- u64 tpt_old;
- u64 colc_old;
- u32 tx_timeout_count;
- u32 tx_fifo_head;
- u32 tx_head_addr;
- u32 tx_fifo_size;
- u8 tx_timeout_factor;
- atomic_t tx_fifo_stall;
- bool pcix_82544;
- bool detect_tx_hung;
-
- /* RX */
- bool (*clean_rx)(struct e1000_adapter *adapter,
- struct e1000_rx_ring *rx_ring,
- int *work_done, int work_to_do);
- void (*alloc_rx_buf)(struct e1000_adapter *adapter,
- struct e1000_rx_ring *rx_ring,
- int cleaned_count);
- struct e1000_rx_ring *rx_ring; /* One per active queue */
- struct napi_struct napi;
-
- int num_tx_queues;
- int num_rx_queues;
-
- u64 hw_csum_err;
- u64 hw_csum_good;
- u32 alloc_rx_buff_failed;
- u32 rx_int_delay;
- u32 rx_abs_int_delay;
- bool rx_csum;
- u32 gorcl;
- u64 gorcl_old;
-
- /* OS defined structs */
- struct net_device *netdev;
- struct pci_dev *pdev;
-
- /* structs defined in e1000_hw.h */
- struct e1000_hw hw;
- struct e1000_hw_stats stats;
- struct e1000_phy_info phy_info;
- struct e1000_phy_stats phy_stats;
-
- u32 test_icr;
- struct e1000_tx_ring test_tx_ring;
- struct e1000_rx_ring test_rx_ring;
-
- int msg_enable;
-
- /* to not mess up cache alignment, always add to the bottom */
- bool tso_force;
- bool smart_power_down; /* phy smart power down */
- bool quad_port_a;
- unsigned long flags;
- u32 eeprom_wol;
-
- /* for ioport free */
- int bars;
- int need_ioport;
-
- bool discarding;
-
- struct work_struct fifo_stall_task;
- struct work_struct phy_info_task;
-};
-
-enum e1000_state_t {
- __E1000_TESTING,
- __E1000_RESETTING,
- __E1000_DOWN
-};
-
-#undef pr_fmt
-#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
-
-extern struct net_device *e1000_get_hw_dev(struct e1000_hw *hw);
-#define e_dbg(format, arg...) \
- netdev_dbg(e1000_get_hw_dev(hw), format, ## arg)
-#define e_err(msglvl, format, arg...) \
- netif_err(adapter, msglvl, adapter->netdev, format, ## arg)
-#define e_info(msglvl, format, arg...) \
- netif_info(adapter, msglvl, adapter->netdev, format, ## arg)
-#define e_warn(msglvl, format, arg...) \
- netif_warn(adapter, msglvl, adapter->netdev, format, ## arg)
-#define e_notice(msglvl, format, arg...) \
- netif_notice(adapter, msglvl, adapter->netdev, format, ## arg)
-#define e_dev_info(format, arg...) \
- dev_info(&adapter->pdev->dev, format, ## arg)
-#define e_dev_warn(format, arg...) \
- dev_warn(&adapter->pdev->dev, format, ## arg)
-#define e_dev_err(format, arg...) \
- dev_err(&adapter->pdev->dev, format, ## arg)
-
-extern char e1000_driver_name[];
-extern const char e1000_driver_version[];
-
-extern int e1000_up(struct e1000_adapter *adapter);
-extern void e1000_down(struct e1000_adapter *adapter);
-extern void e1000_reinit_locked(struct e1000_adapter *adapter);
-extern void e1000_reset(struct e1000_adapter *adapter);
-extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx);
-extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
-extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
-extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
-extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
-extern void e1000_update_stats(struct e1000_adapter *adapter);
-extern bool e1000_has_link(struct e1000_adapter *adapter);
-extern void e1000_power_up_phy(struct e1000_adapter *);
-extern void e1000_set_ethtool_ops(struct net_device *netdev);
-extern void e1000_check_options(struct e1000_adapter *adapter);
-extern char *e1000_get_hw_dev_name(struct e1000_hw *hw);
-
-#endif /* _E1000_H_ */
diff --git a/drivers/net/e1000/e1000_ethtool.c b/drivers/net/e1000/e1000_ethtool.c
deleted file mode 100644
index 5548d464261a..000000000000
--- a/drivers/net/e1000/e1000_ethtool.c
+++ /dev/null
@@ -1,1863 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2006 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-/* ethtool support for e1000 */
-
-#include "e1000.h"
-#include <asm/uaccess.h>
-
-enum {NETDEV_STATS, E1000_STATS};
-
-struct e1000_stats {
- char stat_string[ETH_GSTRING_LEN];
- int type;
- int sizeof_stat;
- int stat_offset;
-};
-
-#define E1000_STAT(m) E1000_STATS, \
- sizeof(((struct e1000_adapter *)0)->m), \
- offsetof(struct e1000_adapter, m)
-#define E1000_NETDEV_STAT(m) NETDEV_STATS, \
- sizeof(((struct net_device *)0)->m), \
- offsetof(struct net_device, m)
-
-static const struct e1000_stats e1000_gstrings_stats[] = {
- { "rx_packets", E1000_STAT(stats.gprc) },
- { "tx_packets", E1000_STAT(stats.gptc) },
- { "rx_bytes", E1000_STAT(stats.gorcl) },
- { "tx_bytes", E1000_STAT(stats.gotcl) },
- { "rx_broadcast", E1000_STAT(stats.bprc) },
- { "tx_broadcast", E1000_STAT(stats.bptc) },
- { "rx_multicast", E1000_STAT(stats.mprc) },
- { "tx_multicast", E1000_STAT(stats.mptc) },
- { "rx_errors", E1000_STAT(stats.rxerrc) },
- { "tx_errors", E1000_STAT(stats.txerrc) },
- { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
- { "multicast", E1000_STAT(stats.mprc) },
- { "collisions", E1000_STAT(stats.colc) },
- { "rx_length_errors", E1000_STAT(stats.rlerrc) },
- { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
- { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
- { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
- { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
- { "rx_missed_errors", E1000_STAT(stats.mpc) },
- { "tx_aborted_errors", E1000_STAT(stats.ecol) },
- { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
- { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
- { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
- { "tx_window_errors", E1000_STAT(stats.latecol) },
- { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
- { "tx_deferred_ok", E1000_STAT(stats.dc) },
- { "tx_single_coll_ok", E1000_STAT(stats.scc) },
- { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
- { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
- { "tx_restart_queue", E1000_STAT(restart_queue) },
- { "rx_long_length_errors", E1000_STAT(stats.roc) },
- { "rx_short_length_errors", E1000_STAT(stats.ruc) },
- { "rx_align_errors", E1000_STAT(stats.algnerrc) },
- { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
- { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
- { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
- { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
- { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
- { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
- { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
- { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
- { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
- { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
- { "tx_smbus", E1000_STAT(stats.mgptc) },
- { "rx_smbus", E1000_STAT(stats.mgprc) },
- { "dropped_smbus", E1000_STAT(stats.mgpdc) },
-};
-
-#define E1000_QUEUE_STATS_LEN 0
-#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
-#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
-static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
- "Register test (offline)", "Eeprom test (offline)",
- "Interrupt test (offline)", "Loopback test (offline)",
- "Link test (on/offline)"
-};
-#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
-
-static int e1000_get_settings(struct net_device *netdev,
- struct ethtool_cmd *ecmd)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
-
- if (hw->media_type == e1000_media_type_copper) {
-
- ecmd->supported = (SUPPORTED_10baseT_Half |
- SUPPORTED_10baseT_Full |
- SUPPORTED_100baseT_Half |
- SUPPORTED_100baseT_Full |
- SUPPORTED_1000baseT_Full|
- SUPPORTED_Autoneg |
- SUPPORTED_TP);
- ecmd->advertising = ADVERTISED_TP;
-
- if (hw->autoneg == 1) {
- ecmd->advertising |= ADVERTISED_Autoneg;
- /* the e1000 autoneg seems to match ethtool nicely */
- ecmd->advertising |= hw->autoneg_advertised;
- }
-
- ecmd->port = PORT_TP;
- ecmd->phy_address = hw->phy_addr;
-
- if (hw->mac_type == e1000_82543)
- ecmd->transceiver = XCVR_EXTERNAL;
- else
- ecmd->transceiver = XCVR_INTERNAL;
-
- } else {
- ecmd->supported = (SUPPORTED_1000baseT_Full |
- SUPPORTED_FIBRE |
- SUPPORTED_Autoneg);
-
- ecmd->advertising = (ADVERTISED_1000baseT_Full |
- ADVERTISED_FIBRE |
- ADVERTISED_Autoneg);
-
- ecmd->port = PORT_FIBRE;
-
- if (hw->mac_type >= e1000_82545)
- ecmd->transceiver = XCVR_INTERNAL;
- else
- ecmd->transceiver = XCVR_EXTERNAL;
- }
-
- if (er32(STATUS) & E1000_STATUS_LU) {
-
- e1000_get_speed_and_duplex(hw, &adapter->link_speed,
- &adapter->link_duplex);
- ethtool_cmd_speed_set(ecmd, adapter->link_speed);
-
- /* unfortunately FULL_DUPLEX != DUPLEX_FULL
- * and HALF_DUPLEX != DUPLEX_HALF */
-
- if (adapter->link_duplex == FULL_DUPLEX)
- ecmd->duplex = DUPLEX_FULL;
- else
- ecmd->duplex = DUPLEX_HALF;
- } else {
- ethtool_cmd_speed_set(ecmd, -1);
- ecmd->duplex = -1;
- }
-
- ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
- hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
- return 0;
-}
-
-static int e1000_set_settings(struct net_device *netdev,
- struct ethtool_cmd *ecmd)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
-
- while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
- msleep(1);
-
- if (ecmd->autoneg == AUTONEG_ENABLE) {
- hw->autoneg = 1;
- if (hw->media_type == e1000_media_type_fiber)
- hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
- ADVERTISED_FIBRE |
- ADVERTISED_Autoneg;
- else
- hw->autoneg_advertised = ecmd->advertising |
- ADVERTISED_TP |
- ADVERTISED_Autoneg;
- ecmd->advertising = hw->autoneg_advertised;
- } else {
- u32 speed = ethtool_cmd_speed(ecmd);
- if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
- clear_bit(__E1000_RESETTING, &adapter->flags);
- return -EINVAL;
- }
- }
-
- /* reset the link */
-
- if (netif_running(adapter->netdev)) {
- e1000_down(adapter);
- e1000_up(adapter);
- } else
- e1000_reset(adapter);
-
- clear_bit(__E1000_RESETTING, &adapter->flags);
- return 0;
-}
-
-static u32 e1000_get_link(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- /*
- * If the link is not reported up to netdev, interrupts are disabled,
- * and so the physical link state may have changed since we last
- * looked. Set get_link_status to make sure that the true link
- * state is interrogated, rather than pulling a cached and possibly
- * stale link state from the driver.
- */
- if (!netif_carrier_ok(netdev))
- adapter->hw.get_link_status = 1;
-
- return e1000_has_link(adapter);
-}
-
-static void e1000_get_pauseparam(struct net_device *netdev,
- struct ethtool_pauseparam *pause)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
-
- pause->autoneg =
- (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
-
- if (hw->fc == E1000_FC_RX_PAUSE)
- pause->rx_pause = 1;
- else if (hw->fc == E1000_FC_TX_PAUSE)
- pause->tx_pause = 1;
- else if (hw->fc == E1000_FC_FULL) {
- pause->rx_pause = 1;
- pause->tx_pause = 1;
- }
-}
-
-static int e1000_set_pauseparam(struct net_device *netdev,
- struct ethtool_pauseparam *pause)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- int retval = 0;
-
- adapter->fc_autoneg = pause->autoneg;
-
- while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
- msleep(1);
-
- if (pause->rx_pause && pause->tx_pause)
- hw->fc = E1000_FC_FULL;
- else if (pause->rx_pause && !pause->tx_pause)
- hw->fc = E1000_FC_RX_PAUSE;
- else if (!pause->rx_pause && pause->tx_pause)
- hw->fc = E1000_FC_TX_PAUSE;
- else if (!pause->rx_pause && !pause->tx_pause)
- hw->fc = E1000_FC_NONE;
-
- hw->original_fc = hw->fc;
-
- if (adapter->fc_autoneg == AUTONEG_ENABLE) {
- if (netif_running(adapter->netdev)) {
- e1000_down(adapter);
- e1000_up(adapter);
- } else
- e1000_reset(adapter);
- } else
- retval = ((hw->media_type == e1000_media_type_fiber) ?
- e1000_setup_link(hw) : e1000_force_mac_fc(hw));
-
- clear_bit(__E1000_RESETTING, &adapter->flags);
- return retval;
-}
-
-static u32 e1000_get_msglevel(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- return adapter->msg_enable;
-}
-
-static void e1000_set_msglevel(struct net_device *netdev, u32 data)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- adapter->msg_enable = data;
-}
-
-static int e1000_get_regs_len(struct net_device *netdev)
-{
-#define E1000_REGS_LEN 32
- return E1000_REGS_LEN * sizeof(u32);
-}
-
-static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
- void *p)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 *regs_buff = p;
- u16 phy_data;
-
- memset(p, 0, E1000_REGS_LEN * sizeof(u32));
-
- regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
-
- regs_buff[0] = er32(CTRL);
- regs_buff[1] = er32(STATUS);
-
- regs_buff[2] = er32(RCTL);
- regs_buff[3] = er32(RDLEN);
- regs_buff[4] = er32(RDH);
- regs_buff[5] = er32(RDT);
- regs_buff[6] = er32(RDTR);
-
- regs_buff[7] = er32(TCTL);
- regs_buff[8] = er32(TDLEN);
- regs_buff[9] = er32(TDH);
- regs_buff[10] = er32(TDT);
- regs_buff[11] = er32(TIDV);
-
- regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */
- if (hw->phy_type == e1000_phy_igp) {
- e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
- IGP01E1000_PHY_AGC_A);
- e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
- IGP01E1000_PHY_PAGE_SELECT, &phy_data);
- regs_buff[13] = (u32)phy_data; /* cable length */
- e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
- IGP01E1000_PHY_AGC_B);
- e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
- IGP01E1000_PHY_PAGE_SELECT, &phy_data);
- regs_buff[14] = (u32)phy_data; /* cable length */
- e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
- IGP01E1000_PHY_AGC_C);
- e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
- IGP01E1000_PHY_PAGE_SELECT, &phy_data);
- regs_buff[15] = (u32)phy_data; /* cable length */
- e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
- IGP01E1000_PHY_AGC_D);
- e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
- IGP01E1000_PHY_PAGE_SELECT, &phy_data);
- regs_buff[16] = (u32)phy_data; /* cable length */
- regs_buff[17] = 0; /* extended 10bt distance (not needed) */
- e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
- e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
- IGP01E1000_PHY_PAGE_SELECT, &phy_data);
- regs_buff[18] = (u32)phy_data; /* cable polarity */
- e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
- IGP01E1000_PHY_PCS_INIT_REG);
- e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
- IGP01E1000_PHY_PAGE_SELECT, &phy_data);
- regs_buff[19] = (u32)phy_data; /* cable polarity */
- regs_buff[20] = 0; /* polarity correction enabled (always) */
- regs_buff[22] = 0; /* phy receive errors (unavailable) */
- regs_buff[23] = regs_buff[18]; /* mdix mode */
- e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
- } else {
- e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- regs_buff[13] = (u32)phy_data; /* cable length */
- regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
- regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
- regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
- e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
- regs_buff[18] = regs_buff[13]; /* cable polarity */
- regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
- regs_buff[20] = regs_buff[17]; /* polarity correction */
- /* phy receive errors */
- regs_buff[22] = adapter->phy_stats.receive_errors;
- regs_buff[23] = regs_buff[13]; /* mdix mode */
- }
- regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
- e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
- regs_buff[24] = (u32)phy_data; /* phy local receiver status */
- regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
- if (hw->mac_type >= e1000_82540 &&
- hw->media_type == e1000_media_type_copper) {
- regs_buff[26] = er32(MANC);
- }
-}
-
-static int e1000_get_eeprom_len(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
-
- return hw->eeprom.word_size * 2;
-}
-
-static int e1000_get_eeprom(struct net_device *netdev,
- struct ethtool_eeprom *eeprom, u8 *bytes)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u16 *eeprom_buff;
- int first_word, last_word;
- int ret_val = 0;
- u16 i;
-
- if (eeprom->len == 0)
- return -EINVAL;
-
- eeprom->magic = hw->vendor_id | (hw->device_id << 16);
-
- first_word = eeprom->offset >> 1;
- last_word = (eeprom->offset + eeprom->len - 1) >> 1;
-
- eeprom_buff = kmalloc(sizeof(u16) *
- (last_word - first_word + 1), GFP_KERNEL);
- if (!eeprom_buff)
- return -ENOMEM;
-
- if (hw->eeprom.type == e1000_eeprom_spi)
- ret_val = e1000_read_eeprom(hw, first_word,
- last_word - first_word + 1,
- eeprom_buff);
- else {
- for (i = 0; i < last_word - first_word + 1; i++) {
- ret_val = e1000_read_eeprom(hw, first_word + i, 1,
- &eeprom_buff[i]);
- if (ret_val)
- break;
- }
- }
-
- /* Device's eeprom is always little-endian, word addressable */
- for (i = 0; i < last_word - first_word + 1; i++)
- le16_to_cpus(&eeprom_buff[i]);
-
- memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
- eeprom->len);
- kfree(eeprom_buff);
-
- return ret_val;
-}
-
-static int e1000_set_eeprom(struct net_device *netdev,
- struct ethtool_eeprom *eeprom, u8 *bytes)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u16 *eeprom_buff;
- void *ptr;
- int max_len, first_word, last_word, ret_val = 0;
- u16 i;
-
- if (eeprom->len == 0)
- return -EOPNOTSUPP;
-
- if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
- return -EFAULT;
-
- max_len = hw->eeprom.word_size * 2;
-
- first_word = eeprom->offset >> 1;
- last_word = (eeprom->offset + eeprom->len - 1) >> 1;
- eeprom_buff = kmalloc(max_len, GFP_KERNEL);
- if (!eeprom_buff)
- return -ENOMEM;
-
- ptr = (void *)eeprom_buff;
-
- if (eeprom->offset & 1) {
- /* need read/modify/write of first changed EEPROM word */
- /* only the second byte of the word is being modified */
- ret_val = e1000_read_eeprom(hw, first_word, 1,
- &eeprom_buff[0]);
- ptr++;
- }
- if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
- /* need read/modify/write of last changed EEPROM word */
- /* only the first byte of the word is being modified */
- ret_val = e1000_read_eeprom(hw, last_word, 1,
- &eeprom_buff[last_word - first_word]);
- }
-
- /* Device's eeprom is always little-endian, word addressable */
- for (i = 0; i < last_word - first_word + 1; i++)
- le16_to_cpus(&eeprom_buff[i]);
-
- memcpy(ptr, bytes, eeprom->len);
-
- for (i = 0; i < last_word - first_word + 1; i++)
- eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
-
- ret_val = e1000_write_eeprom(hw, first_word,
- last_word - first_word + 1, eeprom_buff);
-
- /* Update the checksum over the first part of the EEPROM if needed */
- if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
- e1000_update_eeprom_checksum(hw);
-
- kfree(eeprom_buff);
- return ret_val;
-}
-
-static void e1000_get_drvinfo(struct net_device *netdev,
- struct ethtool_drvinfo *drvinfo)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- char firmware_version[32];
-
- strncpy(drvinfo->driver, e1000_driver_name, 32);
- strncpy(drvinfo->version, e1000_driver_version, 32);
-
- sprintf(firmware_version, "N/A");
- strncpy(drvinfo->fw_version, firmware_version, 32);
- strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
- drvinfo->regdump_len = e1000_get_regs_len(netdev);
- drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
-}
-
-static void e1000_get_ringparam(struct net_device *netdev,
- struct ethtool_ringparam *ring)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- e1000_mac_type mac_type = hw->mac_type;
- struct e1000_tx_ring *txdr = adapter->tx_ring;
- struct e1000_rx_ring *rxdr = adapter->rx_ring;
-
- ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
- E1000_MAX_82544_RXD;
- ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
- E1000_MAX_82544_TXD;
- ring->rx_mini_max_pending = 0;
- ring->rx_jumbo_max_pending = 0;
- ring->rx_pending = rxdr->count;
- ring->tx_pending = txdr->count;
- ring->rx_mini_pending = 0;
- ring->rx_jumbo_pending = 0;
-}
-
-static int e1000_set_ringparam(struct net_device *netdev,
- struct ethtool_ringparam *ring)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- e1000_mac_type mac_type = hw->mac_type;
- struct e1000_tx_ring *txdr, *tx_old;
- struct e1000_rx_ring *rxdr, *rx_old;
- int i, err;
-
- if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
- return -EINVAL;
-
- while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
- msleep(1);
-
- if (netif_running(adapter->netdev))
- e1000_down(adapter);
-
- tx_old = adapter->tx_ring;
- rx_old = adapter->rx_ring;
-
- err = -ENOMEM;
- txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
- if (!txdr)
- goto err_alloc_tx;
-
- rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
- if (!rxdr)
- goto err_alloc_rx;
-
- adapter->tx_ring = txdr;
- adapter->rx_ring = rxdr;
-
- rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
- rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
- E1000_MAX_RXD : E1000_MAX_82544_RXD));
- rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
-
- txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
- txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
- E1000_MAX_TXD : E1000_MAX_82544_TXD));
- txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
-
- for (i = 0; i < adapter->num_tx_queues; i++)
- txdr[i].count = txdr->count;
- for (i = 0; i < adapter->num_rx_queues; i++)
- rxdr[i].count = rxdr->count;
-
- if (netif_running(adapter->netdev)) {
- /* Try to get new resources before deleting old */
- err = e1000_setup_all_rx_resources(adapter);
- if (err)
- goto err_setup_rx;
- err = e1000_setup_all_tx_resources(adapter);
- if (err)
- goto err_setup_tx;
-
- /* save the new, restore the old in order to free it,
- * then restore the new back again */
-
- adapter->rx_ring = rx_old;
- adapter->tx_ring = tx_old;
- e1000_free_all_rx_resources(adapter);
- e1000_free_all_tx_resources(adapter);
- kfree(tx_old);
- kfree(rx_old);
- adapter->rx_ring = rxdr;
- adapter->tx_ring = txdr;
- err = e1000_up(adapter);
- if (err)
- goto err_setup;
- }
-
- clear_bit(__E1000_RESETTING, &adapter->flags);
- return 0;
-err_setup_tx:
- e1000_free_all_rx_resources(adapter);
-err_setup_rx:
- adapter->rx_ring = rx_old;
- adapter->tx_ring = tx_old;
- kfree(rxdr);
-err_alloc_rx:
- kfree(txdr);
-err_alloc_tx:
- e1000_up(adapter);
-err_setup:
- clear_bit(__E1000_RESETTING, &adapter->flags);
- return err;
-}
-
-static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
- u32 mask, u32 write)
-{
- struct e1000_hw *hw = &adapter->hw;
- static const u32 test[] =
- {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
- u8 __iomem *address = hw->hw_addr + reg;
- u32 read;
- int i;
-
- for (i = 0; i < ARRAY_SIZE(test); i++) {
- writel(write & test[i], address);
- read = readl(address);
- if (read != (write & test[i] & mask)) {
- e_err(drv, "pattern test reg %04X failed: "
- "got 0x%08X expected 0x%08X\n",
- reg, read, (write & test[i] & mask));
- *data = reg;
- return true;
- }
- }
- return false;
-}
-
-static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
- u32 mask, u32 write)
-{
- struct e1000_hw *hw = &adapter->hw;
- u8 __iomem *address = hw->hw_addr + reg;
- u32 read;
-
- writel(write & mask, address);
- read = readl(address);
- if ((read & mask) != (write & mask)) {
- e_err(drv, "set/check reg %04X test failed: "
- "got 0x%08X expected 0x%08X\n",
- reg, (read & mask), (write & mask));
- *data = reg;
- return true;
- }
- return false;
-}
-
-#define REG_PATTERN_TEST(reg, mask, write) \
- do { \
- if (reg_pattern_test(adapter, data, \
- (hw->mac_type >= e1000_82543) \
- ? E1000_##reg : E1000_82542_##reg, \
- mask, write)) \
- return 1; \
- } while (0)
-
-#define REG_SET_AND_CHECK(reg, mask, write) \
- do { \
- if (reg_set_and_check(adapter, data, \
- (hw->mac_type >= e1000_82543) \
- ? E1000_##reg : E1000_82542_##reg, \
- mask, write)) \
- return 1; \
- } while (0)
-
-static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
-{
- u32 value, before, after;
- u32 i, toggle;
- struct e1000_hw *hw = &adapter->hw;
-
- /* The status register is Read Only, so a write should fail.
- * Some bits that get toggled are ignored.
- */
-
- /* there are several bits on newer hardware that are r/w */
- toggle = 0xFFFFF833;
-
- before = er32(STATUS);
- value = (er32(STATUS) & toggle);
- ew32(STATUS, toggle);
- after = er32(STATUS) & toggle;
- if (value != after) {
- e_err(drv, "failed STATUS register test got: "
- "0x%08X expected: 0x%08X\n", after, value);
- *data = 1;
- return 1;
- }
- /* restore previous status */
- ew32(STATUS, before);
-
- REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
- REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
- REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
- REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
-
- REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
- REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
- REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
- REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
- REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
- REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
- REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
- REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
- REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
- REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
-
- REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
-
- before = 0x06DFB3FE;
- REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
- REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
-
- if (hw->mac_type >= e1000_82543) {
-
- REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
- REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
- REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
- REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
- REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
- value = E1000_RAR_ENTRIES;
- for (i = 0; i < value; i++) {
- REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
- 0xFFFFFFFF);
- }
-
- } else {
-
- REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
- REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
- REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
- REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
-
- }
-
- value = E1000_MC_TBL_SIZE;
- for (i = 0; i < value; i++)
- REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
-
- *data = 0;
- return 0;
-}
-
-static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
-{
- struct e1000_hw *hw = &adapter->hw;
- u16 temp;
- u16 checksum = 0;
- u16 i;
-
- *data = 0;
- /* Read and add up the contents of the EEPROM */
- for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
- if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
- *data = 1;
- break;
- }
- checksum += temp;
- }
-
- /* If Checksum is not Correct return error else test passed */
- if ((checksum != (u16)EEPROM_SUM) && !(*data))
- *data = 2;
-
- return *data;
-}
-
-static irqreturn_t e1000_test_intr(int irq, void *data)
-{
- struct net_device *netdev = (struct net_device *)data;
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
-
- adapter->test_icr |= er32(ICR);
-
- return IRQ_HANDLED;
-}
-
-static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
-{
- struct net_device *netdev = adapter->netdev;
- u32 mask, i = 0;
- bool shared_int = true;
- u32 irq = adapter->pdev->irq;
- struct e1000_hw *hw = &adapter->hw;
-
- *data = 0;
-
- /* NOTE: we don't test MSI interrupts here, yet */
- /* Hook up test interrupt handler just for this test */
- if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
- netdev))
- shared_int = false;
- else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
- netdev->name, netdev)) {
- *data = 1;
- return -1;
- }
- e_info(hw, "testing %s interrupt\n", (shared_int ?
- "shared" : "unshared"));
-
- /* Disable all the interrupts */
- ew32(IMC, 0xFFFFFFFF);
- E1000_WRITE_FLUSH();
- msleep(10);
-
- /* Test each interrupt */
- for (; i < 10; i++) {
-
- /* Interrupt to test */
- mask = 1 << i;
-
- if (!shared_int) {
- /* Disable the interrupt to be reported in
- * the cause register and then force the same
- * interrupt and see if one gets posted. If
- * an interrupt was posted to the bus, the
- * test failed.
- */
- adapter->test_icr = 0;
- ew32(IMC, mask);
- ew32(ICS, mask);
- E1000_WRITE_FLUSH();
- msleep(10);
-
- if (adapter->test_icr & mask) {
- *data = 3;
- break;
- }
- }
-
- /* Enable the interrupt to be reported in
- * the cause register and then force the same
- * interrupt and see if one gets posted. If
- * an interrupt was not posted to the bus, the
- * test failed.
- */
- adapter->test_icr = 0;
- ew32(IMS, mask);
- ew32(ICS, mask);
- E1000_WRITE_FLUSH();
- msleep(10);
-
- if (!(adapter->test_icr & mask)) {
- *data = 4;
- break;
- }
-
- if (!shared_int) {
- /* Disable the other interrupts to be reported in
- * the cause register and then force the other
- * interrupts and see if any get posted. If
- * an interrupt was posted to the bus, the
- * test failed.
- */
- adapter->test_icr = 0;
- ew32(IMC, ~mask & 0x00007FFF);
- ew32(ICS, ~mask & 0x00007FFF);
- E1000_WRITE_FLUSH();
- msleep(10);
-
- if (adapter->test_icr) {
- *data = 5;
- break;
- }
- }
- }
-
- /* Disable all the interrupts */
- ew32(IMC, 0xFFFFFFFF);
- E1000_WRITE_FLUSH();
- msleep(10);
-
- /* Unhook test interrupt handler */
- free_irq(irq, netdev);
-
- return *data;
-}
-
-static void e1000_free_desc_rings(struct e1000_adapter *adapter)
-{
- struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
- struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
- struct pci_dev *pdev = adapter->pdev;
- int i;
-
- if (txdr->desc && txdr->buffer_info) {
- for (i = 0; i < txdr->count; i++) {
- if (txdr->buffer_info[i].dma)
- dma_unmap_single(&pdev->dev,
- txdr->buffer_info[i].dma,
- txdr->buffer_info[i].length,
- DMA_TO_DEVICE);
- if (txdr->buffer_info[i].skb)
- dev_kfree_skb(txdr->buffer_info[i].skb);
- }
- }
-
- if (rxdr->desc && rxdr->buffer_info) {
- for (i = 0; i < rxdr->count; i++) {
- if (rxdr->buffer_info[i].dma)
- dma_unmap_single(&pdev->dev,
- rxdr->buffer_info[i].dma,
- rxdr->buffer_info[i].length,
- DMA_FROM_DEVICE);
- if (rxdr->buffer_info[i].skb)
- dev_kfree_skb(rxdr->buffer_info[i].skb);
- }
- }
-
- if (txdr->desc) {
- dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
- txdr->dma);
- txdr->desc = NULL;
- }
- if (rxdr->desc) {
- dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
- rxdr->dma);
- rxdr->desc = NULL;
- }
-
- kfree(txdr->buffer_info);
- txdr->buffer_info = NULL;
- kfree(rxdr->buffer_info);
- rxdr->buffer_info = NULL;
-}
-
-static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
- struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
- struct pci_dev *pdev = adapter->pdev;
- u32 rctl;
- int i, ret_val;
-
- /* Setup Tx descriptor ring and Tx buffers */
-
- if (!txdr->count)
- txdr->count = E1000_DEFAULT_TXD;
-
- txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
- GFP_KERNEL);
- if (!txdr->buffer_info) {
- ret_val = 1;
- goto err_nomem;
- }
-
- txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
- txdr->size = ALIGN(txdr->size, 4096);
- txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
- GFP_KERNEL);
- if (!txdr->desc) {
- ret_val = 2;
- goto err_nomem;
- }
- memset(txdr->desc, 0, txdr->size);
- txdr->next_to_use = txdr->next_to_clean = 0;
-
- ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
- ew32(TDBAH, ((u64)txdr->dma >> 32));
- ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
- ew32(TDH, 0);
- ew32(TDT, 0);
- ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
- E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
- E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
-
- for (i = 0; i < txdr->count; i++) {
- struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
- struct sk_buff *skb;
- unsigned int size = 1024;
-
- skb = alloc_skb(size, GFP_KERNEL);
- if (!skb) {
- ret_val = 3;
- goto err_nomem;
- }
- skb_put(skb, size);
- txdr->buffer_info[i].skb = skb;
- txdr->buffer_info[i].length = skb->len;
- txdr->buffer_info[i].dma =
- dma_map_single(&pdev->dev, skb->data, skb->len,
- DMA_TO_DEVICE);
- tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
- tx_desc->lower.data = cpu_to_le32(skb->len);
- tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
- E1000_TXD_CMD_IFCS |
- E1000_TXD_CMD_RPS);
- tx_desc->upper.data = 0;
- }
-
- /* Setup Rx descriptor ring and Rx buffers */
-
- if (!rxdr->count)
- rxdr->count = E1000_DEFAULT_RXD;
-
- rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
- GFP_KERNEL);
- if (!rxdr->buffer_info) {
- ret_val = 4;
- goto err_nomem;
- }
-
- rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
- rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
- GFP_KERNEL);
- if (!rxdr->desc) {
- ret_val = 5;
- goto err_nomem;
- }
- memset(rxdr->desc, 0, rxdr->size);
- rxdr->next_to_use = rxdr->next_to_clean = 0;
-
- rctl = er32(RCTL);
- ew32(RCTL, rctl & ~E1000_RCTL_EN);
- ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
- ew32(RDBAH, ((u64)rxdr->dma >> 32));
- ew32(RDLEN, rxdr->size);
- ew32(RDH, 0);
- ew32(RDT, 0);
- rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
- E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
- (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
- ew32(RCTL, rctl);
-
- for (i = 0; i < rxdr->count; i++) {
- struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
- struct sk_buff *skb;
-
- skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
- if (!skb) {
- ret_val = 6;
- goto err_nomem;
- }
- skb_reserve(skb, NET_IP_ALIGN);
- rxdr->buffer_info[i].skb = skb;
- rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
- rxdr->buffer_info[i].dma =
- dma_map_single(&pdev->dev, skb->data,
- E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
- rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
- memset(skb->data, 0x00, skb->len);
- }
-
- return 0;
-
-err_nomem:
- e1000_free_desc_rings(adapter);
- return ret_val;
-}
-
-static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
-
- /* Write out to PHY registers 29 and 30 to disable the Receiver. */
- e1000_write_phy_reg(hw, 29, 0x001F);
- e1000_write_phy_reg(hw, 30, 0x8FFC);
- e1000_write_phy_reg(hw, 29, 0x001A);
- e1000_write_phy_reg(hw, 30, 0x8FF0);
-}
-
-static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u16 phy_reg;
-
- /* Because we reset the PHY above, we need to re-force TX_CLK in the
- * Extended PHY Specific Control Register to 25MHz clock. This
- * value defaults back to a 2.5MHz clock when the PHY is reset.
- */
- e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
- phy_reg |= M88E1000_EPSCR_TX_CLK_25;
- e1000_write_phy_reg(hw,
- M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
-
- /* In addition, because of the s/w reset above, we need to enable
- * CRS on TX. This must be set for both full and half duplex
- * operation.
- */
- e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
- phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
- e1000_write_phy_reg(hw,
- M88E1000_PHY_SPEC_CTRL, phy_reg);
-}
-
-static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 ctrl_reg;
- u16 phy_reg;
-
- /* Setup the Device Control Register for PHY loopback test. */
-
- ctrl_reg = er32(CTRL);
- ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
- E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
- E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
- E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
- E1000_CTRL_FD); /* Force Duplex to FULL */
-
- ew32(CTRL, ctrl_reg);
-
- /* Read the PHY Specific Control Register (0x10) */
- e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
-
- /* Clear Auto-Crossover bits in PHY Specific Control Register
- * (bits 6:5).
- */
- phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
- e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
-
- /* Perform software reset on the PHY */
- e1000_phy_reset(hw);
-
- /* Have to setup TX_CLK and TX_CRS after software reset */
- e1000_phy_reset_clk_and_crs(adapter);
-
- e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
-
- /* Wait for reset to complete. */
- udelay(500);
-
- /* Have to setup TX_CLK and TX_CRS after software reset */
- e1000_phy_reset_clk_and_crs(adapter);
-
- /* Write out to PHY registers 29 and 30 to disable the Receiver. */
- e1000_phy_disable_receiver(adapter);
-
- /* Set the loopback bit in the PHY control register. */
- e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
- phy_reg |= MII_CR_LOOPBACK;
- e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
-
- /* Setup TX_CLK and TX_CRS one more time. */
- e1000_phy_reset_clk_and_crs(adapter);
-
- /* Check Phy Configuration */
- e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
- if (phy_reg != 0x4100)
- return 9;
-
- e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
- if (phy_reg != 0x0070)
- return 10;
-
- e1000_read_phy_reg(hw, 29, &phy_reg);
- if (phy_reg != 0x001A)
- return 11;
-
- return 0;
-}
-
-static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 ctrl_reg = 0;
- u32 stat_reg = 0;
-
- hw->autoneg = false;
-
- if (hw->phy_type == e1000_phy_m88) {
- /* Auto-MDI/MDIX Off */
- e1000_write_phy_reg(hw,
- M88E1000_PHY_SPEC_CTRL, 0x0808);
- /* reset to update Auto-MDI/MDIX */
- e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
- /* autoneg off */
- e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
- }
-
- ctrl_reg = er32(CTRL);
-
- /* force 1000, set loopback */
- e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
-
- /* Now set up the MAC to the same speed/duplex as the PHY. */
- ctrl_reg = er32(CTRL);
- ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
- ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
- E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
- E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
- E1000_CTRL_FD); /* Force Duplex to FULL */
-
- if (hw->media_type == e1000_media_type_copper &&
- hw->phy_type == e1000_phy_m88)
- ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
- else {
- /* Set the ILOS bit on the fiber Nic is half
- * duplex link is detected. */
- stat_reg = er32(STATUS);
- if ((stat_reg & E1000_STATUS_FD) == 0)
- ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
- }
-
- ew32(CTRL, ctrl_reg);
-
- /* Disable the receiver on the PHY so when a cable is plugged in, the
- * PHY does not begin to autoneg when a cable is reconnected to the NIC.
- */
- if (hw->phy_type == e1000_phy_m88)
- e1000_phy_disable_receiver(adapter);
-
- udelay(500);
-
- return 0;
-}
-
-static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u16 phy_reg = 0;
- u16 count = 0;
-
- switch (hw->mac_type) {
- case e1000_82543:
- if (hw->media_type == e1000_media_type_copper) {
- /* Attempt to setup Loopback mode on Non-integrated PHY.
- * Some PHY registers get corrupted at random, so
- * attempt this 10 times.
- */
- while (e1000_nonintegrated_phy_loopback(adapter) &&
- count++ < 10);
- if (count < 11)
- return 0;
- }
- break;
-
- case e1000_82544:
- case e1000_82540:
- case e1000_82545:
- case e1000_82545_rev_3:
- case e1000_82546:
- case e1000_82546_rev_3:
- case e1000_82541:
- case e1000_82541_rev_2:
- case e1000_82547:
- case e1000_82547_rev_2:
- return e1000_integrated_phy_loopback(adapter);
- break;
- default:
- /* Default PHY loopback work is to read the MII
- * control register and assert bit 14 (loopback mode).
- */
- e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
- phy_reg |= MII_CR_LOOPBACK;
- e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
- return 0;
- break;
- }
-
- return 8;
-}
-
-static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 rctl;
-
- if (hw->media_type == e1000_media_type_fiber ||
- hw->media_type == e1000_media_type_internal_serdes) {
- switch (hw->mac_type) {
- case e1000_82545:
- case e1000_82546:
- case e1000_82545_rev_3:
- case e1000_82546_rev_3:
- return e1000_set_phy_loopback(adapter);
- break;
- default:
- rctl = er32(RCTL);
- rctl |= E1000_RCTL_LBM_TCVR;
- ew32(RCTL, rctl);
- return 0;
- }
- } else if (hw->media_type == e1000_media_type_copper)
- return e1000_set_phy_loopback(adapter);
-
- return 7;
-}
-
-static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 rctl;
- u16 phy_reg;
-
- rctl = er32(RCTL);
- rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
- ew32(RCTL, rctl);
-
- switch (hw->mac_type) {
- case e1000_82545:
- case e1000_82546:
- case e1000_82545_rev_3:
- case e1000_82546_rev_3:
- default:
- hw->autoneg = true;
- e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
- if (phy_reg & MII_CR_LOOPBACK) {
- phy_reg &= ~MII_CR_LOOPBACK;
- e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
- e1000_phy_reset(hw);
- }
- break;
- }
-}
-
-static void e1000_create_lbtest_frame(struct sk_buff *skb,
- unsigned int frame_size)
-{
- memset(skb->data, 0xFF, frame_size);
- frame_size &= ~1;
- memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
- memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
- memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
-}
-
-static int e1000_check_lbtest_frame(struct sk_buff *skb,
- unsigned int frame_size)
-{
- frame_size &= ~1;
- if (*(skb->data + 3) == 0xFF) {
- if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
- (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
- return 0;
- }
- }
- return 13;
-}
-
-static int e1000_run_loopback_test(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
- struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
- struct pci_dev *pdev = adapter->pdev;
- int i, j, k, l, lc, good_cnt, ret_val=0;
- unsigned long time;
-
- ew32(RDT, rxdr->count - 1);
-
- /* Calculate the loop count based on the largest descriptor ring
- * The idea is to wrap the largest ring a number of times using 64
- * send/receive pairs during each loop
- */
-
- if (rxdr->count <= txdr->count)
- lc = ((txdr->count / 64) * 2) + 1;
- else
- lc = ((rxdr->count / 64) * 2) + 1;
-
- k = l = 0;
- for (j = 0; j <= lc; j++) { /* loop count loop */
- for (i = 0; i < 64; i++) { /* send the packets */
- e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
- 1024);
- dma_sync_single_for_device(&pdev->dev,
- txdr->buffer_info[k].dma,
- txdr->buffer_info[k].length,
- DMA_TO_DEVICE);
- if (unlikely(++k == txdr->count)) k = 0;
- }
- ew32(TDT, k);
- E1000_WRITE_FLUSH();
- msleep(200);
- time = jiffies; /* set the start time for the receive */
- good_cnt = 0;
- do { /* receive the sent packets */
- dma_sync_single_for_cpu(&pdev->dev,
- rxdr->buffer_info[l].dma,
- rxdr->buffer_info[l].length,
- DMA_FROM_DEVICE);
-
- ret_val = e1000_check_lbtest_frame(
- rxdr->buffer_info[l].skb,
- 1024);
- if (!ret_val)
- good_cnt++;
- if (unlikely(++l == rxdr->count)) l = 0;
- /* time + 20 msecs (200 msecs on 2.4) is more than
- * enough time to complete the receives, if it's
- * exceeded, break and error off
- */
- } while (good_cnt < 64 && jiffies < (time + 20));
- if (good_cnt != 64) {
- ret_val = 13; /* ret_val is the same as mis-compare */
- break;
- }
- if (jiffies >= (time + 2)) {
- ret_val = 14; /* error code for time out error */
- break;
- }
- } /* end loop count loop */
- return ret_val;
-}
-
-static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
-{
- *data = e1000_setup_desc_rings(adapter);
- if (*data)
- goto out;
- *data = e1000_setup_loopback_test(adapter);
- if (*data)
- goto err_loopback;
- *data = e1000_run_loopback_test(adapter);
- e1000_loopback_cleanup(adapter);
-
-err_loopback:
- e1000_free_desc_rings(adapter);
-out:
- return *data;
-}
-
-static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
-{
- struct e1000_hw *hw = &adapter->hw;
- *data = 0;
- if (hw->media_type == e1000_media_type_internal_serdes) {
- int i = 0;
- hw->serdes_has_link = false;
-
- /* On some blade server designs, link establishment
- * could take as long as 2-3 minutes */
- do {
- e1000_check_for_link(hw);
- if (hw->serdes_has_link)
- return *data;
- msleep(20);
- } while (i++ < 3750);
-
- *data = 1;
- } else {
- e1000_check_for_link(hw);
- if (hw->autoneg) /* if auto_neg is set wait for it */
- msleep(4000);
-
- if (!(er32(STATUS) & E1000_STATUS_LU)) {
- *data = 1;
- }
- }
- return *data;
-}
-
-static int e1000_get_sset_count(struct net_device *netdev, int sset)
-{
- switch (sset) {
- case ETH_SS_TEST:
- return E1000_TEST_LEN;
- case ETH_SS_STATS:
- return E1000_STATS_LEN;
- default:
- return -EOPNOTSUPP;
- }
-}
-
-static void e1000_diag_test(struct net_device *netdev,
- struct ethtool_test *eth_test, u64 *data)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- bool if_running = netif_running(netdev);
-
- set_bit(__E1000_TESTING, &adapter->flags);
- if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
- /* Offline tests */
-
- /* save speed, duplex, autoneg settings */
- u16 autoneg_advertised = hw->autoneg_advertised;
- u8 forced_speed_duplex = hw->forced_speed_duplex;
- u8 autoneg = hw->autoneg;
-
- e_info(hw, "offline testing starting\n");
-
- /* Link test performed before hardware reset so autoneg doesn't
- * interfere with test result */
- if (e1000_link_test(adapter, &data[4]))
- eth_test->flags |= ETH_TEST_FL_FAILED;
-
- if (if_running)
- /* indicate we're in test mode */
- dev_close(netdev);
- else
- e1000_reset(adapter);
-
- if (e1000_reg_test(adapter, &data[0]))
- eth_test->flags |= ETH_TEST_FL_FAILED;
-
- e1000_reset(adapter);
- if (e1000_eeprom_test(adapter, &data[1]))
- eth_test->flags |= ETH_TEST_FL_FAILED;
-
- e1000_reset(adapter);
- if (e1000_intr_test(adapter, &data[2]))
- eth_test->flags |= ETH_TEST_FL_FAILED;
-
- e1000_reset(adapter);
- /* make sure the phy is powered up */
- e1000_power_up_phy(adapter);
- if (e1000_loopback_test(adapter, &data[3]))
- eth_test->flags |= ETH_TEST_FL_FAILED;
-
- /* restore speed, duplex, autoneg settings */
- hw->autoneg_advertised = autoneg_advertised;
- hw->forced_speed_duplex = forced_speed_duplex;
- hw->autoneg = autoneg;
-
- e1000_reset(adapter);
- clear_bit(__E1000_TESTING, &adapter->flags);
- if (if_running)
- dev_open(netdev);
- } else {
- e_info(hw, "online testing starting\n");
- /* Online tests */
- if (e1000_link_test(adapter, &data[4]))
- eth_test->flags |= ETH_TEST_FL_FAILED;
-
- /* Online tests aren't run; pass by default */
- data[0] = 0;
- data[1] = 0;
- data[2] = 0;
- data[3] = 0;
-
- clear_bit(__E1000_TESTING, &adapter->flags);
- }
- msleep_interruptible(4 * 1000);
-}
-
-static int e1000_wol_exclusion(struct e1000_adapter *adapter,
- struct ethtool_wolinfo *wol)
-{
- struct e1000_hw *hw = &adapter->hw;
- int retval = 1; /* fail by default */
-
- switch (hw->device_id) {
- case E1000_DEV_ID_82542:
- case E1000_DEV_ID_82543GC_FIBER:
- case E1000_DEV_ID_82543GC_COPPER:
- case E1000_DEV_ID_82544EI_FIBER:
- case E1000_DEV_ID_82546EB_QUAD_COPPER:
- case E1000_DEV_ID_82545EM_FIBER:
- case E1000_DEV_ID_82545EM_COPPER:
- case E1000_DEV_ID_82546GB_QUAD_COPPER:
- case E1000_DEV_ID_82546GB_PCIE:
- /* these don't support WoL at all */
- wol->supported = 0;
- break;
- case E1000_DEV_ID_82546EB_FIBER:
- case E1000_DEV_ID_82546GB_FIBER:
- /* Wake events not supported on port B */
- if (er32(STATUS) & E1000_STATUS_FUNC_1) {
- wol->supported = 0;
- break;
- }
- /* return success for non excluded adapter ports */
- retval = 0;
- break;
- case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
- /* quad port adapters only support WoL on port A */
- if (!adapter->quad_port_a) {
- wol->supported = 0;
- break;
- }
- /* return success for non excluded adapter ports */
- retval = 0;
- break;
- default:
- /* dual port cards only support WoL on port A from now on
- * unless it was enabled in the eeprom for port B
- * so exclude FUNC_1 ports from having WoL enabled */
- if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
- !adapter->eeprom_wol) {
- wol->supported = 0;
- break;
- }
-
- retval = 0;
- }
-
- return retval;
-}
-
-static void e1000_get_wol(struct net_device *netdev,
- struct ethtool_wolinfo *wol)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
-
- wol->supported = WAKE_UCAST | WAKE_MCAST |
- WAKE_BCAST | WAKE_MAGIC;
- wol->wolopts = 0;
-
- /* this function will set ->supported = 0 and return 1 if wol is not
- * supported by this hardware */
- if (e1000_wol_exclusion(adapter, wol) ||
- !device_can_wakeup(&adapter->pdev->dev))
- return;
-
- /* apply any specific unsupported masks here */
- switch (hw->device_id) {
- case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
- /* KSP3 does not suppport UCAST wake-ups */
- wol->supported &= ~WAKE_UCAST;
-
- if (adapter->wol & E1000_WUFC_EX)
- e_err(drv, "Interface does not support directed "
- "(unicast) frame wake-up packets\n");
- break;
- default:
- break;
- }
-
- if (adapter->wol & E1000_WUFC_EX)
- wol->wolopts |= WAKE_UCAST;
- if (adapter->wol & E1000_WUFC_MC)
- wol->wolopts |= WAKE_MCAST;
- if (adapter->wol & E1000_WUFC_BC)
- wol->wolopts |= WAKE_BCAST;
- if (adapter->wol & E1000_WUFC_MAG)
- wol->wolopts |= WAKE_MAGIC;
-}
-
-static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
-
- if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
- return -EOPNOTSUPP;
-
- if (e1000_wol_exclusion(adapter, wol) ||
- !device_can_wakeup(&adapter->pdev->dev))
- return wol->wolopts ? -EOPNOTSUPP : 0;
-
- switch (hw->device_id) {
- case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
- if (wol->wolopts & WAKE_UCAST) {
- e_err(drv, "Interface does not support directed "
- "(unicast) frame wake-up packets\n");
- return -EOPNOTSUPP;
- }
- break;
- default:
- break;
- }
-
- /* these settings will always override what we currently have */
- adapter->wol = 0;
-
- if (wol->wolopts & WAKE_UCAST)
- adapter->wol |= E1000_WUFC_EX;
- if (wol->wolopts & WAKE_MCAST)
- adapter->wol |= E1000_WUFC_MC;
- if (wol->wolopts & WAKE_BCAST)
- adapter->wol |= E1000_WUFC_BC;
- if (wol->wolopts & WAKE_MAGIC)
- adapter->wol |= E1000_WUFC_MAG;
-
- device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
-
- return 0;
-}
-
-static int e1000_set_phys_id(struct net_device *netdev,
- enum ethtool_phys_id_state state)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
-
- switch (state) {
- case ETHTOOL_ID_ACTIVE:
- e1000_setup_led(hw);
- return 2;
-
- case ETHTOOL_ID_ON:
- e1000_led_on(hw);
- break;
-
- case ETHTOOL_ID_OFF:
- e1000_led_off(hw);
- break;
-
- case ETHTOOL_ID_INACTIVE:
- e1000_cleanup_led(hw);
- }
-
- return 0;
-}
-
-static int e1000_get_coalesce(struct net_device *netdev,
- struct ethtool_coalesce *ec)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- if (adapter->hw.mac_type < e1000_82545)
- return -EOPNOTSUPP;
-
- if (adapter->itr_setting <= 4)
- ec->rx_coalesce_usecs = adapter->itr_setting;
- else
- ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
-
- return 0;
-}
-
-static int e1000_set_coalesce(struct net_device *netdev,
- struct ethtool_coalesce *ec)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
-
- if (hw->mac_type < e1000_82545)
- return -EOPNOTSUPP;
-
- if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
- ((ec->rx_coalesce_usecs > 4) &&
- (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
- (ec->rx_coalesce_usecs == 2))
- return -EINVAL;
-
- if (ec->rx_coalesce_usecs == 4) {
- adapter->itr = adapter->itr_setting = 4;
- } else if (ec->rx_coalesce_usecs <= 3) {
- adapter->itr = 20000;
- adapter->itr_setting = ec->rx_coalesce_usecs;
- } else {
- adapter->itr = (1000000 / ec->rx_coalesce_usecs);
- adapter->itr_setting = adapter->itr & ~3;
- }
-
- if (adapter->itr_setting != 0)
- ew32(ITR, 1000000000 / (adapter->itr * 256));
- else
- ew32(ITR, 0);
-
- return 0;
-}
-
-static int e1000_nway_reset(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- if (netif_running(netdev))
- e1000_reinit_locked(adapter);
- return 0;
-}
-
-static void e1000_get_ethtool_stats(struct net_device *netdev,
- struct ethtool_stats *stats, u64 *data)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- int i;
- char *p = NULL;
-
- e1000_update_stats(adapter);
- for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
- switch (e1000_gstrings_stats[i].type) {
- case NETDEV_STATS:
- p = (char *) netdev +
- e1000_gstrings_stats[i].stat_offset;
- break;
- case E1000_STATS:
- p = (char *) adapter +
- e1000_gstrings_stats[i].stat_offset;
- break;
- }
-
- data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
- sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
- }
-/* BUG_ON(i != E1000_STATS_LEN); */
-}
-
-static void e1000_get_strings(struct net_device *netdev, u32 stringset,
- u8 *data)
-{
- u8 *p = data;
- int i;
-
- switch (stringset) {
- case ETH_SS_TEST:
- memcpy(data, *e1000_gstrings_test,
- sizeof(e1000_gstrings_test));
- break;
- case ETH_SS_STATS:
- for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
- memcpy(p, e1000_gstrings_stats[i].stat_string,
- ETH_GSTRING_LEN);
- p += ETH_GSTRING_LEN;
- }
-/* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
- break;
- }
-}
-
-static const struct ethtool_ops e1000_ethtool_ops = {
- .get_settings = e1000_get_settings,
- .set_settings = e1000_set_settings,
- .get_drvinfo = e1000_get_drvinfo,
- .get_regs_len = e1000_get_regs_len,
- .get_regs = e1000_get_regs,
- .get_wol = e1000_get_wol,
- .set_wol = e1000_set_wol,
- .get_msglevel = e1000_get_msglevel,
- .set_msglevel = e1000_set_msglevel,
- .nway_reset = e1000_nway_reset,
- .get_link = e1000_get_link,
- .get_eeprom_len = e1000_get_eeprom_len,
- .get_eeprom = e1000_get_eeprom,
- .set_eeprom = e1000_set_eeprom,
- .get_ringparam = e1000_get_ringparam,
- .set_ringparam = e1000_set_ringparam,
- .get_pauseparam = e1000_get_pauseparam,
- .set_pauseparam = e1000_set_pauseparam,
- .self_test = e1000_diag_test,
- .get_strings = e1000_get_strings,
- .set_phys_id = e1000_set_phys_id,
- .get_ethtool_stats = e1000_get_ethtool_stats,
- .get_sset_count = e1000_get_sset_count,
- .get_coalesce = e1000_get_coalesce,
- .set_coalesce = e1000_set_coalesce,
-};
-
-void e1000_set_ethtool_ops(struct net_device *netdev)
-{
- SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
-}
diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c
deleted file mode 100644
index 8545c7aa93eb..000000000000
--- a/drivers/net/e1000/e1000_hw.c
+++ /dev/null
@@ -1,5824 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2006 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
- */
-
-/* e1000_hw.c
- * Shared functions for accessing and configuring the MAC
- */
-
-#include "e1000.h"
-
-static s32 e1000_check_downshift(struct e1000_hw *hw);
-static s32 e1000_check_polarity(struct e1000_hw *hw,
- e1000_rev_polarity *polarity);
-static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
-static void e1000_clear_vfta(struct e1000_hw *hw);
-static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
- bool link_up);
-static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
-static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
-static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
-static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
- u16 *max_length);
-static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
-static s32 e1000_id_led_init(struct e1000_hw *hw);
-static void e1000_init_rx_addrs(struct e1000_hw *hw);
-static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
- struct e1000_phy_info *phy_info);
-static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
- struct e1000_phy_info *phy_info);
-static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
-static s32 e1000_wait_autoneg(struct e1000_hw *hw);
-static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
-static s32 e1000_set_phy_type(struct e1000_hw *hw);
-static void e1000_phy_init_script(struct e1000_hw *hw);
-static s32 e1000_setup_copper_link(struct e1000_hw *hw);
-static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
-static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
-static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
-static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
-static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
-static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
-static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
-static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
-static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
-static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
-static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data);
-static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
-static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
-static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
-static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
-static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
- u16 phy_data);
-static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
- u16 *phy_data);
-static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
-static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
-static void e1000_release_eeprom(struct e1000_hw *hw);
-static void e1000_standby_eeprom(struct e1000_hw *hw);
-static s32 e1000_set_vco_speed(struct e1000_hw *hw);
-static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
-static s32 e1000_set_phy_mode(struct e1000_hw *hw);
-static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data);
-static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data);
-
-/* IGP cable length table */
-static const
-u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
- 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
- 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
- 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
- 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
- 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
- 100,
- 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
- 110, 110,
- 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
- 120, 120
-};
-
-static DEFINE_SPINLOCK(e1000_eeprom_lock);
-
-/**
- * e1000_set_phy_type - Set the phy type member in the hw struct.
- * @hw: Struct containing variables accessed by shared code
- */
-static s32 e1000_set_phy_type(struct e1000_hw *hw)
-{
- e_dbg("e1000_set_phy_type");
-
- if (hw->mac_type == e1000_undefined)
- return -E1000_ERR_PHY_TYPE;
-
- switch (hw->phy_id) {
- case M88E1000_E_PHY_ID:
- case M88E1000_I_PHY_ID:
- case M88E1011_I_PHY_ID:
- case M88E1111_I_PHY_ID:
- case M88E1118_E_PHY_ID:
- hw->phy_type = e1000_phy_m88;
- break;
- case IGP01E1000_I_PHY_ID:
- if (hw->mac_type == e1000_82541 ||
- hw->mac_type == e1000_82541_rev_2 ||
- hw->mac_type == e1000_82547 ||
- hw->mac_type == e1000_82547_rev_2)
- hw->phy_type = e1000_phy_igp;
- break;
- case RTL8211B_PHY_ID:
- hw->phy_type = e1000_phy_8211;
- break;
- case RTL8201N_PHY_ID:
- hw->phy_type = e1000_phy_8201;
- break;
- default:
- /* Should never have loaded on this device */
- hw->phy_type = e1000_phy_undefined;
- return -E1000_ERR_PHY_TYPE;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
- * @hw: Struct containing variables accessed by shared code
- */
-static void e1000_phy_init_script(struct e1000_hw *hw)
-{
- u32 ret_val;
- u16 phy_saved_data;
-
- e_dbg("e1000_phy_init_script");
-
- if (hw->phy_init_script) {
- msleep(20);
-
- /* Save off the current value of register 0x2F5B to be restored at
- * the end of this routine. */
- ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
- /* Disabled the PHY transmitter */
- e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
- msleep(20);
-
- e1000_write_phy_reg(hw, 0x0000, 0x0140);
- msleep(5);
-
- switch (hw->mac_type) {
- case e1000_82541:
- case e1000_82547:
- e1000_write_phy_reg(hw, 0x1F95, 0x0001);
- e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
- e1000_write_phy_reg(hw, 0x1F79, 0x0018);
- e1000_write_phy_reg(hw, 0x1F30, 0x1600);
- e1000_write_phy_reg(hw, 0x1F31, 0x0014);
- e1000_write_phy_reg(hw, 0x1F32, 0x161C);
- e1000_write_phy_reg(hw, 0x1F94, 0x0003);
- e1000_write_phy_reg(hw, 0x1F96, 0x003F);
- e1000_write_phy_reg(hw, 0x2010, 0x0008);
- break;
-
- case e1000_82541_rev_2:
- case e1000_82547_rev_2:
- e1000_write_phy_reg(hw, 0x1F73, 0x0099);
- break;
- default:
- break;
- }
-
- e1000_write_phy_reg(hw, 0x0000, 0x3300);
- msleep(20);
-
- /* Now enable the transmitter */
- e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
- if (hw->mac_type == e1000_82547) {
- u16 fused, fine, coarse;
-
- /* Move to analog registers page */
- e1000_read_phy_reg(hw,
- IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
- &fused);
-
- if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
- e1000_read_phy_reg(hw,
- IGP01E1000_ANALOG_FUSE_STATUS,
- &fused);
-
- fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
- coarse =
- fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
-
- if (coarse >
- IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
- coarse -=
- IGP01E1000_ANALOG_FUSE_COARSE_10;
- fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
- } else if (coarse ==
- IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
- fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
-
- fused =
- (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
- (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
- (coarse &
- IGP01E1000_ANALOG_FUSE_COARSE_MASK);
-
- e1000_write_phy_reg(hw,
- IGP01E1000_ANALOG_FUSE_CONTROL,
- fused);
- e1000_write_phy_reg(hw,
- IGP01E1000_ANALOG_FUSE_BYPASS,
- IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
- }
- }
- }
-}
-
-/**
- * e1000_set_mac_type - Set the mac type member in the hw struct.
- * @hw: Struct containing variables accessed by shared code
- */
-s32 e1000_set_mac_type(struct e1000_hw *hw)
-{
- e_dbg("e1000_set_mac_type");
-
- switch (hw->device_id) {
- case E1000_DEV_ID_82542:
- switch (hw->revision_id) {
- case E1000_82542_2_0_REV_ID:
- hw->mac_type = e1000_82542_rev2_0;
- break;
- case E1000_82542_2_1_REV_ID:
- hw->mac_type = e1000_82542_rev2_1;
- break;
- default:
- /* Invalid 82542 revision ID */
- return -E1000_ERR_MAC_TYPE;
- }
- break;
- case E1000_DEV_ID_82543GC_FIBER:
- case E1000_DEV_ID_82543GC_COPPER:
- hw->mac_type = e1000_82543;
- break;
- case E1000_DEV_ID_82544EI_COPPER:
- case E1000_DEV_ID_82544EI_FIBER:
- case E1000_DEV_ID_82544GC_COPPER:
- case E1000_DEV_ID_82544GC_LOM:
- hw->mac_type = e1000_82544;
- break;
- case E1000_DEV_ID_82540EM:
- case E1000_DEV_ID_82540EM_LOM:
- case E1000_DEV_ID_82540EP:
- case E1000_DEV_ID_82540EP_LOM:
- case E1000_DEV_ID_82540EP_LP:
- hw->mac_type = e1000_82540;
- break;
- case E1000_DEV_ID_82545EM_COPPER:
- case E1000_DEV_ID_82545EM_FIBER:
- hw->mac_type = e1000_82545;
- break;
- case E1000_DEV_ID_82545GM_COPPER:
- case E1000_DEV_ID_82545GM_FIBER:
- case E1000_DEV_ID_82545GM_SERDES:
- hw->mac_type = e1000_82545_rev_3;
- break;
- case E1000_DEV_ID_82546EB_COPPER:
- case E1000_DEV_ID_82546EB_FIBER:
- case E1000_DEV_ID_82546EB_QUAD_COPPER:
- hw->mac_type = e1000_82546;
- break;
- case E1000_DEV_ID_82546GB_COPPER:
- case E1000_DEV_ID_82546GB_FIBER:
- case E1000_DEV_ID_82546GB_SERDES:
- case E1000_DEV_ID_82546GB_PCIE:
- case E1000_DEV_ID_82546GB_QUAD_COPPER:
- case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
- hw->mac_type = e1000_82546_rev_3;
- break;
- case E1000_DEV_ID_82541EI:
- case E1000_DEV_ID_82541EI_MOBILE:
- case E1000_DEV_ID_82541ER_LOM:
- hw->mac_type = e1000_82541;
- break;
- case E1000_DEV_ID_82541ER:
- case E1000_DEV_ID_82541GI:
- case E1000_DEV_ID_82541GI_LF:
- case E1000_DEV_ID_82541GI_MOBILE:
- hw->mac_type = e1000_82541_rev_2;
- break;
- case E1000_DEV_ID_82547EI:
- case E1000_DEV_ID_82547EI_MOBILE:
- hw->mac_type = e1000_82547;
- break;
- case E1000_DEV_ID_82547GI:
- hw->mac_type = e1000_82547_rev_2;
- break;
- case E1000_DEV_ID_INTEL_CE4100_GBE:
- hw->mac_type = e1000_ce4100;
- break;
- default:
- /* Should never have loaded on this device */
- return -E1000_ERR_MAC_TYPE;
- }
-
- switch (hw->mac_type) {
- case e1000_82541:
- case e1000_82547:
- case e1000_82541_rev_2:
- case e1000_82547_rev_2:
- hw->asf_firmware_present = true;
- break;
- default:
- break;
- }
-
- /* The 82543 chip does not count tx_carrier_errors properly in
- * FD mode
- */
- if (hw->mac_type == e1000_82543)
- hw->bad_tx_carr_stats_fd = true;
-
- if (hw->mac_type > e1000_82544)
- hw->has_smbus = true;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_set_media_type - Set media type and TBI compatibility.
- * @hw: Struct containing variables accessed by shared code
- */
-void e1000_set_media_type(struct e1000_hw *hw)
-{
- u32 status;
-
- e_dbg("e1000_set_media_type");
-
- if (hw->mac_type != e1000_82543) {
- /* tbi_compatibility is only valid on 82543 */
- hw->tbi_compatibility_en = false;
- }
-
- switch (hw->device_id) {
- case E1000_DEV_ID_82545GM_SERDES:
- case E1000_DEV_ID_82546GB_SERDES:
- hw->media_type = e1000_media_type_internal_serdes;
- break;
- default:
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- hw->media_type = e1000_media_type_fiber;
- break;
- case e1000_ce4100:
- hw->media_type = e1000_media_type_copper;
- break;
- default:
- status = er32(STATUS);
- if (status & E1000_STATUS_TBIMODE) {
- hw->media_type = e1000_media_type_fiber;
- /* tbi_compatibility not valid on fiber */
- hw->tbi_compatibility_en = false;
- } else {
- hw->media_type = e1000_media_type_copper;
- }
- break;
- }
- }
-}
-
-/**
- * e1000_reset_hw: reset the hardware completely
- * @hw: Struct containing variables accessed by shared code
- *
- * Reset the transmit and receive units; mask and clear all interrupts.
- */
-s32 e1000_reset_hw(struct e1000_hw *hw)
-{
- u32 ctrl;
- u32 ctrl_ext;
- u32 icr;
- u32 manc;
- u32 led_ctrl;
- s32 ret_val;
-
- e_dbg("e1000_reset_hw");
-
- /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
- if (hw->mac_type == e1000_82542_rev2_0) {
- e_dbg("Disabling MWI on 82542 rev 2.0\n");
- e1000_pci_clear_mwi(hw);
- }
-
- /* Clear interrupt mask to stop board from generating interrupts */
- e_dbg("Masking off all interrupts\n");
- ew32(IMC, 0xffffffff);
-
- /* Disable the Transmit and Receive units. Then delay to allow
- * any pending transactions to complete before we hit the MAC with
- * the global reset.
- */
- ew32(RCTL, 0);
- ew32(TCTL, E1000_TCTL_PSP);
- E1000_WRITE_FLUSH();
-
- /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
- hw->tbi_compatibility_on = false;
-
- /* Delay to allow any outstanding PCI transactions to complete before
- * resetting the device
- */
- msleep(10);
-
- ctrl = er32(CTRL);
-
- /* Must reset the PHY before resetting the MAC */
- if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
- ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
- E1000_WRITE_FLUSH();
- msleep(5);
- }
-
- /* Issue a global reset to the MAC. This will reset the chip's
- * transmit, receive, DMA, and link units. It will not effect
- * the current PCI configuration. The global reset bit is self-
- * clearing, and should clear within a microsecond.
- */
- e_dbg("Issuing a global reset to MAC\n");
-
- switch (hw->mac_type) {
- case e1000_82544:
- case e1000_82540:
- case e1000_82545:
- case e1000_82546:
- case e1000_82541:
- case e1000_82541_rev_2:
- /* These controllers can't ack the 64-bit write when issuing the
- * reset, so use IO-mapping as a workaround to issue the reset */
- E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
- break;
- case e1000_82545_rev_3:
- case e1000_82546_rev_3:
- /* Reset is performed on a shadow of the control register */
- ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
- break;
- case e1000_ce4100:
- default:
- ew32(CTRL, (ctrl | E1000_CTRL_RST));
- break;
- }
-
- /* After MAC reset, force reload of EEPROM to restore power-on settings to
- * device. Later controllers reload the EEPROM automatically, so just wait
- * for reload to complete.
- */
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- case e1000_82543:
- case e1000_82544:
- /* Wait for reset to complete */
- udelay(10);
- ctrl_ext = er32(CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_EE_RST;
- ew32(CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH();
- /* Wait for EEPROM reload */
- msleep(2);
- break;
- case e1000_82541:
- case e1000_82541_rev_2:
- case e1000_82547:
- case e1000_82547_rev_2:
- /* Wait for EEPROM reload */
- msleep(20);
- break;
- default:
- /* Auto read done will delay 5ms or poll based on mac type */
- ret_val = e1000_get_auto_rd_done(hw);
- if (ret_val)
- return ret_val;
- break;
- }
-
- /* Disable HW ARPs on ASF enabled adapters */
- if (hw->mac_type >= e1000_82540) {
- manc = er32(MANC);
- manc &= ~(E1000_MANC_ARP_EN);
- ew32(MANC, manc);
- }
-
- if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
- e1000_phy_init_script(hw);
-
- /* Configure activity LED after PHY reset */
- led_ctrl = er32(LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- ew32(LEDCTL, led_ctrl);
- }
-
- /* Clear interrupt mask to stop board from generating interrupts */
- e_dbg("Masking off all interrupts\n");
- ew32(IMC, 0xffffffff);
-
- /* Clear any pending interrupt events. */
- icr = er32(ICR);
-
- /* If MWI was previously enabled, reenable it. */
- if (hw->mac_type == e1000_82542_rev2_0) {
- if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
- e1000_pci_set_mwi(hw);
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_hw: Performs basic configuration of the adapter.
- * @hw: Struct containing variables accessed by shared code
- *
- * Assumes that the controller has previously been reset and is in a
- * post-reset uninitialized state. Initializes the receive address registers,
- * multicast table, and VLAN filter table. Calls routines to setup link
- * configuration and flow control settings. Clears all on-chip counters. Leaves
- * the transmit and receive units disabled and uninitialized.
- */
-s32 e1000_init_hw(struct e1000_hw *hw)
-{
- u32 ctrl;
- u32 i;
- s32 ret_val;
- u32 mta_size;
- u32 ctrl_ext;
-
- e_dbg("e1000_init_hw");
-
- /* Initialize Identification LED */
- ret_val = e1000_id_led_init(hw);
- if (ret_val) {
- e_dbg("Error Initializing Identification LED\n");
- return ret_val;
- }
-
- /* Set the media type and TBI compatibility */
- e1000_set_media_type(hw);
-
- /* Disabling VLAN filtering. */
- e_dbg("Initializing the IEEE VLAN\n");
- if (hw->mac_type < e1000_82545_rev_3)
- ew32(VET, 0);
- e1000_clear_vfta(hw);
-
- /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
- if (hw->mac_type == e1000_82542_rev2_0) {
- e_dbg("Disabling MWI on 82542 rev 2.0\n");
- e1000_pci_clear_mwi(hw);
- ew32(RCTL, E1000_RCTL_RST);
- E1000_WRITE_FLUSH();
- msleep(5);
- }
-
- /* Setup the receive address. This involves initializing all of the Receive
- * Address Registers (RARs 0 - 15).
- */
- e1000_init_rx_addrs(hw);
-
- /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
- if (hw->mac_type == e1000_82542_rev2_0) {
- ew32(RCTL, 0);
- E1000_WRITE_FLUSH();
- msleep(1);
- if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
- e1000_pci_set_mwi(hw);
- }
-
- /* Zero out the Multicast HASH table */
- e_dbg("Zeroing the MTA\n");
- mta_size = E1000_MC_TBL_SIZE;
- for (i = 0; i < mta_size; i++) {
- E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
- /* use write flush to prevent Memory Write Block (MWB) from
- * occurring when accessing our register space */
- E1000_WRITE_FLUSH();
- }
-
- /* Set the PCI priority bit correctly in the CTRL register. This
- * determines if the adapter gives priority to receives, or if it
- * gives equal priority to transmits and receives. Valid only on
- * 82542 and 82543 silicon.
- */
- if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
- ctrl = er32(CTRL);
- ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
- }
-
- switch (hw->mac_type) {
- case e1000_82545_rev_3:
- case e1000_82546_rev_3:
- break;
- default:
- /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
- if (hw->bus_type == e1000_bus_type_pcix
- && e1000_pcix_get_mmrbc(hw) > 2048)
- e1000_pcix_set_mmrbc(hw, 2048);
- break;
- }
-
- /* Call a subroutine to configure the link and setup flow control. */
- ret_val = e1000_setup_link(hw);
-
- /* Set the transmit descriptor write-back policy */
- if (hw->mac_type > e1000_82544) {
- ctrl = er32(TXDCTL);
- ctrl =
- (ctrl & ~E1000_TXDCTL_WTHRESH) |
- E1000_TXDCTL_FULL_TX_DESC_WB;
- ew32(TXDCTL, ctrl);
- }
-
- /* Clear all of the statistics registers (clear on read). It is
- * important that we do this after we have tried to establish link
- * because the symbol error count will increment wildly if there
- * is no link.
- */
- e1000_clear_hw_cntrs(hw);
-
- if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
- hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
- ctrl_ext = er32(CTRL_EXT);
- /* Relaxed ordering must be disabled to avoid a parity
- * error crash in a PCI slot. */
- ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
- ew32(CTRL_EXT, ctrl_ext);
- }
-
- return ret_val;
-}
-
-/**
- * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
- * @hw: Struct containing variables accessed by shared code.
- */
-static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
-{
- u16 eeprom_data;
- s32 ret_val;
-
- e_dbg("e1000_adjust_serdes_amplitude");
-
- if (hw->media_type != e1000_media_type_internal_serdes)
- return E1000_SUCCESS;
-
- switch (hw->mac_type) {
- case e1000_82545_rev_3:
- case e1000_82546_rev_3:
- break;
- default:
- return E1000_SUCCESS;
- }
-
- ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
- &eeprom_data);
- if (ret_val) {
- return ret_val;
- }
-
- if (eeprom_data != EEPROM_RESERVED_WORD) {
- /* Adjust SERDES output amplitude only. */
- eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
- ret_val =
- e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
- if (ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_setup_link - Configures flow control and link settings.
- * @hw: Struct containing variables accessed by shared code
- *
- * Determines which flow control settings to use. Calls the appropriate media-
- * specific link configuration function. Configures the flow control settings.
- * Assuming the adapter has a valid link partner, a valid link should be
- * established. Assumes the hardware has previously been reset and the
- * transmitter and receiver are not enabled.
- */
-s32 e1000_setup_link(struct e1000_hw *hw)
-{
- u32 ctrl_ext;
- s32 ret_val;
- u16 eeprom_data;
-
- e_dbg("e1000_setup_link");
-
- /* Read and store word 0x0F of the EEPROM. This word contains bits
- * that determine the hardware's default PAUSE (flow control) mode,
- * a bit that determines whether the HW defaults to enabling or
- * disabling auto-negotiation, and the direction of the
- * SW defined pins. If there is no SW over-ride of the flow
- * control setting, then the variable hw->fc will
- * be initialized based on a value in the EEPROM.
- */
- if (hw->fc == E1000_FC_DEFAULT) {
- ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
- 1, &eeprom_data);
- if (ret_val) {
- e_dbg("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
- hw->fc = E1000_FC_NONE;
- else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
- EEPROM_WORD0F_ASM_DIR)
- hw->fc = E1000_FC_TX_PAUSE;
- else
- hw->fc = E1000_FC_FULL;
- }
-
- /* We want to save off the original Flow Control configuration just
- * in case we get disconnected and then reconnected into a different
- * hub or switch with different Flow Control capabilities.
- */
- if (hw->mac_type == e1000_82542_rev2_0)
- hw->fc &= (~E1000_FC_TX_PAUSE);
-
- if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
- hw->fc &= (~E1000_FC_RX_PAUSE);
-
- hw->original_fc = hw->fc;
-
- e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
-
- /* Take the 4 bits from EEPROM word 0x0F that determine the initial
- * polarity value for the SW controlled pins, and setup the
- * Extended Device Control reg with that info.
- * This is needed because one of the SW controlled pins is used for
- * signal detection. So this should be done before e1000_setup_pcs_link()
- * or e1000_phy_setup() is called.
- */
- if (hw->mac_type == e1000_82543) {
- ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
- 1, &eeprom_data);
- if (ret_val) {
- e_dbg("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
- SWDPIO__EXT_SHIFT);
- ew32(CTRL_EXT, ctrl_ext);
- }
-
- /* Call the necessary subroutine to configure the link. */
- ret_val = (hw->media_type == e1000_media_type_copper) ?
- e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
-
- /* Initialize the flow control address, type, and PAUSE timer
- * registers to their default values. This is done even if flow
- * control is disabled, because it does not hurt anything to
- * initialize these registers.
- */
- e_dbg("Initializing the Flow Control address, type and timer regs\n");
-
- ew32(FCT, FLOW_CONTROL_TYPE);
- ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
- ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
-
- ew32(FCTTV, hw->fc_pause_time);
-
- /* Set the flow control receive threshold registers. Normally,
- * these registers will be set to a default threshold that may be
- * adjusted later by the driver's runtime code. However, if the
- * ability to transmit pause frames in not enabled, then these
- * registers will be set to 0.
- */
- if (!(hw->fc & E1000_FC_TX_PAUSE)) {
- ew32(FCRTL, 0);
- ew32(FCRTH, 0);
- } else {
- /* We need to set up the Receive Threshold high and low water marks
- * as well as (optionally) enabling the transmission of XON frames.
- */
- if (hw->fc_send_xon) {
- ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
- ew32(FCRTH, hw->fc_high_water);
- } else {
- ew32(FCRTL, hw->fc_low_water);
- ew32(FCRTH, hw->fc_high_water);
- }
- }
- return ret_val;
-}
-
-/**
- * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
- * @hw: Struct containing variables accessed by shared code
- *
- * Manipulates Physical Coding Sublayer functions in order to configure
- * link. Assumes the hardware has been previously reset and the transmitter
- * and receiver are not enabled.
- */
-static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
-{
- u32 ctrl;
- u32 status;
- u32 txcw = 0;
- u32 i;
- u32 signal = 0;
- s32 ret_val;
-
- e_dbg("e1000_setup_fiber_serdes_link");
-
- /* On adapters with a MAC newer than 82544, SWDP 1 will be
- * set when the optics detect a signal. On older adapters, it will be
- * cleared when there is a signal. This applies to fiber media only.
- * If we're on serdes media, adjust the output amplitude to value
- * set in the EEPROM.
- */
- ctrl = er32(CTRL);
- if (hw->media_type == e1000_media_type_fiber)
- signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
-
- ret_val = e1000_adjust_serdes_amplitude(hw);
- if (ret_val)
- return ret_val;
-
- /* Take the link out of reset */
- ctrl &= ~(E1000_CTRL_LRST);
-
- /* Adjust VCO speed to improve BER performance */
- ret_val = e1000_set_vco_speed(hw);
- if (ret_val)
- return ret_val;
-
- e1000_config_collision_dist(hw);
-
- /* Check for a software override of the flow control settings, and setup
- * the device accordingly. If auto-negotiation is enabled, then software
- * will have to set the "PAUSE" bits to the correct value in the Tranmsit
- * Config Word Register (TXCW) and re-start auto-negotiation. However, if
- * auto-negotiation is disabled, then software will have to manually
- * configure the two flow control enable bits in the CTRL register.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames, but
- * not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames but we do
- * not support receiving pause frames).
- * 3: Both Rx and TX flow control (symmetric) are enabled.
- */
- switch (hw->fc) {
- case E1000_FC_NONE:
- /* Flow control is completely disabled by a software over-ride. */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
- break;
- case E1000_FC_RX_PAUSE:
- /* RX Flow control is enabled and TX Flow control is disabled by a
- * software over-ride. Since there really isn't a way to advertise
- * that we are capable of RX Pause ONLY, we will advertise that we
- * support both symmetric and asymmetric RX PAUSE. Later, we will
- * disable the adapter's ability to send PAUSE frames.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- case E1000_FC_TX_PAUSE:
- /* TX Flow control is enabled, and RX Flow control is disabled, by a
- * software over-ride.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
- break;
- case E1000_FC_FULL:
- /* Flow control (both RX and TX) is enabled by a software over-ride. */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- default:
- e_dbg("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- break;
- }
-
- /* Since auto-negotiation is enabled, take the link out of reset (the link
- * will be in reset, because we previously reset the chip). This will
- * restart auto-negotiation. If auto-negotiation is successful then the
- * link-up status bit will be set and the flow control enable bits (RFCE
- * and TFCE) will be set according to their negotiated value.
- */
- e_dbg("Auto-negotiation enabled\n");
-
- ew32(TXCW, txcw);
- ew32(CTRL, ctrl);
- E1000_WRITE_FLUSH();
-
- hw->txcw = txcw;
- msleep(1);
-
- /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
- * indication in the Device Status Register. Time-out if a link isn't
- * seen in 500 milliseconds seconds (Auto-negotiation should complete in
- * less than 500 milliseconds even if the other end is doing it in SW).
- * For internal serdes, we just assume a signal is present, then poll.
- */
- if (hw->media_type == e1000_media_type_internal_serdes ||
- (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
- e_dbg("Looking for Link\n");
- for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
- msleep(10);
- status = er32(STATUS);
- if (status & E1000_STATUS_LU)
- break;
- }
- if (i == (LINK_UP_TIMEOUT / 10)) {
- e_dbg("Never got a valid link from auto-neg!!!\n");
- hw->autoneg_failed = 1;
- /* AutoNeg failed to achieve a link, so we'll call
- * e1000_check_for_link. This routine will force the link up if
- * we detect a signal. This will allow us to communicate with
- * non-autonegotiating link partners.
- */
- ret_val = e1000_check_for_link(hw);
- if (ret_val) {
- e_dbg("Error while checking for link\n");
- return ret_val;
- }
- hw->autoneg_failed = 0;
- } else {
- hw->autoneg_failed = 0;
- e_dbg("Valid Link Found\n");
- }
- } else {
- e_dbg("No Signal Detected\n");
- }
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
- * @hw: Struct containing variables accessed by shared code
- *
- * Commits changes to PHY configuration by calling e1000_phy_reset().
- */
-static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- /* SW reset the PHY so all changes take effect */
- ret_val = e1000_phy_reset(hw);
- if (ret_val) {
- e_dbg("Error Resetting the PHY\n");
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
-{
- s32 ret_val;
- u32 ctrl_aux;
-
- switch (hw->phy_type) {
- case e1000_phy_8211:
- ret_val = e1000_copper_link_rtl_setup(hw);
- if (ret_val) {
- e_dbg("e1000_copper_link_rtl_setup failed!\n");
- return ret_val;
- }
- break;
- case e1000_phy_8201:
- /* Set RMII mode */
- ctrl_aux = er32(CTL_AUX);
- ctrl_aux |= E1000_CTL_AUX_RMII;
- ew32(CTL_AUX, ctrl_aux);
- E1000_WRITE_FLUSH();
-
- /* Disable the J/K bits required for receive */
- ctrl_aux = er32(CTL_AUX);
- ctrl_aux |= 0x4;
- ctrl_aux &= ~0x2;
- ew32(CTL_AUX, ctrl_aux);
- E1000_WRITE_FLUSH();
- ret_val = e1000_copper_link_rtl_setup(hw);
-
- if (ret_val) {
- e_dbg("e1000_copper_link_rtl_setup failed!\n");
- return ret_val;
- }
- break;
- default:
- e_dbg("Error Resetting the PHY\n");
- return E1000_ERR_PHY_TYPE;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_copper_link_preconfig - early configuration for copper
- * @hw: Struct containing variables accessed by shared code
- *
- * Make sure we have a valid PHY and change PHY mode before link setup.
- */
-static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
- u16 phy_data;
-
- e_dbg("e1000_copper_link_preconfig");
-
- ctrl = er32(CTRL);
- /* With 82543, we need to force speed and duplex on the MAC equal to what
- * the PHY speed and duplex configuration is. In addition, we need to
- * perform a hardware reset on the PHY to take it out of reset.
- */
- if (hw->mac_type > e1000_82543) {
- ctrl |= E1000_CTRL_SLU;
- ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ew32(CTRL, ctrl);
- } else {
- ctrl |=
- (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
- ew32(CTRL, ctrl);
- ret_val = e1000_phy_hw_reset(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* Make sure we have a valid PHY */
- ret_val = e1000_detect_gig_phy(hw);
- if (ret_val) {
- e_dbg("Error, did not detect valid phy.\n");
- return ret_val;
- }
- e_dbg("Phy ID = %x\n", hw->phy_id);
-
- /* Set PHY to class A mode (if necessary) */
- ret_val = e1000_set_phy_mode(hw);
- if (ret_val)
- return ret_val;
-
- if ((hw->mac_type == e1000_82545_rev_3) ||
- (hw->mac_type == e1000_82546_rev_3)) {
- ret_val =
- e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- phy_data |= 0x00000008;
- ret_val =
- e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- }
-
- if (hw->mac_type <= e1000_82543 ||
- hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
- hw->mac_type == e1000_82541_rev_2
- || hw->mac_type == e1000_82547_rev_2)
- hw->phy_reset_disable = false;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
- * @hw: Struct containing variables accessed by shared code
- */
-static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
-{
- u32 led_ctrl;
- s32 ret_val;
- u16 phy_data;
-
- e_dbg("e1000_copper_link_igp_setup");
-
- if (hw->phy_reset_disable)
- return E1000_SUCCESS;
-
- ret_val = e1000_phy_reset(hw);
- if (ret_val) {
- e_dbg("Error Resetting the PHY\n");
- return ret_val;
- }
-
- /* Wait 15ms for MAC to configure PHY from eeprom settings */
- msleep(15);
- /* Configure activity LED after PHY reset */
- led_ctrl = er32(LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- ew32(LEDCTL, led_ctrl);
-
- /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
- if (hw->phy_type == e1000_phy_igp) {
- /* disable lplu d3 during driver init */
- ret_val = e1000_set_d3_lplu_state(hw, false);
- if (ret_val) {
- e_dbg("Error Disabling LPLU D3\n");
- return ret_val;
- }
- }
-
- /* Configure mdi-mdix settings */
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
- hw->dsp_config_state = e1000_dsp_config_disabled;
- /* Force MDI for earlier revs of the IGP PHY */
- phy_data &=
- ~(IGP01E1000_PSCR_AUTO_MDIX |
- IGP01E1000_PSCR_FORCE_MDI_MDIX);
- hw->mdix = 1;
-
- } else {
- hw->dsp_config_state = e1000_dsp_config_enabled;
- phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
-
- switch (hw->mdix) {
- case 1:
- phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 2:
- phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
- break;
- case 0:
- default:
- phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
- break;
- }
- }
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* set auto-master slave resolution settings */
- if (hw->autoneg) {
- e1000_ms_type phy_ms_setting = hw->master_slave;
-
- if (hw->ffe_config_state == e1000_ffe_config_active)
- hw->ffe_config_state = e1000_ffe_config_enabled;
-
- if (hw->dsp_config_state == e1000_dsp_config_activated)
- hw->dsp_config_state = e1000_dsp_config_enabled;
-
- /* when autonegotiation advertisement is only 1000Mbps then we
- * should disable SmartSpeed and enable Auto MasterSlave
- * resolution as hardware default. */
- if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
- /* Disable SmartSpeed */
- ret_val =
- e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val =
- e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if (ret_val)
- return ret_val;
- /* Set auto Master/Slave resolution process */
- ret_val =
- e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
- phy_data &= ~CR_1000T_MS_ENABLE;
- ret_val =
- e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
-
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- /* load defaults for future use */
- hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
- ((phy_data & CR_1000T_MS_VALUE) ?
- e1000_ms_force_master :
- e1000_ms_force_slave) : e1000_ms_auto;
-
- switch (phy_ms_setting) {
- case e1000_ms_force_master:
- phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
- break;
- case e1000_ms_force_slave:
- phy_data |= CR_1000T_MS_ENABLE;
- phy_data &= ~(CR_1000T_MS_VALUE);
- break;
- case e1000_ms_auto:
- phy_data &= ~CR_1000T_MS_ENABLE;
- default:
- break;
- }
- ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
- * @hw: Struct containing variables accessed by shared code
- */
-static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 phy_data;
-
- e_dbg("e1000_copper_link_mgp_setup");
-
- if (hw->phy_reset_disable)
- return E1000_SUCCESS;
-
- /* Enable CRS on TX. This must be set for half-duplex operation. */
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
-
- /* Options:
- * MDI/MDI-X = 0 (default)
- * 0 - Auto for all speeds
- * 1 - MDI mode
- * 2 - MDI-X mode
- * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
- */
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
-
- switch (hw->mdix) {
- case 1:
- phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
- break;
- case 2:
- phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
- break;
- case 3:
- phy_data |= M88E1000_PSCR_AUTO_X_1000T;
- break;
- case 0:
- default:
- phy_data |= M88E1000_PSCR_AUTO_X_MODE;
- break;
- }
-
- /* Options:
- * disable_polarity_correction = 0 (default)
- * Automatic Correction for Reversed Cable Polarity
- * 0 - Disabled
- * 1 - Enabled
- */
- phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
- if (hw->disable_polarity_correction == 1)
- phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- if (hw->phy_revision < M88E1011_I_REV_4) {
- /* Force TX_CLK in the Extended PHY Specific Control Register
- * to 25MHz clock.
- */
- ret_val =
- e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
-
- if ((hw->phy_revision == E1000_REVISION_2) &&
- (hw->phy_id == M88E1111_I_PHY_ID)) {
- /* Vidalia Phy, set the downshift counter to 5x */
- phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
- phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
- ret_val = e1000_write_phy_reg(hw,
- M88E1000_EXT_PHY_SPEC_CTRL,
- phy_data);
- if (ret_val)
- return ret_val;
- } else {
- /* Configure Master and Slave downshift values */
- phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
- phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
- M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
- ret_val = e1000_write_phy_reg(hw,
- M88E1000_EXT_PHY_SPEC_CTRL,
- phy_data);
- if (ret_val)
- return ret_val;
- }
- }
-
- /* SW Reset the PHY so all changes take effect */
- ret_val = e1000_phy_reset(hw);
- if (ret_val) {
- e_dbg("Error Resetting the PHY\n");
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_copper_link_autoneg - setup auto-neg
- * @hw: Struct containing variables accessed by shared code
- *
- * Setup auto-negotiation and flow control advertisements,
- * and then perform auto-negotiation.
- */
-static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 phy_data;
-
- e_dbg("e1000_copper_link_autoneg");
-
- /* Perform some bounds checking on the hw->autoneg_advertised
- * parameter. If this variable is zero, then set it to the default.
- */
- hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
-
- /* If autoneg_advertised is zero, we assume it was not defaulted
- * by the calling code so we set to advertise full capability.
- */
- if (hw->autoneg_advertised == 0)
- hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
-
- /* IFE/RTL8201N PHY only supports 10/100 */
- if (hw->phy_type == e1000_phy_8201)
- hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
-
- e_dbg("Reconfiguring auto-neg advertisement params\n");
- ret_val = e1000_phy_setup_autoneg(hw);
- if (ret_val) {
- e_dbg("Error Setting up Auto-Negotiation\n");
- return ret_val;
- }
- e_dbg("Restarting Auto-Neg\n");
-
- /* Restart auto-negotiation by setting the Auto Neg Enable bit and
- * the Auto Neg Restart bit in the PHY control register.
- */
- ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
- ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* Does the user want to wait for Auto-Neg to complete here, or
- * check at a later time (for example, callback routine).
- */
- if (hw->wait_autoneg_complete) {
- ret_val = e1000_wait_autoneg(hw);
- if (ret_val) {
- e_dbg
- ("Error while waiting for autoneg to complete\n");
- return ret_val;
- }
- }
-
- hw->get_link_status = true;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_copper_link_postconfig - post link setup
- * @hw: Struct containing variables accessed by shared code
- *
- * Config the MAC and the PHY after link is up.
- * 1) Set up the MAC to the current PHY speed/duplex
- * if we are on 82543. If we
- * are on newer silicon, we only need to configure
- * collision distance in the Transmit Control Register.
- * 2) Set up flow control on the MAC to that established with
- * the link partner.
- * 3) Config DSP to improve Gigabit link quality for some PHY revisions.
- */
-static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
-{
- s32 ret_val;
- e_dbg("e1000_copper_link_postconfig");
-
- if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
- e1000_config_collision_dist(hw);
- } else {
- ret_val = e1000_config_mac_to_phy(hw);
- if (ret_val) {
- e_dbg("Error configuring MAC to PHY settings\n");
- return ret_val;
- }
- }
- ret_val = e1000_config_fc_after_link_up(hw);
- if (ret_val) {
- e_dbg("Error Configuring Flow Control\n");
- return ret_val;
- }
-
- /* Config DSP to improve Giga link quality */
- if (hw->phy_type == e1000_phy_igp) {
- ret_val = e1000_config_dsp_after_link_change(hw, true);
- if (ret_val) {
- e_dbg("Error Configuring DSP after link up\n");
- return ret_val;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_setup_copper_link - phy/speed/duplex setting
- * @hw: Struct containing variables accessed by shared code
- *
- * Detects which PHY is present and sets up the speed and duplex
- */
-static s32 e1000_setup_copper_link(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 i;
- u16 phy_data;
-
- e_dbg("e1000_setup_copper_link");
-
- /* Check if it is a valid PHY and set PHY mode if necessary. */
- ret_val = e1000_copper_link_preconfig(hw);
- if (ret_val)
- return ret_val;
-
- if (hw->phy_type == e1000_phy_igp) {
- ret_val = e1000_copper_link_igp_setup(hw);
- if (ret_val)
- return ret_val;
- } else if (hw->phy_type == e1000_phy_m88) {
- ret_val = e1000_copper_link_mgp_setup(hw);
- if (ret_val)
- return ret_val;
- } else {
- ret_val = gbe_dhg_phy_setup(hw);
- if (ret_val) {
- e_dbg("gbe_dhg_phy_setup failed!\n");
- return ret_val;
- }
- }
-
- if (hw->autoneg) {
- /* Setup autoneg and flow control advertisement
- * and perform autonegotiation */
- ret_val = e1000_copper_link_autoneg(hw);
- if (ret_val)
- return ret_val;
- } else {
- /* PHY will be set to 10H, 10F, 100H,or 100F
- * depending on value from forced_speed_duplex. */
- e_dbg("Forcing speed and duplex\n");
- ret_val = e1000_phy_force_speed_duplex(hw);
- if (ret_val) {
- e_dbg("Error Forcing Speed and Duplex\n");
- return ret_val;
- }
- }
-
- /* Check link status. Wait up to 100 microseconds for link to become
- * valid.
- */
- for (i = 0; i < 10; i++) {
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- if (phy_data & MII_SR_LINK_STATUS) {
- /* Config the MAC and PHY after link is up */
- ret_val = e1000_copper_link_postconfig(hw);
- if (ret_val)
- return ret_val;
-
- e_dbg("Valid link established!!!\n");
- return E1000_SUCCESS;
- }
- udelay(10);
- }
-
- e_dbg("Unable to establish link!!!\n");
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_phy_setup_autoneg - phy settings
- * @hw: Struct containing variables accessed by shared code
- *
- * Configures PHY autoneg and flow control advertisement settings
- */
-s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 mii_autoneg_adv_reg;
- u16 mii_1000t_ctrl_reg;
-
- e_dbg("e1000_phy_setup_autoneg");
-
- /* Read the MII Auto-Neg Advertisement Register (Address 4). */
- ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
- if (ret_val)
- return ret_val;
-
- /* Read the MII 1000Base-T Control Register (Address 9). */
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
- if (ret_val)
- return ret_val;
- else if (hw->phy_type == e1000_phy_8201)
- mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
-
- /* Need to parse both autoneg_advertised and fc and set up
- * the appropriate PHY registers. First we will parse for
- * autoneg_advertised software override. Since we can advertise
- * a plethora of combinations, we need to check each bit
- * individually.
- */
-
- /* First we clear all the 10/100 mb speed bits in the Auto-Neg
- * Advertisement Register (Address 4) and the 1000 mb speed bits in
- * the 1000Base-T Control Register (Address 9).
- */
- mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
- mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
-
- e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
-
- /* Do we want to advertise 10 Mb Half Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
- e_dbg("Advertise 10mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
- }
-
- /* Do we want to advertise 10 Mb Full Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
- e_dbg("Advertise 10mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
- }
-
- /* Do we want to advertise 100 Mb Half Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
- e_dbg("Advertise 100mb Half duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
- }
-
- /* Do we want to advertise 100 Mb Full Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
- e_dbg("Advertise 100mb Full duplex\n");
- mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
- }
-
- /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
- if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
- e_dbg
- ("Advertise 1000mb Half duplex requested, request denied!\n");
- }
-
- /* Do we want to advertise 1000 Mb Full Duplex? */
- if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
- e_dbg("Advertise 1000mb Full duplex\n");
- mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
- }
-
- /* Check for a software override of the flow control settings, and
- * setup the PHY advertisement registers accordingly. If
- * auto-negotiation is enabled, then software will have to set the
- * "PAUSE" bits to the correct value in the Auto-Negotiation
- * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames
- * but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * but we do not support receiving pause frames).
- * 3: Both Rx and TX flow control (symmetric) are enabled.
- * other: No software override. The flow control configuration
- * in the EEPROM is used.
- */
- switch (hw->fc) {
- case E1000_FC_NONE: /* 0 */
- /* Flow control (RX & TX) is completely disabled by a
- * software over-ride.
- */
- mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case E1000_FC_RX_PAUSE: /* 1 */
- /* RX Flow control is enabled, and TX Flow control is
- * disabled, by a software over-ride.
- */
- /* Since there really isn't a way to advertise that we are
- * capable of RX Pause ONLY, we will advertise that we
- * support both symmetric and asymmetric RX PAUSE. Later
- * (in e1000_config_fc_after_link_up) we will disable the
- *hw's ability to send PAUSE frames.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- case E1000_FC_TX_PAUSE: /* 2 */
- /* TX Flow control is enabled, and RX Flow control is
- * disabled, by a software over-ride.
- */
- mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
- mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
- break;
- case E1000_FC_FULL: /* 3 */
- /* Flow control (both RX and TX) is enabled by a software
- * over-ride.
- */
- mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
- break;
- default:
- e_dbg("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- }
-
- ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
- if (ret_val)
- return ret_val;
-
- e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
-
- if (hw->phy_type == e1000_phy_8201) {
- mii_1000t_ctrl_reg = 0;
- } else {
- ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
- mii_1000t_ctrl_reg);
- if (ret_val)
- return ret_val;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_phy_force_speed_duplex - force link settings
- * @hw: Struct containing variables accessed by shared code
- *
- * Force PHY speed and duplex settings to hw->forced_speed_duplex
- */
-static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
- u16 mii_ctrl_reg;
- u16 mii_status_reg;
- u16 phy_data;
- u16 i;
-
- e_dbg("e1000_phy_force_speed_duplex");
-
- /* Turn off Flow control if we are forcing speed and duplex. */
- hw->fc = E1000_FC_NONE;
-
- e_dbg("hw->fc = %d\n", hw->fc);
-
- /* Read the Device Control Register. */
- ctrl = er32(CTRL);
-
- /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ctrl &= ~(DEVICE_SPEED_MASK);
-
- /* Clear the Auto Speed Detect Enable bit. */
- ctrl &= ~E1000_CTRL_ASDE;
-
- /* Read the MII Control Register. */
- ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
- if (ret_val)
- return ret_val;
-
- /* We need to disable autoneg in order to force link and duplex. */
-
- mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
-
- /* Are we forcing Full or Half Duplex? */
- if (hw->forced_speed_duplex == e1000_100_full ||
- hw->forced_speed_duplex == e1000_10_full) {
- /* We want to force full duplex so we SET the full duplex bits in the
- * Device and MII Control Registers.
- */
- ctrl |= E1000_CTRL_FD;
- mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
- e_dbg("Full Duplex\n");
- } else {
- /* We want to force half duplex so we CLEAR the full duplex bits in
- * the Device and MII Control Registers.
- */
- ctrl &= ~E1000_CTRL_FD;
- mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
- e_dbg("Half Duplex\n");
- }
-
- /* Are we forcing 100Mbps??? */
- if (hw->forced_speed_duplex == e1000_100_full ||
- hw->forced_speed_duplex == e1000_100_half) {
- /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
- ctrl |= E1000_CTRL_SPD_100;
- mii_ctrl_reg |= MII_CR_SPEED_100;
- mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
- e_dbg("Forcing 100mb ");
- } else {
- /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
- ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
- mii_ctrl_reg |= MII_CR_SPEED_10;
- mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
- e_dbg("Forcing 10mb ");
- }
-
- e1000_config_collision_dist(hw);
-
- /* Write the configured values back to the Device Control Reg. */
- ew32(CTRL, ctrl);
-
- if (hw->phy_type == e1000_phy_m88) {
- ret_val =
- e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
- * forced whenever speed are duplex are forced.
- */
- phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
- ret_val =
- e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- e_dbg("M88E1000 PSCR: %x\n", phy_data);
-
- /* Need to reset the PHY or these changes will be ignored */
- mii_ctrl_reg |= MII_CR_RESET;
-
- /* Disable MDI-X support for 10/100 */
- } else {
- /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
- * forced whenever speed or duplex are forced.
- */
- ret_val =
- e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
- phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
-
- ret_val =
- e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if (ret_val)
- return ret_val;
- }
-
- /* Write back the modified PHY MII control register. */
- ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
- if (ret_val)
- return ret_val;
-
- udelay(1);
-
- /* The wait_autoneg_complete flag may be a little misleading here.
- * Since we are forcing speed and duplex, Auto-Neg is not enabled.
- * But we do want to delay for a period while forcing only so we
- * don't generate false No Link messages. So we will wait here
- * only if the user has set wait_autoneg_complete to 1, which is
- * the default.
- */
- if (hw->wait_autoneg_complete) {
- /* We will wait for autoneg to complete. */
- e_dbg("Waiting for forced speed/duplex link.\n");
- mii_status_reg = 0;
-
- /* We will wait for autoneg to complete or 4.5 seconds to expire. */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Auto-Neg Complete bit
- * to be set.
- */
- ret_val =
- e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- ret_val =
- e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- if (mii_status_reg & MII_SR_LINK_STATUS)
- break;
- msleep(100);
- }
- if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
- /* We didn't get link. Reset the DSP and wait again for link. */
- ret_val = e1000_phy_reset_dsp(hw);
- if (ret_val) {
- e_dbg("Error Resetting PHY DSP\n");
- return ret_val;
- }
- }
- /* This loop will early-out if the link condition has been met. */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
- if (mii_status_reg & MII_SR_LINK_STATUS)
- break;
- msleep(100);
- /* Read the MII Status Register and wait for Auto-Neg Complete bit
- * to be set.
- */
- ret_val =
- e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- ret_val =
- e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
- }
- }
-
- if (hw->phy_type == e1000_phy_m88) {
- /* Because we reset the PHY above, we need to re-force TX_CLK in the
- * Extended PHY Specific Control Register to 25MHz clock. This value
- * defaults back to a 2.5MHz clock when the PHY is reset.
- */
- ret_val =
- e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_EPSCR_TX_CLK_25;
- ret_val =
- e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
- phy_data);
- if (ret_val)
- return ret_val;
-
- /* In addition, because of the s/w reset above, we need to enable CRS on
- * TX. This must be set for both full and half duplex operation.
- */
- ret_val =
- e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
- ret_val =
- e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543)
- && (!hw->autoneg)
- && (hw->forced_speed_duplex == e1000_10_full
- || hw->forced_speed_duplex == e1000_10_half)) {
- ret_val = e1000_polarity_reversal_workaround(hw);
- if (ret_val)
- return ret_val;
- }
- }
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_config_collision_dist - set collision distance register
- * @hw: Struct containing variables accessed by shared code
- *
- * Sets the collision distance in the Transmit Control register.
- * Link should have been established previously. Reads the speed and duplex
- * information from the Device Status register.
- */
-void e1000_config_collision_dist(struct e1000_hw *hw)
-{
- u32 tctl, coll_dist;
-
- e_dbg("e1000_config_collision_dist");
-
- if (hw->mac_type < e1000_82543)
- coll_dist = E1000_COLLISION_DISTANCE_82542;
- else
- coll_dist = E1000_COLLISION_DISTANCE;
-
- tctl = er32(TCTL);
-
- tctl &= ~E1000_TCTL_COLD;
- tctl |= coll_dist << E1000_COLD_SHIFT;
-
- ew32(TCTL, tctl);
- E1000_WRITE_FLUSH();
-}
-
-/**
- * e1000_config_mac_to_phy - sync phy and mac settings
- * @hw: Struct containing variables accessed by shared code
- * @mii_reg: data to write to the MII control register
- *
- * Sets MAC speed and duplex settings to reflect the those in the PHY
- * The contents of the PHY register containing the needed information need to
- * be passed in.
- */
-static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
- u16 phy_data;
-
- e_dbg("e1000_config_mac_to_phy");
-
- /* 82544 or newer MAC, Auto Speed Detection takes care of
- * MAC speed/duplex configuration.*/
- if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
- return E1000_SUCCESS;
-
- /* Read the Device Control Register and set the bits to Force Speed
- * and Duplex.
- */
- ctrl = er32(CTRL);
- ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
- ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
-
- switch (hw->phy_type) {
- case e1000_phy_8201:
- ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- if (phy_data & RTL_PHY_CTRL_FD)
- ctrl |= E1000_CTRL_FD;
- else
- ctrl &= ~E1000_CTRL_FD;
-
- if (phy_data & RTL_PHY_CTRL_SPD_100)
- ctrl |= E1000_CTRL_SPD_100;
- else
- ctrl |= E1000_CTRL_SPD_10;
-
- e1000_config_collision_dist(hw);
- break;
- default:
- /* Set up duplex in the Device Control and Transmit Control
- * registers depending on negotiated values.
- */
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- if (phy_data & M88E1000_PSSR_DPLX)
- ctrl |= E1000_CTRL_FD;
- else
- ctrl &= ~E1000_CTRL_FD;
-
- e1000_config_collision_dist(hw);
-
- /* Set up speed in the Device Control register depending on
- * negotiated values.
- */
- if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
- ctrl |= E1000_CTRL_SPD_1000;
- else if ((phy_data & M88E1000_PSSR_SPEED) ==
- M88E1000_PSSR_100MBS)
- ctrl |= E1000_CTRL_SPD_100;
- }
-
- /* Write the configured values back to the Device Control Reg. */
- ew32(CTRL, ctrl);
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_force_mac_fc - force flow control settings
- * @hw: Struct containing variables accessed by shared code
- *
- * Forces the MAC's flow control settings.
- * Sets the TFCE and RFCE bits in the device control register to reflect
- * the adapter settings. TFCE and RFCE need to be explicitly set by
- * software when a Copper PHY is used because autonegotiation is managed
- * by the PHY rather than the MAC. Software must also configure these
- * bits when link is forced on a fiber connection.
- */
-s32 e1000_force_mac_fc(struct e1000_hw *hw)
-{
- u32 ctrl;
-
- e_dbg("e1000_force_mac_fc");
-
- /* Get the current configuration of the Device Control Register */
- ctrl = er32(CTRL);
-
- /* Because we didn't get link via the internal auto-negotiation
- * mechanism (we either forced link or we got link via PHY
- * auto-neg), we have to manually enable/disable transmit an
- * receive flow control.
- *
- * The "Case" statement below enables/disable flow control
- * according to the "hw->fc" parameter.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause
- * frames but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * frames but we do not receive pause frames).
- * 3: Both Rx and TX flow control (symmetric) is enabled.
- * other: No other values should be possible at this point.
- */
-
- switch (hw->fc) {
- case E1000_FC_NONE:
- ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
- break;
- case E1000_FC_RX_PAUSE:
- ctrl &= (~E1000_CTRL_TFCE);
- ctrl |= E1000_CTRL_RFCE;
- break;
- case E1000_FC_TX_PAUSE:
- ctrl &= (~E1000_CTRL_RFCE);
- ctrl |= E1000_CTRL_TFCE;
- break;
- case E1000_FC_FULL:
- ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
- break;
- default:
- e_dbg("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- }
-
- /* Disable TX Flow Control for 82542 (rev 2.0) */
- if (hw->mac_type == e1000_82542_rev2_0)
- ctrl &= (~E1000_CTRL_TFCE);
-
- ew32(CTRL, ctrl);
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_config_fc_after_link_up - configure flow control after autoneg
- * @hw: Struct containing variables accessed by shared code
- *
- * Configures flow control settings after link is established
- * Should be called immediately after a valid link has been established.
- * Forces MAC flow control settings if link was forced. When in MII/GMII mode
- * and autonegotiation is enabled, the MAC flow control settings will be set
- * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
- * and RFCE bits will be automatically set to the negotiated flow control mode.
- */
-static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 mii_status_reg;
- u16 mii_nway_adv_reg;
- u16 mii_nway_lp_ability_reg;
- u16 speed;
- u16 duplex;
-
- e_dbg("e1000_config_fc_after_link_up");
-
- /* Check for the case where we have fiber media and auto-neg failed
- * so we had to force link. In this case, we need to force the
- * configuration of the MAC to match the "fc" parameter.
- */
- if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
- || ((hw->media_type == e1000_media_type_internal_serdes)
- && (hw->autoneg_failed))
- || ((hw->media_type == e1000_media_type_copper)
- && (!hw->autoneg))) {
- ret_val = e1000_force_mac_fc(hw);
- if (ret_val) {
- e_dbg("Error forcing flow control settings\n");
- return ret_val;
- }
- }
-
- /* Check for the case where we have copper media and auto-neg is
- * enabled. In this case, we need to check and see if Auto-Neg
- * has completed, and if so, how the PHY and link partner has
- * flow control configured.
- */
- if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
- /* Read the MII Status Register and check to see if AutoNeg
- * has completed. We read this twice because this reg has
- * some "sticky" (latched) bits.
- */
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
- /* The AutoNeg process has completed, so we now need to
- * read both the Auto Negotiation Advertisement Register
- * (Address 4) and the Auto_Negotiation Base Page Ability
- * Register (Address 5) to determine how flow control was
- * negotiated.
- */
- ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
- &mii_nway_adv_reg);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
- &mii_nway_lp_ability_reg);
- if (ret_val)
- return ret_val;
-
- /* Two bits in the Auto Negotiation Advertisement Register
- * (Address 4) and two bits in the Auto Negotiation Base
- * Page Ability Register (Address 5) determine flow control
- * for both the PHY and the link partner. The following
- * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
- * 1999, describes these PAUSE resolution bits and how flow
- * control is determined based upon these settings.
- * NOTE: DC = Don't Care
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
- *-------|---------|-------|---------|--------------------
- * 0 | 0 | DC | DC | E1000_FC_NONE
- * 0 | 1 | 0 | DC | E1000_FC_NONE
- * 0 | 1 | 1 | 0 | E1000_FC_NONE
- * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
- * 1 | 0 | 0 | DC | E1000_FC_NONE
- * 1 | DC | 1 | DC | E1000_FC_FULL
- * 1 | 1 | 0 | 0 | E1000_FC_NONE
- * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
- *
- */
- /* Are both PAUSE bits set to 1? If so, this implies
- * Symmetric Flow Control is enabled at both ends. The
- * ASM_DIR bits are irrelevant per the spec.
- *
- * For Symmetric Flow Control:
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | DC | 1 | DC | E1000_FC_FULL
- *
- */
- if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
- /* Now we need to check if the user selected RX ONLY
- * of pause frames. In this case, we had to advertise
- * FULL flow control because we could not advertise RX
- * ONLY. Hence, we must now check to see if we need to
- * turn OFF the TRANSMISSION of PAUSE frames.
- */
- if (hw->original_fc == E1000_FC_FULL) {
- hw->fc = E1000_FC_FULL;
- e_dbg("Flow Control = FULL.\n");
- } else {
- hw->fc = E1000_FC_RX_PAUSE;
- e_dbg
- ("Flow Control = RX PAUSE frames only.\n");
- }
- }
- /* For receiving PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
- *
- */
- else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
- {
- hw->fc = E1000_FC_TX_PAUSE;
- e_dbg
- ("Flow Control = TX PAUSE frames only.\n");
- }
- /* For transmitting PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
- *
- */
- else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
- {
- hw->fc = E1000_FC_RX_PAUSE;
- e_dbg
- ("Flow Control = RX PAUSE frames only.\n");
- }
- /* Per the IEEE spec, at this point flow control should be
- * disabled. However, we want to consider that we could
- * be connected to a legacy switch that doesn't advertise
- * desired flow control, but can be forced on the link
- * partner. So if we advertised no flow control, that is
- * what we will resolve to. If we advertised some kind of
- * receive capability (Rx Pause Only or Full Flow Control)
- * and the link partner advertised none, we will configure
- * ourselves to enable Rx Flow Control only. We can do
- * this safely for two reasons: If the link partner really
- * didn't want flow control enabled, and we enable Rx, no
- * harm done since we won't be receiving any PAUSE frames
- * anyway. If the intent on the link partner was to have
- * flow control enabled, then by us enabling RX only, we
- * can at least receive pause frames and process them.
- * This is a good idea because in most cases, since we are
- * predominantly a server NIC, more times than not we will
- * be asked to delay transmission of packets than asking
- * our link partner to pause transmission of frames.
- */
- else if ((hw->original_fc == E1000_FC_NONE ||
- hw->original_fc == E1000_FC_TX_PAUSE) ||
- hw->fc_strict_ieee) {
- hw->fc = E1000_FC_NONE;
- e_dbg("Flow Control = NONE.\n");
- } else {
- hw->fc = E1000_FC_RX_PAUSE;
- e_dbg
- ("Flow Control = RX PAUSE frames only.\n");
- }
-
- /* Now we need to do one last check... If we auto-
- * negotiated to HALF DUPLEX, flow control should not be
- * enabled per IEEE 802.3 spec.
- */
- ret_val =
- e1000_get_speed_and_duplex(hw, &speed, &duplex);
- if (ret_val) {
- e_dbg
- ("Error getting link speed and duplex\n");
- return ret_val;
- }
-
- if (duplex == HALF_DUPLEX)
- hw->fc = E1000_FC_NONE;
-
- /* Now we call a subroutine to actually force the MAC
- * controller to use the correct flow control settings.
- */
- ret_val = e1000_force_mac_fc(hw);
- if (ret_val) {
- e_dbg
- ("Error forcing flow control settings\n");
- return ret_val;
- }
- } else {
- e_dbg
- ("Copper PHY and Auto Neg has not completed.\n");
- }
- }
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_check_for_serdes_link_generic - Check for link (Serdes)
- * @hw: pointer to the HW structure
- *
- * Checks for link up on the hardware. If link is not up and we have
- * a signal, then we need to force link up.
- */
-static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
-{
- u32 rxcw;
- u32 ctrl;
- u32 status;
- s32 ret_val = E1000_SUCCESS;
-
- e_dbg("e1000_check_for_serdes_link_generic");
-
- ctrl = er32(CTRL);
- status = er32(STATUS);
- rxcw = er32(RXCW);
-
- /*
- * If we don't have link (auto-negotiation failed or link partner
- * cannot auto-negotiate), and our link partner is not trying to
- * auto-negotiate with us (we are receiving idles or data),
- * we need to force link up. We also need to give auto-negotiation
- * time to complete.
- */
- /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
- if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
- if (hw->autoneg_failed == 0) {
- hw->autoneg_failed = 1;
- goto out;
- }
- e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
-
- /* Disable auto-negotiation in the TXCW register */
- ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
-
- /* Force link-up and also force full-duplex. */
- ctrl = er32(CTRL);
- ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
- ew32(CTRL, ctrl);
-
- /* Configure Flow Control after forcing link up. */
- ret_val = e1000_config_fc_after_link_up(hw);
- if (ret_val) {
- e_dbg("Error configuring flow control\n");
- goto out;
- }
- } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
- /*
- * If we are forcing link and we are receiving /C/ ordered
- * sets, re-enable auto-negotiation in the TXCW register
- * and disable forced link in the Device Control register
- * in an attempt to auto-negotiate with our link partner.
- */
- e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
- ew32(TXCW, hw->txcw);
- ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
-
- hw->serdes_has_link = true;
- } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
- /*
- * If we force link for non-auto-negotiation switch, check
- * link status based on MAC synchronization for internal
- * serdes media type.
- */
- /* SYNCH bit and IV bit are sticky. */
- udelay(10);
- rxcw = er32(RXCW);
- if (rxcw & E1000_RXCW_SYNCH) {
- if (!(rxcw & E1000_RXCW_IV)) {
- hw->serdes_has_link = true;
- e_dbg("SERDES: Link up - forced.\n");
- }
- } else {
- hw->serdes_has_link = false;
- e_dbg("SERDES: Link down - force failed.\n");
- }
- }
-
- if (E1000_TXCW_ANE & er32(TXCW)) {
- status = er32(STATUS);
- if (status & E1000_STATUS_LU) {
- /* SYNCH bit and IV bit are sticky, so reread rxcw. */
- udelay(10);
- rxcw = er32(RXCW);
- if (rxcw & E1000_RXCW_SYNCH) {
- if (!(rxcw & E1000_RXCW_IV)) {
- hw->serdes_has_link = true;
- e_dbg("SERDES: Link up - autoneg "
- "completed successfully.\n");
- } else {
- hw->serdes_has_link = false;
- e_dbg("SERDES: Link down - invalid"
- "codewords detected in autoneg.\n");
- }
- } else {
- hw->serdes_has_link = false;
- e_dbg("SERDES: Link down - no sync.\n");
- }
- } else {
- hw->serdes_has_link = false;
- e_dbg("SERDES: Link down - autoneg failed\n");
- }
- }
-
- out:
- return ret_val;
-}
-
-/**
- * e1000_check_for_link
- * @hw: Struct containing variables accessed by shared code
- *
- * Checks to see if the link status of the hardware has changed.
- * Called by any function that needs to check the link status of the adapter.
- */
-s32 e1000_check_for_link(struct e1000_hw *hw)
-{
- u32 rxcw = 0;
- u32 ctrl;
- u32 status;
- u32 rctl;
- u32 icr;
- u32 signal = 0;
- s32 ret_val;
- u16 phy_data;
-
- e_dbg("e1000_check_for_link");
-
- ctrl = er32(CTRL);
- status = er32(STATUS);
-
- /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
- * set when the optics detect a signal. On older adapters, it will be
- * cleared when there is a signal. This applies to fiber media only.
- */
- if ((hw->media_type == e1000_media_type_fiber) ||
- (hw->media_type == e1000_media_type_internal_serdes)) {
- rxcw = er32(RXCW);
-
- if (hw->media_type == e1000_media_type_fiber) {
- signal =
- (hw->mac_type >
- e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
- if (status & E1000_STATUS_LU)
- hw->get_link_status = false;
- }
- }
-
- /* If we have a copper PHY then we only want to go out to the PHY
- * registers to see if Auto-Neg has completed and/or if our link
- * status has changed. The get_link_status flag will be set if we
- * receive a Link Status Change interrupt or we have Rx Sequence
- * Errors.
- */
- if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
- /* First we want to see if the MII Status Register reports
- * link. If so, then we want to get the current speed/duplex
- * of the PHY.
- * Read the register twice since the link bit is sticky.
- */
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- if (phy_data & MII_SR_LINK_STATUS) {
- hw->get_link_status = false;
- /* Check if there was DownShift, must be checked immediately after
- * link-up */
- e1000_check_downshift(hw);
-
- /* If we are on 82544 or 82543 silicon and speed/duplex
- * are forced to 10H or 10F, then we will implement the polarity
- * reversal workaround. We disable interrupts first, and upon
- * returning, place the devices interrupt state to its previous
- * value except for the link status change interrupt which will
- * happen due to the execution of this workaround.
- */
-
- if ((hw->mac_type == e1000_82544
- || hw->mac_type == e1000_82543) && (!hw->autoneg)
- && (hw->forced_speed_duplex == e1000_10_full
- || hw->forced_speed_duplex == e1000_10_half)) {
- ew32(IMC, 0xffffffff);
- ret_val =
- e1000_polarity_reversal_workaround(hw);
- icr = er32(ICR);
- ew32(ICS, (icr & ~E1000_ICS_LSC));
- ew32(IMS, IMS_ENABLE_MASK);
- }
-
- } else {
- /* No link detected */
- e1000_config_dsp_after_link_change(hw, false);
- return 0;
- }
-
- /* If we are forcing speed/duplex, then we simply return since
- * we have already determined whether we have link or not.
- */
- if (!hw->autoneg)
- return -E1000_ERR_CONFIG;
-
- /* optimize the dsp settings for the igp phy */
- e1000_config_dsp_after_link_change(hw, true);
-
- /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
- * have Si on board that is 82544 or newer, Auto
- * Speed Detection takes care of MAC speed/duplex
- * configuration. So we only need to configure Collision
- * Distance in the MAC. Otherwise, we need to force
- * speed/duplex on the MAC to the current PHY speed/duplex
- * settings.
- */
- if ((hw->mac_type >= e1000_82544) &&
- (hw->mac_type != e1000_ce4100))
- e1000_config_collision_dist(hw);
- else {
- ret_val = e1000_config_mac_to_phy(hw);
- if (ret_val) {
- e_dbg
- ("Error configuring MAC to PHY settings\n");
- return ret_val;
- }
- }
-
- /* Configure Flow Control now that Auto-Neg has completed. First, we
- * need to restore the desired flow control settings because we may
- * have had to re-autoneg with a different link partner.
- */
- ret_val = e1000_config_fc_after_link_up(hw);
- if (ret_val) {
- e_dbg("Error configuring flow control\n");
- return ret_val;
- }
-
- /* At this point we know that we are on copper and we have
- * auto-negotiated link. These are conditions for checking the link
- * partner capability register. We use the link speed to determine if
- * TBI compatibility needs to be turned on or off. If the link is not
- * at gigabit speed, then TBI compatibility is not needed. If we are
- * at gigabit speed, we turn on TBI compatibility.
- */
- if (hw->tbi_compatibility_en) {
- u16 speed, duplex;
- ret_val =
- e1000_get_speed_and_duplex(hw, &speed, &duplex);
- if (ret_val) {
- e_dbg
- ("Error getting link speed and duplex\n");
- return ret_val;
- }
- if (speed != SPEED_1000) {
- /* If link speed is not set to gigabit speed, we do not need
- * to enable TBI compatibility.
- */
- if (hw->tbi_compatibility_on) {
- /* If we previously were in the mode, turn it off. */
- rctl = er32(RCTL);
- rctl &= ~E1000_RCTL_SBP;
- ew32(RCTL, rctl);
- hw->tbi_compatibility_on = false;
- }
- } else {
- /* If TBI compatibility is was previously off, turn it on. For
- * compatibility with a TBI link partner, we will store bad
- * packets. Some frames have an additional byte on the end and
- * will look like CRC errors to to the hardware.
- */
- if (!hw->tbi_compatibility_on) {
- hw->tbi_compatibility_on = true;
- rctl = er32(RCTL);
- rctl |= E1000_RCTL_SBP;
- ew32(RCTL, rctl);
- }
- }
- }
- }
-
- if ((hw->media_type == e1000_media_type_fiber) ||
- (hw->media_type == e1000_media_type_internal_serdes))
- e1000_check_for_serdes_link_generic(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_get_speed_and_duplex
- * @hw: Struct containing variables accessed by shared code
- * @speed: Speed of the connection
- * @duplex: Duplex setting of the connection
-
- * Detects the current speed and duplex settings of the hardware.
- */
-s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
-{
- u32 status;
- s32 ret_val;
- u16 phy_data;
-
- e_dbg("e1000_get_speed_and_duplex");
-
- if (hw->mac_type >= e1000_82543) {
- status = er32(STATUS);
- if (status & E1000_STATUS_SPEED_1000) {
- *speed = SPEED_1000;
- e_dbg("1000 Mbs, ");
- } else if (status & E1000_STATUS_SPEED_100) {
- *speed = SPEED_100;
- e_dbg("100 Mbs, ");
- } else {
- *speed = SPEED_10;
- e_dbg("10 Mbs, ");
- }
-
- if (status & E1000_STATUS_FD) {
- *duplex = FULL_DUPLEX;
- e_dbg("Full Duplex\n");
- } else {
- *duplex = HALF_DUPLEX;
- e_dbg(" Half Duplex\n");
- }
- } else {
- e_dbg("1000 Mbs, Full Duplex\n");
- *speed = SPEED_1000;
- *duplex = FULL_DUPLEX;
- }
-
- /* IGP01 PHY may advertise full duplex operation after speed downgrade even
- * if it is operating at half duplex. Here we set the duplex settings to
- * match the duplex in the link partner's capabilities.
- */
- if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
- ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
- if (ret_val)
- return ret_val;
-
- if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
- *duplex = HALF_DUPLEX;
- else {
- ret_val =
- e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
- if (ret_val)
- return ret_val;
- if ((*speed == SPEED_100
- && !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
- || (*speed == SPEED_10
- && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
- *duplex = HALF_DUPLEX;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_wait_autoneg
- * @hw: Struct containing variables accessed by shared code
- *
- * Blocks until autoneg completes or times out (~4.5 seconds)
- */
-static s32 e1000_wait_autoneg(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 i;
- u16 phy_data;
-
- e_dbg("e1000_wait_autoneg");
- e_dbg("Waiting for Auto-Neg to complete.\n");
-
- /* We will wait for autoneg to complete or 4.5 seconds to expire. */
- for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Auto-Neg
- * Complete bit to be set.
- */
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
- if (phy_data & MII_SR_AUTONEG_COMPLETE) {
- return E1000_SUCCESS;
- }
- msleep(100);
- }
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_raise_mdi_clk - Raises the Management Data Clock
- * @hw: Struct containing variables accessed by shared code
- * @ctrl: Device control register's current value
- */
-static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
-{
- /* Raise the clock input to the Management Data Clock (by setting the MDC
- * bit), and then delay 10 microseconds.
- */
- ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
- E1000_WRITE_FLUSH();
- udelay(10);
-}
-
-/**
- * e1000_lower_mdi_clk - Lowers the Management Data Clock
- * @hw: Struct containing variables accessed by shared code
- * @ctrl: Device control register's current value
- */
-static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
-{
- /* Lower the clock input to the Management Data Clock (by clearing the MDC
- * bit), and then delay 10 microseconds.
- */
- ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
- E1000_WRITE_FLUSH();
- udelay(10);
-}
-
-/**
- * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
- * @hw: Struct containing variables accessed by shared code
- * @data: Data to send out to the PHY
- * @count: Number of bits to shift out
- *
- * Bits are shifted out in MSB to LSB order.
- */
-static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
-{
- u32 ctrl;
- u32 mask;
-
- /* We need to shift "count" number of bits out to the PHY. So, the value
- * in the "data" parameter will be shifted out to the PHY one bit at a
- * time. In order to do this, "data" must be broken down into bits.
- */
- mask = 0x01;
- mask <<= (count - 1);
-
- ctrl = er32(CTRL);
-
- /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
- ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
-
- while (mask) {
- /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
- * then raising and lowering the Management Data Clock. A "0" is
- * shifted out to the PHY by setting the MDIO bit to "0" and then
- * raising and lowering the clock.
- */
- if (data & mask)
- ctrl |= E1000_CTRL_MDIO;
- else
- ctrl &= ~E1000_CTRL_MDIO;
-
- ew32(CTRL, ctrl);
- E1000_WRITE_FLUSH();
-
- udelay(10);
-
- e1000_raise_mdi_clk(hw, &ctrl);
- e1000_lower_mdi_clk(hw, &ctrl);
-
- mask = mask >> 1;
- }
-}
-
-/**
- * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
- * @hw: Struct containing variables accessed by shared code
- *
- * Bits are shifted in in MSB to LSB order.
- */
-static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
-{
- u32 ctrl;
- u16 data = 0;
- u8 i;
-
- /* In order to read a register from the PHY, we need to shift in a total
- * of 18 bits from the PHY. The first two bit (turnaround) times are used
- * to avoid contention on the MDIO pin when a read operation is performed.
- * These two bits are ignored by us and thrown away. Bits are "shifted in"
- * by raising the input to the Management Data Clock (setting the MDC bit),
- * and then reading the value of the MDIO bit.
- */
- ctrl = er32(CTRL);
-
- /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
- ctrl &= ~E1000_CTRL_MDIO_DIR;
- ctrl &= ~E1000_CTRL_MDIO;
-
- ew32(CTRL, ctrl);
- E1000_WRITE_FLUSH();
-
- /* Raise and Lower the clock before reading in the data. This accounts for
- * the turnaround bits. The first clock occurred when we clocked out the
- * last bit of the Register Address.
- */
- e1000_raise_mdi_clk(hw, &ctrl);
- e1000_lower_mdi_clk(hw, &ctrl);
-
- for (data = 0, i = 0; i < 16; i++) {
- data = data << 1;
- e1000_raise_mdi_clk(hw, &ctrl);
- ctrl = er32(CTRL);
- /* Check to see if we shifted in a "1". */
- if (ctrl & E1000_CTRL_MDIO)
- data |= 1;
- e1000_lower_mdi_clk(hw, &ctrl);
- }
-
- e1000_raise_mdi_clk(hw, &ctrl);
- e1000_lower_mdi_clk(hw, &ctrl);
-
- return data;
-}
-
-
-/**
- * e1000_read_phy_reg - read a phy register
- * @hw: Struct containing variables accessed by shared code
- * @reg_addr: address of the PHY register to read
- *
- * Reads the value from a PHY register, if the value is on a specific non zero
- * page, sets the page first.
- */
-s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
-{
- u32 ret_val;
-
- e_dbg("e1000_read_phy_reg");
-
- if ((hw->phy_type == e1000_phy_igp) &&
- (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
- ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
- (u16) reg_addr);
- if (ret_val)
- return ret_val;
- }
-
- ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
- phy_data);
-
- return ret_val;
-}
-
-static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
- u16 *phy_data)
-{
- u32 i;
- u32 mdic = 0;
- const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
-
- e_dbg("e1000_read_phy_reg_ex");
-
- if (reg_addr > MAX_PHY_REG_ADDRESS) {
- e_dbg("PHY Address %d is out of range\n", reg_addr);
- return -E1000_ERR_PARAM;
- }
-
- if (hw->mac_type > e1000_82543) {
- /* Set up Op-code, Phy Address, and register address in the MDI
- * Control register. The MAC will take care of interfacing with the
- * PHY to retrieve the desired data.
- */
- if (hw->mac_type == e1000_ce4100) {
- mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
- (phy_addr << E1000_MDIC_PHY_SHIFT) |
- (INTEL_CE_GBE_MDIC_OP_READ) |
- (INTEL_CE_GBE_MDIC_GO));
-
- writel(mdic, E1000_MDIO_CMD);
-
- /* Poll the ready bit to see if the MDI read
- * completed
- */
- for (i = 0; i < 64; i++) {
- udelay(50);
- mdic = readl(E1000_MDIO_CMD);
- if (!(mdic & INTEL_CE_GBE_MDIC_GO))
- break;
- }
-
- if (mdic & INTEL_CE_GBE_MDIC_GO) {
- e_dbg("MDI Read did not complete\n");
- return -E1000_ERR_PHY;
- }
-
- mdic = readl(E1000_MDIO_STS);
- if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
- e_dbg("MDI Read Error\n");
- return -E1000_ERR_PHY;
- }
- *phy_data = (u16) mdic;
- } else {
- mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
- (phy_addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_READ));
-
- ew32(MDIC, mdic);
-
- /* Poll the ready bit to see if the MDI read
- * completed
- */
- for (i = 0; i < 64; i++) {
- udelay(50);
- mdic = er32(MDIC);
- if (mdic & E1000_MDIC_READY)
- break;
- }
- if (!(mdic & E1000_MDIC_READY)) {
- e_dbg("MDI Read did not complete\n");
- return -E1000_ERR_PHY;
- }
- if (mdic & E1000_MDIC_ERROR) {
- e_dbg("MDI Error\n");
- return -E1000_ERR_PHY;
- }
- *phy_data = (u16) mdic;
- }
- } else {
- /* We must first send a preamble through the MDIO pin to signal the
- * beginning of an MII instruction. This is done by sending 32
- * consecutive "1" bits.
- */
- e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
-
- /* Now combine the next few fields that are required for a read
- * operation. We use this method instead of calling the
- * e1000_shift_out_mdi_bits routine five different times. The format of
- * a MII read instruction consists of a shift out of 14 bits and is
- * defined as follows:
- * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
- * followed by a shift in of 18 bits. This first two bits shifted in
- * are TurnAround bits used to avoid contention on the MDIO pin when a
- * READ operation is performed. These two bits are thrown away
- * followed by a shift in of 16 bits which contains the desired data.
- */
- mdic = ((reg_addr) | (phy_addr << 5) |
- (PHY_OP_READ << 10) | (PHY_SOF << 12));
-
- e1000_shift_out_mdi_bits(hw, mdic, 14);
-
- /* Now that we've shifted out the read command to the MII, we need to
- * "shift in" the 16-bit value (18 total bits) of the requested PHY
- * register address.
- */
- *phy_data = e1000_shift_in_mdi_bits(hw);
- }
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_write_phy_reg - write a phy register
- *
- * @hw: Struct containing variables accessed by shared code
- * @reg_addr: address of the PHY register to write
- * @data: data to write to the PHY
-
- * Writes a value to a PHY register
- */
-s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
-{
- u32 ret_val;
-
- e_dbg("e1000_write_phy_reg");
-
- if ((hw->phy_type == e1000_phy_igp) &&
- (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
- ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
- (u16) reg_addr);
- if (ret_val)
- return ret_val;
- }
-
- ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
- phy_data);
-
- return ret_val;
-}
-
-static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
- u16 phy_data)
-{
- u32 i;
- u32 mdic = 0;
- const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
-
- e_dbg("e1000_write_phy_reg_ex");
-
- if (reg_addr > MAX_PHY_REG_ADDRESS) {
- e_dbg("PHY Address %d is out of range\n", reg_addr);
- return -E1000_ERR_PARAM;
- }
-
- if (hw->mac_type > e1000_82543) {
- /* Set up Op-code, Phy Address, register address, and data
- * intended for the PHY register in the MDI Control register.
- * The MAC will take care of interfacing with the PHY to send
- * the desired data.
- */
- if (hw->mac_type == e1000_ce4100) {
- mdic = (((u32) phy_data) |
- (reg_addr << E1000_MDIC_REG_SHIFT) |
- (phy_addr << E1000_MDIC_PHY_SHIFT) |
- (INTEL_CE_GBE_MDIC_OP_WRITE) |
- (INTEL_CE_GBE_MDIC_GO));
-
- writel(mdic, E1000_MDIO_CMD);
-
- /* Poll the ready bit to see if the MDI read
- * completed
- */
- for (i = 0; i < 640; i++) {
- udelay(5);
- mdic = readl(E1000_MDIO_CMD);
- if (!(mdic & INTEL_CE_GBE_MDIC_GO))
- break;
- }
- if (mdic & INTEL_CE_GBE_MDIC_GO) {
- e_dbg("MDI Write did not complete\n");
- return -E1000_ERR_PHY;
- }
- } else {
- mdic = (((u32) phy_data) |
- (reg_addr << E1000_MDIC_REG_SHIFT) |
- (phy_addr << E1000_MDIC_PHY_SHIFT) |
- (E1000_MDIC_OP_WRITE));
-
- ew32(MDIC, mdic);
-
- /* Poll the ready bit to see if the MDI read
- * completed
- */
- for (i = 0; i < 641; i++) {
- udelay(5);
- mdic = er32(MDIC);
- if (mdic & E1000_MDIC_READY)
- break;
- }
- if (!(mdic & E1000_MDIC_READY)) {
- e_dbg("MDI Write did not complete\n");
- return -E1000_ERR_PHY;
- }
- }
- } else {
- /* We'll need to use the SW defined pins to shift the write command
- * out to the PHY. We first send a preamble to the PHY to signal the
- * beginning of the MII instruction. This is done by sending 32
- * consecutive "1" bits.
- */
- e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
-
- /* Now combine the remaining required fields that will indicate a
- * write operation. We use this method instead of calling the
- * e1000_shift_out_mdi_bits routine for each field in the command. The
- * format of a MII write instruction is as follows:
- * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
- */
- mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
- (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
- mdic <<= 16;
- mdic |= (u32) phy_data;
-
- e1000_shift_out_mdi_bits(hw, mdic, 32);
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_phy_hw_reset - reset the phy, hardware style
- * @hw: Struct containing variables accessed by shared code
- *
- * Returns the PHY to the power-on reset state
- */
-s32 e1000_phy_hw_reset(struct e1000_hw *hw)
-{
- u32 ctrl, ctrl_ext;
- u32 led_ctrl;
-
- e_dbg("e1000_phy_hw_reset");
-
- e_dbg("Resetting Phy...\n");
-
- if (hw->mac_type > e1000_82543) {
- /* Read the device control register and assert the E1000_CTRL_PHY_RST
- * bit. Then, take it out of reset.
- * For e1000 hardware, we delay for 10ms between the assert
- * and deassert.
- */
- ctrl = er32(CTRL);
- ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
- E1000_WRITE_FLUSH();
-
- msleep(10);
-
- ew32(CTRL, ctrl);
- E1000_WRITE_FLUSH();
-
- } else {
- /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
- * bit to put the PHY into reset. Then, take it out of reset.
- */
- ctrl_ext = er32(CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
- ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
- ew32(CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH();
- msleep(10);
- ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
- ew32(CTRL_EXT, ctrl_ext);
- E1000_WRITE_FLUSH();
- }
- udelay(150);
-
- if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
- /* Configure activity LED after PHY reset */
- led_ctrl = er32(LEDCTL);
- led_ctrl &= IGP_ACTIVITY_LED_MASK;
- led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
- ew32(LEDCTL, led_ctrl);
- }
-
- /* Wait for FW to finish PHY configuration. */
- return e1000_get_phy_cfg_done(hw);
-}
-
-/**
- * e1000_phy_reset - reset the phy to commit settings
- * @hw: Struct containing variables accessed by shared code
- *
- * Resets the PHY
- * Sets bit 15 of the MII Control register
- */
-s32 e1000_phy_reset(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 phy_data;
-
- e_dbg("e1000_phy_reset");
-
- switch (hw->phy_type) {
- case e1000_phy_igp:
- ret_val = e1000_phy_hw_reset(hw);
- if (ret_val)
- return ret_val;
- break;
- default:
- ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= MII_CR_RESET;
- ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- udelay(1);
- break;
- }
-
- if (hw->phy_type == e1000_phy_igp)
- e1000_phy_init_script(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_detect_gig_phy - check the phy type
- * @hw: Struct containing variables accessed by shared code
- *
- * Probes the expected PHY address for known PHY IDs
- */
-static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
-{
- s32 phy_init_status, ret_val;
- u16 phy_id_high, phy_id_low;
- bool match = false;
-
- e_dbg("e1000_detect_gig_phy");
-
- if (hw->phy_id != 0)
- return E1000_SUCCESS;
-
- /* Read the PHY ID Registers to identify which PHY is onboard. */
- ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
- if (ret_val)
- return ret_val;
-
- hw->phy_id = (u32) (phy_id_high << 16);
- udelay(20);
- ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
- if (ret_val)
- return ret_val;
-
- hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK);
- hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK;
-
- switch (hw->mac_type) {
- case e1000_82543:
- if (hw->phy_id == M88E1000_E_PHY_ID)
- match = true;
- break;
- case e1000_82544:
- if (hw->phy_id == M88E1000_I_PHY_ID)
- match = true;
- break;
- case e1000_82540:
- case e1000_82545:
- case e1000_82545_rev_3:
- case e1000_82546:
- case e1000_82546_rev_3:
- if (hw->phy_id == M88E1011_I_PHY_ID)
- match = true;
- break;
- case e1000_ce4100:
- if ((hw->phy_id == RTL8211B_PHY_ID) ||
- (hw->phy_id == RTL8201N_PHY_ID) ||
- (hw->phy_id == M88E1118_E_PHY_ID))
- match = true;
- break;
- case e1000_82541:
- case e1000_82541_rev_2:
- case e1000_82547:
- case e1000_82547_rev_2:
- if (hw->phy_id == IGP01E1000_I_PHY_ID)
- match = true;
- break;
- default:
- e_dbg("Invalid MAC type %d\n", hw->mac_type);
- return -E1000_ERR_CONFIG;
- }
- phy_init_status = e1000_set_phy_type(hw);
-
- if ((match) && (phy_init_status == E1000_SUCCESS)) {
- e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
- return E1000_SUCCESS;
- }
- e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
- return -E1000_ERR_PHY;
-}
-
-/**
- * e1000_phy_reset_dsp - reset DSP
- * @hw: Struct containing variables accessed by shared code
- *
- * Resets the PHY's DSP
- */
-static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
-{
- s32 ret_val;
- e_dbg("e1000_phy_reset_dsp");
-
- do {
- ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
- if (ret_val)
- break;
- ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
- if (ret_val)
- break;
- ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
- if (ret_val)
- break;
- ret_val = E1000_SUCCESS;
- } while (0);
-
- return ret_val;
-}
-
-/**
- * e1000_phy_igp_get_info - get igp specific registers
- * @hw: Struct containing variables accessed by shared code
- * @phy_info: PHY information structure
- *
- * Get PHY information from various PHY registers for igp PHY only.
- */
-static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
- struct e1000_phy_info *phy_info)
-{
- s32 ret_val;
- u16 phy_data, min_length, max_length, average;
- e1000_rev_polarity polarity;
-
- e_dbg("e1000_phy_igp_get_info");
-
- /* The downshift status is checked only once, after link is established,
- * and it stored in the hw->speed_downgraded parameter. */
- phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
-
- /* IGP01E1000 does not need to support it. */
- phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
-
- /* IGP01E1000 always correct polarity reversal */
- phy_info->polarity_correction = e1000_polarity_reversal_enabled;
-
- /* Check polarity status */
- ret_val = e1000_check_polarity(hw, &polarity);
- if (ret_val)
- return ret_val;
-
- phy_info->cable_polarity = polarity;
-
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_info->mdix_mode =
- (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
- IGP01E1000_PSSR_MDIX_SHIFT);
-
- if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
- IGP01E1000_PSSR_SPEED_1000MBPS) {
- /* Local/Remote Receiver Information are only valid at 1000 Mbps */
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
- SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
- e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
- phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
- SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
- e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
-
- /* Get cable length */
- ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
- if (ret_val)
- return ret_val;
-
- /* Translate to old method */
- average = (max_length + min_length) / 2;
-
- if (average <= e1000_igp_cable_length_50)
- phy_info->cable_length = e1000_cable_length_50;
- else if (average <= e1000_igp_cable_length_80)
- phy_info->cable_length = e1000_cable_length_50_80;
- else if (average <= e1000_igp_cable_length_110)
- phy_info->cable_length = e1000_cable_length_80_110;
- else if (average <= e1000_igp_cable_length_140)
- phy_info->cable_length = e1000_cable_length_110_140;
- else
- phy_info->cable_length = e1000_cable_length_140;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_phy_m88_get_info - get m88 specific registers
- * @hw: Struct containing variables accessed by shared code
- * @phy_info: PHY information structure
- *
- * Get PHY information from various PHY registers for m88 PHY only.
- */
-static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
- struct e1000_phy_info *phy_info)
-{
- s32 ret_val;
- u16 phy_data;
- e1000_rev_polarity polarity;
-
- e_dbg("e1000_phy_m88_get_info");
-
- /* The downshift status is checked only once, after link is established,
- * and it stored in the hw->speed_downgraded parameter. */
- phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
-
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_info->extended_10bt_distance =
- ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
- M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
- e1000_10bt_ext_dist_enable_lower :
- e1000_10bt_ext_dist_enable_normal;
-
- phy_info->polarity_correction =
- ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
- M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
- e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
-
- /* Check polarity status */
- ret_val = e1000_check_polarity(hw, &polarity);
- if (ret_val)
- return ret_val;
- phy_info->cable_polarity = polarity;
-
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_info->mdix_mode =
- (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
- M88E1000_PSSR_MDIX_SHIFT);
-
- if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
- /* Cable Length Estimation and Local/Remote Receiver Information
- * are only valid at 1000 Mbps.
- */
- phy_info->cable_length =
- (e1000_cable_length) ((phy_data &
- M88E1000_PSSR_CABLE_LENGTH) >>
- M88E1000_PSSR_CABLE_LENGTH_SHIFT);
-
- ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
- SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
- e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
- phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
- SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
- e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
-
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_phy_get_info - request phy info
- * @hw: Struct containing variables accessed by shared code
- * @phy_info: PHY information structure
- *
- * Get PHY information from various PHY registers
- */
-s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
-{
- s32 ret_val;
- u16 phy_data;
-
- e_dbg("e1000_phy_get_info");
-
- phy_info->cable_length = e1000_cable_length_undefined;
- phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
- phy_info->cable_polarity = e1000_rev_polarity_undefined;
- phy_info->downshift = e1000_downshift_undefined;
- phy_info->polarity_correction = e1000_polarity_reversal_undefined;
- phy_info->mdix_mode = e1000_auto_x_mode_undefined;
- phy_info->local_rx = e1000_1000t_rx_status_undefined;
- phy_info->remote_rx = e1000_1000t_rx_status_undefined;
-
- if (hw->media_type != e1000_media_type_copper) {
- e_dbg("PHY info is only valid for copper media\n");
- return -E1000_ERR_CONFIG;
- }
-
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if (ret_val)
- return ret_val;
-
- if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
- e_dbg("PHY info is only valid if link is up\n");
- return -E1000_ERR_CONFIG;
- }
-
- if (hw->phy_type == e1000_phy_igp)
- return e1000_phy_igp_get_info(hw, phy_info);
- else if ((hw->phy_type == e1000_phy_8211) ||
- (hw->phy_type == e1000_phy_8201))
- return E1000_SUCCESS;
- else
- return e1000_phy_m88_get_info(hw, phy_info);
-}
-
-s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
-{
- e_dbg("e1000_validate_mdi_settings");
-
- if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
- e_dbg("Invalid MDI setting detected\n");
- hw->mdix = 1;
- return -E1000_ERR_CONFIG;
- }
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_eeprom_params - initialize sw eeprom vars
- * @hw: Struct containing variables accessed by shared code
- *
- * Sets up eeprom variables in the hw struct. Must be called after mac_type
- * is configured.
- */
-s32 e1000_init_eeprom_params(struct e1000_hw *hw)
-{
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- u32 eecd = er32(EECD);
- s32 ret_val = E1000_SUCCESS;
- u16 eeprom_size;
-
- e_dbg("e1000_init_eeprom_params");
-
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- case e1000_82543:
- case e1000_82544:
- eeprom->type = e1000_eeprom_microwire;
- eeprom->word_size = 64;
- eeprom->opcode_bits = 3;
- eeprom->address_bits = 6;
- eeprom->delay_usec = 50;
- break;
- case e1000_82540:
- case e1000_82545:
- case e1000_82545_rev_3:
- case e1000_82546:
- case e1000_82546_rev_3:
- eeprom->type = e1000_eeprom_microwire;
- eeprom->opcode_bits = 3;
- eeprom->delay_usec = 50;
- if (eecd & E1000_EECD_SIZE) {
- eeprom->word_size = 256;
- eeprom->address_bits = 8;
- } else {
- eeprom->word_size = 64;
- eeprom->address_bits = 6;
- }
- break;
- case e1000_82541:
- case e1000_82541_rev_2:
- case e1000_82547:
- case e1000_82547_rev_2:
- if (eecd & E1000_EECD_TYPE) {
- eeprom->type = e1000_eeprom_spi;
- eeprom->opcode_bits = 8;
- eeprom->delay_usec = 1;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->page_size = 32;
- eeprom->address_bits = 16;
- } else {
- eeprom->page_size = 8;
- eeprom->address_bits = 8;
- }
- } else {
- eeprom->type = e1000_eeprom_microwire;
- eeprom->opcode_bits = 3;
- eeprom->delay_usec = 50;
- if (eecd & E1000_EECD_ADDR_BITS) {
- eeprom->word_size = 256;
- eeprom->address_bits = 8;
- } else {
- eeprom->word_size = 64;
- eeprom->address_bits = 6;
- }
- }
- break;
- default:
- break;
- }
-
- if (eeprom->type == e1000_eeprom_spi) {
- /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
- * 32KB (incremented by powers of 2).
- */
- /* Set to default value for initial eeprom read. */
- eeprom->word_size = 64;
- ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
- if (ret_val)
- return ret_val;
- eeprom_size =
- (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
- /* 256B eeprom size was not supported in earlier hardware, so we
- * bump eeprom_size up one to ensure that "1" (which maps to 256B)
- * is never the result used in the shifting logic below. */
- if (eeprom_size)
- eeprom_size++;
-
- eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
- }
- return ret_val;
-}
-
-/**
- * e1000_raise_ee_clk - Raises the EEPROM's clock input.
- * @hw: Struct containing variables accessed by shared code
- * @eecd: EECD's current value
- */
-static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
-{
- /* Raise the clock input to the EEPROM (by setting the SK bit), and then
- * wait <delay> microseconds.
- */
- *eecd = *eecd | E1000_EECD_SK;
- ew32(EECD, *eecd);
- E1000_WRITE_FLUSH();
- udelay(hw->eeprom.delay_usec);
-}
-
-/**
- * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
- * @hw: Struct containing variables accessed by shared code
- * @eecd: EECD's current value
- */
-static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
-{
- /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
- * wait 50 microseconds.
- */
- *eecd = *eecd & ~E1000_EECD_SK;
- ew32(EECD, *eecd);
- E1000_WRITE_FLUSH();
- udelay(hw->eeprom.delay_usec);
-}
-
-/**
- * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
- * @hw: Struct containing variables accessed by shared code
- * @data: data to send to the EEPROM
- * @count: number of bits to shift out
- */
-static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
-{
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- u32 eecd;
- u32 mask;
-
- /* We need to shift "count" bits out to the EEPROM. So, value in the
- * "data" parameter will be shifted out to the EEPROM one bit at a time.
- * In order to do this, "data" must be broken down into bits.
- */
- mask = 0x01 << (count - 1);
- eecd = er32(EECD);
- if (eeprom->type == e1000_eeprom_microwire) {
- eecd &= ~E1000_EECD_DO;
- } else if (eeprom->type == e1000_eeprom_spi) {
- eecd |= E1000_EECD_DO;
- }
- do {
- /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
- * and then raising and then lowering the clock (the SK bit controls
- * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
- * by setting "DI" to "0" and then raising and then lowering the clock.
- */
- eecd &= ~E1000_EECD_DI;
-
- if (data & mask)
- eecd |= E1000_EECD_DI;
-
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
-
- udelay(eeprom->delay_usec);
-
- e1000_raise_ee_clk(hw, &eecd);
- e1000_lower_ee_clk(hw, &eecd);
-
- mask = mask >> 1;
-
- } while (mask);
-
- /* We leave the "DI" bit set to "0" when we leave this routine. */
- eecd &= ~E1000_EECD_DI;
- ew32(EECD, eecd);
-}
-
-/**
- * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
- * @hw: Struct containing variables accessed by shared code
- * @count: number of bits to shift in
- */
-static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
-{
- u32 eecd;
- u32 i;
- u16 data;
-
- /* In order to read a register from the EEPROM, we need to shift 'count'
- * bits in from the EEPROM. Bits are "shifted in" by raising the clock
- * input to the EEPROM (setting the SK bit), and then reading the value of
- * the "DO" bit. During this "shifting in" process the "DI" bit should
- * always be clear.
- */
-
- eecd = er32(EECD);
-
- eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
- data = 0;
-
- for (i = 0; i < count; i++) {
- data = data << 1;
- e1000_raise_ee_clk(hw, &eecd);
-
- eecd = er32(EECD);
-
- eecd &= ~(E1000_EECD_DI);
- if (eecd & E1000_EECD_DO)
- data |= 1;
-
- e1000_lower_ee_clk(hw, &eecd);
- }
-
- return data;
-}
-
-/**
- * e1000_acquire_eeprom - Prepares EEPROM for access
- * @hw: Struct containing variables accessed by shared code
- *
- * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
- * function should be called before issuing a command to the EEPROM.
- */
-static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
-{
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- u32 eecd, i = 0;
-
- e_dbg("e1000_acquire_eeprom");
-
- eecd = er32(EECD);
-
- /* Request EEPROM Access */
- if (hw->mac_type > e1000_82544) {
- eecd |= E1000_EECD_REQ;
- ew32(EECD, eecd);
- eecd = er32(EECD);
- while ((!(eecd & E1000_EECD_GNT)) &&
- (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
- i++;
- udelay(5);
- eecd = er32(EECD);
- }
- if (!(eecd & E1000_EECD_GNT)) {
- eecd &= ~E1000_EECD_REQ;
- ew32(EECD, eecd);
- e_dbg("Could not acquire EEPROM grant\n");
- return -E1000_ERR_EEPROM;
- }
- }
-
- /* Setup EEPROM for Read/Write */
-
- if (eeprom->type == e1000_eeprom_microwire) {
- /* Clear SK and DI */
- eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
- ew32(EECD, eecd);
-
- /* Set CS */
- eecd |= E1000_EECD_CS;
- ew32(EECD, eecd);
- } else if (eeprom->type == e1000_eeprom_spi) {
- /* Clear SK and CS */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(1);
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_standby_eeprom - Returns EEPROM to a "standby" state
- * @hw: Struct containing variables accessed by shared code
- */
-static void e1000_standby_eeprom(struct e1000_hw *hw)
-{
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- u32 eecd;
-
- eecd = er32(EECD);
-
- if (eeprom->type == e1000_eeprom_microwire) {
- eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(eeprom->delay_usec);
-
- /* Clock high */
- eecd |= E1000_EECD_SK;
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(eeprom->delay_usec);
-
- /* Select EEPROM */
- eecd |= E1000_EECD_CS;
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(eeprom->delay_usec);
-
- /* Clock low */
- eecd &= ~E1000_EECD_SK;
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(eeprom->delay_usec);
- } else if (eeprom->type == e1000_eeprom_spi) {
- /* Toggle CS to flush commands */
- eecd |= E1000_EECD_CS;
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(eeprom->delay_usec);
- eecd &= ~E1000_EECD_CS;
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(eeprom->delay_usec);
- }
-}
-
-/**
- * e1000_release_eeprom - drop chip select
- * @hw: Struct containing variables accessed by shared code
- *
- * Terminates a command by inverting the EEPROM's chip select pin
- */
-static void e1000_release_eeprom(struct e1000_hw *hw)
-{
- u32 eecd;
-
- e_dbg("e1000_release_eeprom");
-
- eecd = er32(EECD);
-
- if (hw->eeprom.type == e1000_eeprom_spi) {
- eecd |= E1000_EECD_CS; /* Pull CS high */
- eecd &= ~E1000_EECD_SK; /* Lower SCK */
-
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
-
- udelay(hw->eeprom.delay_usec);
- } else if (hw->eeprom.type == e1000_eeprom_microwire) {
- /* cleanup eeprom */
-
- /* CS on Microwire is active-high */
- eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
-
- ew32(EECD, eecd);
-
- /* Rising edge of clock */
- eecd |= E1000_EECD_SK;
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(hw->eeprom.delay_usec);
-
- /* Falling edge of clock */
- eecd &= ~E1000_EECD_SK;
- ew32(EECD, eecd);
- E1000_WRITE_FLUSH();
- udelay(hw->eeprom.delay_usec);
- }
-
- /* Stop requesting EEPROM access */
- if (hw->mac_type > e1000_82544) {
- eecd &= ~E1000_EECD_REQ;
- ew32(EECD, eecd);
- }
-}
-
-/**
- * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
- * @hw: Struct containing variables accessed by shared code
- */
-static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
-{
- u16 retry_count = 0;
- u8 spi_stat_reg;
-
- e_dbg("e1000_spi_eeprom_ready");
-
- /* Read "Status Register" repeatedly until the LSB is cleared. The
- * EEPROM will signal that the command has been completed by clearing
- * bit 0 of the internal status register. If it's not cleared within
- * 5 milliseconds, then error out.
- */
- retry_count = 0;
- do {
- e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
- hw->eeprom.opcode_bits);
- spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8);
- if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
- break;
-
- udelay(5);
- retry_count += 5;
-
- e1000_standby_eeprom(hw);
- } while (retry_count < EEPROM_MAX_RETRY_SPI);
-
- /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
- * only 0-5mSec on 5V devices)
- */
- if (retry_count >= EEPROM_MAX_RETRY_SPI) {
- e_dbg("SPI EEPROM Status error\n");
- return -E1000_ERR_EEPROM;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
- * @hw: Struct containing variables accessed by shared code
- * @offset: offset of word in the EEPROM to read
- * @data: word read from the EEPROM
- * @words: number of words to read
- */
-s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
- s32 ret;
- spin_lock(&e1000_eeprom_lock);
- ret = e1000_do_read_eeprom(hw, offset, words, data);
- spin_unlock(&e1000_eeprom_lock);
- return ret;
-}
-
-static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
-{
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- u32 i = 0;
-
- e_dbg("e1000_read_eeprom");
-
- if (hw->mac_type == e1000_ce4100) {
- GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
- data);
- return E1000_SUCCESS;
- }
-
- /* If eeprom is not yet detected, do so now */
- if (eeprom->word_size == 0)
- e1000_init_eeprom_params(hw);
-
- /* A check for invalid values: offset too large, too many words, and not
- * enough words.
- */
- if ((offset >= eeprom->word_size)
- || (words > eeprom->word_size - offset) || (words == 0)) {
- e_dbg("\"words\" parameter out of bounds. Words = %d,"
- "size = %d\n", offset, eeprom->word_size);
- return -E1000_ERR_EEPROM;
- }
-
- /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
- * directly. In this case, we need to acquire the EEPROM so that
- * FW or other port software does not interrupt.
- */
- /* Prepare the EEPROM for bit-bang reading */
- if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
- return -E1000_ERR_EEPROM;
-
- /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
- * acquired the EEPROM at this point, so any returns should release it */
- if (eeprom->type == e1000_eeprom_spi) {
- u16 word_in;
- u8 read_opcode = EEPROM_READ_OPCODE_SPI;
-
- if (e1000_spi_eeprom_ready(hw)) {
- e1000_release_eeprom(hw);
- return -E1000_ERR_EEPROM;
- }
-
- e1000_standby_eeprom(hw);
-
- /* Some SPI eeproms use the 8th address bit embedded in the opcode */
- if ((eeprom->address_bits == 8) && (offset >= 128))
- read_opcode |= EEPROM_A8_OPCODE_SPI;
-
- /* Send the READ command (opcode + addr) */
- e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
- e1000_shift_out_ee_bits(hw, (u16) (offset * 2),
- eeprom->address_bits);
-
- /* Read the data. The address of the eeprom internally increments with
- * each byte (spi) being read, saving on the overhead of eeprom setup
- * and tear-down. The address counter will roll over if reading beyond
- * the size of the eeprom, thus allowing the entire memory to be read
- * starting from any offset. */
- for (i = 0; i < words; i++) {
- word_in = e1000_shift_in_ee_bits(hw, 16);
- data[i] = (word_in >> 8) | (word_in << 8);
- }
- } else if (eeprom->type == e1000_eeprom_microwire) {
- for (i = 0; i < words; i++) {
- /* Send the READ command (opcode + addr) */
- e1000_shift_out_ee_bits(hw,
- EEPROM_READ_OPCODE_MICROWIRE,
- eeprom->opcode_bits);
- e1000_shift_out_ee_bits(hw, (u16) (offset + i),
- eeprom->address_bits);
-
- /* Read the data. For microwire, each word requires the overhead
- * of eeprom setup and tear-down. */
- data[i] = e1000_shift_in_ee_bits(hw, 16);
- e1000_standby_eeprom(hw);
- }
- }
-
- /* End this read operation */
- e1000_release_eeprom(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
- * @hw: Struct containing variables accessed by shared code
- *
- * Reads the first 64 16 bit words of the EEPROM and sums the values read.
- * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
- * valid.
- */
-s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
-{
- u16 checksum = 0;
- u16 i, eeprom_data;
-
- e_dbg("e1000_validate_eeprom_checksum");
-
- for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
- if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
- e_dbg("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- checksum += eeprom_data;
- }
-
- if (checksum == (u16) EEPROM_SUM)
- return E1000_SUCCESS;
- else {
- e_dbg("EEPROM Checksum Invalid\n");
- return -E1000_ERR_EEPROM;
- }
-}
-
-/**
- * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
- * @hw: Struct containing variables accessed by shared code
- *
- * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
- * Writes the difference to word offset 63 of the EEPROM.
- */
-s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
-{
- u16 checksum = 0;
- u16 i, eeprom_data;
-
- e_dbg("e1000_update_eeprom_checksum");
-
- for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
- if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
- e_dbg("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- checksum += eeprom_data;
- }
- checksum = (u16) EEPROM_SUM - checksum;
- if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
- e_dbg("EEPROM Write Error\n");
- return -E1000_ERR_EEPROM;
- }
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_write_eeprom - write words to the different EEPROM types.
- * @hw: Struct containing variables accessed by shared code
- * @offset: offset within the EEPROM to be written to
- * @words: number of words to write
- * @data: 16 bit word to be written to the EEPROM
- *
- * If e1000_update_eeprom_checksum is not called after this function, the
- * EEPROM will most likely contain an invalid checksum.
- */
-s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
-{
- s32 ret;
- spin_lock(&e1000_eeprom_lock);
- ret = e1000_do_write_eeprom(hw, offset, words, data);
- spin_unlock(&e1000_eeprom_lock);
- return ret;
-}
-
-static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
-{
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- s32 status = 0;
-
- e_dbg("e1000_write_eeprom");
-
- if (hw->mac_type == e1000_ce4100) {
- GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
- data);
- return E1000_SUCCESS;
- }
-
- /* If eeprom is not yet detected, do so now */
- if (eeprom->word_size == 0)
- e1000_init_eeprom_params(hw);
-
- /* A check for invalid values: offset too large, too many words, and not
- * enough words.
- */
- if ((offset >= eeprom->word_size)
- || (words > eeprom->word_size - offset) || (words == 0)) {
- e_dbg("\"words\" parameter out of bounds\n");
- return -E1000_ERR_EEPROM;
- }
-
- /* Prepare the EEPROM for writing */
- if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
- return -E1000_ERR_EEPROM;
-
- if (eeprom->type == e1000_eeprom_microwire) {
- status = e1000_write_eeprom_microwire(hw, offset, words, data);
- } else {
- status = e1000_write_eeprom_spi(hw, offset, words, data);
- msleep(10);
- }
-
- /* Done with writing */
- e1000_release_eeprom(hw);
-
- return status;
-}
-
-/**
- * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
- * @hw: Struct containing variables accessed by shared code
- * @offset: offset within the EEPROM to be written to
- * @words: number of words to write
- * @data: pointer to array of 8 bit words to be written to the EEPROM
- */
-static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
- u16 *data)
-{
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- u16 widx = 0;
-
- e_dbg("e1000_write_eeprom_spi");
-
- while (widx < words) {
- u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
-
- if (e1000_spi_eeprom_ready(hw))
- return -E1000_ERR_EEPROM;
-
- e1000_standby_eeprom(hw);
-
- /* Send the WRITE ENABLE command (8 bit opcode ) */
- e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
- eeprom->opcode_bits);
-
- e1000_standby_eeprom(hw);
-
- /* Some SPI eeproms use the 8th address bit embedded in the opcode */
- if ((eeprom->address_bits == 8) && (offset >= 128))
- write_opcode |= EEPROM_A8_OPCODE_SPI;
-
- /* Send the Write command (8-bit opcode + addr) */
- e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
-
- e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2),
- eeprom->address_bits);
-
- /* Send the data */
-
- /* Loop to allow for up to whole page write (32 bytes) of eeprom */
- while (widx < words) {
- u16 word_out = data[widx];
- word_out = (word_out >> 8) | (word_out << 8);
- e1000_shift_out_ee_bits(hw, word_out, 16);
- widx++;
-
- /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
- * operation, while the smaller eeproms are capable of an 8-byte
- * PAGE WRITE operation. Break the inner loop to pass new address
- */
- if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
- e1000_standby_eeprom(hw);
- break;
- }
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
- * @hw: Struct containing variables accessed by shared code
- * @offset: offset within the EEPROM to be written to
- * @words: number of words to write
- * @data: pointer to array of 8 bit words to be written to the EEPROM
- */
-static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
- u16 words, u16 *data)
-{
- struct e1000_eeprom_info *eeprom = &hw->eeprom;
- u32 eecd;
- u16 words_written = 0;
- u16 i = 0;
-
- e_dbg("e1000_write_eeprom_microwire");
-
- /* Send the write enable command to the EEPROM (3-bit opcode plus
- * 6/8-bit dummy address beginning with 11). It's less work to include
- * the 11 of the dummy address as part of the opcode than it is to shift
- * it over the correct number of bits for the address. This puts the
- * EEPROM into write/erase mode.
- */
- e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
- (u16) (eeprom->opcode_bits + 2));
-
- e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
-
- /* Prepare the EEPROM */
- e1000_standby_eeprom(hw);
-
- while (words_written < words) {
- /* Send the Write command (3-bit opcode + addr) */
- e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
- eeprom->opcode_bits);
-
- e1000_shift_out_ee_bits(hw, (u16) (offset + words_written),
- eeprom->address_bits);
-
- /* Send the data */
- e1000_shift_out_ee_bits(hw, data[words_written], 16);
-
- /* Toggle the CS line. This in effect tells the EEPROM to execute
- * the previous command.
- */
- e1000_standby_eeprom(hw);
-
- /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
- * signal that the command has been completed by raising the DO signal.
- * If DO does not go high in 10 milliseconds, then error out.
- */
- for (i = 0; i < 200; i++) {
- eecd = er32(EECD);
- if (eecd & E1000_EECD_DO)
- break;
- udelay(50);
- }
- if (i == 200) {
- e_dbg("EEPROM Write did not complete\n");
- return -E1000_ERR_EEPROM;
- }
-
- /* Recover from write */
- e1000_standby_eeprom(hw);
-
- words_written++;
- }
-
- /* Send the write disable command to the EEPROM (3-bit opcode plus
- * 6/8-bit dummy address beginning with 10). It's less work to include
- * the 10 of the dummy address as part of the opcode than it is to shift
- * it over the correct number of bits for the address. This takes the
- * EEPROM out of write/erase mode.
- */
- e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
- (u16) (eeprom->opcode_bits + 2));
-
- e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_read_mac_addr - read the adapters MAC from eeprom
- * @hw: Struct containing variables accessed by shared code
- *
- * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
- * second function of dual function devices
- */
-s32 e1000_read_mac_addr(struct e1000_hw *hw)
-{
- u16 offset;
- u16 eeprom_data, i;
-
- e_dbg("e1000_read_mac_addr");
-
- for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
- offset = i >> 1;
- if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
- e_dbg("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
- hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF);
- hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8);
- }
-
- switch (hw->mac_type) {
- default:
- break;
- case e1000_82546:
- case e1000_82546_rev_3:
- if (er32(STATUS) & E1000_STATUS_FUNC_1)
- hw->perm_mac_addr[5] ^= 0x01;
- break;
- }
-
- for (i = 0; i < NODE_ADDRESS_SIZE; i++)
- hw->mac_addr[i] = hw->perm_mac_addr[i];
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_init_rx_addrs - Initializes receive address filters.
- * @hw: Struct containing variables accessed by shared code
- *
- * Places the MAC address in receive address register 0 and clears the rest
- * of the receive address registers. Clears the multicast table. Assumes
- * the receiver is in reset when the routine is called.
- */
-static void e1000_init_rx_addrs(struct e1000_hw *hw)
-{
- u32 i;
- u32 rar_num;
-
- e_dbg("e1000_init_rx_addrs");
-
- /* Setup the receive address. */
- e_dbg("Programming MAC Address into RAR[0]\n");
-
- e1000_rar_set(hw, hw->mac_addr, 0);
-
- rar_num = E1000_RAR_ENTRIES;
-
- /* Zero out the other 15 receive addresses. */
- e_dbg("Clearing RAR[1-15]\n");
- for (i = 1; i < rar_num; i++) {
- E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
- E1000_WRITE_FLUSH();
- E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
- E1000_WRITE_FLUSH();
- }
-}
-
-/**
- * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
- * @hw: Struct containing variables accessed by shared code
- * @mc_addr: the multicast address to hash
- */
-u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
-{
- u32 hash_value = 0;
-
- /* The portion of the address that is used for the hash table is
- * determined by the mc_filter_type setting.
- */
- switch (hw->mc_filter_type) {
- /* [0] [1] [2] [3] [4] [5]
- * 01 AA 00 12 34 56
- * LSB MSB
- */
- case 0:
- /* [47:36] i.e. 0x563 for above example address */
- hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
- break;
- case 1:
- /* [46:35] i.e. 0xAC6 for above example address */
- hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
- break;
- case 2:
- /* [45:34] i.e. 0x5D8 for above example address */
- hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
- break;
- case 3:
- /* [43:32] i.e. 0x634 for above example address */
- hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
- break;
- }
-
- hash_value &= 0xFFF;
- return hash_value;
-}
-
-/**
- * e1000_rar_set - Puts an ethernet address into a receive address register.
- * @hw: Struct containing variables accessed by shared code
- * @addr: Address to put into receive address register
- * @index: Receive address register to write
- */
-void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
-{
- u32 rar_low, rar_high;
-
- /* HW expects these in little endian so we reverse the byte order
- * from network order (big endian) to little endian
- */
- rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
- ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
- rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
-
- /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
- * unit hang.
- *
- * Description:
- * If there are any Rx frames queued up or otherwise present in the HW
- * before RSS is enabled, and then we enable RSS, the HW Rx unit will
- * hang. To work around this issue, we have to disable receives and
- * flush out all Rx frames before we enable RSS. To do so, we modify we
- * redirect all Rx traffic to manageability and then reset the HW.
- * This flushes away Rx frames, and (since the redirections to
- * manageability persists across resets) keeps new ones from coming in
- * while we work. Then, we clear the Address Valid AV bit for all MAC
- * addresses and undo the re-direction to manageability.
- * Now, frames are coming in again, but the MAC won't accept them, so
- * far so good. We now proceed to initialize RSS (if necessary) and
- * configure the Rx unit. Last, we re-enable the AV bits and continue
- * on our merry way.
- */
- switch (hw->mac_type) {
- default:
- /* Indicate to hardware the Address is Valid. */
- rar_high |= E1000_RAH_AV;
- break;
- }
-
- E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
- E1000_WRITE_FLUSH();
- E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
- E1000_WRITE_FLUSH();
-}
-
-/**
- * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
- * @hw: Struct containing variables accessed by shared code
- * @offset: Offset in VLAN filer table to write
- * @value: Value to write into VLAN filter table
- */
-void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
-{
- u32 temp;
-
- if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
- temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
- E1000_WRITE_FLUSH();
- E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
- E1000_WRITE_FLUSH();
- } else {
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
- E1000_WRITE_FLUSH();
- }
-}
-
-/**
- * e1000_clear_vfta - Clears the VLAN filer table
- * @hw: Struct containing variables accessed by shared code
- */
-static void e1000_clear_vfta(struct e1000_hw *hw)
-{
- u32 offset;
- u32 vfta_value = 0;
- u32 vfta_offset = 0;
- u32 vfta_bit_in_reg = 0;
-
- for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
- /* If the offset we want to clear is the same offset of the
- * manageability VLAN ID, then clear all bits except that of the
- * manageability unit */
- vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
- E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
- E1000_WRITE_FLUSH();
- }
-}
-
-static s32 e1000_id_led_init(struct e1000_hw *hw)
-{
- u32 ledctl;
- const u32 ledctl_mask = 0x000000FF;
- const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
- const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
- u16 eeprom_data, i, temp;
- const u16 led_mask = 0x0F;
-
- e_dbg("e1000_id_led_init");
-
- if (hw->mac_type < e1000_82540) {
- /* Nothing to do */
- return E1000_SUCCESS;
- }
-
- ledctl = er32(LEDCTL);
- hw->ledctl_default = ledctl;
- hw->ledctl_mode1 = hw->ledctl_default;
- hw->ledctl_mode2 = hw->ledctl_default;
-
- if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
- e_dbg("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
-
- if ((eeprom_data == ID_LED_RESERVED_0000) ||
- (eeprom_data == ID_LED_RESERVED_FFFF)) {
- eeprom_data = ID_LED_DEFAULT;
- }
-
- for (i = 0; i < 4; i++) {
- temp = (eeprom_data >> (i << 2)) & led_mask;
- switch (temp) {
- case ID_LED_ON1_DEF2:
- case ID_LED_ON1_ON2:
- case ID_LED_ON1_OFF2:
- hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode1 |= ledctl_on << (i << 3);
- break;
- case ID_LED_OFF1_DEF2:
- case ID_LED_OFF1_ON2:
- case ID_LED_OFF1_OFF2:
- hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode1 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- switch (temp) {
- case ID_LED_DEF1_ON2:
- case ID_LED_ON1_ON2:
- case ID_LED_OFF1_ON2:
- hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode2 |= ledctl_on << (i << 3);
- break;
- case ID_LED_DEF1_OFF2:
- case ID_LED_ON1_OFF2:
- case ID_LED_OFF1_OFF2:
- hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- hw->ledctl_mode2 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- }
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_setup_led
- * @hw: Struct containing variables accessed by shared code
- *
- * Prepares SW controlable LED for use and saves the current state of the LED.
- */
-s32 e1000_setup_led(struct e1000_hw *hw)
-{
- u32 ledctl;
- s32 ret_val = E1000_SUCCESS;
-
- e_dbg("e1000_setup_led");
-
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- case e1000_82543:
- case e1000_82544:
- /* No setup necessary */
- break;
- case e1000_82541:
- case e1000_82547:
- case e1000_82541_rev_2:
- case e1000_82547_rev_2:
- /* Turn off PHY Smart Power Down (if enabled) */
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
- &hw->phy_spd_default);
- if (ret_val)
- return ret_val;
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
- (u16) (hw->phy_spd_default &
- ~IGP01E1000_GMII_SPD));
- if (ret_val)
- return ret_val;
- /* Fall Through */
- default:
- if (hw->media_type == e1000_media_type_fiber) {
- ledctl = er32(LEDCTL);
- /* Save current LEDCTL settings */
- hw->ledctl_default = ledctl;
- /* Turn off LED0 */
- ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
- E1000_LEDCTL_LED0_BLINK |
- E1000_LEDCTL_LED0_MODE_MASK);
- ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
- E1000_LEDCTL_LED0_MODE_SHIFT);
- ew32(LEDCTL, ledctl);
- } else if (hw->media_type == e1000_media_type_copper)
- ew32(LEDCTL, hw->ledctl_mode1);
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
- * @hw: Struct containing variables accessed by shared code
- */
-s32 e1000_cleanup_led(struct e1000_hw *hw)
-{
- s32 ret_val = E1000_SUCCESS;
-
- e_dbg("e1000_cleanup_led");
-
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- case e1000_82543:
- case e1000_82544:
- /* No cleanup necessary */
- break;
- case e1000_82541:
- case e1000_82547:
- case e1000_82541_rev_2:
- case e1000_82547_rev_2:
- /* Turn on PHY Smart Power Down (if previously enabled) */
- ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
- hw->phy_spd_default);
- if (ret_val)
- return ret_val;
- /* Fall Through */
- default:
- /* Restore LEDCTL settings */
- ew32(LEDCTL, hw->ledctl_default);
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_led_on - Turns on the software controllable LED
- * @hw: Struct containing variables accessed by shared code
- */
-s32 e1000_led_on(struct e1000_hw *hw)
-{
- u32 ctrl = er32(CTRL);
-
- e_dbg("e1000_led_on");
-
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- case e1000_82543:
- /* Set SW Defineable Pin 0 to turn on the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- break;
- case e1000_82544:
- if (hw->media_type == e1000_media_type_fiber) {
- /* Set SW Defineable Pin 0 to turn on the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else {
- /* Clear SW Defineable Pin 0 to turn on the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- }
- break;
- default:
- if (hw->media_type == e1000_media_type_fiber) {
- /* Clear SW Defineable Pin 0 to turn on the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else if (hw->media_type == e1000_media_type_copper) {
- ew32(LEDCTL, hw->ledctl_mode2);
- return E1000_SUCCESS;
- }
- break;
- }
-
- ew32(CTRL, ctrl);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_led_off - Turns off the software controllable LED
- * @hw: Struct containing variables accessed by shared code
- */
-s32 e1000_led_off(struct e1000_hw *hw)
-{
- u32 ctrl = er32(CTRL);
-
- e_dbg("e1000_led_off");
-
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- case e1000_82543:
- /* Clear SW Defineable Pin 0 to turn off the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- break;
- case e1000_82544:
- if (hw->media_type == e1000_media_type_fiber) {
- /* Clear SW Defineable Pin 0 to turn off the LED */
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else {
- /* Set SW Defineable Pin 0 to turn off the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- }
- break;
- default:
- if (hw->media_type == e1000_media_type_fiber) {
- /* Set SW Defineable Pin 0 to turn off the LED */
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- } else if (hw->media_type == e1000_media_type_copper) {
- ew32(LEDCTL, hw->ledctl_mode1);
- return E1000_SUCCESS;
- }
- break;
- }
-
- ew32(CTRL, ctrl);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
- * @hw: Struct containing variables accessed by shared code
- */
-static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
-{
- volatile u32 temp;
-
- temp = er32(CRCERRS);
- temp = er32(SYMERRS);
- temp = er32(MPC);
- temp = er32(SCC);
- temp = er32(ECOL);
- temp = er32(MCC);
- temp = er32(LATECOL);
- temp = er32(COLC);
- temp = er32(DC);
- temp = er32(SEC);
- temp = er32(RLEC);
- temp = er32(XONRXC);
- temp = er32(XONTXC);
- temp = er32(XOFFRXC);
- temp = er32(XOFFTXC);
- temp = er32(FCRUC);
-
- temp = er32(PRC64);
- temp = er32(PRC127);
- temp = er32(PRC255);
- temp = er32(PRC511);
- temp = er32(PRC1023);
- temp = er32(PRC1522);
-
- temp = er32(GPRC);
- temp = er32(BPRC);
- temp = er32(MPRC);
- temp = er32(GPTC);
- temp = er32(GORCL);
- temp = er32(GORCH);
- temp = er32(GOTCL);
- temp = er32(GOTCH);
- temp = er32(RNBC);
- temp = er32(RUC);
- temp = er32(RFC);
- temp = er32(ROC);
- temp = er32(RJC);
- temp = er32(TORL);
- temp = er32(TORH);
- temp = er32(TOTL);
- temp = er32(TOTH);
- temp = er32(TPR);
- temp = er32(TPT);
-
- temp = er32(PTC64);
- temp = er32(PTC127);
- temp = er32(PTC255);
- temp = er32(PTC511);
- temp = er32(PTC1023);
- temp = er32(PTC1522);
-
- temp = er32(MPTC);
- temp = er32(BPTC);
-
- if (hw->mac_type < e1000_82543)
- return;
-
- temp = er32(ALGNERRC);
- temp = er32(RXERRC);
- temp = er32(TNCRS);
- temp = er32(CEXTERR);
- temp = er32(TSCTC);
- temp = er32(TSCTFC);
-
- if (hw->mac_type <= e1000_82544)
- return;
-
- temp = er32(MGTPRC);
- temp = er32(MGTPDC);
- temp = er32(MGTPTC);
-}
-
-/**
- * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
- * @hw: Struct containing variables accessed by shared code
- *
- * Call this after e1000_init_hw. You may override the IFS defaults by setting
- * hw->ifs_params_forced to true. However, you must initialize hw->
- * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
- * before calling this function.
- */
-void e1000_reset_adaptive(struct e1000_hw *hw)
-{
- e_dbg("e1000_reset_adaptive");
-
- if (hw->adaptive_ifs) {
- if (!hw->ifs_params_forced) {
- hw->current_ifs_val = 0;
- hw->ifs_min_val = IFS_MIN;
- hw->ifs_max_val = IFS_MAX;
- hw->ifs_step_size = IFS_STEP;
- hw->ifs_ratio = IFS_RATIO;
- }
- hw->in_ifs_mode = false;
- ew32(AIT, 0);
- } else {
- e_dbg("Not in Adaptive IFS mode!\n");
- }
-}
-
-/**
- * e1000_update_adaptive - update adaptive IFS
- * @hw: Struct containing variables accessed by shared code
- * @tx_packets: Number of transmits since last callback
- * @total_collisions: Number of collisions since last callback
- *
- * Called during the callback/watchdog routine to update IFS value based on
- * the ratio of transmits to collisions.
- */
-void e1000_update_adaptive(struct e1000_hw *hw)
-{
- e_dbg("e1000_update_adaptive");
-
- if (hw->adaptive_ifs) {
- if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) {
- if (hw->tx_packet_delta > MIN_NUM_XMITS) {
- hw->in_ifs_mode = true;
- if (hw->current_ifs_val < hw->ifs_max_val) {
- if (hw->current_ifs_val == 0)
- hw->current_ifs_val =
- hw->ifs_min_val;
- else
- hw->current_ifs_val +=
- hw->ifs_step_size;
- ew32(AIT, hw->current_ifs_val);
- }
- }
- } else {
- if (hw->in_ifs_mode
- && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
- hw->current_ifs_val = 0;
- hw->in_ifs_mode = false;
- ew32(AIT, 0);
- }
- }
- } else {
- e_dbg("Not in Adaptive IFS mode!\n");
- }
-}
-
-/**
- * e1000_tbi_adjust_stats
- * @hw: Struct containing variables accessed by shared code
- * @frame_len: The length of the frame in question
- * @mac_addr: The Ethernet destination address of the frame in question
- *
- * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
- */
-void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
- u32 frame_len, u8 *mac_addr)
-{
- u64 carry_bit;
-
- /* First adjust the frame length. */
- frame_len--;
- /* We need to adjust the statistics counters, since the hardware
- * counters overcount this packet as a CRC error and undercount
- * the packet as a good packet
- */
- /* This packet should not be counted as a CRC error. */
- stats->crcerrs--;
- /* This packet does count as a Good Packet Received. */
- stats->gprc++;
-
- /* Adjust the Good Octets received counters */
- carry_bit = 0x80000000 & stats->gorcl;
- stats->gorcl += frame_len;
- /* If the high bit of Gorcl (the low 32 bits of the Good Octets
- * Received Count) was one before the addition,
- * AND it is zero after, then we lost the carry out,
- * need to add one to Gorch (Good Octets Received Count High).
- * This could be simplified if all environments supported
- * 64-bit integers.
- */
- if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
- stats->gorch++;
- /* Is this a broadcast or multicast? Check broadcast first,
- * since the test for a multicast frame will test positive on
- * a broadcast frame.
- */
- if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff))
- /* Broadcast packet */
- stats->bprc++;
- else if (*mac_addr & 0x01)
- /* Multicast packet */
- stats->mprc++;
-
- if (frame_len == hw->max_frame_size) {
- /* In this case, the hardware has overcounted the number of
- * oversize frames.
- */
- if (stats->roc > 0)
- stats->roc--;
- }
-
- /* Adjust the bin counters when the extra byte put the frame in the
- * wrong bin. Remember that the frame_len was adjusted above.
- */
- if (frame_len == 64) {
- stats->prc64++;
- stats->prc127--;
- } else if (frame_len == 127) {
- stats->prc127++;
- stats->prc255--;
- } else if (frame_len == 255) {
- stats->prc255++;
- stats->prc511--;
- } else if (frame_len == 511) {
- stats->prc511++;
- stats->prc1023--;
- } else if (frame_len == 1023) {
- stats->prc1023++;
- stats->prc1522--;
- } else if (frame_len == 1522) {
- stats->prc1522++;
- }
-}
-
-/**
- * e1000_get_bus_info
- * @hw: Struct containing variables accessed by shared code
- *
- * Gets the current PCI bus type, speed, and width of the hardware
- */
-void e1000_get_bus_info(struct e1000_hw *hw)
-{
- u32 status;
-
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- hw->bus_type = e1000_bus_type_pci;
- hw->bus_speed = e1000_bus_speed_unknown;
- hw->bus_width = e1000_bus_width_unknown;
- break;
- default:
- status = er32(STATUS);
- hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
- e1000_bus_type_pcix : e1000_bus_type_pci;
-
- if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
- hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
- e1000_bus_speed_66 : e1000_bus_speed_120;
- } else if (hw->bus_type == e1000_bus_type_pci) {
- hw->bus_speed = (status & E1000_STATUS_PCI66) ?
- e1000_bus_speed_66 : e1000_bus_speed_33;
- } else {
- switch (status & E1000_STATUS_PCIX_SPEED) {
- case E1000_STATUS_PCIX_SPEED_66:
- hw->bus_speed = e1000_bus_speed_66;
- break;
- case E1000_STATUS_PCIX_SPEED_100:
- hw->bus_speed = e1000_bus_speed_100;
- break;
- case E1000_STATUS_PCIX_SPEED_133:
- hw->bus_speed = e1000_bus_speed_133;
- break;
- default:
- hw->bus_speed = e1000_bus_speed_reserved;
- break;
- }
- }
- hw->bus_width = (status & E1000_STATUS_BUS64) ?
- e1000_bus_width_64 : e1000_bus_width_32;
- break;
- }
-}
-
-/**
- * e1000_write_reg_io
- * @hw: Struct containing variables accessed by shared code
- * @offset: offset to write to
- * @value: value to write
- *
- * Writes a value to one of the devices registers using port I/O (as opposed to
- * memory mapped I/O). Only 82544 and newer devices support port I/O.
- */
-static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
-{
- unsigned long io_addr = hw->io_base;
- unsigned long io_data = hw->io_base + 4;
-
- e1000_io_write(hw, io_addr, offset);
- e1000_io_write(hw, io_data, value);
-}
-
-/**
- * e1000_get_cable_length - Estimates the cable length.
- * @hw: Struct containing variables accessed by shared code
- * @min_length: The estimated minimum length
- * @max_length: The estimated maximum length
- *
- * returns: - E1000_ERR_XXX
- * E1000_SUCCESS
- *
- * This function always returns a ranged length (minimum & maximum).
- * So for M88 phy's, this function interprets the one value returned from the
- * register to the minimum and maximum range.
- * For IGP phy's, the function calculates the range by the AGC registers.
- */
-static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
- u16 *max_length)
-{
- s32 ret_val;
- u16 agc_value = 0;
- u16 i, phy_data;
- u16 cable_length;
-
- e_dbg("e1000_get_cable_length");
-
- *min_length = *max_length = 0;
-
- /* Use old method for Phy older than IGP */
- if (hw->phy_type == e1000_phy_m88) {
-
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
- cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
- M88E1000_PSSR_CABLE_LENGTH_SHIFT;
-
- /* Convert the enum value to ranged values */
- switch (cable_length) {
- case e1000_cable_length_50:
- *min_length = 0;
- *max_length = e1000_igp_cable_length_50;
- break;
- case e1000_cable_length_50_80:
- *min_length = e1000_igp_cable_length_50;
- *max_length = e1000_igp_cable_length_80;
- break;
- case e1000_cable_length_80_110:
- *min_length = e1000_igp_cable_length_80;
- *max_length = e1000_igp_cable_length_110;
- break;
- case e1000_cable_length_110_140:
- *min_length = e1000_igp_cable_length_110;
- *max_length = e1000_igp_cable_length_140;
- break;
- case e1000_cable_length_140:
- *min_length = e1000_igp_cable_length_140;
- *max_length = e1000_igp_cable_length_170;
- break;
- default:
- return -E1000_ERR_PHY;
- break;
- }
- } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
- u16 cur_agc_value;
- u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
- static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
- IGP01E1000_PHY_AGC_A,
- IGP01E1000_PHY_AGC_B,
- IGP01E1000_PHY_AGC_C,
- IGP01E1000_PHY_AGC_D
- };
- /* Read the AGC registers for all channels */
- for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
-
- ret_val =
- e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
- if (ret_val)
- return ret_val;
-
- cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
-
- /* Value bound check. */
- if ((cur_agc_value >=
- IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1)
- || (cur_agc_value == 0))
- return -E1000_ERR_PHY;
-
- agc_value += cur_agc_value;
-
- /* Update minimal AGC value. */
- if (min_agc_value > cur_agc_value)
- min_agc_value = cur_agc_value;
- }
-
- /* Remove the minimal AGC result for length < 50m */
- if (agc_value <
- IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
- agc_value -= min_agc_value;
-
- /* Get the average length of the remaining 3 channels */
- agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
- } else {
- /* Get the average length of all the 4 channels. */
- agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
- }
-
- /* Set the range of the calculated length. */
- *min_length = ((e1000_igp_cable_length_table[agc_value] -
- IGP01E1000_AGC_RANGE) > 0) ?
- (e1000_igp_cable_length_table[agc_value] -
- IGP01E1000_AGC_RANGE) : 0;
- *max_length = e1000_igp_cable_length_table[agc_value] +
- IGP01E1000_AGC_RANGE;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_check_polarity - Check the cable polarity
- * @hw: Struct containing variables accessed by shared code
- * @polarity: output parameter : 0 - Polarity is not reversed
- * 1 - Polarity is reversed.
- *
- * returns: - E1000_ERR_XXX
- * E1000_SUCCESS
- *
- * For phy's older than IGP, this function simply reads the polarity bit in the
- * Phy Status register. For IGP phy's, this bit is valid only if link speed is
- * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
- * return 0. If the link speed is 1000 Mbps the polarity status is in the
- * IGP01E1000_PHY_PCS_INIT_REG.
- */
-static s32 e1000_check_polarity(struct e1000_hw *hw,
- e1000_rev_polarity *polarity)
-{
- s32 ret_val;
- u16 phy_data;
-
- e_dbg("e1000_check_polarity");
-
- if (hw->phy_type == e1000_phy_m88) {
- /* return the Polarity bit in the Status register. */
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
- *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
- M88E1000_PSSR_REV_POLARITY_SHIFT) ?
- e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
-
- } else if (hw->phy_type == e1000_phy_igp) {
- /* Read the Status register to check the speed */
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
- * find the polarity status */
- if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
- IGP01E1000_PSSR_SPEED_1000MBPS) {
-
- /* Read the GIG initialization PCS register (0x00B4) */
- ret_val =
- e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- /* Check the polarity bits */
- *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
- e1000_rev_polarity_reversed :
- e1000_rev_polarity_normal;
- } else {
- /* For 10 Mbps, read the polarity bit in the status register. (for
- * 100 Mbps this bit is always 0) */
- *polarity =
- (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
- e1000_rev_polarity_reversed :
- e1000_rev_polarity_normal;
- }
- }
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_check_downshift - Check if Downshift occurred
- * @hw: Struct containing variables accessed by shared code
- * @downshift: output parameter : 0 - No Downshift occurred.
- * 1 - Downshift occurred.
- *
- * returns: - E1000_ERR_XXX
- * E1000_SUCCESS
- *
- * For phy's older than IGP, this function reads the Downshift bit in the Phy
- * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
- * Link Health register. In IGP this bit is latched high, so the driver must
- * read it immediately after link is established.
- */
-static s32 e1000_check_downshift(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 phy_data;
-
- e_dbg("e1000_check_downshift");
-
- if (hw->phy_type == e1000_phy_igp) {
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- hw->speed_downgraded =
- (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
- } else if (hw->phy_type == e1000_phy_m88) {
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
- M88E1000_PSSR_DOWNSHIFT_SHIFT;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_config_dsp_after_link_change
- * @hw: Struct containing variables accessed by shared code
- * @link_up: was link up at the time this was called
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- * E1000_SUCCESS at any other case.
- *
- * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
- * gigabit link is achieved to improve link quality.
- */
-
-static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
-{
- s32 ret_val;
- u16 phy_data, phy_saved_data, speed, duplex, i;
- static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
- IGP01E1000_PHY_AGC_PARAM_A,
- IGP01E1000_PHY_AGC_PARAM_B,
- IGP01E1000_PHY_AGC_PARAM_C,
- IGP01E1000_PHY_AGC_PARAM_D
- };
- u16 min_length, max_length;
-
- e_dbg("e1000_config_dsp_after_link_change");
-
- if (hw->phy_type != e1000_phy_igp)
- return E1000_SUCCESS;
-
- if (link_up) {
- ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
- if (ret_val) {
- e_dbg("Error getting link speed and duplex\n");
- return ret_val;
- }
-
- if (speed == SPEED_1000) {
-
- ret_val =
- e1000_get_cable_length(hw, &min_length,
- &max_length);
- if (ret_val)
- return ret_val;
-
- if ((hw->dsp_config_state == e1000_dsp_config_enabled)
- && min_length >= e1000_igp_cable_length_50) {
-
- for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
- ret_val =
- e1000_read_phy_reg(hw,
- dsp_reg_array[i],
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &=
- ~IGP01E1000_PHY_EDAC_MU_INDEX;
-
- ret_val =
- e1000_write_phy_reg(hw,
- dsp_reg_array
- [i], phy_data);
- if (ret_val)
- return ret_val;
- }
- hw->dsp_config_state =
- e1000_dsp_config_activated;
- }
-
- if ((hw->ffe_config_state == e1000_ffe_config_enabled)
- && (min_length < e1000_igp_cable_length_50)) {
-
- u16 ffe_idle_err_timeout =
- FFE_IDLE_ERR_COUNT_TIMEOUT_20;
- u32 idle_errs = 0;
-
- /* clear previous idle error counts */
- ret_val =
- e1000_read_phy_reg(hw, PHY_1000T_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- for (i = 0; i < ffe_idle_err_timeout; i++) {
- udelay(1000);
- ret_val =
- e1000_read_phy_reg(hw,
- PHY_1000T_STATUS,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- idle_errs +=
- (phy_data &
- SR_1000T_IDLE_ERROR_CNT);
- if (idle_errs >
- SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT)
- {
- hw->ffe_config_state =
- e1000_ffe_config_active;
-
- ret_val =
- e1000_write_phy_reg(hw,
- IGP01E1000_PHY_DSP_FFE,
- IGP01E1000_PHY_DSP_FFE_CM_CP);
- if (ret_val)
- return ret_val;
- break;
- }
-
- if (idle_errs)
- ffe_idle_err_timeout =
- FFE_IDLE_ERR_COUNT_TIMEOUT_100;
- }
- }
- }
- } else {
- if (hw->dsp_config_state == e1000_dsp_config_activated) {
- /* Save off the current value of register 0x2F5B to be restored at
- * the end of the routines. */
- ret_val =
- e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
- if (ret_val)
- return ret_val;
-
- /* Disable the PHY transmitter */
- ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
-
- if (ret_val)
- return ret_val;
-
- mdelay(20);
-
- ret_val = e1000_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_FORCE_GIGA);
- if (ret_val)
- return ret_val;
- for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
- ret_val =
- e1000_read_phy_reg(hw, dsp_reg_array[i],
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
- phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
-
- ret_val =
- e1000_write_phy_reg(hw, dsp_reg_array[i],
- phy_data);
- if (ret_val)
- return ret_val;
- }
-
- ret_val = e1000_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_RESTART_AUTONEG);
- if (ret_val)
- return ret_val;
-
- mdelay(20);
-
- /* Now enable the transmitter */
- ret_val =
- e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
- if (ret_val)
- return ret_val;
-
- hw->dsp_config_state = e1000_dsp_config_enabled;
- }
-
- if (hw->ffe_config_state == e1000_ffe_config_active) {
- /* Save off the current value of register 0x2F5B to be restored at
- * the end of the routines. */
- ret_val =
- e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
-
- if (ret_val)
- return ret_val;
-
- /* Disable the PHY transmitter */
- ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
-
- if (ret_val)
- return ret_val;
-
- mdelay(20);
-
- ret_val = e1000_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_FORCE_GIGA);
- if (ret_val)
- return ret_val;
- ret_val =
- e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
- IGP01E1000_PHY_DSP_FFE_DEFAULT);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_write_phy_reg(hw, 0x0000,
- IGP01E1000_IEEE_RESTART_AUTONEG);
- if (ret_val)
- return ret_val;
-
- mdelay(20);
-
- /* Now enable the transmitter */
- ret_val =
- e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
-
- if (ret_val)
- return ret_val;
-
- hw->ffe_config_state = e1000_ffe_config_enabled;
- }
- }
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_set_phy_mode - Set PHY to class A mode
- * @hw: Struct containing variables accessed by shared code
- *
- * Assumes the following operations will follow to enable the new class mode.
- * 1. Do a PHY soft reset
- * 2. Restart auto-negotiation or force link.
- */
-static s32 e1000_set_phy_mode(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 eeprom_data;
-
- e_dbg("e1000_set_phy_mode");
-
- if ((hw->mac_type == e1000_82545_rev_3) &&
- (hw->media_type == e1000_media_type_copper)) {
- ret_val =
- e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
- &eeprom_data);
- if (ret_val) {
- return ret_val;
- }
-
- if ((eeprom_data != EEPROM_RESERVED_WORD) &&
- (eeprom_data & EEPROM_PHY_CLASS_A)) {
- ret_val =
- e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
- 0x000B);
- if (ret_val)
- return ret_val;
- ret_val =
- e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
- 0x8104);
- if (ret_val)
- return ret_val;
-
- hw->phy_reset_disable = false;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_set_d3_lplu_state - set d3 link power state
- * @hw: Struct containing variables accessed by shared code
- * @active: true to enable lplu false to disable lplu.
- *
- * This function sets the lplu state according to the active flag. When
- * activating lplu this function also disables smart speed and vise versa.
- * lplu will not be activated unless the device autonegotiation advertisement
- * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
- *
- * returns: - E1000_ERR_PHY if fail to read/write the PHY
- * E1000_SUCCESS at any other case.
- */
-static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
-{
- s32 ret_val;
- u16 phy_data;
- e_dbg("e1000_set_d3_lplu_state");
-
- if (hw->phy_type != e1000_phy_igp)
- return E1000_SUCCESS;
-
- /* During driver activity LPLU should not be used or it will attain link
- * from the lowest speeds starting from 10Mbps. The capability is used for
- * Dx transitions and states */
- if (hw->mac_type == e1000_82541_rev_2
- || hw->mac_type == e1000_82547_rev_2) {
- ret_val =
- e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
- if (ret_val)
- return ret_val;
- }
-
- if (!active) {
- if (hw->mac_type == e1000_82541_rev_2 ||
- hw->mac_type == e1000_82547_rev_2) {
- phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
- ret_val =
- e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
- phy_data);
- if (ret_val)
- return ret_val;
- }
-
- /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
- * Dx states where the power conservation is most important. During
- * driver activity we should enable SmartSpeed, so performance is
- * maintained. */
- if (hw->smart_speed == e1000_smart_speed_on) {
- ret_val =
- e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
- ret_val =
- e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if (ret_val)
- return ret_val;
- } else if (hw->smart_speed == e1000_smart_speed_off) {
- ret_val =
- e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val =
- e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if (ret_val)
- return ret_val;
- }
- } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
- || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL)
- || (hw->autoneg_advertised ==
- AUTONEG_ADVERTISE_10_100_ALL)) {
-
- if (hw->mac_type == e1000_82541_rev_2 ||
- hw->mac_type == e1000_82547_rev_2) {
- phy_data |= IGP01E1000_GMII_FLEX_SPD;
- ret_val =
- e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
- phy_data);
- if (ret_val)
- return ret_val;
- }
-
- /* When LPLU is enabled we should disable SmartSpeed */
- ret_val =
- e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val =
- e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if (ret_val)
- return ret_val;
-
- }
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_set_vco_speed
- * @hw: Struct containing variables accessed by shared code
- *
- * Change VCO speed register to improve Bit Error Rate performance of SERDES.
- */
-static s32 e1000_set_vco_speed(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 default_page = 0;
- u16 phy_data;
-
- e_dbg("e1000_set_vco_speed");
-
- switch (hw->mac_type) {
- case e1000_82545_rev_3:
- case e1000_82546_rev_3:
- break;
- default:
- return E1000_SUCCESS;
- }
-
- /* Set PHY register 30, page 5, bit 8 to 0 */
-
- ret_val =
- e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
-
- /* Set PHY register 30, page 4, bit 11 to 1 */
-
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= M88E1000_PHY_VCO_REG_BIT11;
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
- if (ret_val)
- return ret_val;
-
- ret_val =
- e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
- if (ret_val)
- return ret_val;
-
- return E1000_SUCCESS;
-}
-
-
-/**
- * e1000_enable_mng_pass_thru - check for bmc pass through
- * @hw: Struct containing variables accessed by shared code
- *
- * Verifies the hardware needs to allow ARPs to be processed by the host
- * returns: - true/false
- */
-u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
-{
- u32 manc;
-
- if (hw->asf_firmware_present) {
- manc = er32(MANC);
-
- if (!(manc & E1000_MANC_RCV_TCO_EN) ||
- !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
- return false;
- if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
- return true;
- }
- return false;
-}
-
-static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 mii_status_reg;
- u16 i;
-
- /* Polarity reversal workaround for forced 10F/10H links. */
-
- /* Disable the transmitter on the PHY */
-
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
- if (ret_val)
- return ret_val;
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
- if (ret_val)
- return ret_val;
-
- /* This loop will early-out if the NO link condition has been met. */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Link Status bit
- * to be clear.
- */
-
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
- break;
- mdelay(100);
- }
-
- /* Recommended delay time after link has been lost */
- mdelay(1000);
-
- /* Now we will re-enable th transmitter on the PHY */
-
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
- if (ret_val)
- return ret_val;
- mdelay(50);
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
- if (ret_val)
- return ret_val;
- mdelay(50);
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
- if (ret_val)
- return ret_val;
- mdelay(50);
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
- if (ret_val)
- return ret_val;
-
- /* This loop will early-out if the link condition has been met. */
- for (i = PHY_FORCE_TIME; i > 0; i--) {
- /* Read the MII Status Register and wait for Link Status bit
- * to be set.
- */
-
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- if (mii_status_reg & MII_SR_LINK_STATUS)
- break;
- mdelay(100);
- }
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_get_auto_rd_done
- * @hw: Struct containing variables accessed by shared code
- *
- * Check for EEPROM Auto Read bit done.
- * returns: - E1000_ERR_RESET if fail to reset MAC
- * E1000_SUCCESS at any other case.
- */
-static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
-{
- e_dbg("e1000_get_auto_rd_done");
- msleep(5);
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_get_phy_cfg_done
- * @hw: Struct containing variables accessed by shared code
- *
- * Checks if the PHY configuration is done
- * returns: - E1000_ERR_RESET if fail to reset MAC
- * E1000_SUCCESS at any other case.
- */
-static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
-{
- e_dbg("e1000_get_phy_cfg_done");
- mdelay(10);
- return E1000_SUCCESS;
-}
diff --git a/drivers/net/e1000/e1000_hw.h b/drivers/net/e1000/e1000_hw.h
deleted file mode 100644
index 5c9a8403668b..000000000000
--- a/drivers/net/e1000/e1000_hw.h
+++ /dev/null
@@ -1,3103 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2006 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-/* e1000_hw.h
- * Structures, enums, and macros for the MAC
- */
-
-#ifndef _E1000_HW_H_
-#define _E1000_HW_H_
-
-#include "e1000_osdep.h"
-
-
-/* Forward declarations of structures used by the shared code */
-struct e1000_hw;
-struct e1000_hw_stats;
-
-/* Enumerated types specific to the e1000 hardware */
-/* Media Access Controllers */
-typedef enum {
- e1000_undefined = 0,
- e1000_82542_rev2_0,
- e1000_82542_rev2_1,
- e1000_82543,
- e1000_82544,
- e1000_82540,
- e1000_82545,
- e1000_82545_rev_3,
- e1000_82546,
- e1000_ce4100,
- e1000_82546_rev_3,
- e1000_82541,
- e1000_82541_rev_2,
- e1000_82547,
- e1000_82547_rev_2,
- e1000_num_macs
-} e1000_mac_type;
-
-typedef enum {
- e1000_eeprom_uninitialized = 0,
- e1000_eeprom_spi,
- e1000_eeprom_microwire,
- e1000_eeprom_flash,
- e1000_eeprom_none, /* No NVM support */
- e1000_num_eeprom_types
-} e1000_eeprom_type;
-
-/* Media Types */
-typedef enum {
- e1000_media_type_copper = 0,
- e1000_media_type_fiber = 1,
- e1000_media_type_internal_serdes = 2,
- e1000_num_media_types
-} e1000_media_type;
-
-typedef enum {
- e1000_10_half = 0,
- e1000_10_full = 1,
- e1000_100_half = 2,
- e1000_100_full = 3
-} e1000_speed_duplex_type;
-
-/* Flow Control Settings */
-typedef enum {
- E1000_FC_NONE = 0,
- E1000_FC_RX_PAUSE = 1,
- E1000_FC_TX_PAUSE = 2,
- E1000_FC_FULL = 3,
- E1000_FC_DEFAULT = 0xFF
-} e1000_fc_type;
-
-struct e1000_shadow_ram {
- u16 eeprom_word;
- bool modified;
-};
-
-/* PCI bus types */
-typedef enum {
- e1000_bus_type_unknown = 0,
- e1000_bus_type_pci,
- e1000_bus_type_pcix,
- e1000_bus_type_reserved
-} e1000_bus_type;
-
-/* PCI bus speeds */
-typedef enum {
- e1000_bus_speed_unknown = 0,
- e1000_bus_speed_33,
- e1000_bus_speed_66,
- e1000_bus_speed_100,
- e1000_bus_speed_120,
- e1000_bus_speed_133,
- e1000_bus_speed_reserved
-} e1000_bus_speed;
-
-/* PCI bus widths */
-typedef enum {
- e1000_bus_width_unknown = 0,
- e1000_bus_width_32,
- e1000_bus_width_64,
- e1000_bus_width_reserved
-} e1000_bus_width;
-
-/* PHY status info structure and supporting enums */
-typedef enum {
- e1000_cable_length_50 = 0,
- e1000_cable_length_50_80,
- e1000_cable_length_80_110,
- e1000_cable_length_110_140,
- e1000_cable_length_140,
- e1000_cable_length_undefined = 0xFF
-} e1000_cable_length;
-
-typedef enum {
- e1000_gg_cable_length_60 = 0,
- e1000_gg_cable_length_60_115 = 1,
- e1000_gg_cable_length_115_150 = 2,
- e1000_gg_cable_length_150 = 4
-} e1000_gg_cable_length;
-
-typedef enum {
- e1000_igp_cable_length_10 = 10,
- e1000_igp_cable_length_20 = 20,
- e1000_igp_cable_length_30 = 30,
- e1000_igp_cable_length_40 = 40,
- e1000_igp_cable_length_50 = 50,
- e1000_igp_cable_length_60 = 60,
- e1000_igp_cable_length_70 = 70,
- e1000_igp_cable_length_80 = 80,
- e1000_igp_cable_length_90 = 90,
- e1000_igp_cable_length_100 = 100,
- e1000_igp_cable_length_110 = 110,
- e1000_igp_cable_length_115 = 115,
- e1000_igp_cable_length_120 = 120,
- e1000_igp_cable_length_130 = 130,
- e1000_igp_cable_length_140 = 140,
- e1000_igp_cable_length_150 = 150,
- e1000_igp_cable_length_160 = 160,
- e1000_igp_cable_length_170 = 170,
- e1000_igp_cable_length_180 = 180
-} e1000_igp_cable_length;
-
-typedef enum {
- e1000_10bt_ext_dist_enable_normal = 0,
- e1000_10bt_ext_dist_enable_lower,
- e1000_10bt_ext_dist_enable_undefined = 0xFF
-} e1000_10bt_ext_dist_enable;
-
-typedef enum {
- e1000_rev_polarity_normal = 0,
- e1000_rev_polarity_reversed,
- e1000_rev_polarity_undefined = 0xFF
-} e1000_rev_polarity;
-
-typedef enum {
- e1000_downshift_normal = 0,
- e1000_downshift_activated,
- e1000_downshift_undefined = 0xFF
-} e1000_downshift;
-
-typedef enum {
- e1000_smart_speed_default = 0,
- e1000_smart_speed_on,
- e1000_smart_speed_off
-} e1000_smart_speed;
-
-typedef enum {
- e1000_polarity_reversal_enabled = 0,
- e1000_polarity_reversal_disabled,
- e1000_polarity_reversal_undefined = 0xFF
-} e1000_polarity_reversal;
-
-typedef enum {
- e1000_auto_x_mode_manual_mdi = 0,
- e1000_auto_x_mode_manual_mdix,
- e1000_auto_x_mode_auto1,
- e1000_auto_x_mode_auto2,
- e1000_auto_x_mode_undefined = 0xFF
-} e1000_auto_x_mode;
-
-typedef enum {
- e1000_1000t_rx_status_not_ok = 0,
- e1000_1000t_rx_status_ok,
- e1000_1000t_rx_status_undefined = 0xFF
-} e1000_1000t_rx_status;
-
-typedef enum {
- e1000_phy_m88 = 0,
- e1000_phy_igp,
- e1000_phy_8211,
- e1000_phy_8201,
- e1000_phy_undefined = 0xFF
-} e1000_phy_type;
-
-typedef enum {
- e1000_ms_hw_default = 0,
- e1000_ms_force_master,
- e1000_ms_force_slave,
- e1000_ms_auto
-} e1000_ms_type;
-
-typedef enum {
- e1000_ffe_config_enabled = 0,
- e1000_ffe_config_active,
- e1000_ffe_config_blocked
-} e1000_ffe_config;
-
-typedef enum {
- e1000_dsp_config_disabled = 0,
- e1000_dsp_config_enabled,
- e1000_dsp_config_activated,
- e1000_dsp_config_undefined = 0xFF
-} e1000_dsp_config;
-
-struct e1000_phy_info {
- e1000_cable_length cable_length;
- e1000_10bt_ext_dist_enable extended_10bt_distance;
- e1000_rev_polarity cable_polarity;
- e1000_downshift downshift;
- e1000_polarity_reversal polarity_correction;
- e1000_auto_x_mode mdix_mode;
- e1000_1000t_rx_status local_rx;
- e1000_1000t_rx_status remote_rx;
-};
-
-struct e1000_phy_stats {
- u32 idle_errors;
- u32 receive_errors;
-};
-
-struct e1000_eeprom_info {
- e1000_eeprom_type type;
- u16 word_size;
- u16 opcode_bits;
- u16 address_bits;
- u16 delay_usec;
- u16 page_size;
-};
-
-/* Flex ASF Information */
-#define E1000_HOST_IF_MAX_SIZE 2048
-
-typedef enum {
- e1000_byte_align = 0,
- e1000_word_align = 1,
- e1000_dword_align = 2
-} e1000_align_type;
-
-/* Error Codes */
-#define E1000_SUCCESS 0
-#define E1000_ERR_EEPROM 1
-#define E1000_ERR_PHY 2
-#define E1000_ERR_CONFIG 3
-#define E1000_ERR_PARAM 4
-#define E1000_ERR_MAC_TYPE 5
-#define E1000_ERR_PHY_TYPE 6
-#define E1000_ERR_RESET 9
-#define E1000_ERR_MASTER_REQUESTS_PENDING 10
-#define E1000_ERR_HOST_INTERFACE_COMMAND 11
-#define E1000_BLK_PHY_RESET 12
-
-#define E1000_BYTE_SWAP_WORD(_value) ((((_value) & 0x00ff) << 8) | \
- (((_value) & 0xff00) >> 8))
-
-/* Function prototypes */
-/* Initialization */
-s32 e1000_reset_hw(struct e1000_hw *hw);
-s32 e1000_init_hw(struct e1000_hw *hw);
-s32 e1000_set_mac_type(struct e1000_hw *hw);
-void e1000_set_media_type(struct e1000_hw *hw);
-
-/* Link Configuration */
-s32 e1000_setup_link(struct e1000_hw *hw);
-s32 e1000_phy_setup_autoneg(struct e1000_hw *hw);
-void e1000_config_collision_dist(struct e1000_hw *hw);
-s32 e1000_check_for_link(struct e1000_hw *hw);
-s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 * speed, u16 * duplex);
-s32 e1000_force_mac_fc(struct e1000_hw *hw);
-
-/* PHY */
-s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 * phy_data);
-s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 data);
-s32 e1000_phy_hw_reset(struct e1000_hw *hw);
-s32 e1000_phy_reset(struct e1000_hw *hw);
-s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
-s32 e1000_validate_mdi_setting(struct e1000_hw *hw);
-
-/* EEPROM Functions */
-s32 e1000_init_eeprom_params(struct e1000_hw *hw);
-
-/* MNG HOST IF functions */
-u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw);
-
-#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64
-#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 /* Host Interface data length */
-
-#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 /* Time in ms to process MNG command */
-#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */
-#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */
-#define E1000_MNG_IAMT_MODE 0x3
-#define E1000_MNG_ICH_IAMT_MODE 0x2
-#define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management Technology signature */
-
-#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */
-#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT 0x2 /* DHCP parsing enabled */
-#define E1000_VFTA_ENTRY_SHIFT 0x5
-#define E1000_VFTA_ENTRY_MASK 0x7F
-#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F
-
-struct e1000_host_mng_command_header {
- u8 command_id;
- u8 checksum;
- u16 reserved1;
- u16 reserved2;
- u16 command_length;
-};
-
-struct e1000_host_mng_command_info {
- struct e1000_host_mng_command_header command_header; /* Command Head/Command Result Head has 4 bytes */
- u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; /* Command data can length 0..0x658 */
-};
-#ifdef __BIG_ENDIAN
-struct e1000_host_mng_dhcp_cookie {
- u32 signature;
- u16 vlan_id;
- u8 reserved0;
- u8 status;
- u32 reserved1;
- u8 checksum;
- u8 reserved3;
- u16 reserved2;
-};
-#else
-struct e1000_host_mng_dhcp_cookie {
- u32 signature;
- u8 status;
- u8 reserved0;
- u16 vlan_id;
- u32 reserved1;
- u16 reserved2;
- u8 reserved3;
- u8 checksum;
-};
-#endif
-
-bool e1000_check_mng_mode(struct e1000_hw *hw);
-s32 e1000_read_eeprom(struct e1000_hw *hw, u16 reg, u16 words, u16 * data);
-s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw);
-s32 e1000_update_eeprom_checksum(struct e1000_hw *hw);
-s32 e1000_write_eeprom(struct e1000_hw *hw, u16 reg, u16 words, u16 * data);
-s32 e1000_read_mac_addr(struct e1000_hw *hw);
-
-/* Filters (multicast, vlan, receive) */
-u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 * mc_addr);
-void e1000_mta_set(struct e1000_hw *hw, u32 hash_value);
-void e1000_rar_set(struct e1000_hw *hw, u8 * mc_addr, u32 rar_index);
-void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value);
-
-/* LED functions */
-s32 e1000_setup_led(struct e1000_hw *hw);
-s32 e1000_cleanup_led(struct e1000_hw *hw);
-s32 e1000_led_on(struct e1000_hw *hw);
-s32 e1000_led_off(struct e1000_hw *hw);
-s32 e1000_blink_led_start(struct e1000_hw *hw);
-
-/* Adaptive IFS Functions */
-
-/* Everything else */
-void e1000_reset_adaptive(struct e1000_hw *hw);
-void e1000_update_adaptive(struct e1000_hw *hw);
-void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
- u32 frame_len, u8 * mac_addr);
-void e1000_get_bus_info(struct e1000_hw *hw);
-void e1000_pci_set_mwi(struct e1000_hw *hw);
-void e1000_pci_clear_mwi(struct e1000_hw *hw);
-void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc);
-int e1000_pcix_get_mmrbc(struct e1000_hw *hw);
-/* Port I/O is only supported on 82544 and newer */
-void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value);
-
-#define E1000_READ_REG_IO(a, reg) \
- e1000_read_reg_io((a), E1000_##reg)
-#define E1000_WRITE_REG_IO(a, reg, val) \
- e1000_write_reg_io((a), E1000_##reg, val)
-
-/* PCI Device IDs */
-#define E1000_DEV_ID_82542 0x1000
-#define E1000_DEV_ID_82543GC_FIBER 0x1001
-#define E1000_DEV_ID_82543GC_COPPER 0x1004
-#define E1000_DEV_ID_82544EI_COPPER 0x1008
-#define E1000_DEV_ID_82544EI_FIBER 0x1009
-#define E1000_DEV_ID_82544GC_COPPER 0x100C
-#define E1000_DEV_ID_82544GC_LOM 0x100D
-#define E1000_DEV_ID_82540EM 0x100E
-#define E1000_DEV_ID_82540EM_LOM 0x1015
-#define E1000_DEV_ID_82540EP_LOM 0x1016
-#define E1000_DEV_ID_82540EP 0x1017
-#define E1000_DEV_ID_82540EP_LP 0x101E
-#define E1000_DEV_ID_82545EM_COPPER 0x100F
-#define E1000_DEV_ID_82545EM_FIBER 0x1011
-#define E1000_DEV_ID_82545GM_COPPER 0x1026
-#define E1000_DEV_ID_82545GM_FIBER 0x1027
-#define E1000_DEV_ID_82545GM_SERDES 0x1028
-#define E1000_DEV_ID_82546EB_COPPER 0x1010
-#define E1000_DEV_ID_82546EB_FIBER 0x1012
-#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D
-#define E1000_DEV_ID_82541EI 0x1013
-#define E1000_DEV_ID_82541EI_MOBILE 0x1018
-#define E1000_DEV_ID_82541ER_LOM 0x1014
-#define E1000_DEV_ID_82541ER 0x1078
-#define E1000_DEV_ID_82547GI 0x1075
-#define E1000_DEV_ID_82541GI 0x1076
-#define E1000_DEV_ID_82541GI_MOBILE 0x1077
-#define E1000_DEV_ID_82541GI_LF 0x107C
-#define E1000_DEV_ID_82546GB_COPPER 0x1079
-#define E1000_DEV_ID_82546GB_FIBER 0x107A
-#define E1000_DEV_ID_82546GB_SERDES 0x107B
-#define E1000_DEV_ID_82546GB_PCIE 0x108A
-#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099
-#define E1000_DEV_ID_82547EI 0x1019
-#define E1000_DEV_ID_82547EI_MOBILE 0x101A
-#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5
-#define E1000_DEV_ID_INTEL_CE4100_GBE 0x2E6E
-
-#define NODE_ADDRESS_SIZE 6
-#define ETH_LENGTH_OF_ADDRESS 6
-
-/* MAC decode size is 128K - This is the size of BAR0 */
-#define MAC_DECODE_SIZE (128 * 1024)
-
-#define E1000_82542_2_0_REV_ID 2
-#define E1000_82542_2_1_REV_ID 3
-#define E1000_REVISION_0 0
-#define E1000_REVISION_1 1
-#define E1000_REVISION_2 2
-#define E1000_REVISION_3 3
-
-#define SPEED_10 10
-#define SPEED_100 100
-#define SPEED_1000 1000
-#define HALF_DUPLEX 1
-#define FULL_DUPLEX 2
-
-/* The sizes (in bytes) of a ethernet packet */
-#define ENET_HEADER_SIZE 14
-#define MINIMUM_ETHERNET_FRAME_SIZE 64 /* With FCS */
-#define ETHERNET_FCS_SIZE 4
-#define MINIMUM_ETHERNET_PACKET_SIZE \
- (MINIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE)
-#define CRC_LENGTH ETHERNET_FCS_SIZE
-#define MAX_JUMBO_FRAME_SIZE 0x3F00
-
-/* 802.1q VLAN Packet Sizes */
-#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMAed) */
-
-/* Ethertype field values */
-#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */
-#define ETHERNET_IP_TYPE 0x0800 /* IP packets */
-#define ETHERNET_ARP_TYPE 0x0806 /* Address Resolution Protocol (ARP) */
-
-/* Packet Header defines */
-#define IP_PROTOCOL_TCP 6
-#define IP_PROTOCOL_UDP 0x11
-
-/* This defines the bits that are set in the Interrupt Mask
- * Set/Read Register. Each bit is documented below:
- * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
- * o RXSEQ = Receive Sequence Error
- */
-#define POLL_IMS_ENABLE_MASK ( \
- E1000_IMS_RXDMT0 | \
- E1000_IMS_RXSEQ)
-
-/* This defines the bits that are set in the Interrupt Mask
- * Set/Read Register. Each bit is documented below:
- * o RXT0 = Receiver Timer Interrupt (ring 0)
- * o TXDW = Transmit Descriptor Written Back
- * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
- * o RXSEQ = Receive Sequence Error
- * o LSC = Link Status Change
- */
-#define IMS_ENABLE_MASK ( \
- E1000_IMS_RXT0 | \
- E1000_IMS_TXDW | \
- E1000_IMS_RXDMT0 | \
- E1000_IMS_RXSEQ | \
- E1000_IMS_LSC)
-
-/* Number of high/low register pairs in the RAR. The RAR (Receive Address
- * Registers) holds the directed and multicast addresses that we monitor. We
- * reserve one of these spots for our directed address, allowing us room for
- * E1000_RAR_ENTRIES - 1 multicast addresses.
- */
-#define E1000_RAR_ENTRIES 15
-
-#define MIN_NUMBER_OF_DESCRIPTORS 8
-#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8
-
-/* Receive Descriptor */
-struct e1000_rx_desc {
- __le64 buffer_addr; /* Address of the descriptor's data buffer */
- __le16 length; /* Length of data DMAed into data buffer */
- __le16 csum; /* Packet checksum */
- u8 status; /* Descriptor status */
- u8 errors; /* Descriptor Errors */
- __le16 special;
-};
-
-/* Receive Descriptor - Extended */
-union e1000_rx_desc_extended {
- struct {
- __le64 buffer_addr;
- __le64 reserved;
- } read;
- struct {
- struct {
- __le32 mrq; /* Multiple Rx Queues */
- union {
- __le32 rss; /* RSS Hash */
- struct {
- __le16 ip_id; /* IP id */
- __le16 csum; /* Packet Checksum */
- } csum_ip;
- } hi_dword;
- } lower;
- struct {
- __le32 status_error; /* ext status/error */
- __le16 length;
- __le16 vlan; /* VLAN tag */
- } upper;
- } wb; /* writeback */
-};
-
-#define MAX_PS_BUFFERS 4
-/* Receive Descriptor - Packet Split */
-union e1000_rx_desc_packet_split {
- struct {
- /* one buffer for protocol header(s), three data buffers */
- __le64 buffer_addr[MAX_PS_BUFFERS];
- } read;
- struct {
- struct {
- __le32 mrq; /* Multiple Rx Queues */
- union {
- __le32 rss; /* RSS Hash */
- struct {
- __le16 ip_id; /* IP id */
- __le16 csum; /* Packet Checksum */
- } csum_ip;
- } hi_dword;
- } lower;
- struct {
- __le32 status_error; /* ext status/error */
- __le16 length0; /* length of buffer 0 */
- __le16 vlan; /* VLAN tag */
- } middle;
- struct {
- __le16 header_status;
- __le16 length[3]; /* length of buffers 1-3 */
- } upper;
- __le64 reserved;
- } wb; /* writeback */
-};
-
-/* Receive Descriptor bit definitions */
-#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
-#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
-#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
-#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
-#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */
-#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
-#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */
-#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */
-#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */
-#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */
-#define E1000_RXD_STAT_ACK 0x8000 /* ACK Packet indication */
-#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
-#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
-#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
-#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
-#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */
-#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */
-#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
-#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
-#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */
-#define E1000_RXD_SPC_PRI_SHIFT 13
-#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */
-#define E1000_RXD_SPC_CFI_SHIFT 12
-
-#define E1000_RXDEXT_STATERR_CE 0x01000000
-#define E1000_RXDEXT_STATERR_SE 0x02000000
-#define E1000_RXDEXT_STATERR_SEQ 0x04000000
-#define E1000_RXDEXT_STATERR_CXE 0x10000000
-#define E1000_RXDEXT_STATERR_TCPE 0x20000000
-#define E1000_RXDEXT_STATERR_IPE 0x40000000
-#define E1000_RXDEXT_STATERR_RXE 0x80000000
-
-#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000
-#define E1000_RXDPS_HDRSTAT_HDRLEN_MASK 0x000003FF
-
-/* mask to determine if packets should be dropped due to frame errors */
-#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
- E1000_RXD_ERR_CE | \
- E1000_RXD_ERR_SE | \
- E1000_RXD_ERR_SEQ | \
- E1000_RXD_ERR_CXE | \
- E1000_RXD_ERR_RXE)
-
-/* Same mask, but for extended and packet split descriptors */
-#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
- E1000_RXDEXT_STATERR_CE | \
- E1000_RXDEXT_STATERR_SE | \
- E1000_RXDEXT_STATERR_SEQ | \
- E1000_RXDEXT_STATERR_CXE | \
- E1000_RXDEXT_STATERR_RXE)
-
-/* Transmit Descriptor */
-struct e1000_tx_desc {
- __le64 buffer_addr; /* Address of the descriptor's data buffer */
- union {
- __le32 data;
- struct {
- __le16 length; /* Data buffer length */
- u8 cso; /* Checksum offset */
- u8 cmd; /* Descriptor control */
- } flags;
- } lower;
- union {
- __le32 data;
- struct {
- u8 status; /* Descriptor status */
- u8 css; /* Checksum start */
- __le16 special;
- } fields;
- } upper;
-};
-
-/* Transmit Descriptor bit definitions */
-#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */
-#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */
-#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
-#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
-#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
-#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
-#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
-#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
-#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
-#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
-#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
-#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
-#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
-#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
-#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
-#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
-#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
-#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
-#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
-#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
-
-/* Offload Context Descriptor */
-struct e1000_context_desc {
- union {
- __le32 ip_config;
- struct {
- u8 ipcss; /* IP checksum start */
- u8 ipcso; /* IP checksum offset */
- __le16 ipcse; /* IP checksum end */
- } ip_fields;
- } lower_setup;
- union {
- __le32 tcp_config;
- struct {
- u8 tucss; /* TCP checksum start */
- u8 tucso; /* TCP checksum offset */
- __le16 tucse; /* TCP checksum end */
- } tcp_fields;
- } upper_setup;
- __le32 cmd_and_length; /* */
- union {
- __le32 data;
- struct {
- u8 status; /* Descriptor status */
- u8 hdr_len; /* Header length */
- __le16 mss; /* Maximum segment size */
- } fields;
- } tcp_seg_setup;
-};
-
-/* Offload data descriptor */
-struct e1000_data_desc {
- __le64 buffer_addr; /* Address of the descriptor's buffer address */
- union {
- __le32 data;
- struct {
- __le16 length; /* Data buffer length */
- u8 typ_len_ext; /* */
- u8 cmd; /* */
- } flags;
- } lower;
- union {
- __le32 data;
- struct {
- u8 status; /* Descriptor status */
- u8 popts; /* Packet Options */
- __le16 special; /* */
- } fields;
- } upper;
-};
-
-/* Filters */
-#define E1000_NUM_UNICAST 16 /* Unicast filter entries */
-#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */
-#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
-
-/* Receive Address Register */
-struct e1000_rar {
- volatile __le32 low; /* receive address low */
- volatile __le32 high; /* receive address high */
-};
-
-/* Number of entries in the Multicast Table Array (MTA). */
-#define E1000_NUM_MTA_REGISTERS 128
-
-/* IPv4 Address Table Entry */
-struct e1000_ipv4_at_entry {
- volatile u32 ipv4_addr; /* IP Address (RW) */
- volatile u32 reserved;
-};
-
-/* Four wakeup IP addresses are supported */
-#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4
-#define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX
-#define E1000_IP6AT_SIZE 1
-
-/* IPv6 Address Table Entry */
-struct e1000_ipv6_at_entry {
- volatile u8 ipv6_addr[16];
-};
-
-/* Flexible Filter Length Table Entry */
-struct e1000_fflt_entry {
- volatile u32 length; /* Flexible Filter Length (RW) */
- volatile u32 reserved;
-};
-
-/* Flexible Filter Mask Table Entry */
-struct e1000_ffmt_entry {
- volatile u32 mask; /* Flexible Filter Mask (RW) */
- volatile u32 reserved;
-};
-
-/* Flexible Filter Value Table Entry */
-struct e1000_ffvt_entry {
- volatile u32 value; /* Flexible Filter Value (RW) */
- volatile u32 reserved;
-};
-
-/* Four Flexible Filters are supported */
-#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4
-
-/* Each Flexible Filter is at most 128 (0x80) bytes in length */
-#define E1000_FLEXIBLE_FILTER_SIZE_MAX 128
-
-#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX
-#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
-#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
-
-#define E1000_DISABLE_SERDES_LOOPBACK 0x0400
-
-/* Register Set. (82543, 82544)
- *
- * Registers are defined to be 32 bits and should be accessed as 32 bit values.
- * These registers are physically located on the NIC, but are mapped into the
- * host memory address space.
- *
- * RW - register is both readable and writable
- * RO - register is read only
- * WO - register is write only
- * R/clr - register is read only and is cleared when read
- * A - register array
- */
-#define E1000_CTRL 0x00000 /* Device Control - RW */
-#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */
-#define E1000_STATUS 0x00008 /* Device Status - RO */
-#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */
-#define E1000_EERD 0x00014 /* EEPROM Read - RW */
-#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */
-#define E1000_FLA 0x0001C /* Flash Access - RW */
-#define E1000_MDIC 0x00020 /* MDI Control - RW */
-
-extern void __iomem *ce4100_gbe_mdio_base_virt;
-#define INTEL_CE_GBE_MDIO_RCOMP_BASE (ce4100_gbe_mdio_base_virt)
-#define E1000_MDIO_STS (INTEL_CE_GBE_MDIO_RCOMP_BASE + 0)
-#define E1000_MDIO_CMD (INTEL_CE_GBE_MDIO_RCOMP_BASE + 4)
-#define E1000_MDIO_DRV (INTEL_CE_GBE_MDIO_RCOMP_BASE + 8)
-#define E1000_MDC_CMD (INTEL_CE_GBE_MDIO_RCOMP_BASE + 0xC)
-#define E1000_RCOMP_CTL (INTEL_CE_GBE_MDIO_RCOMP_BASE + 0x20)
-#define E1000_RCOMP_STS (INTEL_CE_GBE_MDIO_RCOMP_BASE + 0x24)
-
-#define E1000_SCTL 0x00024 /* SerDes Control - RW */
-#define E1000_FEXTNVM 0x00028 /* Future Extended NVM register */
-#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
-#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */
-#define E1000_FCT 0x00030 /* Flow Control Type - RW */
-#define E1000_VET 0x00038 /* VLAN Ether Type - RW */
-#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */
-#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */
-#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */
-#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */
-#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */
-#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */
-
-/* Auxiliary Control Register. This register is CE4100 specific,
- * RMII/RGMII function is switched by this register - RW
- * Following are bits definitions of the Auxiliary Control Register
- */
-#define E1000_CTL_AUX 0x000E0
-#define E1000_CTL_AUX_END_SEL_SHIFT 10
-#define E1000_CTL_AUX_ENDIANESS_SHIFT 8
-#define E1000_CTL_AUX_RGMII_RMII_SHIFT 0
-
-/* descriptor and packet transfer use CTL_AUX.ENDIANESS */
-#define E1000_CTL_AUX_DES_PKT (0x0 << E1000_CTL_AUX_END_SEL_SHIFT)
-/* descriptor use CTL_AUX.ENDIANESS, packet use default */
-#define E1000_CTL_AUX_DES (0x1 << E1000_CTL_AUX_END_SEL_SHIFT)
-/* descriptor use default, packet use CTL_AUX.ENDIANESS */
-#define E1000_CTL_AUX_PKT (0x2 << E1000_CTL_AUX_END_SEL_SHIFT)
-/* all use CTL_AUX.ENDIANESS */
-#define E1000_CTL_AUX_ALL (0x3 << E1000_CTL_AUX_END_SEL_SHIFT)
-
-#define E1000_CTL_AUX_RGMII (0x0 << E1000_CTL_AUX_RGMII_RMII_SHIFT)
-#define E1000_CTL_AUX_RMII (0x1 << E1000_CTL_AUX_RGMII_RMII_SHIFT)
-
-/* LW little endian, Byte big endian */
-#define E1000_CTL_AUX_LWLE_BBE (0x0 << E1000_CTL_AUX_ENDIANESS_SHIFT)
-#define E1000_CTL_AUX_LWLE_BLE (0x1 << E1000_CTL_AUX_ENDIANESS_SHIFT)
-#define E1000_CTL_AUX_LWBE_BBE (0x2 << E1000_CTL_AUX_ENDIANESS_SHIFT)
-#define E1000_CTL_AUX_LWBE_BLE (0x3 << E1000_CTL_AUX_ENDIANESS_SHIFT)
-
-#define E1000_RCTL 0x00100 /* RX Control - RW */
-#define E1000_RDTR1 0x02820 /* RX Delay Timer (1) - RW */
-#define E1000_RDBAL1 0x02900 /* RX Descriptor Base Address Low (1) - RW */
-#define E1000_RDBAH1 0x02904 /* RX Descriptor Base Address High (1) - RW */
-#define E1000_RDLEN1 0x02908 /* RX Descriptor Length (1) - RW */
-#define E1000_RDH1 0x02910 /* RX Descriptor Head (1) - RW */
-#define E1000_RDT1 0x02918 /* RX Descriptor Tail (1) - RW */
-#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */
-#define E1000_TXCW 0x00178 /* TX Configuration Word - RW */
-#define E1000_RXCW 0x00180 /* RX Configuration Word - RO */
-#define E1000_TCTL 0x00400 /* TX Control - RW */
-#define E1000_TCTL_EXT 0x00404 /* Extended TX Control - RW */
-#define E1000_TIPG 0x00410 /* TX Inter-packet gap -RW */
-#define E1000_TBT 0x00448 /* TX Burst Timer - RW */
-#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */
-#define E1000_LEDCTL 0x00E00 /* LED Control - RW */
-#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */
-#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */
-#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */
-#define FEXTNVM_SW_CONFIG 0x0001
-#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
-#define E1000_PBS 0x01008 /* Packet Buffer Size */
-#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */
-#define E1000_FLASH_UPDATES 1000
-#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */
-#define E1000_FLASHT 0x01028 /* FLASH Timer Register */
-#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */
-#define E1000_FLSWCTL 0x01030 /* FLASH control register */
-#define E1000_FLSWDATA 0x01034 /* FLASH data register */
-#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */
-#define E1000_FLOP 0x0103C /* FLASH Opcode Register */
-#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */
-#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */
-#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */
-#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */
-#define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */
-#define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */
-#define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */
-#define E1000_RDH 0x02810 /* RX Descriptor Head - RW */
-#define E1000_RDT 0x02818 /* RX Descriptor Tail - RW */
-#define E1000_RDTR 0x02820 /* RX Delay Timer - RW */
-#define E1000_RDBAL0 E1000_RDBAL /* RX Desc Base Address Low (0) - RW */
-#define E1000_RDBAH0 E1000_RDBAH /* RX Desc Base Address High (0) - RW */
-#define E1000_RDLEN0 E1000_RDLEN /* RX Desc Length (0) - RW */
-#define E1000_RDH0 E1000_RDH /* RX Desc Head (0) - RW */
-#define E1000_RDT0 E1000_RDT /* RX Desc Tail (0) - RW */
-#define E1000_RDTR0 E1000_RDTR /* RX Delay Timer (0) - RW */
-#define E1000_RXDCTL 0x02828 /* RX Descriptor Control queue 0 - RW */
-#define E1000_RXDCTL1 0x02928 /* RX Descriptor Control queue 1 - RW */
-#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */
-#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */
-#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */
-#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */
-#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */
-#define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */
-#define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */
-#define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */
-#define E1000_TDFTS 0x03428 /* TX Data FIFO Tail Saved - RW */
-#define E1000_TDFPC 0x03430 /* TX Data FIFO Packet Count - RW */
-#define E1000_TDBAL 0x03800 /* TX Descriptor Base Address Low - RW */
-#define E1000_TDBAH 0x03804 /* TX Descriptor Base Address High - RW */
-#define E1000_TDLEN 0x03808 /* TX Descriptor Length - RW */
-#define E1000_TDH 0x03810 /* TX Descriptor Head - RW */
-#define E1000_TDT 0x03818 /* TX Descripotr Tail - RW */
-#define E1000_TIDV 0x03820 /* TX Interrupt Delay Value - RW */
-#define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */
-#define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */
-#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */
-#define E1000_TARC0 0x03840 /* TX Arbitration Count (0) */
-#define E1000_TDBAL1 0x03900 /* TX Desc Base Address Low (1) - RW */
-#define E1000_TDBAH1 0x03904 /* TX Desc Base Address High (1) - RW */
-#define E1000_TDLEN1 0x03908 /* TX Desc Length (1) - RW */
-#define E1000_TDH1 0x03910 /* TX Desc Head (1) - RW */
-#define E1000_TDT1 0x03918 /* TX Desc Tail (1) - RW */
-#define E1000_TXDCTL1 0x03928 /* TX Descriptor Control (1) - RW */
-#define E1000_TARC1 0x03940 /* TX Arbitration Count (1) */
-#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */
-#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */
-#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */
-#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */
-#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */
-#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */
-#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */
-#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
-#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */
-#define E1000_COLC 0x04028 /* Collision Count - R/clr */
-#define E1000_DC 0x04030 /* Defer Count - R/clr */
-#define E1000_TNCRS 0x04034 /* TX-No CRS - R/clr */
-#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */
-#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */
-#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */
-#define E1000_XONRXC 0x04048 /* XON RX Count - R/clr */
-#define E1000_XONTXC 0x0404C /* XON TX Count - R/clr */
-#define E1000_XOFFRXC 0x04050 /* XOFF RX Count - R/clr */
-#define E1000_XOFFTXC 0x04054 /* XOFF TX Count - R/clr */
-#define E1000_FCRUC 0x04058 /* Flow Control RX Unsupported Count- R/clr */
-#define E1000_PRC64 0x0405C /* Packets RX (64 bytes) - R/clr */
-#define E1000_PRC127 0x04060 /* Packets RX (65-127 bytes) - R/clr */
-#define E1000_PRC255 0x04064 /* Packets RX (128-255 bytes) - R/clr */
-#define E1000_PRC511 0x04068 /* Packets RX (255-511 bytes) - R/clr */
-#define E1000_PRC1023 0x0406C /* Packets RX (512-1023 bytes) - R/clr */
-#define E1000_PRC1522 0x04070 /* Packets RX (1024-1522 bytes) - R/clr */
-#define E1000_GPRC 0x04074 /* Good Packets RX Count - R/clr */
-#define E1000_BPRC 0x04078 /* Broadcast Packets RX Count - R/clr */
-#define E1000_MPRC 0x0407C /* Multicast Packets RX Count - R/clr */
-#define E1000_GPTC 0x04080 /* Good Packets TX Count - R/clr */
-#define E1000_GORCL 0x04088 /* Good Octets RX Count Low - R/clr */
-#define E1000_GORCH 0x0408C /* Good Octets RX Count High - R/clr */
-#define E1000_GOTCL 0x04090 /* Good Octets TX Count Low - R/clr */
-#define E1000_GOTCH 0x04094 /* Good Octets TX Count High - R/clr */
-#define E1000_RNBC 0x040A0 /* RX No Buffers Count - R/clr */
-#define E1000_RUC 0x040A4 /* RX Undersize Count - R/clr */
-#define E1000_RFC 0x040A8 /* RX Fragment Count - R/clr */
-#define E1000_ROC 0x040AC /* RX Oversize Count - R/clr */
-#define E1000_RJC 0x040B0 /* RX Jabber Count - R/clr */
-#define E1000_MGTPRC 0x040B4 /* Management Packets RX Count - R/clr */
-#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */
-#define E1000_MGTPTC 0x040BC /* Management Packets TX Count - R/clr */
-#define E1000_TORL 0x040C0 /* Total Octets RX Low - R/clr */
-#define E1000_TORH 0x040C4 /* Total Octets RX High - R/clr */
-#define E1000_TOTL 0x040C8 /* Total Octets TX Low - R/clr */
-#define E1000_TOTH 0x040CC /* Total Octets TX High - R/clr */
-#define E1000_TPR 0x040D0 /* Total Packets RX - R/clr */
-#define E1000_TPT 0x040D4 /* Total Packets TX - R/clr */
-#define E1000_PTC64 0x040D8 /* Packets TX (64 bytes) - R/clr */
-#define E1000_PTC127 0x040DC /* Packets TX (65-127 bytes) - R/clr */
-#define E1000_PTC255 0x040E0 /* Packets TX (128-255 bytes) - R/clr */
-#define E1000_PTC511 0x040E4 /* Packets TX (256-511 bytes) - R/clr */
-#define E1000_PTC1023 0x040E8 /* Packets TX (512-1023 bytes) - R/clr */
-#define E1000_PTC1522 0x040EC /* Packets TX (1024-1522 Bytes) - R/clr */
-#define E1000_MPTC 0x040F0 /* Multicast Packets TX Count - R/clr */
-#define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */
-#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */
-#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */
-#define E1000_IAC 0x04100 /* Interrupt Assertion Count */
-#define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Packet Timer Expire Count */
-#define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Absolute Timer Expire Count */
-#define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Packet Timer Expire Count */
-#define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Absolute Timer Expire Count */
-#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */
-#define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Minimum Threshold Count */
-#define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Descriptor Minimum Threshold Count */
-#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */
-#define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */
-#define E1000_RFCTL 0x05008 /* Receive Filter Control */
-#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */
-#define E1000_RA 0x05400 /* Receive Address - RW Array */
-#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */
-#define E1000_WUC 0x05800 /* Wakeup Control - RW */
-#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */
-#define E1000_WUS 0x05810 /* Wakeup Status - RO */
-#define E1000_MANC 0x05820 /* Management Control - RW */
-#define E1000_IPAV 0x05838 /* IP Address Valid - RW */
-#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */
-#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */
-#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */
-#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */
-#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */
-#define E1000_HOST_IF 0x08800 /* Host Interface */
-#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */
-#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */
-
-#define E1000_KUMCTRLSTA 0x00034 /* MAC-PHY interface - RW */
-#define E1000_MDPHYA 0x0003C /* PHY address - RW */
-#define E1000_MANC2H 0x05860 /* Management Control To Host - RW */
-#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */
-
-#define E1000_GCR 0x05B00 /* PCI-Ex Control */
-#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */
-#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */
-#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */
-#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */
-#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */
-#define E1000_SWSM 0x05B50 /* SW Semaphore */
-#define E1000_FWSM 0x05B54 /* FW Semaphore */
-#define E1000_FFLT_DBG 0x05F04 /* Debug Register */
-#define E1000_HICR 0x08F00 /* Host Interface Control */
-
-/* RSS registers */
-#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */
-#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */
-#define E1000_RETA 0x05C00 /* Redirection Table - RW Array */
-#define E1000_RSSRK 0x05C80 /* RSS Random Key - RW Array */
-#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */
-#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */
-/* Register Set (82542)
- *
- * Some of the 82542 registers are located at different offsets than they are
- * in more current versions of the 8254x. Despite the difference in location,
- * the registers function in the same manner.
- */
-#define E1000_82542_CTL_AUX E1000_CTL_AUX
-#define E1000_82542_CTRL E1000_CTRL
-#define E1000_82542_CTRL_DUP E1000_CTRL_DUP
-#define E1000_82542_STATUS E1000_STATUS
-#define E1000_82542_EECD E1000_EECD
-#define E1000_82542_EERD E1000_EERD
-#define E1000_82542_CTRL_EXT E1000_CTRL_EXT
-#define E1000_82542_FLA E1000_FLA
-#define E1000_82542_MDIC E1000_MDIC
-#define E1000_82542_SCTL E1000_SCTL
-#define E1000_82542_FEXTNVM E1000_FEXTNVM
-#define E1000_82542_FCAL E1000_FCAL
-#define E1000_82542_FCAH E1000_FCAH
-#define E1000_82542_FCT E1000_FCT
-#define E1000_82542_VET E1000_VET
-#define E1000_82542_RA 0x00040
-#define E1000_82542_ICR E1000_ICR
-#define E1000_82542_ITR E1000_ITR
-#define E1000_82542_ICS E1000_ICS
-#define E1000_82542_IMS E1000_IMS
-#define E1000_82542_IMC E1000_IMC
-#define E1000_82542_RCTL E1000_RCTL
-#define E1000_82542_RDTR 0x00108
-#define E1000_82542_RDBAL 0x00110
-#define E1000_82542_RDBAH 0x00114
-#define E1000_82542_RDLEN 0x00118
-#define E1000_82542_RDH 0x00120
-#define E1000_82542_RDT 0x00128
-#define E1000_82542_RDTR0 E1000_82542_RDTR
-#define E1000_82542_RDBAL0 E1000_82542_RDBAL
-#define E1000_82542_RDBAH0 E1000_82542_RDBAH
-#define E1000_82542_RDLEN0 E1000_82542_RDLEN
-#define E1000_82542_RDH0 E1000_82542_RDH
-#define E1000_82542_RDT0 E1000_82542_RDT
-#define E1000_82542_SRRCTL(_n) (0x280C + ((_n) << 8)) /* Split and Replication
- * RX Control - RW */
-#define E1000_82542_DCA_RXCTRL(_n) (0x02814 + ((_n) << 8))
-#define E1000_82542_RDBAH3 0x02B04 /* RX Desc Base High Queue 3 - RW */
-#define E1000_82542_RDBAL3 0x02B00 /* RX Desc Low Queue 3 - RW */
-#define E1000_82542_RDLEN3 0x02B08 /* RX Desc Length Queue 3 - RW */
-#define E1000_82542_RDH3 0x02B10 /* RX Desc Head Queue 3 - RW */
-#define E1000_82542_RDT3 0x02B18 /* RX Desc Tail Queue 3 - RW */
-#define E1000_82542_RDBAL2 0x02A00 /* RX Desc Base Low Queue 2 - RW */
-#define E1000_82542_RDBAH2 0x02A04 /* RX Desc Base High Queue 2 - RW */
-#define E1000_82542_RDLEN2 0x02A08 /* RX Desc Length Queue 2 - RW */
-#define E1000_82542_RDH2 0x02A10 /* RX Desc Head Queue 2 - RW */
-#define E1000_82542_RDT2 0x02A18 /* RX Desc Tail Queue 2 - RW */
-#define E1000_82542_RDTR1 0x00130
-#define E1000_82542_RDBAL1 0x00138
-#define E1000_82542_RDBAH1 0x0013C
-#define E1000_82542_RDLEN1 0x00140
-#define E1000_82542_RDH1 0x00148
-#define E1000_82542_RDT1 0x00150
-#define E1000_82542_FCRTH 0x00160
-#define E1000_82542_FCRTL 0x00168
-#define E1000_82542_FCTTV E1000_FCTTV
-#define E1000_82542_TXCW E1000_TXCW
-#define E1000_82542_RXCW E1000_RXCW
-#define E1000_82542_MTA 0x00200
-#define E1000_82542_TCTL E1000_TCTL
-#define E1000_82542_TCTL_EXT E1000_TCTL_EXT
-#define E1000_82542_TIPG E1000_TIPG
-#define E1000_82542_TDBAL 0x00420
-#define E1000_82542_TDBAH 0x00424
-#define E1000_82542_TDLEN 0x00428
-#define E1000_82542_TDH 0x00430
-#define E1000_82542_TDT 0x00438
-#define E1000_82542_TIDV 0x00440
-#define E1000_82542_TBT E1000_TBT
-#define E1000_82542_AIT E1000_AIT
-#define E1000_82542_VFTA 0x00600
-#define E1000_82542_LEDCTL E1000_LEDCTL
-#define E1000_82542_PBA E1000_PBA
-#define E1000_82542_PBS E1000_PBS
-#define E1000_82542_EEMNGCTL E1000_EEMNGCTL
-#define E1000_82542_EEARBC E1000_EEARBC
-#define E1000_82542_FLASHT E1000_FLASHT
-#define E1000_82542_EEWR E1000_EEWR
-#define E1000_82542_FLSWCTL E1000_FLSWCTL
-#define E1000_82542_FLSWDATA E1000_FLSWDATA
-#define E1000_82542_FLSWCNT E1000_FLSWCNT
-#define E1000_82542_FLOP E1000_FLOP
-#define E1000_82542_EXTCNF_CTRL E1000_EXTCNF_CTRL
-#define E1000_82542_EXTCNF_SIZE E1000_EXTCNF_SIZE
-#define E1000_82542_PHY_CTRL E1000_PHY_CTRL
-#define E1000_82542_ERT E1000_ERT
-#define E1000_82542_RXDCTL E1000_RXDCTL
-#define E1000_82542_RXDCTL1 E1000_RXDCTL1
-#define E1000_82542_RADV E1000_RADV
-#define E1000_82542_RSRPD E1000_RSRPD
-#define E1000_82542_TXDMAC E1000_TXDMAC
-#define E1000_82542_KABGTXD E1000_KABGTXD
-#define E1000_82542_TDFHS E1000_TDFHS
-#define E1000_82542_TDFTS E1000_TDFTS
-#define E1000_82542_TDFPC E1000_TDFPC
-#define E1000_82542_TXDCTL E1000_TXDCTL
-#define E1000_82542_TADV E1000_TADV
-#define E1000_82542_TSPMT E1000_TSPMT
-#define E1000_82542_CRCERRS E1000_CRCERRS
-#define E1000_82542_ALGNERRC E1000_ALGNERRC
-#define E1000_82542_SYMERRS E1000_SYMERRS
-#define E1000_82542_RXERRC E1000_RXERRC
-#define E1000_82542_MPC E1000_MPC
-#define E1000_82542_SCC E1000_SCC
-#define E1000_82542_ECOL E1000_ECOL
-#define E1000_82542_MCC E1000_MCC
-#define E1000_82542_LATECOL E1000_LATECOL
-#define E1000_82542_COLC E1000_COLC
-#define E1000_82542_DC E1000_DC
-#define E1000_82542_TNCRS E1000_TNCRS
-#define E1000_82542_SEC E1000_SEC
-#define E1000_82542_CEXTERR E1000_CEXTERR
-#define E1000_82542_RLEC E1000_RLEC
-#define E1000_82542_XONRXC E1000_XONRXC
-#define E1000_82542_XONTXC E1000_XONTXC
-#define E1000_82542_XOFFRXC E1000_XOFFRXC
-#define E1000_82542_XOFFTXC E1000_XOFFTXC
-#define E1000_82542_FCRUC E1000_FCRUC
-#define E1000_82542_PRC64 E1000_PRC64
-#define E1000_82542_PRC127 E1000_PRC127
-#define E1000_82542_PRC255 E1000_PRC255
-#define E1000_82542_PRC511 E1000_PRC511
-#define E1000_82542_PRC1023 E1000_PRC1023
-#define E1000_82542_PRC1522 E1000_PRC1522
-#define E1000_82542_GPRC E1000_GPRC
-#define E1000_82542_BPRC E1000_BPRC
-#define E1000_82542_MPRC E1000_MPRC
-#define E1000_82542_GPTC E1000_GPTC
-#define E1000_82542_GORCL E1000_GORCL
-#define E1000_82542_GORCH E1000_GORCH
-#define E1000_82542_GOTCL E1000_GOTCL
-#define E1000_82542_GOTCH E1000_GOTCH
-#define E1000_82542_RNBC E1000_RNBC
-#define E1000_82542_RUC E1000_RUC
-#define E1000_82542_RFC E1000_RFC
-#define E1000_82542_ROC E1000_ROC
-#define E1000_82542_RJC E1000_RJC
-#define E1000_82542_MGTPRC E1000_MGTPRC
-#define E1000_82542_MGTPDC E1000_MGTPDC
-#define E1000_82542_MGTPTC E1000_MGTPTC
-#define E1000_82542_TORL E1000_TORL
-#define E1000_82542_TORH E1000_TORH
-#define E1000_82542_TOTL E1000_TOTL
-#define E1000_82542_TOTH E1000_TOTH
-#define E1000_82542_TPR E1000_TPR
-#define E1000_82542_TPT E1000_TPT
-#define E1000_82542_PTC64 E1000_PTC64
-#define E1000_82542_PTC127 E1000_PTC127
-#define E1000_82542_PTC255 E1000_PTC255
-#define E1000_82542_PTC511 E1000_PTC511
-#define E1000_82542_PTC1023 E1000_PTC1023
-#define E1000_82542_PTC1522 E1000_PTC1522
-#define E1000_82542_MPTC E1000_MPTC
-#define E1000_82542_BPTC E1000_BPTC
-#define E1000_82542_TSCTC E1000_TSCTC
-#define E1000_82542_TSCTFC E1000_TSCTFC
-#define E1000_82542_RXCSUM E1000_RXCSUM
-#define E1000_82542_WUC E1000_WUC
-#define E1000_82542_WUFC E1000_WUFC
-#define E1000_82542_WUS E1000_WUS
-#define E1000_82542_MANC E1000_MANC
-#define E1000_82542_IPAV E1000_IPAV
-#define E1000_82542_IP4AT E1000_IP4AT
-#define E1000_82542_IP6AT E1000_IP6AT
-#define E1000_82542_WUPL E1000_WUPL
-#define E1000_82542_WUPM E1000_WUPM
-#define E1000_82542_FFLT E1000_FFLT
-#define E1000_82542_TDFH 0x08010
-#define E1000_82542_TDFT 0x08018
-#define E1000_82542_FFMT E1000_FFMT
-#define E1000_82542_FFVT E1000_FFVT
-#define E1000_82542_HOST_IF E1000_HOST_IF
-#define E1000_82542_IAM E1000_IAM
-#define E1000_82542_EEMNGCTL E1000_EEMNGCTL
-#define E1000_82542_PSRCTL E1000_PSRCTL
-#define E1000_82542_RAID E1000_RAID
-#define E1000_82542_TARC0 E1000_TARC0
-#define E1000_82542_TDBAL1 E1000_TDBAL1
-#define E1000_82542_TDBAH1 E1000_TDBAH1
-#define E1000_82542_TDLEN1 E1000_TDLEN1
-#define E1000_82542_TDH1 E1000_TDH1
-#define E1000_82542_TDT1 E1000_TDT1
-#define E1000_82542_TXDCTL1 E1000_TXDCTL1
-#define E1000_82542_TARC1 E1000_TARC1
-#define E1000_82542_RFCTL E1000_RFCTL
-#define E1000_82542_GCR E1000_GCR
-#define E1000_82542_GSCL_1 E1000_GSCL_1
-#define E1000_82542_GSCL_2 E1000_GSCL_2
-#define E1000_82542_GSCL_3 E1000_GSCL_3
-#define E1000_82542_GSCL_4 E1000_GSCL_4
-#define E1000_82542_FACTPS E1000_FACTPS
-#define E1000_82542_SWSM E1000_SWSM
-#define E1000_82542_FWSM E1000_FWSM
-#define E1000_82542_FFLT_DBG E1000_FFLT_DBG
-#define E1000_82542_IAC E1000_IAC
-#define E1000_82542_ICRXPTC E1000_ICRXPTC
-#define E1000_82542_ICRXATC E1000_ICRXATC
-#define E1000_82542_ICTXPTC E1000_ICTXPTC
-#define E1000_82542_ICTXATC E1000_ICTXATC
-#define E1000_82542_ICTXQEC E1000_ICTXQEC
-#define E1000_82542_ICTXQMTC E1000_ICTXQMTC
-#define E1000_82542_ICRXDMTC E1000_ICRXDMTC
-#define E1000_82542_ICRXOC E1000_ICRXOC
-#define E1000_82542_HICR E1000_HICR
-
-#define E1000_82542_CPUVEC E1000_CPUVEC
-#define E1000_82542_MRQC E1000_MRQC
-#define E1000_82542_RETA E1000_RETA
-#define E1000_82542_RSSRK E1000_RSSRK
-#define E1000_82542_RSSIM E1000_RSSIM
-#define E1000_82542_RSSIR E1000_RSSIR
-#define E1000_82542_KUMCTRLSTA E1000_KUMCTRLSTA
-#define E1000_82542_SW_FW_SYNC E1000_SW_FW_SYNC
-
-/* Statistics counters collected by the MAC */
-struct e1000_hw_stats {
- u64 crcerrs;
- u64 algnerrc;
- u64 symerrs;
- u64 rxerrc;
- u64 txerrc;
- u64 mpc;
- u64 scc;
- u64 ecol;
- u64 mcc;
- u64 latecol;
- u64 colc;
- u64 dc;
- u64 tncrs;
- u64 sec;
- u64 cexterr;
- u64 rlec;
- u64 xonrxc;
- u64 xontxc;
- u64 xoffrxc;
- u64 xofftxc;
- u64 fcruc;
- u64 prc64;
- u64 prc127;
- u64 prc255;
- u64 prc511;
- u64 prc1023;
- u64 prc1522;
- u64 gprc;
- u64 bprc;
- u64 mprc;
- u64 gptc;
- u64 gorcl;
- u64 gorch;
- u64 gotcl;
- u64 gotch;
- u64 rnbc;
- u64 ruc;
- u64 rfc;
- u64 roc;
- u64 rlerrc;
- u64 rjc;
- u64 mgprc;
- u64 mgpdc;
- u64 mgptc;
- u64 torl;
- u64 torh;
- u64 totl;
- u64 toth;
- u64 tpr;
- u64 tpt;
- u64 ptc64;
- u64 ptc127;
- u64 ptc255;
- u64 ptc511;
- u64 ptc1023;
- u64 ptc1522;
- u64 mptc;
- u64 bptc;
- u64 tsctc;
- u64 tsctfc;
- u64 iac;
- u64 icrxptc;
- u64 icrxatc;
- u64 ictxptc;
- u64 ictxatc;
- u64 ictxqec;
- u64 ictxqmtc;
- u64 icrxdmtc;
- u64 icrxoc;
-};
-
-/* Structure containing variables used by the shared code (e1000_hw.c) */
-struct e1000_hw {
- u8 __iomem *hw_addr;
- u8 __iomem *flash_address;
- e1000_mac_type mac_type;
- e1000_phy_type phy_type;
- u32 phy_init_script;
- e1000_media_type media_type;
- void *back;
- struct e1000_shadow_ram *eeprom_shadow_ram;
- u32 flash_bank_size;
- u32 flash_base_addr;
- e1000_fc_type fc;
- e1000_bus_speed bus_speed;
- e1000_bus_width bus_width;
- e1000_bus_type bus_type;
- struct e1000_eeprom_info eeprom;
- e1000_ms_type master_slave;
- e1000_ms_type original_master_slave;
- e1000_ffe_config ffe_config_state;
- u32 asf_firmware_present;
- u32 eeprom_semaphore_present;
- unsigned long io_base;
- u32 phy_id;
- u32 phy_revision;
- u32 phy_addr;
- u32 original_fc;
- u32 txcw;
- u32 autoneg_failed;
- u32 max_frame_size;
- u32 min_frame_size;
- u32 mc_filter_type;
- u32 num_mc_addrs;
- u32 collision_delta;
- u32 tx_packet_delta;
- u32 ledctl_default;
- u32 ledctl_mode1;
- u32 ledctl_mode2;
- bool tx_pkt_filtering;
- struct e1000_host_mng_dhcp_cookie mng_cookie;
- u16 phy_spd_default;
- u16 autoneg_advertised;
- u16 pci_cmd_word;
- u16 fc_high_water;
- u16 fc_low_water;
- u16 fc_pause_time;
- u16 current_ifs_val;
- u16 ifs_min_val;
- u16 ifs_max_val;
- u16 ifs_step_size;
- u16 ifs_ratio;
- u16 device_id;
- u16 vendor_id;
- u16 subsystem_id;
- u16 subsystem_vendor_id;
- u8 revision_id;
- u8 autoneg;
- u8 mdix;
- u8 forced_speed_duplex;
- u8 wait_autoneg_complete;
- u8 dma_fairness;
- u8 mac_addr[NODE_ADDRESS_SIZE];
- u8 perm_mac_addr[NODE_ADDRESS_SIZE];
- bool disable_polarity_correction;
- bool speed_downgraded;
- e1000_smart_speed smart_speed;
- e1000_dsp_config dsp_config_state;
- bool get_link_status;
- bool serdes_has_link;
- bool tbi_compatibility_en;
- bool tbi_compatibility_on;
- bool laa_is_present;
- bool phy_reset_disable;
- bool initialize_hw_bits_disable;
- bool fc_send_xon;
- bool fc_strict_ieee;
- bool report_tx_early;
- bool adaptive_ifs;
- bool ifs_params_forced;
- bool in_ifs_mode;
- bool mng_reg_access_disabled;
- bool leave_av_bit_off;
- bool bad_tx_carr_stats_fd;
- bool has_smbus;
-};
-
-#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */
-#define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */
-#define E1000_EEPROM_RW_REG_DATA 16 /* Offset to data in EEPROM read/write registers */
-#define E1000_EEPROM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */
-#define E1000_EEPROM_RW_REG_START 1 /* First bit for telling part to start operation */
-#define E1000_EEPROM_RW_ADDR_SHIFT 2 /* Shift to the address bits */
-#define E1000_EEPROM_POLL_WRITE 1 /* Flag for polling for write complete */
-#define E1000_EEPROM_POLL_READ 0 /* Flag for polling for read complete */
-/* Register Bit Masks */
-/* Device Control */
-#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
-#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */
-#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */
-#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */
-#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
-#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */
-#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */
-#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
-#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
-#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
-#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
-#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */
-#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
-#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
-#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */
-#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
-#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
-#define E1000_CTRL_D_UD_EN 0x00002000 /* Dock/Undock enable */
-#define E1000_CTRL_D_UD_POLARITY 0x00004000 /* Defined polarity of Dock/Undock indication in SDP[0] */
-#define E1000_CTRL_FORCE_PHY_RESET 0x00008000 /* Reset both PHY ports, through PHYRST_N pin */
-#define E1000_CTRL_EXT_LINK_EN 0x00010000 /* enable link status from external LINK_0 and LINK_1 pins */
-#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
-#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
-#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */
-#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */
-#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
-#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */
-#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */
-#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */
-#define E1000_CTRL_RST 0x04000000 /* Global reset */
-#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
-#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
-#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */
-#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
-#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
-#define E1000_CTRL_SW2FW_INT 0x02000000 /* Initiate an interrupt to manageability engine */
-
-/* Device Status */
-#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
-#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
-#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
-#define E1000_STATUS_FUNC_SHIFT 2
-#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */
-#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
-#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
-#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */
-#define E1000_STATUS_SPEED_MASK 0x000000C0
-#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
-#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
-#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
-#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion
- by EEPROM/Flash */
-#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */
-#define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */
-#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */
-#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */
-#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */
-#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */
-#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */
-#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */
-#define E1000_STATUS_BMC_SKU_0 0x00100000 /* BMC USB redirect disabled */
-#define E1000_STATUS_BMC_SKU_1 0x00200000 /* BMC SRAM disabled */
-#define E1000_STATUS_BMC_SKU_2 0x00400000 /* BMC SDRAM disabled */
-#define E1000_STATUS_BMC_CRYPTO 0x00800000 /* BMC crypto disabled */
-#define E1000_STATUS_BMC_LITE 0x01000000 /* BMC external code execution disabled */
-#define E1000_STATUS_RGMII_ENABLE 0x02000000 /* RGMII disabled */
-#define E1000_STATUS_FUSE_8 0x04000000
-#define E1000_STATUS_FUSE_9 0x08000000
-#define E1000_STATUS_SERDES0_DIS 0x10000000 /* SERDES disabled on port 0 */
-#define E1000_STATUS_SERDES1_DIS 0x20000000 /* SERDES disabled on port 1 */
-
-/* Constants used to interpret the masked PCI-X bus speed. */
-#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */
-#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */
-#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */
-
-/* EEPROM/Flash Control */
-#define E1000_EECD_SK 0x00000001 /* EEPROM Clock */
-#define E1000_EECD_CS 0x00000002 /* EEPROM Chip Select */
-#define E1000_EECD_DI 0x00000004 /* EEPROM Data In */
-#define E1000_EECD_DO 0x00000008 /* EEPROM Data Out */
-#define E1000_EECD_FWE_MASK 0x00000030
-#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */
-#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */
-#define E1000_EECD_FWE_SHIFT 4
-#define E1000_EECD_REQ 0x00000040 /* EEPROM Access Request */
-#define E1000_EECD_GNT 0x00000080 /* EEPROM Access Grant */
-#define E1000_EECD_PRES 0x00000100 /* EEPROM Present */
-#define E1000_EECD_SIZE 0x00000200 /* EEPROM Size (0=64 word 1=256 word) */
-#define E1000_EECD_ADDR_BITS 0x00000400 /* EEPROM Addressing bits based on type
- * (0-small, 1-large) */
-#define E1000_EECD_TYPE 0x00002000 /* EEPROM Type (1-SPI, 0-Microwire) */
-#ifndef E1000_EEPROM_GRANT_ATTEMPTS
-#define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */
-#endif
-#define E1000_EECD_AUTO_RD 0x00000200 /* EEPROM Auto Read done */
-#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* EEprom Size */
-#define E1000_EECD_SIZE_EX_SHIFT 11
-#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */
-#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */
-#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */
-#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */
-#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */
-#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */
-#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */
-#define E1000_EECD_SECVAL_SHIFT 22
-#define E1000_STM_OPCODE 0xDB00
-#define E1000_HICR_FW_RESET 0xC0
-
-#define E1000_SHADOW_RAM_WORDS 2048
-#define E1000_ICH_NVM_SIG_WORD 0x13
-#define E1000_ICH_NVM_SIG_MASK 0xC0
-
-/* EEPROM Read */
-#define E1000_EERD_START 0x00000001 /* Start Read */
-#define E1000_EERD_DONE 0x00000010 /* Read Done */
-#define E1000_EERD_ADDR_SHIFT 8
-#define E1000_EERD_ADDR_MASK 0x0000FF00 /* Read Address */
-#define E1000_EERD_DATA_SHIFT 16
-#define E1000_EERD_DATA_MASK 0xFFFF0000 /* Read Data */
-
-/* SPI EEPROM Status Register */
-#define EEPROM_STATUS_RDY_SPI 0x01
-#define EEPROM_STATUS_WEN_SPI 0x02
-#define EEPROM_STATUS_BP0_SPI 0x04
-#define EEPROM_STATUS_BP1_SPI 0x08
-#define EEPROM_STATUS_WPEN_SPI 0x80
-
-/* Extended Device Control */
-#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */
-#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */
-#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
-#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */
-#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */
-#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */
-#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */
-#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA
-#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */
-#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */
-#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */
-#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */
-#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */
-#define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */
-#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */
-#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
-#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */
-#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */
-#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */
-#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
-#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
-#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000
-#define E1000_CTRL_EXT_LINK_MODE_KMRN 0x00000000
-#define E1000_CTRL_EXT_LINK_MODE_SERDES 0x00C00000
-#define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000
-#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000
-#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000
-#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000
-#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000
-#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000
-#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */
-#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */
-#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */
-#define E1000_CRTL_EXT_PB_PAREN 0x01000000 /* packet buffer parity error detection enabled */
-#define E1000_CTRL_EXT_DF_PAREN 0x02000000 /* descriptor FIFO parity error detection enable */
-#define E1000_CTRL_EXT_GHOST_PAREN 0x40000000
-
-/* MDI Control */
-#define E1000_MDIC_DATA_MASK 0x0000FFFF
-#define E1000_MDIC_REG_MASK 0x001F0000
-#define E1000_MDIC_REG_SHIFT 16
-#define E1000_MDIC_PHY_MASK 0x03E00000
-#define E1000_MDIC_PHY_SHIFT 21
-#define E1000_MDIC_OP_WRITE 0x04000000
-#define E1000_MDIC_OP_READ 0x08000000
-#define E1000_MDIC_READY 0x10000000
-#define E1000_MDIC_INT_EN 0x20000000
-#define E1000_MDIC_ERROR 0x40000000
-
-#define INTEL_CE_GBE_MDIC_OP_WRITE 0x04000000
-#define INTEL_CE_GBE_MDIC_OP_READ 0x00000000
-#define INTEL_CE_GBE_MDIC_GO 0x80000000
-#define INTEL_CE_GBE_MDIC_READ_ERROR 0x80000000
-
-#define E1000_KUMCTRLSTA_MASK 0x0000FFFF
-#define E1000_KUMCTRLSTA_OFFSET 0x001F0000
-#define E1000_KUMCTRLSTA_OFFSET_SHIFT 16
-#define E1000_KUMCTRLSTA_REN 0x00200000
-
-#define E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL 0x00000000
-#define E1000_KUMCTRLSTA_OFFSET_CTRL 0x00000001
-#define E1000_KUMCTRLSTA_OFFSET_INB_CTRL 0x00000002
-#define E1000_KUMCTRLSTA_OFFSET_DIAG 0x00000003
-#define E1000_KUMCTRLSTA_OFFSET_TIMEOUTS 0x00000004
-#define E1000_KUMCTRLSTA_OFFSET_INB_PARAM 0x00000009
-#define E1000_KUMCTRLSTA_OFFSET_HD_CTRL 0x00000010
-#define E1000_KUMCTRLSTA_OFFSET_M2P_SERDES 0x0000001E
-#define E1000_KUMCTRLSTA_OFFSET_M2P_MODES 0x0000001F
-
-/* FIFO Control */
-#define E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS 0x00000008
-#define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS 0x00000800
-
-/* In-Band Control */
-#define E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT 0x00000500
-#define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING 0x00000010
-
-/* Half-Duplex Control */
-#define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004
-#define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT 0x00000000
-
-#define E1000_KUMCTRLSTA_OFFSET_K0S_CTRL 0x0000001E
-
-#define E1000_KUMCTRLSTA_DIAG_FELPBK 0x2000
-#define E1000_KUMCTRLSTA_DIAG_NELPBK 0x1000
-
-#define E1000_KUMCTRLSTA_K0S_100_EN 0x2000
-#define E1000_KUMCTRLSTA_K0S_GBE_EN 0x1000
-#define E1000_KUMCTRLSTA_K0S_ENTRY_LATENCY_MASK 0x0003
-
-#define E1000_KABGTXD_BGSQLBIAS 0x00050000
-
-#define E1000_PHY_CTRL_SPD_EN 0x00000001
-#define E1000_PHY_CTRL_D0A_LPLU 0x00000002
-#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004
-#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
-#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040
-#define E1000_PHY_CTRL_B2B_EN 0x00000080
-
-/* LED Control */
-#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
-#define E1000_LEDCTL_LED0_MODE_SHIFT 0
-#define E1000_LEDCTL_LED0_BLINK_RATE 0x0000020
-#define E1000_LEDCTL_LED0_IVRT 0x00000040
-#define E1000_LEDCTL_LED0_BLINK 0x00000080
-#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00
-#define E1000_LEDCTL_LED1_MODE_SHIFT 8
-#define E1000_LEDCTL_LED1_BLINK_RATE 0x0002000
-#define E1000_LEDCTL_LED1_IVRT 0x00004000
-#define E1000_LEDCTL_LED1_BLINK 0x00008000
-#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000
-#define E1000_LEDCTL_LED2_MODE_SHIFT 16
-#define E1000_LEDCTL_LED2_BLINK_RATE 0x00200000
-#define E1000_LEDCTL_LED2_IVRT 0x00400000
-#define E1000_LEDCTL_LED2_BLINK 0x00800000
-#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000
-#define E1000_LEDCTL_LED3_MODE_SHIFT 24
-#define E1000_LEDCTL_LED3_BLINK_RATE 0x20000000
-#define E1000_LEDCTL_LED3_IVRT 0x40000000
-#define E1000_LEDCTL_LED3_BLINK 0x80000000
-
-#define E1000_LEDCTL_MODE_LINK_10_1000 0x0
-#define E1000_LEDCTL_MODE_LINK_100_1000 0x1
-#define E1000_LEDCTL_MODE_LINK_UP 0x2
-#define E1000_LEDCTL_MODE_ACTIVITY 0x3
-#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4
-#define E1000_LEDCTL_MODE_LINK_10 0x5
-#define E1000_LEDCTL_MODE_LINK_100 0x6
-#define E1000_LEDCTL_MODE_LINK_1000 0x7
-#define E1000_LEDCTL_MODE_PCIX_MODE 0x8
-#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9
-#define E1000_LEDCTL_MODE_COLLISION 0xA
-#define E1000_LEDCTL_MODE_BUS_SPEED 0xB
-#define E1000_LEDCTL_MODE_BUS_SIZE 0xC
-#define E1000_LEDCTL_MODE_PAUSED 0xD
-#define E1000_LEDCTL_MODE_LED_ON 0xE
-#define E1000_LEDCTL_MODE_LED_OFF 0xF
-
-/* Receive Address */
-#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
-
-/* Interrupt Cause Read */
-#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
-#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */
-#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
-#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */
-#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */
-#define E1000_ICR_RXO 0x00000040 /* rx overrun */
-#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */
-#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */
-#define E1000_ICR_RXCFG 0x00000400 /* RX /c/ ordered set */
-#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */
-#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */
-#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */
-#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */
-#define E1000_ICR_TXD_LOW 0x00008000
-#define E1000_ICR_SRPD 0x00010000
-#define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */
-#define E1000_ICR_MNG 0x00040000 /* Manageability event */
-#define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */
-#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */
-#define E1000_ICR_RXD_FIFO_PAR0 0x00100000 /* queue 0 Rx descriptor FIFO parity error */
-#define E1000_ICR_TXD_FIFO_PAR0 0x00200000 /* queue 0 Tx descriptor FIFO parity error */
-#define E1000_ICR_HOST_ARB_PAR 0x00400000 /* host arb read buffer parity error */
-#define E1000_ICR_PB_PAR 0x00800000 /* packet buffer parity error */
-#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */
-#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */
-#define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */
-#define E1000_ICR_DSW 0x00000020 /* FW changed the status of DISSW bit in the FWSM */
-#define E1000_ICR_PHYINT 0x00001000 /* LAN connected device generates an interrupt */
-#define E1000_ICR_EPRST 0x00100000 /* ME hardware reset occurs */
-
-/* Interrupt Cause Set */
-#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
-#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
-#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
-#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
-#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */
-#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
-#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */
-#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
-#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
-#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
-#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
-#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
-#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW
-#define E1000_ICS_SRPD E1000_ICR_SRPD
-#define E1000_ICS_ACK E1000_ICR_ACK /* Receive Ack frame */
-#define E1000_ICS_MNG E1000_ICR_MNG /* Manageability event */
-#define E1000_ICS_DOCK E1000_ICR_DOCK /* Dock/Undock */
-#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */
-#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */
-#define E1000_ICS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */
-#define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
-#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
-#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
-#define E1000_ICS_DSW E1000_ICR_DSW
-#define E1000_ICS_PHYINT E1000_ICR_PHYINT
-#define E1000_ICS_EPRST E1000_ICR_EPRST
-
-/* Interrupt Mask Set */
-#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
-#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
-#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
-#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
-#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */
-#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
-#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */
-#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
-#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
-#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
-#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
-#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
-#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW
-#define E1000_IMS_SRPD E1000_ICR_SRPD
-#define E1000_IMS_ACK E1000_ICR_ACK /* Receive Ack frame */
-#define E1000_IMS_MNG E1000_ICR_MNG /* Manageability event */
-#define E1000_IMS_DOCK E1000_ICR_DOCK /* Dock/Undock */
-#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */
-#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */
-#define E1000_IMS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */
-#define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
-#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
-#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
-#define E1000_IMS_DSW E1000_ICR_DSW
-#define E1000_IMS_PHYINT E1000_ICR_PHYINT
-#define E1000_IMS_EPRST E1000_ICR_EPRST
-
-/* Interrupt Mask Clear */
-#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */
-#define E1000_IMC_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
-#define E1000_IMC_LSC E1000_ICR_LSC /* Link Status Change */
-#define E1000_IMC_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
-#define E1000_IMC_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
-#define E1000_IMC_RXO E1000_ICR_RXO /* rx overrun */
-#define E1000_IMC_RXT0 E1000_ICR_RXT0 /* rx timer intr */
-#define E1000_IMC_MDAC E1000_ICR_MDAC /* MDIO access complete */
-#define E1000_IMC_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */
-#define E1000_IMC_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
-#define E1000_IMC_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
-#define E1000_IMC_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
-#define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
-#define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW
-#define E1000_IMC_SRPD E1000_ICR_SRPD
-#define E1000_IMC_ACK E1000_ICR_ACK /* Receive Ack frame */
-#define E1000_IMC_MNG E1000_ICR_MNG /* Manageability event */
-#define E1000_IMC_DOCK E1000_ICR_DOCK /* Dock/Undock */
-#define E1000_IMC_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */
-#define E1000_IMC_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */
-#define E1000_IMC_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */
-#define E1000_IMC_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
-#define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
-#define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
-#define E1000_IMC_DSW E1000_ICR_DSW
-#define E1000_IMC_PHYINT E1000_ICR_PHYINT
-#define E1000_IMC_EPRST E1000_ICR_EPRST
-
-/* Receive Control */
-#define E1000_RCTL_RST 0x00000001 /* Software reset */
-#define E1000_RCTL_EN 0x00000002 /* enable */
-#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
-#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */
-#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */
-#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
-#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
-#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
-#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */
-#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
-#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */
-#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */
-#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */
-#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */
-#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */
-#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
-#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */
-#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */
-#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */
-#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */
-#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */
-#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
-/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
-#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */
-#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */
-#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */
-#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */
-/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
-#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */
-#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */
-#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */
-#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
-#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
-#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
-#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */
-#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */
-#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
-#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */
-#define E1000_RCTL_FLXBUF_MASK 0x78000000 /* Flexible buffer size */
-#define E1000_RCTL_FLXBUF_SHIFT 27 /* Flexible buffer shift */
-
-/* Use byte values for the following shift parameters
- * Usage:
- * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
- * E1000_PSRCTL_BSIZE0_MASK) |
- * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
- * E1000_PSRCTL_BSIZE1_MASK) |
- * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
- * E1000_PSRCTL_BSIZE2_MASK) |
- * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
- * E1000_PSRCTL_BSIZE3_MASK))
- * where value0 = [128..16256], default=256
- * value1 = [1024..64512], default=4096
- * value2 = [0..64512], default=4096
- * value3 = [0..64512], default=0
- */
-
-#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F
-#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00
-#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000
-#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000
-
-#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */
-#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */
-#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */
-#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */
-
-/* SW_W_SYNC definitions */
-#define E1000_SWFW_EEP_SM 0x0001
-#define E1000_SWFW_PHY0_SM 0x0002
-#define E1000_SWFW_PHY1_SM 0x0004
-#define E1000_SWFW_MAC_CSR_SM 0x0008
-
-/* Receive Descriptor */
-#define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */
-#define E1000_RDT_FPDB 0x80000000 /* Flush descriptor block */
-#define E1000_RDLEN_LEN 0x0007ff80 /* descriptor length */
-#define E1000_RDH_RDH 0x0000ffff /* receive descriptor head */
-#define E1000_RDT_RDT 0x0000ffff /* receive descriptor tail */
-
-/* Flow Control */
-#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */
-#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */
-#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */
-#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
-
-/* Header split receive */
-#define E1000_RFCTL_ISCSI_DIS 0x00000001
-#define E1000_RFCTL_ISCSI_DWC_MASK 0x0000003E
-#define E1000_RFCTL_ISCSI_DWC_SHIFT 1
-#define E1000_RFCTL_NFSW_DIS 0x00000040
-#define E1000_RFCTL_NFSR_DIS 0x00000080
-#define E1000_RFCTL_NFS_VER_MASK 0x00000300
-#define E1000_RFCTL_NFS_VER_SHIFT 8
-#define E1000_RFCTL_IPV6_DIS 0x00000400
-#define E1000_RFCTL_IPV6_XSUM_DIS 0x00000800
-#define E1000_RFCTL_ACK_DIS 0x00001000
-#define E1000_RFCTL_ACKD_DIS 0x00002000
-#define E1000_RFCTL_IPFRSP_DIS 0x00004000
-#define E1000_RFCTL_EXTEN 0x00008000
-#define E1000_RFCTL_IPV6_EX_DIS 0x00010000
-#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000
-
-/* Receive Descriptor Control */
-#define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */
-#define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */
-#define E1000_RXDCTL_WTHRESH 0x003F0000 /* RXDCTL Writeback Threshold */
-#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */
-
-/* Transmit Descriptor Control */
-#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
-#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */
-#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
-#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */
-#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */
-#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
-#define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc.
- still to be processed. */
-/* Transmit Configuration Word */
-#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
-#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */
-#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */
-#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */
-#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */
-#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */
-#define E1000_TXCW_NP 0x00008000 /* TXCW next page */
-#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */
-#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */
-#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
-
-/* Receive Configuration Word */
-#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */
-#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */
-#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */
-#define E1000_RXCW_CC 0x10000000 /* Receive config change */
-#define E1000_RXCW_C 0x20000000 /* Receive config */
-#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
-#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */
-
-/* Transmit Control */
-#define E1000_TCTL_RST 0x00000001 /* software reset */
-#define E1000_TCTL_EN 0x00000002 /* enable tx */
-#define E1000_TCTL_BCE 0x00000004 /* busy check enable */
-#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
-#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
-#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
-#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */
-#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */
-#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
-#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */
-#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */
-/* Extended Transmit Control */
-#define E1000_TCTL_EXT_BST_MASK 0x000003FF /* Backoff Slot Time */
-#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
-
-/* Receive Checksum Control */
-#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */
-#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */
-#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
-#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */
-#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */
-#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */
-
-/* Multiple Receive Queue Control */
-#define E1000_MRQC_ENABLE_MASK 0x00000003
-#define E1000_MRQC_ENABLE_RSS_2Q 0x00000001
-#define E1000_MRQC_ENABLE_RSS_INT 0x00000004
-#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000
-#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000
-#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000
-#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000
-#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000
-#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000
-#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000
-
-/* Definitions for power management and wakeup registers */
-/* Wake Up Control */
-#define E1000_WUC_APME 0x00000001 /* APM Enable */
-#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
-#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */
-#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */
-#define E1000_WUC_SPM 0x80000000 /* Enable SPM */
-
-/* Wake Up Filter Control */
-#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
-#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
-#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
-#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
-#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
-#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
-#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */
-#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */
-#define E1000_WUFC_IGNORE_TCO 0x00008000 /* Ignore WakeOn TCO packets */
-#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */
-#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */
-#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */
-#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */
-#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */
-#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */
-#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
-
-/* Wake Up Status */
-#define E1000_WUS_LNKC 0x00000001 /* Link Status Changed */
-#define E1000_WUS_MAG 0x00000002 /* Magic Packet Received */
-#define E1000_WUS_EX 0x00000004 /* Directed Exact Received */
-#define E1000_WUS_MC 0x00000008 /* Directed Multicast Received */
-#define E1000_WUS_BC 0x00000010 /* Broadcast Received */
-#define E1000_WUS_ARP 0x00000020 /* ARP Request Packet Received */
-#define E1000_WUS_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Received */
-#define E1000_WUS_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Received */
-#define E1000_WUS_FLX0 0x00010000 /* Flexible Filter 0 Match */
-#define E1000_WUS_FLX1 0x00020000 /* Flexible Filter 1 Match */
-#define E1000_WUS_FLX2 0x00040000 /* Flexible Filter 2 Match */
-#define E1000_WUS_FLX3 0x00080000 /* Flexible Filter 3 Match */
-#define E1000_WUS_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
-
-/* Management Control */
-#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
-#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
-#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */
-#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */
-#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */
-#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */
-#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */
-#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */
-#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
-#define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery
- * Filtering */
-#define E1000_MANC_ARP_RES_EN 0x00008000 /* Enable ARP response Filtering */
-#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */
-#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
-#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */
-#define E1000_MANC_RCV_ALL 0x00080000 /* Receive All Enabled */
-#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
-#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 /* Enable MAC address
- * filtering */
-#define E1000_MANC_EN_MNG2HOST 0x00200000 /* Enable MNG packets to host
- * memory */
-#define E1000_MANC_EN_IP_ADDR_FILTER 0x00400000 /* Enable IP address
- * filtering */
-#define E1000_MANC_EN_XSUM_FILTER 0x00800000 /* Enable checksum filtering */
-#define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */
-#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */
-#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */
-#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */
-#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */
-#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */
-#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */
-
-#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */
-#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */
-
-/* SW Semaphore Register */
-#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */
-#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */
-#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */
-#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */
-
-/* FW Semaphore Register */
-#define E1000_FWSM_MODE_MASK 0x0000000E /* FW mode */
-#define E1000_FWSM_MODE_SHIFT 1
-#define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */
-
-#define E1000_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI reset */
-#define E1000_FWSM_DISSW 0x10000000 /* FW disable SW Write Access */
-#define E1000_FWSM_SKUSEL_MASK 0x60000000 /* LAN SKU select */
-#define E1000_FWSM_SKUEL_SHIFT 29
-#define E1000_FWSM_SKUSEL_EMB 0x0 /* Embedded SKU */
-#define E1000_FWSM_SKUSEL_CONS 0x1 /* Consumer SKU */
-#define E1000_FWSM_SKUSEL_PERF_100 0x2 /* Perf & Corp 10/100 SKU */
-#define E1000_FWSM_SKUSEL_PERF_GBE 0x3 /* Perf & Copr GbE SKU */
-
-/* FFLT Debug Register */
-#define E1000_FFLT_DBG_INVC 0x00100000 /* Invalid /C/ code handling */
-
-typedef enum {
- e1000_mng_mode_none = 0,
- e1000_mng_mode_asf,
- e1000_mng_mode_pt,
- e1000_mng_mode_ipmi,
- e1000_mng_mode_host_interface_only
-} e1000_mng_mode;
-
-/* Host Interface Control Register */
-#define E1000_HICR_EN 0x00000001 /* Enable Bit - RO */
-#define E1000_HICR_C 0x00000002 /* Driver sets this bit when done
- * to put command in RAM */
-#define E1000_HICR_SV 0x00000004 /* Status Validity */
-#define E1000_HICR_FWR 0x00000080 /* FW reset. Set by the Host */
-
-/* Host Interface Command Interface - Address range 0x8800-0x8EFF */
-#define E1000_HI_MAX_DATA_LENGTH 252 /* Host Interface data length */
-#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Number of bytes in range */
-#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Number of dwords in range */
-#define E1000_HI_COMMAND_TIMEOUT 500 /* Time in ms to process HI command */
-
-struct e1000_host_command_header {
- u8 command_id;
- u8 command_length;
- u8 command_options; /* I/F bits for command, status for return */
- u8 checksum;
-};
-struct e1000_host_command_info {
- struct e1000_host_command_header command_header; /* Command Head/Command Result Head has 4 bytes */
- u8 command_data[E1000_HI_MAX_DATA_LENGTH]; /* Command data can length 0..252 */
-};
-
-/* Host SMB register #0 */
-#define E1000_HSMC0R_CLKIN 0x00000001 /* SMB Clock in */
-#define E1000_HSMC0R_DATAIN 0x00000002 /* SMB Data in */
-#define E1000_HSMC0R_DATAOUT 0x00000004 /* SMB Data out */
-#define E1000_HSMC0R_CLKOUT 0x00000008 /* SMB Clock out */
-
-/* Host SMB register #1 */
-#define E1000_HSMC1R_CLKIN E1000_HSMC0R_CLKIN
-#define E1000_HSMC1R_DATAIN E1000_HSMC0R_DATAIN
-#define E1000_HSMC1R_DATAOUT E1000_HSMC0R_DATAOUT
-#define E1000_HSMC1R_CLKOUT E1000_HSMC0R_CLKOUT
-
-/* FW Status Register */
-#define E1000_FWSTS_FWS_MASK 0x000000FF /* FW Status */
-
-/* Wake Up Packet Length */
-#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */
-
-#define E1000_MDALIGN 4096
-
-/* PCI-Ex registers*/
-
-/* PCI-Ex Control Register */
-#define E1000_GCR_RXD_NO_SNOOP 0x00000001
-#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002
-#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004
-#define E1000_GCR_TXD_NO_SNOOP 0x00000008
-#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010
-#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020
-
-#define PCI_EX_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \
- E1000_GCR_RXDSCW_NO_SNOOP | \
- E1000_GCR_RXDSCR_NO_SNOOP | \
- E1000_GCR_TXD_NO_SNOOP | \
- E1000_GCR_TXDSCW_NO_SNOOP | \
- E1000_GCR_TXDSCR_NO_SNOOP)
-
-#define PCI_EX_82566_SNOOP_ALL PCI_EX_NO_SNOOP_ALL
-
-#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
-/* Function Active and Power State to MNG */
-#define E1000_FACTPS_FUNC0_POWER_STATE_MASK 0x00000003
-#define E1000_FACTPS_LAN0_VALID 0x00000004
-#define E1000_FACTPS_FUNC0_AUX_EN 0x00000008
-#define E1000_FACTPS_FUNC1_POWER_STATE_MASK 0x000000C0
-#define E1000_FACTPS_FUNC1_POWER_STATE_SHIFT 6
-#define E1000_FACTPS_LAN1_VALID 0x00000100
-#define E1000_FACTPS_FUNC1_AUX_EN 0x00000200
-#define E1000_FACTPS_FUNC2_POWER_STATE_MASK 0x00003000
-#define E1000_FACTPS_FUNC2_POWER_STATE_SHIFT 12
-#define E1000_FACTPS_IDE_ENABLE 0x00004000
-#define E1000_FACTPS_FUNC2_AUX_EN 0x00008000
-#define E1000_FACTPS_FUNC3_POWER_STATE_MASK 0x000C0000
-#define E1000_FACTPS_FUNC3_POWER_STATE_SHIFT 18
-#define E1000_FACTPS_SP_ENABLE 0x00100000
-#define E1000_FACTPS_FUNC3_AUX_EN 0x00200000
-#define E1000_FACTPS_FUNC4_POWER_STATE_MASK 0x03000000
-#define E1000_FACTPS_FUNC4_POWER_STATE_SHIFT 24
-#define E1000_FACTPS_IPMI_ENABLE 0x04000000
-#define E1000_FACTPS_FUNC4_AUX_EN 0x08000000
-#define E1000_FACTPS_MNGCG 0x20000000
-#define E1000_FACTPS_LAN_FUNC_SEL 0x40000000
-#define E1000_FACTPS_PM_STATE_CHANGED 0x80000000
-
-/* PCI-Ex Config Space */
-#define PCI_EX_LINK_STATUS 0x12
-#define PCI_EX_LINK_WIDTH_MASK 0x3F0
-#define PCI_EX_LINK_WIDTH_SHIFT 4
-
-/* EEPROM Commands - Microwire */
-#define EEPROM_READ_OPCODE_MICROWIRE 0x6 /* EEPROM read opcode */
-#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5 /* EEPROM write opcode */
-#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7 /* EEPROM erase opcode */
-#define EEPROM_EWEN_OPCODE_MICROWIRE 0x13 /* EEPROM erase/write enable */
-#define EEPROM_EWDS_OPCODE_MICROWIRE 0x10 /* EEPROM erase/write disable */
-
-/* EEPROM Commands - SPI */
-#define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
-#define EEPROM_READ_OPCODE_SPI 0x03 /* EEPROM read opcode */
-#define EEPROM_WRITE_OPCODE_SPI 0x02 /* EEPROM write opcode */
-#define EEPROM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */
-#define EEPROM_WREN_OPCODE_SPI 0x06 /* EEPROM set Write Enable latch */
-#define EEPROM_WRDI_OPCODE_SPI 0x04 /* EEPROM reset Write Enable latch */
-#define EEPROM_RDSR_OPCODE_SPI 0x05 /* EEPROM read Status register */
-#define EEPROM_WRSR_OPCODE_SPI 0x01 /* EEPROM write Status register */
-#define EEPROM_ERASE4K_OPCODE_SPI 0x20 /* EEPROM ERASE 4KB */
-#define EEPROM_ERASE64K_OPCODE_SPI 0xD8 /* EEPROM ERASE 64KB */
-#define EEPROM_ERASE256_OPCODE_SPI 0xDB /* EEPROM ERASE 256B */
-
-/* EEPROM Size definitions */
-#define EEPROM_WORD_SIZE_SHIFT 6
-#define EEPROM_SIZE_SHIFT 10
-#define EEPROM_SIZE_MASK 0x1C00
-
-/* EEPROM Word Offsets */
-#define EEPROM_COMPAT 0x0003
-#define EEPROM_ID_LED_SETTINGS 0x0004
-#define EEPROM_VERSION 0x0005
-#define EEPROM_SERDES_AMPLITUDE 0x0006 /* For SERDES output amplitude adjustment. */
-#define EEPROM_PHY_CLASS_WORD 0x0007
-#define EEPROM_INIT_CONTROL1_REG 0x000A
-#define EEPROM_INIT_CONTROL2_REG 0x000F
-#define EEPROM_SWDEF_PINS_CTRL_PORT_1 0x0010
-#define EEPROM_INIT_CONTROL3_PORT_B 0x0014
-#define EEPROM_INIT_3GIO_3 0x001A
-#define EEPROM_SWDEF_PINS_CTRL_PORT_0 0x0020
-#define EEPROM_INIT_CONTROL3_PORT_A 0x0024
-#define EEPROM_CFG 0x0012
-#define EEPROM_FLASH_VERSION 0x0032
-#define EEPROM_CHECKSUM_REG 0x003F
-
-#define E1000_EEPROM_CFG_DONE 0x00040000 /* MNG config cycle done */
-#define E1000_EEPROM_CFG_DONE_PORT_1 0x00080000 /* ...for second port */
-
-/* Word definitions for ID LED Settings */
-#define ID_LED_RESERVED_0000 0x0000
-#define ID_LED_RESERVED_FFFF 0xFFFF
-#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
- (ID_LED_OFF1_OFF2 << 8) | \
- (ID_LED_DEF1_DEF2 << 4) | \
- (ID_LED_DEF1_DEF2))
-#define ID_LED_DEF1_DEF2 0x1
-#define ID_LED_DEF1_ON2 0x2
-#define ID_LED_DEF1_OFF2 0x3
-#define ID_LED_ON1_DEF2 0x4
-#define ID_LED_ON1_ON2 0x5
-#define ID_LED_ON1_OFF2 0x6
-#define ID_LED_OFF1_DEF2 0x7
-#define ID_LED_OFF1_ON2 0x8
-#define ID_LED_OFF1_OFF2 0x9
-
-#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF
-#define IGP_ACTIVITY_LED_ENABLE 0x0300
-#define IGP_LED3_MODE 0x07000000
-
-/* Mask bits for SERDES amplitude adjustment in Word 6 of the EEPROM */
-#define EEPROM_SERDES_AMPLITUDE_MASK 0x000F
-
-/* Mask bit for PHY class in Word 7 of the EEPROM */
-#define EEPROM_PHY_CLASS_A 0x8000
-
-/* Mask bits for fields in Word 0x0a of the EEPROM */
-#define EEPROM_WORD0A_ILOS 0x0010
-#define EEPROM_WORD0A_SWDPIO 0x01E0
-#define EEPROM_WORD0A_LRST 0x0200
-#define EEPROM_WORD0A_FD 0x0400
-#define EEPROM_WORD0A_66MHZ 0x0800
-
-/* Mask bits for fields in Word 0x0f of the EEPROM */
-#define EEPROM_WORD0F_PAUSE_MASK 0x3000
-#define EEPROM_WORD0F_PAUSE 0x1000
-#define EEPROM_WORD0F_ASM_DIR 0x2000
-#define EEPROM_WORD0F_ANE 0x0800
-#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0
-#define EEPROM_WORD0F_LPLU 0x0001
-
-/* Mask bits for fields in Word 0x10/0x20 of the EEPROM */
-#define EEPROM_WORD1020_GIGA_DISABLE 0x0010
-#define EEPROM_WORD1020_GIGA_DISABLE_NON_D0A 0x0008
-
-/* Mask bits for fields in Word 0x1a of the EEPROM */
-#define EEPROM_WORD1A_ASPM_MASK 0x000C
-
-/* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */
-#define EEPROM_SUM 0xBABA
-
-/* EEPROM Map defines (WORD OFFSETS)*/
-#define EEPROM_NODE_ADDRESS_BYTE_0 0
-#define EEPROM_PBA_BYTE_1 8
-
-#define EEPROM_RESERVED_WORD 0xFFFF
-
-/* EEPROM Map Sizes (Byte Counts) */
-#define PBA_SIZE 4
-
-/* Collision related configuration parameters */
-#define E1000_COLLISION_THRESHOLD 15
-#define E1000_CT_SHIFT 4
-/* Collision distance is a 0-based value that applies to
- * half-duplex-capable hardware only. */
-#define E1000_COLLISION_DISTANCE 63
-#define E1000_COLLISION_DISTANCE_82542 64
-#define E1000_FDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE
-#define E1000_HDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE
-#define E1000_COLD_SHIFT 12
-
-/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
-#define REQ_TX_DESCRIPTOR_MULTIPLE 8
-#define REQ_RX_DESCRIPTOR_MULTIPLE 8
-
-/* Default values for the transmit IPG register */
-#define DEFAULT_82542_TIPG_IPGT 10
-#define DEFAULT_82543_TIPG_IPGT_FIBER 9
-#define DEFAULT_82543_TIPG_IPGT_COPPER 8
-
-#define E1000_TIPG_IPGT_MASK 0x000003FF
-#define E1000_TIPG_IPGR1_MASK 0x000FFC00
-#define E1000_TIPG_IPGR2_MASK 0x3FF00000
-
-#define DEFAULT_82542_TIPG_IPGR1 2
-#define DEFAULT_82543_TIPG_IPGR1 8
-#define E1000_TIPG_IPGR1_SHIFT 10
-
-#define DEFAULT_82542_TIPG_IPGR2 10
-#define DEFAULT_82543_TIPG_IPGR2 6
-#define E1000_TIPG_IPGR2_SHIFT 20
-
-#define E1000_TXDMAC_DPP 0x00000001
-
-/* Adaptive IFS defines */
-#define TX_THRESHOLD_START 8
-#define TX_THRESHOLD_INCREMENT 10
-#define TX_THRESHOLD_DECREMENT 1
-#define TX_THRESHOLD_STOP 190
-#define TX_THRESHOLD_DISABLE 0
-#define TX_THRESHOLD_TIMER_MS 10000
-#define MIN_NUM_XMITS 1000
-#define IFS_MAX 80
-#define IFS_STEP 10
-#define IFS_MIN 40
-#define IFS_RATIO 4
-
-/* Extended Configuration Control and Size */
-#define E1000_EXTCNF_CTRL_PCIE_WRITE_ENABLE 0x00000001
-#define E1000_EXTCNF_CTRL_PHY_WRITE_ENABLE 0x00000002
-#define E1000_EXTCNF_CTRL_D_UD_ENABLE 0x00000004
-#define E1000_EXTCNF_CTRL_D_UD_LATENCY 0x00000008
-#define E1000_EXTCNF_CTRL_D_UD_OWNER 0x00000010
-#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
-#define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040
-#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER 0x0FFF0000
-
-#define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH 0x000000FF
-#define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH 0x0000FF00
-#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH 0x00FF0000
-#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001
-#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020
-
-/* PBA constants */
-#define E1000_PBA_8K 0x0008 /* 8KB, default Rx allocation */
-#define E1000_PBA_12K 0x000C /* 12KB, default Rx allocation */
-#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */
-#define E1000_PBA_20K 0x0014
-#define E1000_PBA_22K 0x0016
-#define E1000_PBA_24K 0x0018
-#define E1000_PBA_30K 0x001E
-#define E1000_PBA_32K 0x0020
-#define E1000_PBA_34K 0x0022
-#define E1000_PBA_38K 0x0026
-#define E1000_PBA_40K 0x0028
-#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */
-
-#define E1000_PBS_16K E1000_PBA_16K
-
-/* Flow Control Constants */
-#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
-#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
-#define FLOW_CONTROL_TYPE 0x8808
-
-/* The historical defaults for the flow control values are given below. */
-#define FC_DEFAULT_HI_THRESH (0x8000) /* 32KB */
-#define FC_DEFAULT_LO_THRESH (0x4000) /* 16KB */
-#define FC_DEFAULT_TX_TIMER (0x100) /* ~130 us */
-
-/* PCIX Config space */
-#define PCIX_COMMAND_REGISTER 0xE6
-#define PCIX_STATUS_REGISTER_LO 0xE8
-#define PCIX_STATUS_REGISTER_HI 0xEA
-
-#define PCIX_COMMAND_MMRBC_MASK 0x000C
-#define PCIX_COMMAND_MMRBC_SHIFT 0x2
-#define PCIX_STATUS_HI_MMRBC_MASK 0x0060
-#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5
-#define PCIX_STATUS_HI_MMRBC_4K 0x3
-#define PCIX_STATUS_HI_MMRBC_2K 0x2
-
-/* Number of bits required to shift right the "pause" bits from the
- * EEPROM (bits 13:12) to the "pause" (bits 8:7) field in the TXCW register.
- */
-#define PAUSE_SHIFT 5
-
-/* Number of bits required to shift left the "SWDPIO" bits from the
- * EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field in the CTRL register.
- */
-#define SWDPIO_SHIFT 17
-
-/* Number of bits required to shift left the "SWDPIO_EXT" bits from the
- * EEPROM word F (bits 7:4) to the bits 11:8 of The Extended CTRL register.
- */
-#define SWDPIO__EXT_SHIFT 4
-
-/* Number of bits required to shift left the "ILOS" bit from the EEPROM
- * (bit 4) to the "ILOS" (bit 7) field in the CTRL register.
- */
-#define ILOS_SHIFT 3
-
-#define RECEIVE_BUFFER_ALIGN_SIZE (256)
-
-/* Number of milliseconds we wait for auto-negotiation to complete */
-#define LINK_UP_TIMEOUT 500
-
-/* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */
-#define AUTO_READ_DONE_TIMEOUT 10
-/* Number of milliseconds we wait for PHY configuration done after MAC reset */
-#define PHY_CFG_TIMEOUT 100
-
-#define E1000_TX_BUFFER_SIZE ((u32)1514)
-
-/* The carrier extension symbol, as received by the NIC. */
-#define CARRIER_EXTENSION 0x0F
-
-/* TBI_ACCEPT macro definition:
- *
- * This macro requires:
- * adapter = a pointer to struct e1000_hw
- * status = the 8 bit status field of the RX descriptor with EOP set
- * error = the 8 bit error field of the RX descriptor with EOP set
- * length = the sum of all the length fields of the RX descriptors that
- * make up the current frame
- * last_byte = the last byte of the frame DMAed by the hardware
- * max_frame_length = the maximum frame length we want to accept.
- * min_frame_length = the minimum frame length we want to accept.
- *
- * This macro is a conditional that should be used in the interrupt
- * handler's Rx processing routine when RxErrors have been detected.
- *
- * Typical use:
- * ...
- * if (TBI_ACCEPT) {
- * accept_frame = true;
- * e1000_tbi_adjust_stats(adapter, MacAddress);
- * frame_length--;
- * } else {
- * accept_frame = false;
- * }
- * ...
- */
-
-#define TBI_ACCEPT(adapter, status, errors, length, last_byte) \
- ((adapter)->tbi_compatibility_on && \
- (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
- ((last_byte) == CARRIER_EXTENSION) && \
- (((status) & E1000_RXD_STAT_VP) ? \
- (((length) > ((adapter)->min_frame_size - VLAN_TAG_SIZE)) && \
- ((length) <= ((adapter)->max_frame_size + 1))) : \
- (((length) > (adapter)->min_frame_size) && \
- ((length) <= ((adapter)->max_frame_size + VLAN_TAG_SIZE + 1)))))
-
-/* Structures, enums, and macros for the PHY */
-
-/* Bit definitions for the Management Data IO (MDIO) and Management Data
- * Clock (MDC) pins in the Device Control Register.
- */
-#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0
-#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0
-#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2
-#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2
-#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3
-#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3
-#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR
-#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA
-
-/* PHY 1000 MII Register/Bit Definitions */
-/* PHY Registers defined by IEEE */
-#define PHY_CTRL 0x00 /* Control Register */
-#define PHY_STATUS 0x01 /* Status Register */
-#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
-#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
-#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
-#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
-#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */
-#define PHY_NEXT_PAGE_TX 0x07 /* Next Page TX */
-#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */
-#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
-#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
-#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */
-
-#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
-#define MAX_PHY_MULTI_PAGE_REG 0xF /* Registers equal on all pages */
-
-/* M88E1000 Specific Registers */
-#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */
-#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */
-#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */
-#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */
-#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */
-#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */
-
-#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */
-#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */
-#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */
-#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */
-#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */
-
-#define IGP01E1000_IEEE_REGS_PAGE 0x0000
-#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300
-#define IGP01E1000_IEEE_FORCE_GIGA 0x0140
-
-/* IGP01E1000 Specific Registers */
-#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* PHY Specific Port Config Register */
-#define IGP01E1000_PHY_PORT_STATUS 0x11 /* PHY Specific Status Register */
-#define IGP01E1000_PHY_PORT_CTRL 0x12 /* PHY Specific Control Register */
-#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */
-#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO Register */
-#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */
-#define IGP02E1000_PHY_POWER_MGMT 0x19
-#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* PHY Page Select Core Register */
-
-/* IGP01E1000 AGC Registers - stores the cable length values*/
-#define IGP01E1000_PHY_AGC_A 0x1172
-#define IGP01E1000_PHY_AGC_B 0x1272
-#define IGP01E1000_PHY_AGC_C 0x1472
-#define IGP01E1000_PHY_AGC_D 0x1872
-
-/* IGP02E1000 AGC Registers for cable length values */
-#define IGP02E1000_PHY_AGC_A 0x11B1
-#define IGP02E1000_PHY_AGC_B 0x12B1
-#define IGP02E1000_PHY_AGC_C 0x14B1
-#define IGP02E1000_PHY_AGC_D 0x18B1
-
-/* IGP01E1000 DSP Reset Register */
-#define IGP01E1000_PHY_DSP_RESET 0x1F33
-#define IGP01E1000_PHY_DSP_SET 0x1F71
-#define IGP01E1000_PHY_DSP_FFE 0x1F35
-
-#define IGP01E1000_PHY_CHANNEL_NUM 4
-#define IGP02E1000_PHY_CHANNEL_NUM 4
-
-#define IGP01E1000_PHY_AGC_PARAM_A 0x1171
-#define IGP01E1000_PHY_AGC_PARAM_B 0x1271
-#define IGP01E1000_PHY_AGC_PARAM_C 0x1471
-#define IGP01E1000_PHY_AGC_PARAM_D 0x1871
-
-#define IGP01E1000_PHY_EDAC_MU_INDEX 0xC000
-#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000
-
-#define IGP01E1000_PHY_ANALOG_TX_STATE 0x2890
-#define IGP01E1000_PHY_ANALOG_CLASS_A 0x2000
-#define IGP01E1000_PHY_FORCE_ANALOG_ENABLE 0x0004
-#define IGP01E1000_PHY_DSP_FFE_CM_CP 0x0069
-
-#define IGP01E1000_PHY_DSP_FFE_DEFAULT 0x002A
-/* IGP01E1000 PCS Initialization register - stores the polarity status when
- * speed = 1000 Mbps. */
-#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4
-#define IGP01E1000_PHY_PCS_CTRL_REG 0x00B5
-
-#define IGP01E1000_ANALOG_REGS_PAGE 0x20C0
-
-/* PHY Control Register */
-#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */
-#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */
-#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
-#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
-#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */
-#define MII_CR_POWER_DOWN 0x0800 /* Power down */
-#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
-#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */
-#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
-#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
-
-/* PHY Status Register */
-#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */
-#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */
-#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
-#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */
-#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */
-#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
-#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */
-#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */
-#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */
-#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */
-#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */
-#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */
-#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */
-#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */
-#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */
-
-/* Autoneg Advertisement Register */
-#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */
-#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
-#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
-#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
-#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
-#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */
-#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
-#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
-#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */
-#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */
-
-/* Link Partner Ability Register (Base Page) */
-#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */
-#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */
-#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */
-#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */
-#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */
-#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */
-#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
-#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */
-#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */
-#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */
-#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */
-
-/* Autoneg Expansion Register */
-#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */
-#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */
-#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */
-#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */
-#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP is 100TX Full Duplex Capable */
-
-/* Next Page TX Register */
-#define NPTX_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */
-#define NPTX_TOGGLE 0x0800 /* Toggles between exchanges
- * of different NP
- */
-#define NPTX_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg
- * 0 = cannot comply with msg
- */
-#define NPTX_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */
-#define NPTX_NEXT_PAGE 0x8000 /* 1 = addition NP will follow
- * 0 = sending last NP
- */
-
-/* Link Partner Next Page Register */
-#define LP_RNPR_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */
-#define LP_RNPR_TOGGLE 0x0800 /* Toggles between exchanges
- * of different NP
- */
-#define LP_RNPR_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg
- * 0 = cannot comply with msg
- */
-#define LP_RNPR_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */
-#define LP_RNPR_ACKNOWLDGE 0x4000 /* 1 = ACK / 0 = NO ACK */
-#define LP_RNPR_NEXT_PAGE 0x8000 /* 1 = addition NP will follow
- * 0 = sending last NP
- */
-
-/* 1000BASE-T Control Register */
-#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */
-#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
-#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
-#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */
- /* 0=DTE device */
-#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */
- /* 0=Configure PHY as Slave */
-#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */
- /* 0=Automatic Master/Slave config */
-#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
-#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */
-#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */
-#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */
-#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */
-
-/* 1000BASE-T Status Register */
-#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */
-#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */
-#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */
-#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */
-#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
-#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
-#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local TX is Master, 0=Slave */
-#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */
-#define SR_1000T_REMOTE_RX_STATUS_SHIFT 12
-#define SR_1000T_LOCAL_RX_STATUS_SHIFT 13
-#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5
-#define FFE_IDLE_ERR_COUNT_TIMEOUT_20 20
-#define FFE_IDLE_ERR_COUNT_TIMEOUT_100 100
-
-/* Extended Status Register */
-#define IEEE_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */
-#define IEEE_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */
-#define IEEE_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */
-#define IEEE_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */
-
-#define PHY_TX_POLARITY_MASK 0x0100 /* register 10h bit 8 (polarity bit) */
-#define PHY_TX_NORMAL_POLARITY 0 /* register 10h bit 8 (normal polarity) */
-
-#define AUTO_POLARITY_DISABLE 0x0010 /* register 11h bit 4 */
- /* (0=enable, 1=disable) */
-
-/* M88E1000 PHY Specific Control Register */
-#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */
-#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
-#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */
-#define M88E1000_PSCR_CLK125_DISABLE 0x0010 /* 1=CLK125 low,
- * 0=CLK125 toggling
- */
-#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
- /* Manual MDI configuration */
-#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
-#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover,
- * 100BASE-TX/10BASE-T:
- * MDI Mode
- */
-#define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled
- * all speeds.
- */
-#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080
- /* 1=Enable Extended 10BASE-T distance
- * (Lower 10BASE-T RX Threshold)
- * 0=Normal 10BASE-T RX Threshold */
-#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100
- /* 1=5-Bit interface in 100BASE-TX
- * 0=MII interface in 100BASE-TX */
-#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */
-#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */
-#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
-
-#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT 1
-#define M88E1000_PSCR_AUTO_X_MODE_SHIFT 5
-#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7
-
-/* M88E1000 PHY Specific Status Register */
-#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */
-#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
-#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */
-#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
-#define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M;
- * 3=110-140M;4=>140M */
-#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */
-#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */
-#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */
-#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */
-#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
-#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */
-#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */
-#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
-
-#define M88E1000_PSSR_REV_POLARITY_SHIFT 1
-#define M88E1000_PSSR_DOWNSHIFT_SHIFT 5
-#define M88E1000_PSSR_MDIX_SHIFT 6
-#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
-
-/* M88E1000 Extended PHY Specific Control Register */
-#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */
-#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 /* 1=Lost lock detect enabled.
- * Will assert lost lock and bring
- * link down if idle not seen
- * within 1ms in 1000BASE-T
- */
-/* Number of times we will attempt to autonegotiate before downshifting if we
- * are the master */
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800
-#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00
-/* Number of times we will attempt to autonegotiate before downshifting if we
- * are the slave */
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200
-#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300
-#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */
-#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
-#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */
-
-/* M88EC018 Rev 2 specific DownShift settings */
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X 0x0000
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X 0x0200
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X 0x0400
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X 0x0600
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X 0x0A00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X 0x0C00
-#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X 0x0E00
-
-/* IGP01E1000 Specific Port Config Register - R/W */
-#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT 0x0010
-#define IGP01E1000_PSCFR_PRE_EN 0x0020
-#define IGP01E1000_PSCFR_SMART_SPEED 0x0080
-#define IGP01E1000_PSCFR_DISABLE_TPLOOPBACK 0x0100
-#define IGP01E1000_PSCFR_DISABLE_JABBER 0x0400
-#define IGP01E1000_PSCFR_DISABLE_TRANSMIT 0x2000
-
-/* IGP01E1000 Specific Port Status Register - R/O */
-#define IGP01E1000_PSSR_AUTONEG_FAILED 0x0001 /* RO LH SC */
-#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002
-#define IGP01E1000_PSSR_CABLE_LENGTH 0x007C
-#define IGP01E1000_PSSR_FULL_DUPLEX 0x0200
-#define IGP01E1000_PSSR_LINK_UP 0x0400
-#define IGP01E1000_PSSR_MDIX 0x0800
-#define IGP01E1000_PSSR_SPEED_MASK 0xC000 /* speed bits mask */
-#define IGP01E1000_PSSR_SPEED_10MBPS 0x4000
-#define IGP01E1000_PSSR_SPEED_100MBPS 0x8000
-#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000
-#define IGP01E1000_PSSR_CABLE_LENGTH_SHIFT 0x0002 /* shift right 2 */
-#define IGP01E1000_PSSR_MDIX_SHIFT 0x000B /* shift right 11 */
-
-/* IGP01E1000 Specific Port Control Register - R/W */
-#define IGP01E1000_PSCR_TP_LOOPBACK 0x0010
-#define IGP01E1000_PSCR_CORRECT_NC_SCMBLR 0x0200
-#define IGP01E1000_PSCR_TEN_CRS_SELECT 0x0400
-#define IGP01E1000_PSCR_FLIP_CHIP 0x0800
-#define IGP01E1000_PSCR_AUTO_MDIX 0x1000
-#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0-MDI, 1-MDIX */
-
-/* IGP01E1000 Specific Port Link Health Register */
-#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000
-#define IGP01E1000_PLHR_GIG_SCRAMBLER_ERROR 0x4000
-#define IGP01E1000_PLHR_MASTER_FAULT 0x2000
-#define IGP01E1000_PLHR_MASTER_RESOLUTION 0x1000
-#define IGP01E1000_PLHR_GIG_REM_RCVR_NOK 0x0800 /* LH */
-#define IGP01E1000_PLHR_IDLE_ERROR_CNT_OFLOW 0x0400 /* LH */
-#define IGP01E1000_PLHR_DATA_ERR_1 0x0200 /* LH */
-#define IGP01E1000_PLHR_DATA_ERR_0 0x0100
-#define IGP01E1000_PLHR_AUTONEG_FAULT 0x0040
-#define IGP01E1000_PLHR_AUTONEG_ACTIVE 0x0010
-#define IGP01E1000_PLHR_VALID_CHANNEL_D 0x0008
-#define IGP01E1000_PLHR_VALID_CHANNEL_C 0x0004
-#define IGP01E1000_PLHR_VALID_CHANNEL_B 0x0002
-#define IGP01E1000_PLHR_VALID_CHANNEL_A 0x0001
-
-/* IGP01E1000 Channel Quality Register */
-#define IGP01E1000_MSE_CHANNEL_D 0x000F
-#define IGP01E1000_MSE_CHANNEL_C 0x00F0
-#define IGP01E1000_MSE_CHANNEL_B 0x0F00
-#define IGP01E1000_MSE_CHANNEL_A 0xF000
-
-#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */
-#define IGP02E1000_PM_D3_LPLU 0x0004 /* Enable LPLU in non-D0a modes */
-#define IGP02E1000_PM_D0_LPLU 0x0002 /* Enable LPLU in D0a mode */
-
-/* IGP01E1000 DSP reset macros */
-#define DSP_RESET_ENABLE 0x0
-#define DSP_RESET_DISABLE 0x2
-#define E1000_MAX_DSP_RESETS 10
-
-/* IGP01E1000 & IGP02E1000 AGC Registers */
-
-#define IGP01E1000_AGC_LENGTH_SHIFT 7 /* Coarse - 13:11, Fine - 10:7 */
-#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Coarse - 15:13, Fine - 12:9 */
-
-/* IGP02E1000 AGC Register Length 9-bit mask */
-#define IGP02E1000_AGC_LENGTH_MASK 0x7F
-
-/* 7 bits (3 Coarse + 4 Fine) --> 128 optional values */
-#define IGP01E1000_AGC_LENGTH_TABLE_SIZE 128
-#define IGP02E1000_AGC_LENGTH_TABLE_SIZE 113
-
-/* The precision error of the cable length is +/- 10 meters */
-#define IGP01E1000_AGC_RANGE 10
-#define IGP02E1000_AGC_RANGE 15
-
-/* IGP01E1000 PCS Initialization register */
-/* bits 3:6 in the PCS registers stores the channels polarity */
-#define IGP01E1000_PHY_POLARITY_MASK 0x0078
-
-/* IGP01E1000 GMII FIFO Register */
-#define IGP01E1000_GMII_FLEX_SPD 0x10 /* Enable flexible speed
- * on Link-Up */
-#define IGP01E1000_GMII_SPD 0x20 /* Enable SPD */
-
-/* IGP01E1000 Analog Register */
-#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1
-#define IGP01E1000_ANALOG_FUSE_STATUS 0x20D0
-#define IGP01E1000_ANALOG_FUSE_CONTROL 0x20DC
-#define IGP01E1000_ANALOG_FUSE_BYPASS 0x20DE
-
-#define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000
-#define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80
-#define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070
-#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100
-#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002
-
-#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040
-#define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010
-#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080
-#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500
-
-/* Bit definitions for valid PHY IDs. */
-/* I = Integrated
- * E = External
- */
-#define M88_VENDOR 0x0141
-#define M88E1000_E_PHY_ID 0x01410C50
-#define M88E1000_I_PHY_ID 0x01410C30
-#define M88E1011_I_PHY_ID 0x01410C20
-#define IGP01E1000_I_PHY_ID 0x02A80380
-#define M88E1000_12_PHY_ID M88E1000_E_PHY_ID
-#define M88E1000_14_PHY_ID M88E1000_E_PHY_ID
-#define M88E1011_I_REV_4 0x04
-#define M88E1111_I_PHY_ID 0x01410CC0
-#define M88E1118_E_PHY_ID 0x01410E40
-#define L1LXT971A_PHY_ID 0x001378E0
-
-#define RTL8211B_PHY_ID 0x001CC910
-#define RTL8201N_PHY_ID 0x8200
-#define RTL_PHY_CTRL_FD 0x0100 /* Full duplex.0=half; 1=full */
-#define RTL_PHY_CTRL_SPD_100 0x200000 /* Force 100Mb */
-
-/* Bits...
- * 15-5: page
- * 4-0: register offset
- */
-#define PHY_PAGE_SHIFT 5
-#define PHY_REG(page, reg) \
- (((page) << PHY_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
-
-#define IGP3_PHY_PORT_CTRL \
- PHY_REG(769, 17) /* Port General Configuration */
-#define IGP3_PHY_RATE_ADAPT_CTRL \
- PHY_REG(769, 25) /* Rate Adapter Control Register */
-
-#define IGP3_KMRN_FIFO_CTRL_STATS \
- PHY_REG(770, 16) /* KMRN FIFO's control/status register */
-#define IGP3_KMRN_POWER_MNG_CTRL \
- PHY_REG(770, 17) /* KMRN Power Management Control Register */
-#define IGP3_KMRN_INBAND_CTRL \
- PHY_REG(770, 18) /* KMRN Inband Control Register */
-#define IGP3_KMRN_DIAG \
- PHY_REG(770, 19) /* KMRN Diagnostic register */
-#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 /* RX PCS is not synced */
-#define IGP3_KMRN_ACK_TIMEOUT \
- PHY_REG(770, 20) /* KMRN Acknowledge Timeouts register */
-
-#define IGP3_VR_CTRL \
- PHY_REG(776, 18) /* Voltage regulator control register */
-#define IGP3_VR_CTRL_MODE_SHUT 0x0200 /* Enter powerdown, shutdown VRs */
-#define IGP3_VR_CTRL_MODE_MASK 0x0300 /* Shutdown VR Mask */
-
-#define IGP3_CAPABILITY \
- PHY_REG(776, 19) /* IGP3 Capability Register */
-
-/* Capabilities for SKU Control */
-#define IGP3_CAP_INITIATE_TEAM 0x0001 /* Able to initiate a team */
-#define IGP3_CAP_WFM 0x0002 /* Support WoL and PXE */
-#define IGP3_CAP_ASF 0x0004 /* Support ASF */
-#define IGP3_CAP_LPLU 0x0008 /* Support Low Power Link Up */
-#define IGP3_CAP_DC_AUTO_SPEED 0x0010 /* Support AC/DC Auto Link Speed */
-#define IGP3_CAP_SPD 0x0020 /* Support Smart Power Down */
-#define IGP3_CAP_MULT_QUEUE 0x0040 /* Support 2 tx & 2 rx queues */
-#define IGP3_CAP_RSS 0x0080 /* Support RSS */
-#define IGP3_CAP_8021PQ 0x0100 /* Support 802.1Q & 802.1p */
-#define IGP3_CAP_AMT_CB 0x0200 /* Support active manageability and circuit breaker */
-
-#define IGP3_PPC_JORDAN_EN 0x0001
-#define IGP3_PPC_JORDAN_GIGA_SPEED 0x0002
-
-#define IGP3_KMRN_PMC_EE_IDLE_LINK_DIS 0x0001
-#define IGP3_KMRN_PMC_K0S_ENTRY_LATENCY_MASK 0x001E
-#define IGP3_KMRN_PMC_K0S_MODE1_EN_GIGA 0x0020
-#define IGP3_KMRN_PMC_K0S_MODE1_EN_100 0x0040
-
-#define IGP3E1000_PHY_MISC_CTRL 0x1B /* Misc. Ctrl register */
-#define IGP3_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Duplex Manual Set */
-
-#define IGP3_KMRN_EXT_CTRL PHY_REG(770, 18)
-#define IGP3_KMRN_EC_DIS_INBAND 0x0080
-
-#define IGP03E1000_E_PHY_ID 0x02A80390
-#define IFE_E_PHY_ID 0x02A80330 /* 10/100 PHY */
-#define IFE_PLUS_E_PHY_ID 0x02A80320
-#define IFE_C_E_PHY_ID 0x02A80310
-
-#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 /* 100BaseTx Extended Status, Control and Address */
-#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY special control register */
-#define IFE_PHY_RCV_FALSE_CARRIER 0x13 /* 100BaseTx Receive False Carrier Counter */
-#define IFE_PHY_RCV_DISCONNECT 0x14 /* 100BaseTx Receive Disconnect Counter */
-#define IFE_PHY_RCV_ERROT_FRAME 0x15 /* 100BaseTx Receive Error Frame Counter */
-#define IFE_PHY_RCV_SYMBOL_ERR 0x16 /* Receive Symbol Error Counter */
-#define IFE_PHY_PREM_EOF_ERR 0x17 /* 100BaseTx Receive Premature End Of Frame Error Counter */
-#define IFE_PHY_RCV_EOF_ERR 0x18 /* 10BaseT Receive End Of Frame Error Counter */
-#define IFE_PHY_TX_JABBER_DETECT 0x19 /* 10BaseT Transmit Jabber Detect Counter */
-#define IFE_PHY_EQUALIZER 0x1A /* PHY Equalizer Control and Status */
-#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY special control and LED configuration */
-#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control register */
-#define IFE_PHY_HWI_CONTROL 0x1D /* Hardware Integrity Control (HWI) */
-
-#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE 0x2000 /* Default 1 = Disable auto reduced power down */
-#define IFE_PESC_100BTX_POWER_DOWN 0x0400 /* Indicates the power state of 100BASE-TX */
-#define IFE_PESC_10BTX_POWER_DOWN 0x0200 /* Indicates the power state of 10BASE-T */
-#define IFE_PESC_POLARITY_REVERSED 0x0100 /* Indicates 10BASE-T polarity */
-#define IFE_PESC_PHY_ADDR_MASK 0x007C /* Bit 6:2 for sampled PHY address */
-#define IFE_PESC_SPEED 0x0002 /* Auto-negotiation speed result 1=100Mbs, 0=10Mbs */
-#define IFE_PESC_DUPLEX 0x0001 /* Auto-negotiation duplex result 1=Full, 0=Half */
-#define IFE_PESC_POLARITY_REVERSED_SHIFT 8
-
-#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100 /* 1 = Dynamic Power Down disabled */
-#define IFE_PSC_FORCE_POLARITY 0x0020 /* 1=Reversed Polarity, 0=Normal */
-#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 /* 1=Auto Polarity Disabled, 0=Enabled */
-#define IFE_PSC_JABBER_FUNC_DISABLE 0x0001 /* 1=Jabber Disabled, 0=Normal Jabber Operation */
-#define IFE_PSC_FORCE_POLARITY_SHIFT 5
-#define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT 4
-
-#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable MDI/MDI-X feature, default 0=disabled */
-#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDIX-X, 0=force MDI */
-#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */
-#define IFE_PMC_AUTO_MDIX_COMPLETE 0x0010 /* Resolution algorithm is completed */
-#define IFE_PMC_MDIX_MODE_SHIFT 6
-#define IFE_PHC_MDIX_RESET_ALL_MASK 0x0000 /* Disable auto MDI-X */
-
-#define IFE_PHC_HWI_ENABLE 0x8000 /* Enable the HWI feature */
-#define IFE_PHC_ABILITY_CHECK 0x4000 /* 1= Test Passed, 0=failed */
-#define IFE_PHC_TEST_EXEC 0x2000 /* PHY launch test pulses on the wire */
-#define IFE_PHC_HIGHZ 0x0200 /* 1 = Open Circuit */
-#define IFE_PHC_LOWZ 0x0400 /* 1 = Short Circuit */
-#define IFE_PHC_LOW_HIGH_Z_MASK 0x0600 /* Mask for indication type of problem on the line */
-#define IFE_PHC_DISTANCE_MASK 0x01FF /* Mask for distance to the cable problem, in 80cm granularity */
-#define IFE_PHC_RESET_ALL_MASK 0x0000 /* Disable HWI */
-#define IFE_PSCL_PROBE_MODE 0x0020 /* LED Probe mode */
-#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */
-#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */
-
-#define ICH_FLASH_COMMAND_TIMEOUT 5000 /* 5000 uSecs - adjusted */
-#define ICH_FLASH_ERASE_TIMEOUT 3000000 /* Up to 3 seconds - worst case */
-#define ICH_FLASH_CYCLE_REPEAT_COUNT 10 /* 10 cycles */
-#define ICH_FLASH_SEG_SIZE_256 256
-#define ICH_FLASH_SEG_SIZE_4K 4096
-#define ICH_FLASH_SEG_SIZE_64K 65536
-
-#define ICH_CYCLE_READ 0x0
-#define ICH_CYCLE_RESERVED 0x1
-#define ICH_CYCLE_WRITE 0x2
-#define ICH_CYCLE_ERASE 0x3
-
-#define ICH_FLASH_GFPREG 0x0000
-#define ICH_FLASH_HSFSTS 0x0004
-#define ICH_FLASH_HSFCTL 0x0006
-#define ICH_FLASH_FADDR 0x0008
-#define ICH_FLASH_FDATA0 0x0010
-#define ICH_FLASH_FRACC 0x0050
-#define ICH_FLASH_FREG0 0x0054
-#define ICH_FLASH_FREG1 0x0058
-#define ICH_FLASH_FREG2 0x005C
-#define ICH_FLASH_FREG3 0x0060
-#define ICH_FLASH_FPR0 0x0074
-#define ICH_FLASH_FPR1 0x0078
-#define ICH_FLASH_SSFSTS 0x0090
-#define ICH_FLASH_SSFCTL 0x0092
-#define ICH_FLASH_PREOP 0x0094
-#define ICH_FLASH_OPTYPE 0x0096
-#define ICH_FLASH_OPMENU 0x0098
-
-#define ICH_FLASH_REG_MAPSIZE 0x00A0
-#define ICH_FLASH_SECTOR_SIZE 4096
-#define ICH_GFPREG_BASE_MASK 0x1FFF
-#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
-
-/* Miscellaneous PHY bit definitions. */
-#define PHY_PREAMBLE 0xFFFFFFFF
-#define PHY_SOF 0x01
-#define PHY_OP_READ 0x02
-#define PHY_OP_WRITE 0x01
-#define PHY_TURNAROUND 0x02
-#define PHY_PREAMBLE_SIZE 32
-#define MII_CR_SPEED_1000 0x0040
-#define MII_CR_SPEED_100 0x2000
-#define MII_CR_SPEED_10 0x0000
-#define E1000_PHY_ADDRESS 0x01
-#define PHY_AUTO_NEG_TIME 45 /* 4.5 Seconds */
-#define PHY_FORCE_TIME 20 /* 2.0 Seconds */
-#define PHY_REVISION_MASK 0xFFFFFFF0
-#define DEVICE_SPEED_MASK 0x00000300 /* Device Ctrl Reg Speed Mask */
-#define REG4_SPEED_MASK 0x01E0
-#define REG9_SPEED_MASK 0x0300
-#define ADVERTISE_10_HALF 0x0001
-#define ADVERTISE_10_FULL 0x0002
-#define ADVERTISE_100_HALF 0x0004
-#define ADVERTISE_100_FULL 0x0008
-#define ADVERTISE_1000_HALF 0x0010
-#define ADVERTISE_1000_FULL 0x0020
-#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F /* Everything but 1000-Half */
-#define AUTONEG_ADVERTISE_10_100_ALL 0x000F /* All 10/100 speeds */
-#define AUTONEG_ADVERTISE_10_ALL 0x0003 /* 10Mbps Full & Half speeds */
-
-#endif /* _E1000_HW_H_ */
diff --git a/drivers/net/e1000/e1000_main.c b/drivers/net/e1000/e1000_main.c
deleted file mode 100644
index f97afda941d7..000000000000
--- a/drivers/net/e1000/e1000_main.c
+++ /dev/null
@@ -1,4974 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2006 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-#include "e1000.h"
-#include <net/ip6_checksum.h>
-#include <linux/io.h>
-#include <linux/prefetch.h>
-#include <linux/bitops.h>
-#include <linux/if_vlan.h>
-
-/* Intel Media SOC GbE MDIO physical base address */
-static unsigned long ce4100_gbe_mdio_base_phy;
-/* Intel Media SOC GbE MDIO virtual base address */
-void __iomem *ce4100_gbe_mdio_base_virt;
-
-char e1000_driver_name[] = "e1000";
-static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
-#define DRV_VERSION "7.3.21-k8-NAPI"
-const char e1000_driver_version[] = DRV_VERSION;
-static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
-
-/* e1000_pci_tbl - PCI Device ID Table
- *
- * Last entry must be all 0s
- *
- * Macro expands to...
- * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
- */
-static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
- INTEL_E1000_ETHERNET_DEVICE(0x1000),
- INTEL_E1000_ETHERNET_DEVICE(0x1001),
- INTEL_E1000_ETHERNET_DEVICE(0x1004),
- INTEL_E1000_ETHERNET_DEVICE(0x1008),
- INTEL_E1000_ETHERNET_DEVICE(0x1009),
- INTEL_E1000_ETHERNET_DEVICE(0x100C),
- INTEL_E1000_ETHERNET_DEVICE(0x100D),
- INTEL_E1000_ETHERNET_DEVICE(0x100E),
- INTEL_E1000_ETHERNET_DEVICE(0x100F),
- INTEL_E1000_ETHERNET_DEVICE(0x1010),
- INTEL_E1000_ETHERNET_DEVICE(0x1011),
- INTEL_E1000_ETHERNET_DEVICE(0x1012),
- INTEL_E1000_ETHERNET_DEVICE(0x1013),
- INTEL_E1000_ETHERNET_DEVICE(0x1014),
- INTEL_E1000_ETHERNET_DEVICE(0x1015),
- INTEL_E1000_ETHERNET_DEVICE(0x1016),
- INTEL_E1000_ETHERNET_DEVICE(0x1017),
- INTEL_E1000_ETHERNET_DEVICE(0x1018),
- INTEL_E1000_ETHERNET_DEVICE(0x1019),
- INTEL_E1000_ETHERNET_DEVICE(0x101A),
- INTEL_E1000_ETHERNET_DEVICE(0x101D),
- INTEL_E1000_ETHERNET_DEVICE(0x101E),
- INTEL_E1000_ETHERNET_DEVICE(0x1026),
- INTEL_E1000_ETHERNET_DEVICE(0x1027),
- INTEL_E1000_ETHERNET_DEVICE(0x1028),
- INTEL_E1000_ETHERNET_DEVICE(0x1075),
- INTEL_E1000_ETHERNET_DEVICE(0x1076),
- INTEL_E1000_ETHERNET_DEVICE(0x1077),
- INTEL_E1000_ETHERNET_DEVICE(0x1078),
- INTEL_E1000_ETHERNET_DEVICE(0x1079),
- INTEL_E1000_ETHERNET_DEVICE(0x107A),
- INTEL_E1000_ETHERNET_DEVICE(0x107B),
- INTEL_E1000_ETHERNET_DEVICE(0x107C),
- INTEL_E1000_ETHERNET_DEVICE(0x108A),
- INTEL_E1000_ETHERNET_DEVICE(0x1099),
- INTEL_E1000_ETHERNET_DEVICE(0x10B5),
- INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
- /* required last entry */
- {0,}
-};
-
-MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
-
-int e1000_up(struct e1000_adapter *adapter);
-void e1000_down(struct e1000_adapter *adapter);
-void e1000_reinit_locked(struct e1000_adapter *adapter);
-void e1000_reset(struct e1000_adapter *adapter);
-int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
-int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
-void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
-void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
-static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
- struct e1000_tx_ring *txdr);
-static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
- struct e1000_rx_ring *rxdr);
-static void e1000_free_tx_resources(struct e1000_adapter *adapter,
- struct e1000_tx_ring *tx_ring);
-static void e1000_free_rx_resources(struct e1000_adapter *adapter,
- struct e1000_rx_ring *rx_ring);
-void e1000_update_stats(struct e1000_adapter *adapter);
-
-static int e1000_init_module(void);
-static void e1000_exit_module(void);
-static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
-static void __devexit e1000_remove(struct pci_dev *pdev);
-static int e1000_alloc_queues(struct e1000_adapter *adapter);
-static int e1000_sw_init(struct e1000_adapter *adapter);
-static int e1000_open(struct net_device *netdev);
-static int e1000_close(struct net_device *netdev);
-static void e1000_configure_tx(struct e1000_adapter *adapter);
-static void e1000_configure_rx(struct e1000_adapter *adapter);
-static void e1000_setup_rctl(struct e1000_adapter *adapter);
-static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
-static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
-static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
- struct e1000_tx_ring *tx_ring);
-static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
- struct e1000_rx_ring *rx_ring);
-static void e1000_set_rx_mode(struct net_device *netdev);
-static void e1000_update_phy_info(unsigned long data);
-static void e1000_update_phy_info_task(struct work_struct *work);
-static void e1000_watchdog(unsigned long data);
-static void e1000_82547_tx_fifo_stall(unsigned long data);
-static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
-static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
- struct net_device *netdev);
-static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
-static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
-static int e1000_set_mac(struct net_device *netdev, void *p);
-static irqreturn_t e1000_intr(int irq, void *data);
-static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
- struct e1000_tx_ring *tx_ring);
-static int e1000_clean(struct napi_struct *napi, int budget);
-static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
- struct e1000_rx_ring *rx_ring,
- int *work_done, int work_to_do);
-static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
- struct e1000_rx_ring *rx_ring,
- int *work_done, int work_to_do);
-static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
- struct e1000_rx_ring *rx_ring,
- int cleaned_count);
-static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
- struct e1000_rx_ring *rx_ring,
- int cleaned_count);
-static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
-static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
- int cmd);
-static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
-static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
-static void e1000_tx_timeout(struct net_device *dev);
-static void e1000_reset_task(struct work_struct *work);
-static void e1000_smartspeed(struct e1000_adapter *adapter);
-static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
- struct sk_buff *skb);
-
-static bool e1000_vlan_used(struct e1000_adapter *adapter);
-static void e1000_vlan_mode(struct net_device *netdev, u32 features);
-static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
-static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
-static void e1000_restore_vlan(struct e1000_adapter *adapter);
-
-#ifdef CONFIG_PM
-static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
-static int e1000_resume(struct pci_dev *pdev);
-#endif
-static void e1000_shutdown(struct pci_dev *pdev);
-
-#ifdef CONFIG_NET_POLL_CONTROLLER
-/* for netdump / net console */
-static void e1000_netpoll (struct net_device *netdev);
-#endif
-
-#define COPYBREAK_DEFAULT 256
-static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
-module_param(copybreak, uint, 0644);
-MODULE_PARM_DESC(copybreak,
- "Maximum size of packet that is copied to a new buffer on receive");
-
-static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
- pci_channel_state_t state);
-static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
-static void e1000_io_resume(struct pci_dev *pdev);
-
-static struct pci_error_handlers e1000_err_handler = {
- .error_detected = e1000_io_error_detected,
- .slot_reset = e1000_io_slot_reset,
- .resume = e1000_io_resume,
-};
-
-static struct pci_driver e1000_driver = {
- .name = e1000_driver_name,
- .id_table = e1000_pci_tbl,
- .probe = e1000_probe,
- .remove = __devexit_p(e1000_remove),
-#ifdef CONFIG_PM
- /* Power Management Hooks */
- .suspend = e1000_suspend,
- .resume = e1000_resume,
-#endif
- .shutdown = e1000_shutdown,
- .err_handler = &e1000_err_handler
-};
-
-MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
-MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
-MODULE_LICENSE("GPL");
-MODULE_VERSION(DRV_VERSION);
-
-static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
-module_param(debug, int, 0);
-MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
-
-/**
- * e1000_get_hw_dev - return device
- * used by hardware layer to print debugging information
- *
- **/
-struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
-{
- struct e1000_adapter *adapter = hw->back;
- return adapter->netdev;
-}
-
-/**
- * e1000_init_module - Driver Registration Routine
- *
- * e1000_init_module is the first routine called when the driver is
- * loaded. All it does is register with the PCI subsystem.
- **/
-
-static int __init e1000_init_module(void)
-{
- int ret;
- pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
-
- pr_info("%s\n", e1000_copyright);
-
- ret = pci_register_driver(&e1000_driver);
- if (copybreak != COPYBREAK_DEFAULT) {
- if (copybreak == 0)
- pr_info("copybreak disabled\n");
- else
- pr_info("copybreak enabled for "
- "packets <= %u bytes\n", copybreak);
- }
- return ret;
-}
-
-module_init(e1000_init_module);
-
-/**
- * e1000_exit_module - Driver Exit Cleanup Routine
- *
- * e1000_exit_module is called just before the driver is removed
- * from memory.
- **/
-
-static void __exit e1000_exit_module(void)
-{
- pci_unregister_driver(&e1000_driver);
-}
-
-module_exit(e1000_exit_module);
-
-static int e1000_request_irq(struct e1000_adapter *adapter)
-{
- struct net_device *netdev = adapter->netdev;
- irq_handler_t handler = e1000_intr;
- int irq_flags = IRQF_SHARED;
- int err;
-
- err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
- netdev);
- if (err) {
- e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
- }
-
- return err;
-}
-
-static void e1000_free_irq(struct e1000_adapter *adapter)
-{
- struct net_device *netdev = adapter->netdev;
-
- free_irq(adapter->pdev->irq, netdev);
-}
-
-/**
- * e1000_irq_disable - Mask off interrupt generation on the NIC
- * @adapter: board private structure
- **/
-
-static void e1000_irq_disable(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
-
- ew32(IMC, ~0);
- E1000_WRITE_FLUSH();
- synchronize_irq(adapter->pdev->irq);
-}
-
-/**
- * e1000_irq_enable - Enable default interrupt generation settings
- * @adapter: board private structure
- **/
-
-static void e1000_irq_enable(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
-
- ew32(IMS, IMS_ENABLE_MASK);
- E1000_WRITE_FLUSH();
-}
-
-static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct net_device *netdev = adapter->netdev;
- u16 vid = hw->mng_cookie.vlan_id;
- u16 old_vid = adapter->mng_vlan_id;
-
- if (!e1000_vlan_used(adapter))
- return;
-
- if (!test_bit(vid, adapter->active_vlans)) {
- if (hw->mng_cookie.status &
- E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
- e1000_vlan_rx_add_vid(netdev, vid);
- adapter->mng_vlan_id = vid;
- } else {
- adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
- }
- if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
- (vid != old_vid) &&
- !test_bit(old_vid, adapter->active_vlans))
- e1000_vlan_rx_kill_vid(netdev, old_vid);
- } else {
- adapter->mng_vlan_id = vid;
- }
-}
-
-static void e1000_init_manageability(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
-
- if (adapter->en_mng_pt) {
- u32 manc = er32(MANC);
-
- /* disable hardware interception of ARP */
- manc &= ~(E1000_MANC_ARP_EN);
-
- ew32(MANC, manc);
- }
-}
-
-static void e1000_release_manageability(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
-
- if (adapter->en_mng_pt) {
- u32 manc = er32(MANC);
-
- /* re-enable hardware interception of ARP */
- manc |= E1000_MANC_ARP_EN;
-
- ew32(MANC, manc);
- }
-}
-
-/**
- * e1000_configure - configure the hardware for RX and TX
- * @adapter = private board structure
- **/
-static void e1000_configure(struct e1000_adapter *adapter)
-{
- struct net_device *netdev = adapter->netdev;
- int i;
-
- e1000_set_rx_mode(netdev);
-
- e1000_restore_vlan(adapter);
- e1000_init_manageability(adapter);
-
- e1000_configure_tx(adapter);
- e1000_setup_rctl(adapter);
- e1000_configure_rx(adapter);
- /* call E1000_DESC_UNUSED which always leaves
- * at least 1 descriptor unused to make sure
- * next_to_use != next_to_clean */
- for (i = 0; i < adapter->num_rx_queues; i++) {
- struct e1000_rx_ring *ring = &adapter->rx_ring[i];
- adapter->alloc_rx_buf(adapter, ring,
- E1000_DESC_UNUSED(ring));
- }
-}
-
-int e1000_up(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
-
- /* hardware has been reset, we need to reload some things */
- e1000_configure(adapter);
-
- clear_bit(__E1000_DOWN, &adapter->flags);
-
- napi_enable(&adapter->napi);
-
- e1000_irq_enable(adapter);
-
- netif_wake_queue(adapter->netdev);
-
- /* fire a link change interrupt to start the watchdog */
- ew32(ICS, E1000_ICS_LSC);
- return 0;
-}
-
-/**
- * e1000_power_up_phy - restore link in case the phy was powered down
- * @adapter: address of board private structure
- *
- * The phy may be powered down to save power and turn off link when the
- * driver is unloaded and wake on lan is not enabled (among others)
- * *** this routine MUST be followed by a call to e1000_reset ***
- *
- **/
-
-void e1000_power_up_phy(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u16 mii_reg = 0;
-
- /* Just clear the power down bit to wake the phy back up */
- if (hw->media_type == e1000_media_type_copper) {
- /* according to the manual, the phy will retain its
- * settings across a power-down/up cycle */
- e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
- mii_reg &= ~MII_CR_POWER_DOWN;
- e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
- }
-}
-
-static void e1000_power_down_phy(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
-
- /* Power down the PHY so no link is implied when interface is down *
- * The PHY cannot be powered down if any of the following is true *
- * (a) WoL is enabled
- * (b) AMT is active
- * (c) SoL/IDER session is active */
- if (!adapter->wol && hw->mac_type >= e1000_82540 &&
- hw->media_type == e1000_media_type_copper) {
- u16 mii_reg = 0;
-
- switch (hw->mac_type) {
- case e1000_82540:
- case e1000_82545:
- case e1000_82545_rev_3:
- case e1000_82546:
- case e1000_ce4100:
- case e1000_82546_rev_3:
- case e1000_82541:
- case e1000_82541_rev_2:
- case e1000_82547:
- case e1000_82547_rev_2:
- if (er32(MANC) & E1000_MANC_SMBUS_EN)
- goto out;
- break;
- default:
- goto out;
- }
- e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
- mii_reg |= MII_CR_POWER_DOWN;
- e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
- mdelay(1);
- }
-out:
- return;
-}
-
-void e1000_down(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct net_device *netdev = adapter->netdev;
- u32 rctl, tctl;
-
-
- /* disable receives in the hardware */
- rctl = er32(RCTL);
- ew32(RCTL, rctl & ~E1000_RCTL_EN);
- /* flush and sleep below */
-
- netif_tx_disable(netdev);
-
- /* disable transmits in the hardware */
- tctl = er32(TCTL);
- tctl &= ~E1000_TCTL_EN;
- ew32(TCTL, tctl);
- /* flush both disables and wait for them to finish */
- E1000_WRITE_FLUSH();
- msleep(10);
-
- napi_disable(&adapter->napi);
-
- e1000_irq_disable(adapter);
-
- /*
- * Setting DOWN must be after irq_disable to prevent
- * a screaming interrupt. Setting DOWN also prevents
- * timers and tasks from rescheduling.
- */
- set_bit(__E1000_DOWN, &adapter->flags);
-
- del_timer_sync(&adapter->tx_fifo_stall_timer);
- del_timer_sync(&adapter->watchdog_timer);
- del_timer_sync(&adapter->phy_info_timer);
-
- adapter->link_speed = 0;
- adapter->link_duplex = 0;
- netif_carrier_off(netdev);
-
- e1000_reset(adapter);
- e1000_clean_all_tx_rings(adapter);
- e1000_clean_all_rx_rings(adapter);
-}
-
-static void e1000_reinit_safe(struct e1000_adapter *adapter)
-{
- while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
- msleep(1);
- rtnl_lock();
- e1000_down(adapter);
- e1000_up(adapter);
- rtnl_unlock();
- clear_bit(__E1000_RESETTING, &adapter->flags);
-}
-
-void e1000_reinit_locked(struct e1000_adapter *adapter)
-{
- /* if rtnl_lock is not held the call path is bogus */
- ASSERT_RTNL();
- WARN_ON(in_interrupt());
- while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
- msleep(1);
- e1000_down(adapter);
- e1000_up(adapter);
- clear_bit(__E1000_RESETTING, &adapter->flags);
-}
-
-void e1000_reset(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 pba = 0, tx_space, min_tx_space, min_rx_space;
- bool legacy_pba_adjust = false;
- u16 hwm;
-
- /* Repartition Pba for greater than 9k mtu
- * To take effect CTRL.RST is required.
- */
-
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- case e1000_82543:
- case e1000_82544:
- case e1000_82540:
- case e1000_82541:
- case e1000_82541_rev_2:
- legacy_pba_adjust = true;
- pba = E1000_PBA_48K;
- break;
- case e1000_82545:
- case e1000_82545_rev_3:
- case e1000_82546:
- case e1000_ce4100:
- case e1000_82546_rev_3:
- pba = E1000_PBA_48K;
- break;
- case e1000_82547:
- case e1000_82547_rev_2:
- legacy_pba_adjust = true;
- pba = E1000_PBA_30K;
- break;
- case e1000_undefined:
- case e1000_num_macs:
- break;
- }
-
- if (legacy_pba_adjust) {
- if (hw->max_frame_size > E1000_RXBUFFER_8192)
- pba -= 8; /* allocate more FIFO for Tx */
-
- if (hw->mac_type == e1000_82547) {
- adapter->tx_fifo_head = 0;
- adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
- adapter->tx_fifo_size =
- (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
- atomic_set(&adapter->tx_fifo_stall, 0);
- }
- } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
- /* adjust PBA for jumbo frames */
- ew32(PBA, pba);
-
- /* To maintain wire speed transmits, the Tx FIFO should be
- * large enough to accommodate two full transmit packets,
- * rounded up to the next 1KB and expressed in KB. Likewise,
- * the Rx FIFO should be large enough to accommodate at least
- * one full receive packet and is similarly rounded up and
- * expressed in KB. */
- pba = er32(PBA);
- /* upper 16 bits has Tx packet buffer allocation size in KB */
- tx_space = pba >> 16;
- /* lower 16 bits has Rx packet buffer allocation size in KB */
- pba &= 0xffff;
- /*
- * the tx fifo also stores 16 bytes of information about the tx
- * but don't include ethernet FCS because hardware appends it
- */
- min_tx_space = (hw->max_frame_size +
- sizeof(struct e1000_tx_desc) -
- ETH_FCS_LEN) * 2;
- min_tx_space = ALIGN(min_tx_space, 1024);
- min_tx_space >>= 10;
- /* software strips receive CRC, so leave room for it */
- min_rx_space = hw->max_frame_size;
- min_rx_space = ALIGN(min_rx_space, 1024);
- min_rx_space >>= 10;
-
- /* If current Tx allocation is less than the min Tx FIFO size,
- * and the min Tx FIFO size is less than the current Rx FIFO
- * allocation, take space away from current Rx allocation */
- if (tx_space < min_tx_space &&
- ((min_tx_space - tx_space) < pba)) {
- pba = pba - (min_tx_space - tx_space);
-
- /* PCI/PCIx hardware has PBA alignment constraints */
- switch (hw->mac_type) {
- case e1000_82545 ... e1000_82546_rev_3:
- pba &= ~(E1000_PBA_8K - 1);
- break;
- default:
- break;
- }
-
- /* if short on rx space, rx wins and must trump tx
- * adjustment or use Early Receive if available */
- if (pba < min_rx_space)
- pba = min_rx_space;
- }
- }
-
- ew32(PBA, pba);
-
- /*
- * flow control settings:
- * The high water mark must be low enough to fit one full frame
- * (or the size used for early receive) above it in the Rx FIFO.
- * Set it to the lower of:
- * - 90% of the Rx FIFO size, and
- * - the full Rx FIFO size minus the early receive size (for parts
- * with ERT support assuming ERT set to E1000_ERT_2048), or
- * - the full Rx FIFO size minus one full frame
- */
- hwm = min(((pba << 10) * 9 / 10),
- ((pba << 10) - hw->max_frame_size));
-
- hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
- hw->fc_low_water = hw->fc_high_water - 8;
- hw->fc_pause_time = E1000_FC_PAUSE_TIME;
- hw->fc_send_xon = 1;
- hw->fc = hw->original_fc;
-
- /* Allow time for pending master requests to run */
- e1000_reset_hw(hw);
- if (hw->mac_type >= e1000_82544)
- ew32(WUC, 0);
-
- if (e1000_init_hw(hw))
- e_dev_err("Hardware Error\n");
- e1000_update_mng_vlan(adapter);
-
- /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
- if (hw->mac_type >= e1000_82544 &&
- hw->autoneg == 1 &&
- hw->autoneg_advertised == ADVERTISE_1000_FULL) {
- u32 ctrl = er32(CTRL);
- /* clear phy power management bit if we are in gig only mode,
- * which if enabled will attempt negotiation to 100Mb, which
- * can cause a loss of link at power off or driver unload */
- ctrl &= ~E1000_CTRL_SWDPIN3;
- ew32(CTRL, ctrl);
- }
-
- /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
- ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
-
- e1000_reset_adaptive(hw);
- e1000_phy_get_info(hw, &adapter->phy_info);
-
- e1000_release_manageability(adapter);
-}
-
-/**
- * Dump the eeprom for users having checksum issues
- **/
-static void e1000_dump_eeprom(struct e1000_adapter *adapter)
-{
- struct net_device *netdev = adapter->netdev;
- struct ethtool_eeprom eeprom;
- const struct ethtool_ops *ops = netdev->ethtool_ops;
- u8 *data;
- int i;
- u16 csum_old, csum_new = 0;
-
- eeprom.len = ops->get_eeprom_len(netdev);
- eeprom.offset = 0;
-
- data = kmalloc(eeprom.len, GFP_KERNEL);
- if (!data) {
- pr_err("Unable to allocate memory to dump EEPROM data\n");
- return;
- }
-
- ops->get_eeprom(netdev, &eeprom, data);
-
- csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
- (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
- for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
- csum_new += data[i] + (data[i + 1] << 8);
- csum_new = EEPROM_SUM - csum_new;
-
- pr_err("/*********************/\n");
- pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
- pr_err("Calculated : 0x%04x\n", csum_new);
-
- pr_err("Offset Values\n");
- pr_err("======== ======\n");
- print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
-
- pr_err("Include this output when contacting your support provider.\n");
- pr_err("This is not a software error! Something bad happened to\n");
- pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
- pr_err("result in further problems, possibly loss of data,\n");
- pr_err("corruption or system hangs!\n");
- pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
- pr_err("which is invalid and requires you to set the proper MAC\n");
- pr_err("address manually before continuing to enable this network\n");
- pr_err("device. Please inspect the EEPROM dump and report the\n");
- pr_err("issue to your hardware vendor or Intel Customer Support.\n");
- pr_err("/*********************/\n");
-
- kfree(data);
-}
-
-/**
- * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
- * @pdev: PCI device information struct
- *
- * Return true if an adapter needs ioport resources
- **/
-static int e1000_is_need_ioport(struct pci_dev *pdev)
-{
- switch (pdev->device) {
- case E1000_DEV_ID_82540EM:
- case E1000_DEV_ID_82540EM_LOM:
- case E1000_DEV_ID_82540EP:
- case E1000_DEV_ID_82540EP_LOM:
- case E1000_DEV_ID_82540EP_LP:
- case E1000_DEV_ID_82541EI:
- case E1000_DEV_ID_82541EI_MOBILE:
- case E1000_DEV_ID_82541ER:
- case E1000_DEV_ID_82541ER_LOM:
- case E1000_DEV_ID_82541GI:
- case E1000_DEV_ID_82541GI_LF:
- case E1000_DEV_ID_82541GI_MOBILE:
- case E1000_DEV_ID_82544EI_COPPER:
- case E1000_DEV_ID_82544EI_FIBER:
- case E1000_DEV_ID_82544GC_COPPER:
- case E1000_DEV_ID_82544GC_LOM:
- case E1000_DEV_ID_82545EM_COPPER:
- case E1000_DEV_ID_82545EM_FIBER:
- case E1000_DEV_ID_82546EB_COPPER:
- case E1000_DEV_ID_82546EB_FIBER:
- case E1000_DEV_ID_82546EB_QUAD_COPPER:
- return true;
- default:
- return false;
- }
-}
-
-static u32 e1000_fix_features(struct net_device *netdev, u32 features)
-{
- /*
- * Since there is no support for separate rx/tx vlan accel
- * enable/disable make sure tx flag is always in same state as rx.
- */
- if (features & NETIF_F_HW_VLAN_RX)
- features |= NETIF_F_HW_VLAN_TX;
- else
- features &= ~NETIF_F_HW_VLAN_TX;
-
- return features;
-}
-
-static int e1000_set_features(struct net_device *netdev, u32 features)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- u32 changed = features ^ netdev->features;
-
- if (changed & NETIF_F_HW_VLAN_RX)
- e1000_vlan_mode(netdev, features);
-
- if (!(changed & NETIF_F_RXCSUM))
- return 0;
-
- adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
-
- if (netif_running(netdev))
- e1000_reinit_locked(adapter);
- else
- e1000_reset(adapter);
-
- return 0;
-}
-
-static const struct net_device_ops e1000_netdev_ops = {
- .ndo_open = e1000_open,
- .ndo_stop = e1000_close,
- .ndo_start_xmit = e1000_xmit_frame,
- .ndo_get_stats = e1000_get_stats,
- .ndo_set_rx_mode = e1000_set_rx_mode,
- .ndo_set_mac_address = e1000_set_mac,
- .ndo_tx_timeout = e1000_tx_timeout,
- .ndo_change_mtu = e1000_change_mtu,
- .ndo_do_ioctl = e1000_ioctl,
- .ndo_validate_addr = eth_validate_addr,
- .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
- .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
-#ifdef CONFIG_NET_POLL_CONTROLLER
- .ndo_poll_controller = e1000_netpoll,
-#endif
- .ndo_fix_features = e1000_fix_features,
- .ndo_set_features = e1000_set_features,
-};
-
-/**
- * e1000_init_hw_struct - initialize members of hw struct
- * @adapter: board private struct
- * @hw: structure used by e1000_hw.c
- *
- * Factors out initialization of the e1000_hw struct to its own function
- * that can be called very early at init (just after struct allocation).
- * Fields are initialized based on PCI device information and
- * OS network device settings (MTU size).
- * Returns negative error codes if MAC type setup fails.
- */
-static int e1000_init_hw_struct(struct e1000_adapter *adapter,
- struct e1000_hw *hw)
-{
- struct pci_dev *pdev = adapter->pdev;
-
- /* PCI config space info */
- hw->vendor_id = pdev->vendor;
- hw->device_id = pdev->device;
- hw->subsystem_vendor_id = pdev->subsystem_vendor;
- hw->subsystem_id = pdev->subsystem_device;
- hw->revision_id = pdev->revision;
-
- pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
-
- hw->max_frame_size = adapter->netdev->mtu +
- ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
- hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
-
- /* identify the MAC */
- if (e1000_set_mac_type(hw)) {
- e_err(probe, "Unknown MAC Type\n");
- return -EIO;
- }
-
- switch (hw->mac_type) {
- default:
- break;
- case e1000_82541:
- case e1000_82547:
- case e1000_82541_rev_2:
- case e1000_82547_rev_2:
- hw->phy_init_script = 1;
- break;
- }
-
- e1000_set_media_type(hw);
- e1000_get_bus_info(hw);
-
- hw->wait_autoneg_complete = false;
- hw->tbi_compatibility_en = true;
- hw->adaptive_ifs = true;
-
- /* Copper options */
-
- if (hw->media_type == e1000_media_type_copper) {
- hw->mdix = AUTO_ALL_MODES;
- hw->disable_polarity_correction = false;
- hw->master_slave = E1000_MASTER_SLAVE;
- }
-
- return 0;
-}
-
-/**
- * e1000_probe - Device Initialization Routine
- * @pdev: PCI device information struct
- * @ent: entry in e1000_pci_tbl
- *
- * Returns 0 on success, negative on failure
- *
- * e1000_probe initializes an adapter identified by a pci_dev structure.
- * The OS initialization, configuring of the adapter private structure,
- * and a hardware reset occur.
- **/
-static int __devinit e1000_probe(struct pci_dev *pdev,
- const struct pci_device_id *ent)
-{
- struct net_device *netdev;
- struct e1000_adapter *adapter;
- struct e1000_hw *hw;
-
- static int cards_found = 0;
- static int global_quad_port_a = 0; /* global ksp3 port a indication */
- int i, err, pci_using_dac;
- u16 eeprom_data = 0;
- u16 tmp = 0;
- u16 eeprom_apme_mask = E1000_EEPROM_APME;
- int bars, need_ioport;
-
- /* do not allocate ioport bars when not needed */
- need_ioport = e1000_is_need_ioport(pdev);
- if (need_ioport) {
- bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
- err = pci_enable_device(pdev);
- } else {
- bars = pci_select_bars(pdev, IORESOURCE_MEM);
- err = pci_enable_device_mem(pdev);
- }
- if (err)
- return err;
-
- err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
- if (err)
- goto err_pci_reg;
-
- pci_set_master(pdev);
- err = pci_save_state(pdev);
- if (err)
- goto err_alloc_etherdev;
-
- err = -ENOMEM;
- netdev = alloc_etherdev(sizeof(struct e1000_adapter));
- if (!netdev)
- goto err_alloc_etherdev;
-
- SET_NETDEV_DEV(netdev, &pdev->dev);
-
- pci_set_drvdata(pdev, netdev);
- adapter = netdev_priv(netdev);
- adapter->netdev = netdev;
- adapter->pdev = pdev;
- adapter->msg_enable = (1 << debug) - 1;
- adapter->bars = bars;
- adapter->need_ioport = need_ioport;
-
- hw = &adapter->hw;
- hw->back = adapter;
-
- err = -EIO;
- hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
- if (!hw->hw_addr)
- goto err_ioremap;
-
- if (adapter->need_ioport) {
- for (i = BAR_1; i <= BAR_5; i++) {
- if (pci_resource_len(pdev, i) == 0)
- continue;
- if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
- hw->io_base = pci_resource_start(pdev, i);
- break;
- }
- }
- }
-
- /* make ready for any if (hw->...) below */
- err = e1000_init_hw_struct(adapter, hw);
- if (err)
- goto err_sw_init;
-
- /*
- * there is a workaround being applied below that limits
- * 64-bit DMA addresses to 64-bit hardware. There are some
- * 32-bit adapters that Tx hang when given 64-bit DMA addresses
- */
- pci_using_dac = 0;
- if ((hw->bus_type == e1000_bus_type_pcix) &&
- !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
- /*
- * according to DMA-API-HOWTO, coherent calls will always
- * succeed if the set call did
- */
- dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
- pci_using_dac = 1;
- } else {
- err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
- if (err) {
- pr_err("No usable DMA config, aborting\n");
- goto err_dma;
- }
- dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
- }
-
- netdev->netdev_ops = &e1000_netdev_ops;
- e1000_set_ethtool_ops(netdev);
- netdev->watchdog_timeo = 5 * HZ;
- netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
-
- strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
-
- adapter->bd_number = cards_found;
-
- /* setup the private structure */
-
- err = e1000_sw_init(adapter);
- if (err)
- goto err_sw_init;
-
- err = -EIO;
- if (hw->mac_type == e1000_ce4100) {
- ce4100_gbe_mdio_base_phy = pci_resource_start(pdev, BAR_1);
- ce4100_gbe_mdio_base_virt = ioremap(ce4100_gbe_mdio_base_phy,
- pci_resource_len(pdev, BAR_1));
-
- if (!ce4100_gbe_mdio_base_virt)
- goto err_mdio_ioremap;
- }
-
- if (hw->mac_type >= e1000_82543) {
- netdev->hw_features = NETIF_F_SG |
- NETIF_F_HW_CSUM |
- NETIF_F_HW_VLAN_RX;
- netdev->features = NETIF_F_HW_VLAN_TX |
- NETIF_F_HW_VLAN_FILTER;
- }
-
- if ((hw->mac_type >= e1000_82544) &&
- (hw->mac_type != e1000_82547))
- netdev->hw_features |= NETIF_F_TSO;
-
- netdev->features |= netdev->hw_features;
- netdev->hw_features |= NETIF_F_RXCSUM;
-
- if (pci_using_dac) {
- netdev->features |= NETIF_F_HIGHDMA;
- netdev->vlan_features |= NETIF_F_HIGHDMA;
- }
-
- netdev->vlan_features |= NETIF_F_TSO;
- netdev->vlan_features |= NETIF_F_HW_CSUM;
- netdev->vlan_features |= NETIF_F_SG;
-
- adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
-
- /* initialize eeprom parameters */
- if (e1000_init_eeprom_params(hw)) {
- e_err(probe, "EEPROM initialization failed\n");
- goto err_eeprom;
- }
-
- /* before reading the EEPROM, reset the controller to
- * put the device in a known good starting state */
-
- e1000_reset_hw(hw);
-
- /* make sure the EEPROM is good */
- if (e1000_validate_eeprom_checksum(hw) < 0) {
- e_err(probe, "The EEPROM Checksum Is Not Valid\n");
- e1000_dump_eeprom(adapter);
- /*
- * set MAC address to all zeroes to invalidate and temporary
- * disable this device for the user. This blocks regular
- * traffic while still permitting ethtool ioctls from reaching
- * the hardware as well as allowing the user to run the
- * interface after manually setting a hw addr using
- * `ip set address`
- */
- memset(hw->mac_addr, 0, netdev->addr_len);
- } else {
- /* copy the MAC address out of the EEPROM */
- if (e1000_read_mac_addr(hw))
- e_err(probe, "EEPROM Read Error\n");
- }
- /* don't block initalization here due to bad MAC address */
- memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
- memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
-
- if (!is_valid_ether_addr(netdev->perm_addr))
- e_err(probe, "Invalid MAC Address\n");
-
- init_timer(&adapter->tx_fifo_stall_timer);
- adapter->tx_fifo_stall_timer.function = e1000_82547_tx_fifo_stall;
- adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
-
- init_timer(&adapter->watchdog_timer);
- adapter->watchdog_timer.function = e1000_watchdog;
- adapter->watchdog_timer.data = (unsigned long) adapter;
-
- init_timer(&adapter->phy_info_timer);
- adapter->phy_info_timer.function = e1000_update_phy_info;
- adapter->phy_info_timer.data = (unsigned long)adapter;
-
- INIT_WORK(&adapter->fifo_stall_task, e1000_82547_tx_fifo_stall_task);
- INIT_WORK(&adapter->reset_task, e1000_reset_task);
- INIT_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
-
- e1000_check_options(adapter);
-
- /* Initial Wake on LAN setting
- * If APM wake is enabled in the EEPROM,
- * enable the ACPI Magic Packet filter
- */
-
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- case e1000_82543:
- break;
- case e1000_82544:
- e1000_read_eeprom(hw,
- EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
- eeprom_apme_mask = E1000_EEPROM_82544_APM;
- break;
- case e1000_82546:
- case e1000_82546_rev_3:
- if (er32(STATUS) & E1000_STATUS_FUNC_1){
- e1000_read_eeprom(hw,
- EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
- break;
- }
- /* Fall Through */
- default:
- e1000_read_eeprom(hw,
- EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
- break;
- }
- if (eeprom_data & eeprom_apme_mask)
- adapter->eeprom_wol |= E1000_WUFC_MAG;
-
- /* now that we have the eeprom settings, apply the special cases
- * where the eeprom may be wrong or the board simply won't support
- * wake on lan on a particular port */
- switch (pdev->device) {
- case E1000_DEV_ID_82546GB_PCIE:
- adapter->eeprom_wol = 0;
- break;
- case E1000_DEV_ID_82546EB_FIBER:
- case E1000_DEV_ID_82546GB_FIBER:
- /* Wake events only supported on port A for dual fiber
- * regardless of eeprom setting */
- if (er32(STATUS) & E1000_STATUS_FUNC_1)
- adapter->eeprom_wol = 0;
- break;
- case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
- /* if quad port adapter, disable WoL on all but port A */
- if (global_quad_port_a != 0)
- adapter->eeprom_wol = 0;
- else
- adapter->quad_port_a = 1;
- /* Reset for multiple quad port adapters */
- if (++global_quad_port_a == 4)
- global_quad_port_a = 0;
- break;
- }
-
- /* initialize the wol settings based on the eeprom settings */
- adapter->wol = adapter->eeprom_wol;
- device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
-
- /* Auto detect PHY address */
- if (hw->mac_type == e1000_ce4100) {
- for (i = 0; i < 32; i++) {
- hw->phy_addr = i;
- e1000_read_phy_reg(hw, PHY_ID2, &tmp);
- if (tmp == 0 || tmp == 0xFF) {
- if (i == 31)
- goto err_eeprom;
- continue;
- } else
- break;
- }
- }
-
- /* reset the hardware with the new settings */
- e1000_reset(adapter);
-
- strcpy(netdev->name, "eth%d");
- err = register_netdev(netdev);
- if (err)
- goto err_register;
-
- e1000_vlan_mode(netdev, netdev->features);
-
- /* print bus type/speed/width info */
- e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
- ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
- ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
- (hw->bus_speed == e1000_bus_speed_120) ? 120 :
- (hw->bus_speed == e1000_bus_speed_100) ? 100 :
- (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
- ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
- netdev->dev_addr);
-
- /* carrier off reporting is important to ethtool even BEFORE open */
- netif_carrier_off(netdev);
-
- e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
-
- cards_found++;
- return 0;
-
-err_register:
-err_eeprom:
- e1000_phy_hw_reset(hw);
-
- if (hw->flash_address)
- iounmap(hw->flash_address);
- kfree(adapter->tx_ring);
- kfree(adapter->rx_ring);
-err_dma:
-err_sw_init:
-err_mdio_ioremap:
- iounmap(ce4100_gbe_mdio_base_virt);
- iounmap(hw->hw_addr);
-err_ioremap:
- free_netdev(netdev);
-err_alloc_etherdev:
- pci_release_selected_regions(pdev, bars);
-err_pci_reg:
- pci_disable_device(pdev);
- return err;
-}
-
-/**
- * e1000_remove - Device Removal Routine
- * @pdev: PCI device information struct
- *
- * e1000_remove is called by the PCI subsystem to alert the driver
- * that it should release a PCI device. The could be caused by a
- * Hot-Plug event, or because the driver is going to be removed from
- * memory.
- **/
-
-static void __devexit e1000_remove(struct pci_dev *pdev)
-{
- struct net_device *netdev = pci_get_drvdata(pdev);
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
-
- set_bit(__E1000_DOWN, &adapter->flags);
- del_timer_sync(&adapter->tx_fifo_stall_timer);
- del_timer_sync(&adapter->watchdog_timer);
- del_timer_sync(&adapter->phy_info_timer);
-
- cancel_work_sync(&adapter->reset_task);
-
- e1000_release_manageability(adapter);
-
- unregister_netdev(netdev);
-
- e1000_phy_hw_reset(hw);
-
- kfree(adapter->tx_ring);
- kfree(adapter->rx_ring);
-
- iounmap(hw->hw_addr);
- if (hw->flash_address)
- iounmap(hw->flash_address);
- pci_release_selected_regions(pdev, adapter->bars);
-
- free_netdev(netdev);
-
- pci_disable_device(pdev);
-}
-
-/**
- * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
- * @adapter: board private structure to initialize
- *
- * e1000_sw_init initializes the Adapter private data structure.
- * e1000_init_hw_struct MUST be called before this function
- **/
-
-static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
-{
- adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
-
- adapter->num_tx_queues = 1;
- adapter->num_rx_queues = 1;
-
- if (e1000_alloc_queues(adapter)) {
- e_err(probe, "Unable to allocate memory for queues\n");
- return -ENOMEM;
- }
-
- /* Explicitly disable IRQ since the NIC can be in any state. */
- e1000_irq_disable(adapter);
-
- spin_lock_init(&adapter->stats_lock);
-
- set_bit(__E1000_DOWN, &adapter->flags);
-
- return 0;
-}
-
-/**
- * e1000_alloc_queues - Allocate memory for all rings
- * @adapter: board private structure to initialize
- *
- * We allocate one ring per queue at run-time since we don't know the
- * number of queues at compile-time.
- **/
-
-static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
-{
- adapter->tx_ring = kcalloc(adapter->num_tx_queues,
- sizeof(struct e1000_tx_ring), GFP_KERNEL);
- if (!adapter->tx_ring)
- return -ENOMEM;
-
- adapter->rx_ring = kcalloc(adapter->num_rx_queues,
- sizeof(struct e1000_rx_ring), GFP_KERNEL);
- if (!adapter->rx_ring) {
- kfree(adapter->tx_ring);
- return -ENOMEM;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_open - Called when a network interface is made active
- * @netdev: network interface device structure
- *
- * Returns 0 on success, negative value on failure
- *
- * The open entry point is called when a network interface is made
- * active by the system (IFF_UP). At this point all resources needed
- * for transmit and receive operations are allocated, the interrupt
- * handler is registered with the OS, the watchdog timer is started,
- * and the stack is notified that the interface is ready.
- **/
-
-static int e1000_open(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- int err;
-
- /* disallow open during test */
- if (test_bit(__E1000_TESTING, &adapter->flags))
- return -EBUSY;
-
- netif_carrier_off(netdev);
-
- /* allocate transmit descriptors */
- err = e1000_setup_all_tx_resources(adapter);
- if (err)
- goto err_setup_tx;
-
- /* allocate receive descriptors */
- err = e1000_setup_all_rx_resources(adapter);
- if (err)
- goto err_setup_rx;
-
- e1000_power_up_phy(adapter);
-
- adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
- if ((hw->mng_cookie.status &
- E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
- e1000_update_mng_vlan(adapter);
- }
-
- /* before we allocate an interrupt, we must be ready to handle it.
- * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
- * as soon as we call pci_request_irq, so we have to setup our
- * clean_rx handler before we do so. */
- e1000_configure(adapter);
-
- err = e1000_request_irq(adapter);
- if (err)
- goto err_req_irq;
-
- /* From here on the code is the same as e1000_up() */
- clear_bit(__E1000_DOWN, &adapter->flags);
-
- napi_enable(&adapter->napi);
-
- e1000_irq_enable(adapter);
-
- netif_start_queue(netdev);
-
- /* fire a link status change interrupt to start the watchdog */
- ew32(ICS, E1000_ICS_LSC);
-
- return E1000_SUCCESS;
-
-err_req_irq:
- e1000_power_down_phy(adapter);
- e1000_free_all_rx_resources(adapter);
-err_setup_rx:
- e1000_free_all_tx_resources(adapter);
-err_setup_tx:
- e1000_reset(adapter);
-
- return err;
-}
-
-/**
- * e1000_close - Disables a network interface
- * @netdev: network interface device structure
- *
- * Returns 0, this is not allowed to fail
- *
- * The close entry point is called when an interface is de-activated
- * by the OS. The hardware is still under the drivers control, but
- * needs to be disabled. A global MAC reset is issued to stop the
- * hardware, and all transmit and receive resources are freed.
- **/
-
-static int e1000_close(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
-
- WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
- e1000_down(adapter);
- e1000_power_down_phy(adapter);
- e1000_free_irq(adapter);
-
- e1000_free_all_tx_resources(adapter);
- e1000_free_all_rx_resources(adapter);
-
- /* kill manageability vlan ID if supported, but not if a vlan with
- * the same ID is registered on the host OS (let 8021q kill it) */
- if ((hw->mng_cookie.status &
- E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
- !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
- e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
- }
-
- return 0;
-}
-
-/**
- * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
- * @adapter: address of board private structure
- * @start: address of beginning of memory
- * @len: length of memory
- **/
-static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
- unsigned long len)
-{
- struct e1000_hw *hw = &adapter->hw;
- unsigned long begin = (unsigned long)start;
- unsigned long end = begin + len;
-
- /* First rev 82545 and 82546 need to not allow any memory
- * write location to cross 64k boundary due to errata 23 */
- if (hw->mac_type == e1000_82545 ||
- hw->mac_type == e1000_ce4100 ||
- hw->mac_type == e1000_82546) {
- return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
- }
-
- return true;
-}
-
-/**
- * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
- * @adapter: board private structure
- * @txdr: tx descriptor ring (for a specific queue) to setup
- *
- * Return 0 on success, negative on failure
- **/
-
-static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
- struct e1000_tx_ring *txdr)
-{
- struct pci_dev *pdev = adapter->pdev;
- int size;
-
- size = sizeof(struct e1000_buffer) * txdr->count;
- txdr->buffer_info = vzalloc(size);
- if (!txdr->buffer_info) {
- e_err(probe, "Unable to allocate memory for the Tx descriptor "
- "ring\n");
- return -ENOMEM;
- }
-
- /* round up to nearest 4K */
-
- txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
- txdr->size = ALIGN(txdr->size, 4096);
-
- txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
- GFP_KERNEL);
- if (!txdr->desc) {
-setup_tx_desc_die:
- vfree(txdr->buffer_info);
- e_err(probe, "Unable to allocate memory for the Tx descriptor "
- "ring\n");
- return -ENOMEM;
- }
-
- /* Fix for errata 23, can't cross 64kB boundary */
- if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
- void *olddesc = txdr->desc;
- dma_addr_t olddma = txdr->dma;
- e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
- txdr->size, txdr->desc);
- /* Try again, without freeing the previous */
- txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
- &txdr->dma, GFP_KERNEL);
- /* Failed allocation, critical failure */
- if (!txdr->desc) {
- dma_free_coherent(&pdev->dev, txdr->size, olddesc,
- olddma);
- goto setup_tx_desc_die;
- }
-
- if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
- /* give up */
- dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
- txdr->dma);
- dma_free_coherent(&pdev->dev, txdr->size, olddesc,
- olddma);
- e_err(probe, "Unable to allocate aligned memory "
- "for the transmit descriptor ring\n");
- vfree(txdr->buffer_info);
- return -ENOMEM;
- } else {
- /* Free old allocation, new allocation was successful */
- dma_free_coherent(&pdev->dev, txdr->size, olddesc,
- olddma);
- }
- }
- memset(txdr->desc, 0, txdr->size);
-
- txdr->next_to_use = 0;
- txdr->next_to_clean = 0;
-
- return 0;
-}
-
-/**
- * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
- * (Descriptors) for all queues
- * @adapter: board private structure
- *
- * Return 0 on success, negative on failure
- **/
-
-int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
-{
- int i, err = 0;
-
- for (i = 0; i < adapter->num_tx_queues; i++) {
- err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
- if (err) {
- e_err(probe, "Allocation for Tx Queue %u failed\n", i);
- for (i-- ; i >= 0; i--)
- e1000_free_tx_resources(adapter,
- &adapter->tx_ring[i]);
- break;
- }
- }
-
- return err;
-}
-
-/**
- * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
- * @adapter: board private structure
- *
- * Configure the Tx unit of the MAC after a reset.
- **/
-
-static void e1000_configure_tx(struct e1000_adapter *adapter)
-{
- u64 tdba;
- struct e1000_hw *hw = &adapter->hw;
- u32 tdlen, tctl, tipg;
- u32 ipgr1, ipgr2;
-
- /* Setup the HW Tx Head and Tail descriptor pointers */
-
- switch (adapter->num_tx_queues) {
- case 1:
- default:
- tdba = adapter->tx_ring[0].dma;
- tdlen = adapter->tx_ring[0].count *
- sizeof(struct e1000_tx_desc);
- ew32(TDLEN, tdlen);
- ew32(TDBAH, (tdba >> 32));
- ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
- ew32(TDT, 0);
- ew32(TDH, 0);
- adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
- adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
- break;
- }
-
- /* Set the default values for the Tx Inter Packet Gap timer */
- if ((hw->media_type == e1000_media_type_fiber ||
- hw->media_type == e1000_media_type_internal_serdes))
- tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
- else
- tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
-
- switch (hw->mac_type) {
- case e1000_82542_rev2_0:
- case e1000_82542_rev2_1:
- tipg = DEFAULT_82542_TIPG_IPGT;
- ipgr1 = DEFAULT_82542_TIPG_IPGR1;
- ipgr2 = DEFAULT_82542_TIPG_IPGR2;
- break;
- default:
- ipgr1 = DEFAULT_82543_TIPG_IPGR1;
- ipgr2 = DEFAULT_82543_TIPG_IPGR2;
- break;
- }
- tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
- tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
- ew32(TIPG, tipg);
-
- /* Set the Tx Interrupt Delay register */
-
- ew32(TIDV, adapter->tx_int_delay);
- if (hw->mac_type >= e1000_82540)
- ew32(TADV, adapter->tx_abs_int_delay);
-
- /* Program the Transmit Control Register */
-
- tctl = er32(TCTL);
- tctl &= ~E1000_TCTL_CT;
- tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
- (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
-
- e1000_config_collision_dist(hw);
-
- /* Setup Transmit Descriptor Settings for eop descriptor */
- adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
-
- /* only set IDE if we are delaying interrupts using the timers */
- if (adapter->tx_int_delay)
- adapter->txd_cmd |= E1000_TXD_CMD_IDE;
-
- if (hw->mac_type < e1000_82543)
- adapter->txd_cmd |= E1000_TXD_CMD_RPS;
- else
- adapter->txd_cmd |= E1000_TXD_CMD_RS;
-
- /* Cache if we're 82544 running in PCI-X because we'll
- * need this to apply a workaround later in the send path. */
- if (hw->mac_type == e1000_82544 &&
- hw->bus_type == e1000_bus_type_pcix)
- adapter->pcix_82544 = 1;
-
- ew32(TCTL, tctl);
-
-}
-
-/**
- * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
- * @adapter: board private structure
- * @rxdr: rx descriptor ring (for a specific queue) to setup
- *
- * Returns 0 on success, negative on failure
- **/
-
-static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
- struct e1000_rx_ring *rxdr)
-{
- struct pci_dev *pdev = adapter->pdev;
- int size, desc_len;
-
- size = sizeof(struct e1000_buffer) * rxdr->count;
- rxdr->buffer_info = vzalloc(size);
- if (!rxdr->buffer_info) {
- e_err(probe, "Unable to allocate memory for the Rx descriptor "
- "ring\n");
- return -ENOMEM;
- }
-
- desc_len = sizeof(struct e1000_rx_desc);
-
- /* Round up to nearest 4K */
-
- rxdr->size = rxdr->count * desc_len;
- rxdr->size = ALIGN(rxdr->size, 4096);
-
- rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
- GFP_KERNEL);
-
- if (!rxdr->desc) {
- e_err(probe, "Unable to allocate memory for the Rx descriptor "
- "ring\n");
-setup_rx_desc_die:
- vfree(rxdr->buffer_info);
- return -ENOMEM;
- }
-
- /* Fix for errata 23, can't cross 64kB boundary */
- if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
- void *olddesc = rxdr->desc;
- dma_addr_t olddma = rxdr->dma;
- e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
- rxdr->size, rxdr->desc);
- /* Try again, without freeing the previous */
- rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
- &rxdr->dma, GFP_KERNEL);
- /* Failed allocation, critical failure */
- if (!rxdr->desc) {
- dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
- olddma);
- e_err(probe, "Unable to allocate memory for the Rx "
- "descriptor ring\n");
- goto setup_rx_desc_die;
- }
-
- if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
- /* give up */
- dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
- rxdr->dma);
- dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
- olddma);
- e_err(probe, "Unable to allocate aligned memory for "
- "the Rx descriptor ring\n");
- goto setup_rx_desc_die;
- } else {
- /* Free old allocation, new allocation was successful */
- dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
- olddma);
- }
- }
- memset(rxdr->desc, 0, rxdr->size);
-
- rxdr->next_to_clean = 0;
- rxdr->next_to_use = 0;
- rxdr->rx_skb_top = NULL;
-
- return 0;
-}
-
-/**
- * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
- * (Descriptors) for all queues
- * @adapter: board private structure
- *
- * Return 0 on success, negative on failure
- **/
-
-int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
-{
- int i, err = 0;
-
- for (i = 0; i < adapter->num_rx_queues; i++) {
- err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
- if (err) {
- e_err(probe, "Allocation for Rx Queue %u failed\n", i);
- for (i-- ; i >= 0; i--)
- e1000_free_rx_resources(adapter,
- &adapter->rx_ring[i]);
- break;
- }
- }
-
- return err;
-}
-
-/**
- * e1000_setup_rctl - configure the receive control registers
- * @adapter: Board private structure
- **/
-static void e1000_setup_rctl(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 rctl;
-
- rctl = er32(RCTL);
-
- rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
-
- rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
- E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
- (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
-
- if (hw->tbi_compatibility_on == 1)
- rctl |= E1000_RCTL_SBP;
- else
- rctl &= ~E1000_RCTL_SBP;
-
- if (adapter->netdev->mtu <= ETH_DATA_LEN)
- rctl &= ~E1000_RCTL_LPE;
- else
- rctl |= E1000_RCTL_LPE;
-
- /* Setup buffer sizes */
- rctl &= ~E1000_RCTL_SZ_4096;
- rctl |= E1000_RCTL_BSEX;
- switch (adapter->rx_buffer_len) {
- case E1000_RXBUFFER_2048:
- default:
- rctl |= E1000_RCTL_SZ_2048;
- rctl &= ~E1000_RCTL_BSEX;
- break;
- case E1000_RXBUFFER_4096:
- rctl |= E1000_RCTL_SZ_4096;
- break;
- case E1000_RXBUFFER_8192:
- rctl |= E1000_RCTL_SZ_8192;
- break;
- case E1000_RXBUFFER_16384:
- rctl |= E1000_RCTL_SZ_16384;
- break;
- }
-
- ew32(RCTL, rctl);
-}
-
-/**
- * e1000_configure_rx - Configure 8254x Receive Unit after Reset
- * @adapter: board private structure
- *
- * Configure the Rx unit of the MAC after a reset.
- **/
-
-static void e1000_configure_rx(struct e1000_adapter *adapter)
-{
- u64 rdba;
- struct e1000_hw *hw = &adapter->hw;
- u32 rdlen, rctl, rxcsum;
-
- if (adapter->netdev->mtu > ETH_DATA_LEN) {
- rdlen = adapter->rx_ring[0].count *
- sizeof(struct e1000_rx_desc);
- adapter->clean_rx = e1000_clean_jumbo_rx_irq;
- adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
- } else {
- rdlen = adapter->rx_ring[0].count *
- sizeof(struct e1000_rx_desc);
- adapter->clean_rx = e1000_clean_rx_irq;
- adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
- }
-
- /* disable receives while setting up the descriptors */
- rctl = er32(RCTL);
- ew32(RCTL, rctl & ~E1000_RCTL_EN);
-
- /* set the Receive Delay Timer Register */
- ew32(RDTR, adapter->rx_int_delay);
-
- if (hw->mac_type >= e1000_82540) {
- ew32(RADV, adapter->rx_abs_int_delay);
- if (adapter->itr_setting != 0)
- ew32(ITR, 1000000000 / (adapter->itr * 256));
- }
-
- /* Setup the HW Rx Head and Tail Descriptor Pointers and
- * the Base and Length of the Rx Descriptor Ring */
- switch (adapter->num_rx_queues) {
- case 1:
- default:
- rdba = adapter->rx_ring[0].dma;
- ew32(RDLEN, rdlen);
- ew32(RDBAH, (rdba >> 32));
- ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
- ew32(RDT, 0);
- ew32(RDH, 0);
- adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
- adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
- break;
- }
-
- /* Enable 82543 Receive Checksum Offload for TCP and UDP */
- if (hw->mac_type >= e1000_82543) {
- rxcsum = er32(RXCSUM);
- if (adapter->rx_csum)
- rxcsum |= E1000_RXCSUM_TUOFL;
- else
- /* don't need to clear IPPCSE as it defaults to 0 */
- rxcsum &= ~E1000_RXCSUM_TUOFL;
- ew32(RXCSUM, rxcsum);
- }
-
- /* Enable Receives */
- ew32(RCTL, rctl);
-}
-
-/**
- * e1000_free_tx_resources - Free Tx Resources per Queue
- * @adapter: board private structure
- * @tx_ring: Tx descriptor ring for a specific queue
- *
- * Free all transmit software resources
- **/
-
-static void e1000_free_tx_resources(struct e1000_adapter *adapter,
- struct e1000_tx_ring *tx_ring)
-{
- struct pci_dev *pdev = adapter->pdev;
-
- e1000_clean_tx_ring(adapter, tx_ring);
-
- vfree(tx_ring->buffer_info);
- tx_ring->buffer_info = NULL;
-
- dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
- tx_ring->dma);
-
- tx_ring->desc = NULL;
-}
-
-/**
- * e1000_free_all_tx_resources - Free Tx Resources for All Queues
- * @adapter: board private structure
- *
- * Free all transmit software resources
- **/
-
-void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
-{
- int i;
-
- for (i = 0; i < adapter->num_tx_queues; i++)
- e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
-}
-
-static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
- struct e1000_buffer *buffer_info)
-{
- if (buffer_info->dma) {
- if (buffer_info->mapped_as_page)
- dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
- buffer_info->length, DMA_TO_DEVICE);
- else
- dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
- buffer_info->length,
- DMA_TO_DEVICE);
- buffer_info->dma = 0;
- }
- if (buffer_info->skb) {
- dev_kfree_skb_any(buffer_info->skb);
- buffer_info->skb = NULL;
- }
- buffer_info->time_stamp = 0;
- /* buffer_info must be completely set up in the transmit path */
-}
-
-/**
- * e1000_clean_tx_ring - Free Tx Buffers
- * @adapter: board private structure
- * @tx_ring: ring to be cleaned
- **/
-
-static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
- struct e1000_tx_ring *tx_ring)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_buffer *buffer_info;
- unsigned long size;
- unsigned int i;
-
- /* Free all the Tx ring sk_buffs */
-
- for (i = 0; i < tx_ring->count; i++) {
- buffer_info = &tx_ring->buffer_info[i];
- e1000_unmap_and_free_tx_resource(adapter, buffer_info);
- }
-
- size = sizeof(struct e1000_buffer) * tx_ring->count;
- memset(tx_ring->buffer_info, 0, size);
-
- /* Zero out the descriptor ring */
-
- memset(tx_ring->desc, 0, tx_ring->size);
-
- tx_ring->next_to_use = 0;
- tx_ring->next_to_clean = 0;
- tx_ring->last_tx_tso = 0;
-
- writel(0, hw->hw_addr + tx_ring->tdh);
- writel(0, hw->hw_addr + tx_ring->tdt);
-}
-
-/**
- * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
- * @adapter: board private structure
- **/
-
-static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
-{
- int i;
-
- for (i = 0; i < adapter->num_tx_queues; i++)
- e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
-}
-
-/**
- * e1000_free_rx_resources - Free Rx Resources
- * @adapter: board private structure
- * @rx_ring: ring to clean the resources from
- *
- * Free all receive software resources
- **/
-
-static void e1000_free_rx_resources(struct e1000_adapter *adapter,
- struct e1000_rx_ring *rx_ring)
-{
- struct pci_dev *pdev = adapter->pdev;
-
- e1000_clean_rx_ring(adapter, rx_ring);
-
- vfree(rx_ring->buffer_info);
- rx_ring->buffer_info = NULL;
-
- dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
- rx_ring->dma);
-
- rx_ring->desc = NULL;
-}
-
-/**
- * e1000_free_all_rx_resources - Free Rx Resources for All Queues
- * @adapter: board private structure
- *
- * Free all receive software resources
- **/
-
-void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
-{
- int i;
-
- for (i = 0; i < adapter->num_rx_queues; i++)
- e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
-}
-
-/**
- * e1000_clean_rx_ring - Free Rx Buffers per Queue
- * @adapter: board private structure
- * @rx_ring: ring to free buffers from
- **/
-
-static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
- struct e1000_rx_ring *rx_ring)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_buffer *buffer_info;
- struct pci_dev *pdev = adapter->pdev;
- unsigned long size;
- unsigned int i;
-
- /* Free all the Rx ring sk_buffs */
- for (i = 0; i < rx_ring->count; i++) {
- buffer_info = &rx_ring->buffer_info[i];
- if (buffer_info->dma &&
- adapter->clean_rx == e1000_clean_rx_irq) {
- dma_unmap_single(&pdev->dev, buffer_info->dma,
- buffer_info->length,
- DMA_FROM_DEVICE);
- } else if (buffer_info->dma &&
- adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
- dma_unmap_page(&pdev->dev, buffer_info->dma,
- buffer_info->length,
- DMA_FROM_DEVICE);
- }
-
- buffer_info->dma = 0;
- if (buffer_info->page) {
- put_page(buffer_info->page);
- buffer_info->page = NULL;
- }
- if (buffer_info->skb) {
- dev_kfree_skb(buffer_info->skb);
- buffer_info->skb = NULL;
- }
- }
-
- /* there also may be some cached data from a chained receive */
- if (rx_ring->rx_skb_top) {
- dev_kfree_skb(rx_ring->rx_skb_top);
- rx_ring->rx_skb_top = NULL;
- }
-
- size = sizeof(struct e1000_buffer) * rx_ring->count;
- memset(rx_ring->buffer_info, 0, size);
-
- /* Zero out the descriptor ring */
- memset(rx_ring->desc, 0, rx_ring->size);
-
- rx_ring->next_to_clean = 0;
- rx_ring->next_to_use = 0;
-
- writel(0, hw->hw_addr + rx_ring->rdh);
- writel(0, hw->hw_addr + rx_ring->rdt);
-}
-
-/**
- * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
- * @adapter: board private structure
- **/
-
-static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
-{
- int i;
-
- for (i = 0; i < adapter->num_rx_queues; i++)
- e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
-}
-
-/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
- * and memory write and invalidate disabled for certain operations
- */
-static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct net_device *netdev = adapter->netdev;
- u32 rctl;
-
- e1000_pci_clear_mwi(hw);
-
- rctl = er32(RCTL);
- rctl |= E1000_RCTL_RST;
- ew32(RCTL, rctl);
- E1000_WRITE_FLUSH();
- mdelay(5);
-
- if (netif_running(netdev))
- e1000_clean_all_rx_rings(adapter);
-}
-
-static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct net_device *netdev = adapter->netdev;
- u32 rctl;
-
- rctl = er32(RCTL);
- rctl &= ~E1000_RCTL_RST;
- ew32(RCTL, rctl);
- E1000_WRITE_FLUSH();
- mdelay(5);
-
- if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
- e1000_pci_set_mwi(hw);
-
- if (netif_running(netdev)) {
- /* No need to loop, because 82542 supports only 1 queue */
- struct e1000_rx_ring *ring = &adapter->rx_ring[0];
- e1000_configure_rx(adapter);
- adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
- }
-}
-
-/**
- * e1000_set_mac - Change the Ethernet Address of the NIC
- * @netdev: network interface device structure
- * @p: pointer to an address structure
- *
- * Returns 0 on success, negative on failure
- **/
-
-static int e1000_set_mac(struct net_device *netdev, void *p)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- struct sockaddr *addr = p;
-
- if (!is_valid_ether_addr(addr->sa_data))
- return -EADDRNOTAVAIL;
-
- /* 82542 2.0 needs to be in reset to write receive address registers */
-
- if (hw->mac_type == e1000_82542_rev2_0)
- e1000_enter_82542_rst(adapter);
-
- memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
- memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
-
- e1000_rar_set(hw, hw->mac_addr, 0);
-
- if (hw->mac_type == e1000_82542_rev2_0)
- e1000_leave_82542_rst(adapter);
-
- return 0;
-}
-
-/**
- * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
- * @netdev: network interface device structure
- *
- * The set_rx_mode entry point is called whenever the unicast or multicast
- * address lists or the network interface flags are updated. This routine is
- * responsible for configuring the hardware for proper unicast, multicast,
- * promiscuous mode, and all-multi behavior.
- **/
-
-static void e1000_set_rx_mode(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- struct netdev_hw_addr *ha;
- bool use_uc = false;
- u32 rctl;
- u32 hash_value;
- int i, rar_entries = E1000_RAR_ENTRIES;
- int mta_reg_count = E1000_NUM_MTA_REGISTERS;
- u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
-
- if (!mcarray) {
- e_err(probe, "memory allocation failed\n");
- return;
- }
-
- /* Check for Promiscuous and All Multicast modes */
-
- rctl = er32(RCTL);
-
- if (netdev->flags & IFF_PROMISC) {
- rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
- rctl &= ~E1000_RCTL_VFE;
- } else {
- if (netdev->flags & IFF_ALLMULTI)
- rctl |= E1000_RCTL_MPE;
- else
- rctl &= ~E1000_RCTL_MPE;
- /* Enable VLAN filter if there is a VLAN */
- if (e1000_vlan_used(adapter))
- rctl |= E1000_RCTL_VFE;
- }
-
- if (netdev_uc_count(netdev) > rar_entries - 1) {
- rctl |= E1000_RCTL_UPE;
- } else if (!(netdev->flags & IFF_PROMISC)) {
- rctl &= ~E1000_RCTL_UPE;
- use_uc = true;
- }
-
- ew32(RCTL, rctl);
-
- /* 82542 2.0 needs to be in reset to write receive address registers */
-
- if (hw->mac_type == e1000_82542_rev2_0)
- e1000_enter_82542_rst(adapter);
-
- /* load the first 14 addresses into the exact filters 1-14. Unicast
- * addresses take precedence to avoid disabling unicast filtering
- * when possible.
- *
- * RAR 0 is used for the station MAC address
- * if there are not 14 addresses, go ahead and clear the filters
- */
- i = 1;
- if (use_uc)
- netdev_for_each_uc_addr(ha, netdev) {
- if (i == rar_entries)
- break;
- e1000_rar_set(hw, ha->addr, i++);
- }
-
- netdev_for_each_mc_addr(ha, netdev) {
- if (i == rar_entries) {
- /* load any remaining addresses into the hash table */
- u32 hash_reg, hash_bit, mta;
- hash_value = e1000_hash_mc_addr(hw, ha->addr);
- hash_reg = (hash_value >> 5) & 0x7F;
- hash_bit = hash_value & 0x1F;
- mta = (1 << hash_bit);
- mcarray[hash_reg] |= mta;
- } else {
- e1000_rar_set(hw, ha->addr, i++);
- }
- }
-
- for (; i < rar_entries; i++) {
- E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
- E1000_WRITE_FLUSH();
- E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
- E1000_WRITE_FLUSH();
- }
-
- /* write the hash table completely, write from bottom to avoid
- * both stupid write combining chipsets, and flushing each write */
- for (i = mta_reg_count - 1; i >= 0 ; i--) {
- /*
- * If we are on an 82544 has an errata where writing odd
- * offsets overwrites the previous even offset, but writing
- * backwards over the range solves the issue by always
- * writing the odd offset first
- */
- E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
- }
- E1000_WRITE_FLUSH();
-
- if (hw->mac_type == e1000_82542_rev2_0)
- e1000_leave_82542_rst(adapter);
-
- kfree(mcarray);
-}
-
-/* Need to wait a few seconds after link up to get diagnostic information from
- * the phy */
-
-static void e1000_update_phy_info(unsigned long data)
-{
- struct e1000_adapter *adapter = (struct e1000_adapter *)data;
- schedule_work(&adapter->phy_info_task);
-}
-
-static void e1000_update_phy_info_task(struct work_struct *work)
-{
- struct e1000_adapter *adapter = container_of(work,
- struct e1000_adapter,
- phy_info_task);
- struct e1000_hw *hw = &adapter->hw;
-
- rtnl_lock();
- e1000_phy_get_info(hw, &adapter->phy_info);
- rtnl_unlock();
-}
-
-/**
- * e1000_82547_tx_fifo_stall - Timer Call-back
- * @data: pointer to adapter cast into an unsigned long
- **/
-static void e1000_82547_tx_fifo_stall(unsigned long data)
-{
- struct e1000_adapter *adapter = (struct e1000_adapter *)data;
- schedule_work(&adapter->fifo_stall_task);
-}
-
-/**
- * e1000_82547_tx_fifo_stall_task - task to complete work
- * @work: work struct contained inside adapter struct
- **/
-static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
-{
- struct e1000_adapter *adapter = container_of(work,
- struct e1000_adapter,
- fifo_stall_task);
- struct e1000_hw *hw = &adapter->hw;
- struct net_device *netdev = adapter->netdev;
- u32 tctl;
-
- rtnl_lock();
- if (atomic_read(&adapter->tx_fifo_stall)) {
- if ((er32(TDT) == er32(TDH)) &&
- (er32(TDFT) == er32(TDFH)) &&
- (er32(TDFTS) == er32(TDFHS))) {
- tctl = er32(TCTL);
- ew32(TCTL, tctl & ~E1000_TCTL_EN);
- ew32(TDFT, adapter->tx_head_addr);
- ew32(TDFH, adapter->tx_head_addr);
- ew32(TDFTS, adapter->tx_head_addr);
- ew32(TDFHS, adapter->tx_head_addr);
- ew32(TCTL, tctl);
- E1000_WRITE_FLUSH();
-
- adapter->tx_fifo_head = 0;
- atomic_set(&adapter->tx_fifo_stall, 0);
- netif_wake_queue(netdev);
- } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
- mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
- }
- }
- rtnl_unlock();
-}
-
-bool e1000_has_link(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- bool link_active = false;
-
- /* get_link_status is set on LSC (link status) interrupt or rx
- * sequence error interrupt (except on intel ce4100).
- * get_link_status will stay false until the
- * e1000_check_for_link establishes link for copper adapters
- * ONLY
- */
- switch (hw->media_type) {
- case e1000_media_type_copper:
- if (hw->mac_type == e1000_ce4100)
- hw->get_link_status = 1;
- if (hw->get_link_status) {
- e1000_check_for_link(hw);
- link_active = !hw->get_link_status;
- } else {
- link_active = true;
- }
- break;
- case e1000_media_type_fiber:
- e1000_check_for_link(hw);
- link_active = !!(er32(STATUS) & E1000_STATUS_LU);
- break;
- case e1000_media_type_internal_serdes:
- e1000_check_for_link(hw);
- link_active = hw->serdes_has_link;
- break;
- default:
- break;
- }
-
- return link_active;
-}
-
-/**
- * e1000_watchdog - Timer Call-back
- * @data: pointer to adapter cast into an unsigned long
- **/
-static void e1000_watchdog(unsigned long data)
-{
- struct e1000_adapter *adapter = (struct e1000_adapter *)data;
- struct e1000_hw *hw = &adapter->hw;
- struct net_device *netdev = adapter->netdev;
- struct e1000_tx_ring *txdr = adapter->tx_ring;
- u32 link, tctl;
-
- link = e1000_has_link(adapter);
- if ((netif_carrier_ok(netdev)) && link)
- goto link_up;
-
- if (link) {
- if (!netif_carrier_ok(netdev)) {
- u32 ctrl;
- bool txb2b = true;
- /* update snapshot of PHY registers on LSC */
- e1000_get_speed_and_duplex(hw,
- &adapter->link_speed,
- &adapter->link_duplex);
-
- ctrl = er32(CTRL);
- pr_info("%s NIC Link is Up %d Mbps %s, "
- "Flow Control: %s\n",
- netdev->name,
- adapter->link_speed,
- adapter->link_duplex == FULL_DUPLEX ?
- "Full Duplex" : "Half Duplex",
- ((ctrl & E1000_CTRL_TFCE) && (ctrl &
- E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
- E1000_CTRL_RFCE) ? "RX" : ((ctrl &
- E1000_CTRL_TFCE) ? "TX" : "None")));
-
- /* adjust timeout factor according to speed/duplex */
- adapter->tx_timeout_factor = 1;
- switch (adapter->link_speed) {
- case SPEED_10:
- txb2b = false;
- adapter->tx_timeout_factor = 16;
- break;
- case SPEED_100:
- txb2b = false;
- /* maybe add some timeout factor ? */
- break;
- }
-
- /* enable transmits in the hardware */
- tctl = er32(TCTL);
- tctl |= E1000_TCTL_EN;
- ew32(TCTL, tctl);
-
- netif_carrier_on(netdev);
- if (!test_bit(__E1000_DOWN, &adapter->flags))
- mod_timer(&adapter->phy_info_timer,
- round_jiffies(jiffies + 2 * HZ));
- adapter->smartspeed = 0;
- }
- } else {
- if (netif_carrier_ok(netdev)) {
- adapter->link_speed = 0;
- adapter->link_duplex = 0;
- pr_info("%s NIC Link is Down\n",
- netdev->name);
- netif_carrier_off(netdev);
-
- if (!test_bit(__E1000_DOWN, &adapter->flags))
- mod_timer(&adapter->phy_info_timer,
- round_jiffies(jiffies + 2 * HZ));
- }
-
- e1000_smartspeed(adapter);
- }
-
-link_up:
- e1000_update_stats(adapter);
-
- hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
- adapter->tpt_old = adapter->stats.tpt;
- hw->collision_delta = adapter->stats.colc - adapter->colc_old;
- adapter->colc_old = adapter->stats.colc;
-
- adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
- adapter->gorcl_old = adapter->stats.gorcl;
- adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
- adapter->gotcl_old = adapter->stats.gotcl;
-
- e1000_update_adaptive(hw);
-
- if (!netif_carrier_ok(netdev)) {
- if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
- /* We've lost link, so the controller stops DMA,
- * but we've got queued Tx work that's never going
- * to get done, so reset controller to flush Tx.
- * (Do the reset outside of interrupt context). */
- adapter->tx_timeout_count++;
- schedule_work(&adapter->reset_task);
- /* return immediately since reset is imminent */
- return;
- }
- }
-
- /* Simple mode for Interrupt Throttle Rate (ITR) */
- if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
- /*
- * Symmetric Tx/Rx gets a reduced ITR=2000;
- * Total asymmetrical Tx or Rx gets ITR=8000;
- * everyone else is between 2000-8000.
- */
- u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
- u32 dif = (adapter->gotcl > adapter->gorcl ?
- adapter->gotcl - adapter->gorcl :
- adapter->gorcl - adapter->gotcl) / 10000;
- u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
-
- ew32(ITR, 1000000000 / (itr * 256));
- }
-
- /* Cause software interrupt to ensure rx ring is cleaned */
- ew32(ICS, E1000_ICS_RXDMT0);
-
- /* Force detection of hung controller every watchdog period */
- adapter->detect_tx_hung = true;
-
- /* Reset the timer */
- if (!test_bit(__E1000_DOWN, &adapter->flags))
- mod_timer(&adapter->watchdog_timer,
- round_jiffies(jiffies + 2 * HZ));
-}
-
-enum latency_range {
- lowest_latency = 0,
- low_latency = 1,
- bulk_latency = 2,
- latency_invalid = 255
-};
-
-/**
- * e1000_update_itr - update the dynamic ITR value based on statistics
- * @adapter: pointer to adapter
- * @itr_setting: current adapter->itr
- * @packets: the number of packets during this measurement interval
- * @bytes: the number of bytes during this measurement interval
- *
- * Stores a new ITR value based on packets and byte
- * counts during the last interrupt. The advantage of per interrupt
- * computation is faster updates and more accurate ITR for the current
- * traffic pattern. Constants in this function were computed
- * based on theoretical maximum wire speed and thresholds were set based
- * on testing data as well as attempting to minimize response time
- * while increasing bulk throughput.
- * this functionality is controlled by the InterruptThrottleRate module
- * parameter (see e1000_param.c)
- **/
-static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
- u16 itr_setting, int packets, int bytes)
-{
- unsigned int retval = itr_setting;
- struct e1000_hw *hw = &adapter->hw;
-
- if (unlikely(hw->mac_type < e1000_82540))
- goto update_itr_done;
-
- if (packets == 0)
- goto update_itr_done;
-
- switch (itr_setting) {
- case lowest_latency:
- /* jumbo frames get bulk treatment*/
- if (bytes/packets > 8000)
- retval = bulk_latency;
- else if ((packets < 5) && (bytes > 512))
- retval = low_latency;
- break;
- case low_latency: /* 50 usec aka 20000 ints/s */
- if (bytes > 10000) {
- /* jumbo frames need bulk latency setting */
- if (bytes/packets > 8000)
- retval = bulk_latency;
- else if ((packets < 10) || ((bytes/packets) > 1200))
- retval = bulk_latency;
- else if ((packets > 35))
- retval = lowest_latency;
- } else if (bytes/packets > 2000)
- retval = bulk_latency;
- else if (packets <= 2 && bytes < 512)
- retval = lowest_latency;
- break;
- case bulk_latency: /* 250 usec aka 4000 ints/s */
- if (bytes > 25000) {
- if (packets > 35)
- retval = low_latency;
- } else if (bytes < 6000) {
- retval = low_latency;
- }
- break;
- }
-
-update_itr_done:
- return retval;
-}
-
-static void e1000_set_itr(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u16 current_itr;
- u32 new_itr = adapter->itr;
-
- if (unlikely(hw->mac_type < e1000_82540))
- return;
-
- /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
- if (unlikely(adapter->link_speed != SPEED_1000)) {
- current_itr = 0;
- new_itr = 4000;
- goto set_itr_now;
- }
-
- adapter->tx_itr = e1000_update_itr(adapter,
- adapter->tx_itr,
- adapter->total_tx_packets,
- adapter->total_tx_bytes);
- /* conservative mode (itr 3) eliminates the lowest_latency setting */
- if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
- adapter->tx_itr = low_latency;
-
- adapter->rx_itr = e1000_update_itr(adapter,
- adapter->rx_itr,
- adapter->total_rx_packets,
- adapter->total_rx_bytes);
- /* conservative mode (itr 3) eliminates the lowest_latency setting */
- if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
- adapter->rx_itr = low_latency;
-
- current_itr = max(adapter->rx_itr, adapter->tx_itr);
-
- switch (current_itr) {
- /* counts and packets in update_itr are dependent on these numbers */
- case lowest_latency:
- new_itr = 70000;
- break;
- case low_latency:
- new_itr = 20000; /* aka hwitr = ~200 */
- break;
- case bulk_latency:
- new_itr = 4000;
- break;
- default:
- break;
- }
-
-set_itr_now:
- if (new_itr != adapter->itr) {
- /* this attempts to bias the interrupt rate towards Bulk
- * by adding intermediate steps when interrupt rate is
- * increasing */
- new_itr = new_itr > adapter->itr ?
- min(adapter->itr + (new_itr >> 2), new_itr) :
- new_itr;
- adapter->itr = new_itr;
- ew32(ITR, 1000000000 / (new_itr * 256));
- }
-}
-
-#define E1000_TX_FLAGS_CSUM 0x00000001
-#define E1000_TX_FLAGS_VLAN 0x00000002
-#define E1000_TX_FLAGS_TSO 0x00000004
-#define E1000_TX_FLAGS_IPV4 0x00000008
-#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
-#define E1000_TX_FLAGS_VLAN_SHIFT 16
-
-static int e1000_tso(struct e1000_adapter *adapter,
- struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
-{
- struct e1000_context_desc *context_desc;
- struct e1000_buffer *buffer_info;
- unsigned int i;
- u32 cmd_length = 0;
- u16 ipcse = 0, tucse, mss;
- u8 ipcss, ipcso, tucss, tucso, hdr_len;
- int err;
-
- if (skb_is_gso(skb)) {
- if (skb_header_cloned(skb)) {
- err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
- if (err)
- return err;
- }
-
- hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
- mss = skb_shinfo(skb)->gso_size;
- if (skb->protocol == htons(ETH_P_IP)) {
- struct iphdr *iph = ip_hdr(skb);
- iph->tot_len = 0;
- iph->check = 0;
- tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
- iph->daddr, 0,
- IPPROTO_TCP,
- 0);
- cmd_length = E1000_TXD_CMD_IP;
- ipcse = skb_transport_offset(skb) - 1;
- } else if (skb->protocol == htons(ETH_P_IPV6)) {
- ipv6_hdr(skb)->payload_len = 0;
- tcp_hdr(skb)->check =
- ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
- &ipv6_hdr(skb)->daddr,
- 0, IPPROTO_TCP, 0);
- ipcse = 0;
- }
- ipcss = skb_network_offset(skb);
- ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
- tucss = skb_transport_offset(skb);
- tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
- tucse = 0;
-
- cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
- E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
-
- i = tx_ring->next_to_use;
- context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
- buffer_info = &tx_ring->buffer_info[i];
-
- context_desc->lower_setup.ip_fields.ipcss = ipcss;
- context_desc->lower_setup.ip_fields.ipcso = ipcso;
- context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
- context_desc->upper_setup.tcp_fields.tucss = tucss;
- context_desc->upper_setup.tcp_fields.tucso = tucso;
- context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
- context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
- context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
- context_desc->cmd_and_length = cpu_to_le32(cmd_length);
-
- buffer_info->time_stamp = jiffies;
- buffer_info->next_to_watch = i;
-
- if (++i == tx_ring->count) i = 0;
- tx_ring->next_to_use = i;
-
- return true;
- }
- return false;
-}
-
-static bool e1000_tx_csum(struct e1000_adapter *adapter,
- struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
-{
- struct e1000_context_desc *context_desc;
- struct e1000_buffer *buffer_info;
- unsigned int i;
- u8 css;
- u32 cmd_len = E1000_TXD_CMD_DEXT;
-
- if (skb->ip_summed != CHECKSUM_PARTIAL)
- return false;
-
- switch (skb->protocol) {
- case cpu_to_be16(ETH_P_IP):
- if (ip_hdr(skb)->protocol == IPPROTO_TCP)
- cmd_len |= E1000_TXD_CMD_TCP;
- break;
- case cpu_to_be16(ETH_P_IPV6):
- /* XXX not handling all IPV6 headers */
- if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
- cmd_len |= E1000_TXD_CMD_TCP;
- break;
- default:
- if (unlikely(net_ratelimit()))
- e_warn(drv, "checksum_partial proto=%x!\n",
- skb->protocol);
- break;
- }
-
- css = skb_checksum_start_offset(skb);
-
- i = tx_ring->next_to_use;
- buffer_info = &tx_ring->buffer_info[i];
- context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
-
- context_desc->lower_setup.ip_config = 0;
- context_desc->upper_setup.tcp_fields.tucss = css;
- context_desc->upper_setup.tcp_fields.tucso =
- css + skb->csum_offset;
- context_desc->upper_setup.tcp_fields.tucse = 0;
- context_desc->tcp_seg_setup.data = 0;
- context_desc->cmd_and_length = cpu_to_le32(cmd_len);
-
- buffer_info->time_stamp = jiffies;
- buffer_info->next_to_watch = i;
-
- if (unlikely(++i == tx_ring->count)) i = 0;
- tx_ring->next_to_use = i;
-
- return true;
-}
-
-#define E1000_MAX_TXD_PWR 12
-#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
-
-static int e1000_tx_map(struct e1000_adapter *adapter,
- struct e1000_tx_ring *tx_ring,
- struct sk_buff *skb, unsigned int first,
- unsigned int max_per_txd, unsigned int nr_frags,
- unsigned int mss)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct pci_dev *pdev = adapter->pdev;
- struct e1000_buffer *buffer_info;
- unsigned int len = skb_headlen(skb);
- unsigned int offset = 0, size, count = 0, i;
- unsigned int f;
-
- i = tx_ring->next_to_use;
-
- while (len) {
- buffer_info = &tx_ring->buffer_info[i];
- size = min(len, max_per_txd);
- /* Workaround for Controller erratum --
- * descriptor for non-tso packet in a linear SKB that follows a
- * tso gets written back prematurely before the data is fully
- * DMA'd to the controller */
- if (!skb->data_len && tx_ring->last_tx_tso &&
- !skb_is_gso(skb)) {
- tx_ring->last_tx_tso = 0;
- size -= 4;
- }
-
- /* Workaround for premature desc write-backs
- * in TSO mode. Append 4-byte sentinel desc */
- if (unlikely(mss && !nr_frags && size == len && size > 8))
- size -= 4;
- /* work-around for errata 10 and it applies
- * to all controllers in PCI-X mode
- * The fix is to make sure that the first descriptor of a
- * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
- */
- if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
- (size > 2015) && count == 0))
- size = 2015;
-
- /* Workaround for potential 82544 hang in PCI-X. Avoid
- * terminating buffers within evenly-aligned dwords. */
- if (unlikely(adapter->pcix_82544 &&
- !((unsigned long)(skb->data + offset + size - 1) & 4) &&
- size > 4))
- size -= 4;
-
- buffer_info->length = size;
- /* set time_stamp *before* dma to help avoid a possible race */
- buffer_info->time_stamp = jiffies;
- buffer_info->mapped_as_page = false;
- buffer_info->dma = dma_map_single(&pdev->dev,
- skb->data + offset,
- size, DMA_TO_DEVICE);
- if (dma_mapping_error(&pdev->dev, buffer_info->dma))
- goto dma_error;
- buffer_info->next_to_watch = i;
-
- len -= size;
- offset += size;
- count++;
- if (len) {
- i++;
- if (unlikely(i == tx_ring->count))
- i = 0;
- }
- }
-
- for (f = 0; f < nr_frags; f++) {
- struct skb_frag_struct *frag;
-
- frag = &skb_shinfo(skb)->frags[f];
- len = frag->size;
- offset = frag->page_offset;
-
- while (len) {
- i++;
- if (unlikely(i == tx_ring->count))
- i = 0;
-
- buffer_info = &tx_ring->buffer_info[i];
- size = min(len, max_per_txd);
- /* Workaround for premature desc write-backs
- * in TSO mode. Append 4-byte sentinel desc */
- if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
- size -= 4;
- /* Workaround for potential 82544 hang in PCI-X.
- * Avoid terminating buffers within evenly-aligned
- * dwords. */
- if (unlikely(adapter->pcix_82544 &&
- !((unsigned long)(page_to_phys(frag->page) + offset
- + size - 1) & 4) &&
- size > 4))
- size -= 4;
-
- buffer_info->length = size;
- buffer_info->time_stamp = jiffies;
- buffer_info->mapped_as_page = true;
- buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
- offset, size,
- DMA_TO_DEVICE);
- if (dma_mapping_error(&pdev->dev, buffer_info->dma))
- goto dma_error;
- buffer_info->next_to_watch = i;
-
- len -= size;
- offset += size;
- count++;
- }
- }
-
- tx_ring->buffer_info[i].skb = skb;
- tx_ring->buffer_info[first].next_to_watch = i;
-
- return count;
-
-dma_error:
- dev_err(&pdev->dev, "TX DMA map failed\n");
- buffer_info->dma = 0;
- if (count)
- count--;
-
- while (count--) {
- if (i==0)
- i += tx_ring->count;
- i--;
- buffer_info = &tx_ring->buffer_info[i];
- e1000_unmap_and_free_tx_resource(adapter, buffer_info);
- }
-
- return 0;
-}
-
-static void e1000_tx_queue(struct e1000_adapter *adapter,
- struct e1000_tx_ring *tx_ring, int tx_flags,
- int count)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_tx_desc *tx_desc = NULL;
- struct e1000_buffer *buffer_info;
- u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
- unsigned int i;
-
- if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
- txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
- E1000_TXD_CMD_TSE;
- txd_upper |= E1000_TXD_POPTS_TXSM << 8;
-
- if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
- txd_upper |= E1000_TXD_POPTS_IXSM << 8;
- }
-
- if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
- txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
- txd_upper |= E1000_TXD_POPTS_TXSM << 8;
- }
-
- if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
- txd_lower |= E1000_TXD_CMD_VLE;
- txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
- }
-
- i = tx_ring->next_to_use;
-
- while (count--) {
- buffer_info = &tx_ring->buffer_info[i];
- tx_desc = E1000_TX_DESC(*tx_ring, i);
- tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
- tx_desc->lower.data =
- cpu_to_le32(txd_lower | buffer_info->length);
- tx_desc->upper.data = cpu_to_le32(txd_upper);
- if (unlikely(++i == tx_ring->count)) i = 0;
- }
-
- tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
-
- /* Force memory writes to complete before letting h/w
- * know there are new descriptors to fetch. (Only
- * applicable for weak-ordered memory model archs,
- * such as IA-64). */
- wmb();
-
- tx_ring->next_to_use = i;
- writel(i, hw->hw_addr + tx_ring->tdt);
- /* we need this if more than one processor can write to our tail
- * at a time, it syncronizes IO on IA64/Altix systems */
- mmiowb();
-}
-
-/**
- * 82547 workaround to avoid controller hang in half-duplex environment.
- * The workaround is to avoid queuing a large packet that would span
- * the internal Tx FIFO ring boundary by notifying the stack to resend
- * the packet at a later time. This gives the Tx FIFO an opportunity to
- * flush all packets. When that occurs, we reset the Tx FIFO pointers
- * to the beginning of the Tx FIFO.
- **/
-
-#define E1000_FIFO_HDR 0x10
-#define E1000_82547_PAD_LEN 0x3E0
-
-static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
- struct sk_buff *skb)
-{
- u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
- u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
-
- skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
-
- if (adapter->link_duplex != HALF_DUPLEX)
- goto no_fifo_stall_required;
-
- if (atomic_read(&adapter->tx_fifo_stall))
- return 1;
-
- if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
- atomic_set(&adapter->tx_fifo_stall, 1);
- return 1;
- }
-
-no_fifo_stall_required:
- adapter->tx_fifo_head += skb_fifo_len;
- if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
- adapter->tx_fifo_head -= adapter->tx_fifo_size;
- return 0;
-}
-
-static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_tx_ring *tx_ring = adapter->tx_ring;
-
- netif_stop_queue(netdev);
- /* Herbert's original patch had:
- * smp_mb__after_netif_stop_queue();
- * but since that doesn't exist yet, just open code it. */
- smp_mb();
-
- /* We need to check again in a case another CPU has just
- * made room available. */
- if (likely(E1000_DESC_UNUSED(tx_ring) < size))
- return -EBUSY;
-
- /* A reprieve! */
- netif_start_queue(netdev);
- ++adapter->restart_queue;
- return 0;
-}
-
-static int e1000_maybe_stop_tx(struct net_device *netdev,
- struct e1000_tx_ring *tx_ring, int size)
-{
- if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
- return 0;
- return __e1000_maybe_stop_tx(netdev, size);
-}
-
-#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
-static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
- struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- struct e1000_tx_ring *tx_ring;
- unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
- unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
- unsigned int tx_flags = 0;
- unsigned int len = skb_headlen(skb);
- unsigned int nr_frags;
- unsigned int mss;
- int count = 0;
- int tso;
- unsigned int f;
-
- /* This goes back to the question of how to logically map a tx queue
- * to a flow. Right now, performance is impacted slightly negatively
- * if using multiple tx queues. If the stack breaks away from a
- * single qdisc implementation, we can look at this again. */
- tx_ring = adapter->tx_ring;
-
- if (unlikely(skb->len <= 0)) {
- dev_kfree_skb_any(skb);
- return NETDEV_TX_OK;
- }
-
- mss = skb_shinfo(skb)->gso_size;
- /* The controller does a simple calculation to
- * make sure there is enough room in the FIFO before
- * initiating the DMA for each buffer. The calc is:
- * 4 = ceil(buffer len/mss). To make sure we don't
- * overrun the FIFO, adjust the max buffer len if mss
- * drops. */
- if (mss) {
- u8 hdr_len;
- max_per_txd = min(mss << 2, max_per_txd);
- max_txd_pwr = fls(max_per_txd) - 1;
-
- hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
- if (skb->data_len && hdr_len == len) {
- switch (hw->mac_type) {
- unsigned int pull_size;
- case e1000_82544:
- /* Make sure we have room to chop off 4 bytes,
- * and that the end alignment will work out to
- * this hardware's requirements
- * NOTE: this is a TSO only workaround
- * if end byte alignment not correct move us
- * into the next dword */
- if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
- break;
- /* fall through */
- pull_size = min((unsigned int)4, skb->data_len);
- if (!__pskb_pull_tail(skb, pull_size)) {
- e_err(drv, "__pskb_pull_tail "
- "failed.\n");
- dev_kfree_skb_any(skb);
- return NETDEV_TX_OK;
- }
- len = skb_headlen(skb);
- break;
- default:
- /* do nothing */
- break;
- }
- }
- }
-
- /* reserve a descriptor for the offload context */
- if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
- count++;
- count++;
-
- /* Controller Erratum workaround */
- if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
- count++;
-
- count += TXD_USE_COUNT(len, max_txd_pwr);
-
- if (adapter->pcix_82544)
- count++;
-
- /* work-around for errata 10 and it applies to all controllers
- * in PCI-X mode, so add one more descriptor to the count
- */
- if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
- (len > 2015)))
- count++;
-
- nr_frags = skb_shinfo(skb)->nr_frags;
- for (f = 0; f < nr_frags; f++)
- count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
- max_txd_pwr);
- if (adapter->pcix_82544)
- count += nr_frags;
-
- /* need: count + 2 desc gap to keep tail from touching
- * head, otherwise try next time */
- if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
- return NETDEV_TX_BUSY;
-
- if (unlikely(hw->mac_type == e1000_82547)) {
- if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
- netif_stop_queue(netdev);
- if (!test_bit(__E1000_DOWN, &adapter->flags))
- mod_timer(&adapter->tx_fifo_stall_timer,
- jiffies + 1);
- return NETDEV_TX_BUSY;
- }
- }
-
- if (vlan_tx_tag_present(skb)) {
- tx_flags |= E1000_TX_FLAGS_VLAN;
- tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
- }
-
- first = tx_ring->next_to_use;
-
- tso = e1000_tso(adapter, tx_ring, skb);
- if (tso < 0) {
- dev_kfree_skb_any(skb);
- return NETDEV_TX_OK;
- }
-
- if (likely(tso)) {
- if (likely(hw->mac_type != e1000_82544))
- tx_ring->last_tx_tso = 1;
- tx_flags |= E1000_TX_FLAGS_TSO;
- } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
- tx_flags |= E1000_TX_FLAGS_CSUM;
-
- if (likely(skb->protocol == htons(ETH_P_IP)))
- tx_flags |= E1000_TX_FLAGS_IPV4;
-
- count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
- nr_frags, mss);
-
- if (count) {
- e1000_tx_queue(adapter, tx_ring, tx_flags, count);
- /* Make sure there is space in the ring for the next send. */
- e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
-
- } else {
- dev_kfree_skb_any(skb);
- tx_ring->buffer_info[first].time_stamp = 0;
- tx_ring->next_to_use = first;
- }
-
- return NETDEV_TX_OK;
-}
-
-/**
- * e1000_tx_timeout - Respond to a Tx Hang
- * @netdev: network interface device structure
- **/
-
-static void e1000_tx_timeout(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- /* Do the reset outside of interrupt context */
- adapter->tx_timeout_count++;
- schedule_work(&adapter->reset_task);
-}
-
-static void e1000_reset_task(struct work_struct *work)
-{
- struct e1000_adapter *adapter =
- container_of(work, struct e1000_adapter, reset_task);
-
- e1000_reinit_safe(adapter);
-}
-
-/**
- * e1000_get_stats - Get System Network Statistics
- * @netdev: network interface device structure
- *
- * Returns the address of the device statistics structure.
- * The statistics are actually updated from the timer callback.
- **/
-
-static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
-{
- /* only return the current stats */
- return &netdev->stats;
-}
-
-/**
- * e1000_change_mtu - Change the Maximum Transfer Unit
- * @netdev: network interface device structure
- * @new_mtu: new value for maximum frame size
- *
- * Returns 0 on success, negative on failure
- **/
-
-static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
-
- if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
- (max_frame > MAX_JUMBO_FRAME_SIZE)) {
- e_err(probe, "Invalid MTU setting\n");
- return -EINVAL;
- }
-
- /* Adapter-specific max frame size limits. */
- switch (hw->mac_type) {
- case e1000_undefined ... e1000_82542_rev2_1:
- if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
- e_err(probe, "Jumbo Frames not supported.\n");
- return -EINVAL;
- }
- break;
- default:
- /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
- break;
- }
-
- while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
- msleep(1);
- /* e1000_down has a dependency on max_frame_size */
- hw->max_frame_size = max_frame;
- if (netif_running(netdev))
- e1000_down(adapter);
-
- /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
- * means we reserve 2 more, this pushes us to allocate from the next
- * larger slab size.
- * i.e. RXBUFFER_2048 --> size-4096 slab
- * however with the new *_jumbo_rx* routines, jumbo receives will use
- * fragmented skbs */
-
- if (max_frame <= E1000_RXBUFFER_2048)
- adapter->rx_buffer_len = E1000_RXBUFFER_2048;
- else
-#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
- adapter->rx_buffer_len = E1000_RXBUFFER_16384;
-#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
- adapter->rx_buffer_len = PAGE_SIZE;
-#endif
-
- /* adjust allocation if LPE protects us, and we aren't using SBP */
- if (!hw->tbi_compatibility_on &&
- ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
- (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
- adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
-
- pr_info("%s changing MTU from %d to %d\n",
- netdev->name, netdev->mtu, new_mtu);
- netdev->mtu = new_mtu;
-
- if (netif_running(netdev))
- e1000_up(adapter);
- else
- e1000_reset(adapter);
-
- clear_bit(__E1000_RESETTING, &adapter->flags);
-
- return 0;
-}
-
-/**
- * e1000_update_stats - Update the board statistics counters
- * @adapter: board private structure
- **/
-
-void e1000_update_stats(struct e1000_adapter *adapter)
-{
- struct net_device *netdev = adapter->netdev;
- struct e1000_hw *hw = &adapter->hw;
- struct pci_dev *pdev = adapter->pdev;
- unsigned long flags;
- u16 phy_tmp;
-
-#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
-
- /*
- * Prevent stats update while adapter is being reset, or if the pci
- * connection is down.
- */
- if (adapter->link_speed == 0)
- return;
- if (pci_channel_offline(pdev))
- return;
-
- spin_lock_irqsave(&adapter->stats_lock, flags);
-
- /* these counters are modified from e1000_tbi_adjust_stats,
- * called from the interrupt context, so they must only
- * be written while holding adapter->stats_lock
- */
-
- adapter->stats.crcerrs += er32(CRCERRS);
- adapter->stats.gprc += er32(GPRC);
- adapter->stats.gorcl += er32(GORCL);
- adapter->stats.gorch += er32(GORCH);
- adapter->stats.bprc += er32(BPRC);
- adapter->stats.mprc += er32(MPRC);
- adapter->stats.roc += er32(ROC);
-
- adapter->stats.prc64 += er32(PRC64);
- adapter->stats.prc127 += er32(PRC127);
- adapter->stats.prc255 += er32(PRC255);
- adapter->stats.prc511 += er32(PRC511);
- adapter->stats.prc1023 += er32(PRC1023);
- adapter->stats.prc1522 += er32(PRC1522);
-
- adapter->stats.symerrs += er32(SYMERRS);
- adapter->stats.mpc += er32(MPC);
- adapter->stats.scc += er32(SCC);
- adapter->stats.ecol += er32(ECOL);
- adapter->stats.mcc += er32(MCC);
- adapter->stats.latecol += er32(LATECOL);
- adapter->stats.dc += er32(DC);
- adapter->stats.sec += er32(SEC);
- adapter->stats.rlec += er32(RLEC);
- adapter->stats.xonrxc += er32(XONRXC);
- adapter->stats.xontxc += er32(XONTXC);
- adapter->stats.xoffrxc += er32(XOFFRXC);
- adapter->stats.xofftxc += er32(XOFFTXC);
- adapter->stats.fcruc += er32(FCRUC);
- adapter->stats.gptc += er32(GPTC);
- adapter->stats.gotcl += er32(GOTCL);
- adapter->stats.gotch += er32(GOTCH);
- adapter->stats.rnbc += er32(RNBC);
- adapter->stats.ruc += er32(RUC);
- adapter->stats.rfc += er32(RFC);
- adapter->stats.rjc += er32(RJC);
- adapter->stats.torl += er32(TORL);
- adapter->stats.torh += er32(TORH);
- adapter->stats.totl += er32(TOTL);
- adapter->stats.toth += er32(TOTH);
- adapter->stats.tpr += er32(TPR);
-
- adapter->stats.ptc64 += er32(PTC64);
- adapter->stats.ptc127 += er32(PTC127);
- adapter->stats.ptc255 += er32(PTC255);
- adapter->stats.ptc511 += er32(PTC511);
- adapter->stats.ptc1023 += er32(PTC1023);
- adapter->stats.ptc1522 += er32(PTC1522);
-
- adapter->stats.mptc += er32(MPTC);
- adapter->stats.bptc += er32(BPTC);
-
- /* used for adaptive IFS */
-
- hw->tx_packet_delta = er32(TPT);
- adapter->stats.tpt += hw->tx_packet_delta;
- hw->collision_delta = er32(COLC);
- adapter->stats.colc += hw->collision_delta;
-
- if (hw->mac_type >= e1000_82543) {
- adapter->stats.algnerrc += er32(ALGNERRC);
- adapter->stats.rxerrc += er32(RXERRC);
- adapter->stats.tncrs += er32(TNCRS);
- adapter->stats.cexterr += er32(CEXTERR);
- adapter->stats.tsctc += er32(TSCTC);
- adapter->stats.tsctfc += er32(TSCTFC);
- }
-
- /* Fill out the OS statistics structure */
- netdev->stats.multicast = adapter->stats.mprc;
- netdev->stats.collisions = adapter->stats.colc;
-
- /* Rx Errors */
-
- /* RLEC on some newer hardware can be incorrect so build
- * our own version based on RUC and ROC */
- netdev->stats.rx_errors = adapter->stats.rxerrc +
- adapter->stats.crcerrs + adapter->stats.algnerrc +
- adapter->stats.ruc + adapter->stats.roc +
- adapter->stats.cexterr;
- adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
- netdev->stats.rx_length_errors = adapter->stats.rlerrc;
- netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
- netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
- netdev->stats.rx_missed_errors = adapter->stats.mpc;
-
- /* Tx Errors */
- adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
- netdev->stats.tx_errors = adapter->stats.txerrc;
- netdev->stats.tx_aborted_errors = adapter->stats.ecol;
- netdev->stats.tx_window_errors = adapter->stats.latecol;
- netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
- if (hw->bad_tx_carr_stats_fd &&
- adapter->link_duplex == FULL_DUPLEX) {
- netdev->stats.tx_carrier_errors = 0;
- adapter->stats.tncrs = 0;
- }
-
- /* Tx Dropped needs to be maintained elsewhere */
-
- /* Phy Stats */
- if (hw->media_type == e1000_media_type_copper) {
- if ((adapter->link_speed == SPEED_1000) &&
- (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
- phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
- adapter->phy_stats.idle_errors += phy_tmp;
- }
-
- if ((hw->mac_type <= e1000_82546) &&
- (hw->phy_type == e1000_phy_m88) &&
- !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
- adapter->phy_stats.receive_errors += phy_tmp;
- }
-
- /* Management Stats */
- if (hw->has_smbus) {
- adapter->stats.mgptc += er32(MGTPTC);
- adapter->stats.mgprc += er32(MGTPRC);
- adapter->stats.mgpdc += er32(MGTPDC);
- }
-
- spin_unlock_irqrestore(&adapter->stats_lock, flags);
-}
-
-/**
- * e1000_intr - Interrupt Handler
- * @irq: interrupt number
- * @data: pointer to a network interface device structure
- **/
-
-static irqreturn_t e1000_intr(int irq, void *data)
-{
- struct net_device *netdev = data;
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 icr = er32(ICR);
-
- if (unlikely((!icr)))
- return IRQ_NONE; /* Not our interrupt */
-
- /*
- * we might have caused the interrupt, but the above
- * read cleared it, and just in case the driver is
- * down there is nothing to do so return handled
- */
- if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
- return IRQ_HANDLED;
-
- if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
- hw->get_link_status = 1;
- /* guard against interrupt when we're going down */
- if (!test_bit(__E1000_DOWN, &adapter->flags))
- mod_timer(&adapter->watchdog_timer, jiffies + 1);
- }
-
- /* disable interrupts, without the synchronize_irq bit */
- ew32(IMC, ~0);
- E1000_WRITE_FLUSH();
-
- if (likely(napi_schedule_prep(&adapter->napi))) {
- adapter->total_tx_bytes = 0;
- adapter->total_tx_packets = 0;
- adapter->total_rx_bytes = 0;
- adapter->total_rx_packets = 0;
- __napi_schedule(&adapter->napi);
- } else {
- /* this really should not happen! if it does it is basically a
- * bug, but not a hard error, so enable ints and continue */
- if (!test_bit(__E1000_DOWN, &adapter->flags))
- e1000_irq_enable(adapter);
- }
-
- return IRQ_HANDLED;
-}
-
-/**
- * e1000_clean - NAPI Rx polling callback
- * @adapter: board private structure
- **/
-static int e1000_clean(struct napi_struct *napi, int budget)
-{
- struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
- int tx_clean_complete = 0, work_done = 0;
-
- tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
-
- adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
-
- if (!tx_clean_complete)
- work_done = budget;
-
- /* If budget not fully consumed, exit the polling mode */
- if (work_done < budget) {
- if (likely(adapter->itr_setting & 3))
- e1000_set_itr(adapter);
- napi_complete(napi);
- if (!test_bit(__E1000_DOWN, &adapter->flags))
- e1000_irq_enable(adapter);
- }
-
- return work_done;
-}
-
-/**
- * e1000_clean_tx_irq - Reclaim resources after transmit completes
- * @adapter: board private structure
- **/
-static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
- struct e1000_tx_ring *tx_ring)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct net_device *netdev = adapter->netdev;
- struct e1000_tx_desc *tx_desc, *eop_desc;
- struct e1000_buffer *buffer_info;
- unsigned int i, eop;
- unsigned int count = 0;
- unsigned int total_tx_bytes=0, total_tx_packets=0;
-
- i = tx_ring->next_to_clean;
- eop = tx_ring->buffer_info[i].next_to_watch;
- eop_desc = E1000_TX_DESC(*tx_ring, eop);
-
- while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
- (count < tx_ring->count)) {
- bool cleaned = false;
- rmb(); /* read buffer_info after eop_desc */
- for ( ; !cleaned; count++) {
- tx_desc = E1000_TX_DESC(*tx_ring, i);
- buffer_info = &tx_ring->buffer_info[i];
- cleaned = (i == eop);
-
- if (cleaned) {
- struct sk_buff *skb = buffer_info->skb;
- unsigned int segs, bytecount;
- segs = skb_shinfo(skb)->gso_segs ?: 1;
- /* multiply data chunks by size of headers */
- bytecount = ((segs - 1) * skb_headlen(skb)) +
- skb->len;
- total_tx_packets += segs;
- total_tx_bytes += bytecount;
- }
- e1000_unmap_and_free_tx_resource(adapter, buffer_info);
- tx_desc->upper.data = 0;
-
- if (unlikely(++i == tx_ring->count)) i = 0;
- }
-
- eop = tx_ring->buffer_info[i].next_to_watch;
- eop_desc = E1000_TX_DESC(*tx_ring, eop);
- }
-
- tx_ring->next_to_clean = i;
-
-#define TX_WAKE_THRESHOLD 32
- if (unlikely(count && netif_carrier_ok(netdev) &&
- E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
- /* Make sure that anybody stopping the queue after this
- * sees the new next_to_clean.
- */
- smp_mb();
-
- if (netif_queue_stopped(netdev) &&
- !(test_bit(__E1000_DOWN, &adapter->flags))) {
- netif_wake_queue(netdev);
- ++adapter->restart_queue;
- }
- }
-
- if (adapter->detect_tx_hung) {
- /* Detect a transmit hang in hardware, this serializes the
- * check with the clearing of time_stamp and movement of i */
- adapter->detect_tx_hung = false;
- if (tx_ring->buffer_info[eop].time_stamp &&
- time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
- (adapter->tx_timeout_factor * HZ)) &&
- !(er32(STATUS) & E1000_STATUS_TXOFF)) {
-
- /* detected Tx unit hang */
- e_err(drv, "Detected Tx Unit Hang\n"
- " Tx Queue <%lu>\n"
- " TDH <%x>\n"
- " TDT <%x>\n"
- " next_to_use <%x>\n"
- " next_to_clean <%x>\n"
- "buffer_info[next_to_clean]\n"
- " time_stamp <%lx>\n"
- " next_to_watch <%x>\n"
- " jiffies <%lx>\n"
- " next_to_watch.status <%x>\n",
- (unsigned long)((tx_ring - adapter->tx_ring) /
- sizeof(struct e1000_tx_ring)),
- readl(hw->hw_addr + tx_ring->tdh),
- readl(hw->hw_addr + tx_ring->tdt),
- tx_ring->next_to_use,
- tx_ring->next_to_clean,
- tx_ring->buffer_info[eop].time_stamp,
- eop,
- jiffies,
- eop_desc->upper.fields.status);
- netif_stop_queue(netdev);
- }
- }
- adapter->total_tx_bytes += total_tx_bytes;
- adapter->total_tx_packets += total_tx_packets;
- netdev->stats.tx_bytes += total_tx_bytes;
- netdev->stats.tx_packets += total_tx_packets;
- return count < tx_ring->count;
-}
-
-/**
- * e1000_rx_checksum - Receive Checksum Offload for 82543
- * @adapter: board private structure
- * @status_err: receive descriptor status and error fields
- * @csum: receive descriptor csum field
- * @sk_buff: socket buffer with received data
- **/
-
-static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
- u32 csum, struct sk_buff *skb)
-{
- struct e1000_hw *hw = &adapter->hw;
- u16 status = (u16)status_err;
- u8 errors = (u8)(status_err >> 24);
-
- skb_checksum_none_assert(skb);
-
- /* 82543 or newer only */
- if (unlikely(hw->mac_type < e1000_82543)) return;
- /* Ignore Checksum bit is set */
- if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
- /* TCP/UDP checksum error bit is set */
- if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
- /* let the stack verify checksum errors */
- adapter->hw_csum_err++;
- return;
- }
- /* TCP/UDP Checksum has not been calculated */
- if (!(status & E1000_RXD_STAT_TCPCS))
- return;
-
- /* It must be a TCP or UDP packet with a valid checksum */
- if (likely(status & E1000_RXD_STAT_TCPCS)) {
- /* TCP checksum is good */
- skb->ip_summed = CHECKSUM_UNNECESSARY;
- }
- adapter->hw_csum_good++;
-}
-
-/**
- * e1000_consume_page - helper function
- **/
-static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
- u16 length)
-{
- bi->page = NULL;
- skb->len += length;
- skb->data_len += length;
- skb->truesize += length;
-}
-
-/**
- * e1000_receive_skb - helper function to handle rx indications
- * @adapter: board private structure
- * @status: descriptor status field as written by hardware
- * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
- * @skb: pointer to sk_buff to be indicated to stack
- */
-static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
- __le16 vlan, struct sk_buff *skb)
-{
- skb->protocol = eth_type_trans(skb, adapter->netdev);
-
- if (status & E1000_RXD_STAT_VP) {
- u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
-
- __vlan_hwaccel_put_tag(skb, vid);
- }
- napi_gro_receive(&adapter->napi, skb);
-}
-
-/**
- * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
- * @adapter: board private structure
- * @rx_ring: ring to clean
- * @work_done: amount of napi work completed this call
- * @work_to_do: max amount of work allowed for this call to do
- *
- * the return value indicates whether actual cleaning was done, there
- * is no guarantee that everything was cleaned
- */
-static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
- struct e1000_rx_ring *rx_ring,
- int *work_done, int work_to_do)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct net_device *netdev = adapter->netdev;
- struct pci_dev *pdev = adapter->pdev;
- struct e1000_rx_desc *rx_desc, *next_rxd;
- struct e1000_buffer *buffer_info, *next_buffer;
- unsigned long irq_flags;
- u32 length;
- unsigned int i;
- int cleaned_count = 0;
- bool cleaned = false;
- unsigned int total_rx_bytes=0, total_rx_packets=0;
-
- i = rx_ring->next_to_clean;
- rx_desc = E1000_RX_DESC(*rx_ring, i);
- buffer_info = &rx_ring->buffer_info[i];
-
- while (rx_desc->status & E1000_RXD_STAT_DD) {
- struct sk_buff *skb;
- u8 status;
-
- if (*work_done >= work_to_do)
- break;
- (*work_done)++;
- rmb(); /* read descriptor and rx_buffer_info after status DD */
-
- status = rx_desc->status;
- skb = buffer_info->skb;
- buffer_info->skb = NULL;
-
- if (++i == rx_ring->count) i = 0;
- next_rxd = E1000_RX_DESC(*rx_ring, i);
- prefetch(next_rxd);
-
- next_buffer = &rx_ring->buffer_info[i];
-
- cleaned = true;
- cleaned_count++;
- dma_unmap_page(&pdev->dev, buffer_info->dma,
- buffer_info->length, DMA_FROM_DEVICE);
- buffer_info->dma = 0;
-
- length = le16_to_cpu(rx_desc->length);
-
- /* errors is only valid for DD + EOP descriptors */
- if (unlikely((status & E1000_RXD_STAT_EOP) &&
- (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
- u8 last_byte = *(skb->data + length - 1);
- if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
- last_byte)) {
- spin_lock_irqsave(&adapter->stats_lock,
- irq_flags);
- e1000_tbi_adjust_stats(hw, &adapter->stats,
- length, skb->data);
- spin_unlock_irqrestore(&adapter->stats_lock,
- irq_flags);
- length--;
- } else {
- /* recycle both page and skb */
- buffer_info->skb = skb;
- /* an error means any chain goes out the window
- * too */
- if (rx_ring->rx_skb_top)
- dev_kfree_skb(rx_ring->rx_skb_top);
- rx_ring->rx_skb_top = NULL;
- goto next_desc;
- }
- }
-
-#define rxtop rx_ring->rx_skb_top
- if (!(status & E1000_RXD_STAT_EOP)) {
- /* this descriptor is only the beginning (or middle) */
- if (!rxtop) {
- /* this is the beginning of a chain */
- rxtop = skb;
- skb_fill_page_desc(rxtop, 0, buffer_info->page,
- 0, length);
- } else {
- /* this is the middle of a chain */
- skb_fill_page_desc(rxtop,
- skb_shinfo(rxtop)->nr_frags,
- buffer_info->page, 0, length);
- /* re-use the skb, only consumed the page */
- buffer_info->skb = skb;
- }
- e1000_consume_page(buffer_info, rxtop, length);
- goto next_desc;
- } else {
- if (rxtop) {
- /* end of the chain */
- skb_fill_page_desc(rxtop,
- skb_shinfo(rxtop)->nr_frags,
- buffer_info->page, 0, length);
- /* re-use the current skb, we only consumed the
- * page */
- buffer_info->skb = skb;
- skb = rxtop;
- rxtop = NULL;
- e1000_consume_page(buffer_info, skb, length);
- } else {
- /* no chain, got EOP, this buf is the packet
- * copybreak to save the put_page/alloc_page */
- if (length <= copybreak &&
- skb_tailroom(skb) >= length) {
- u8 *vaddr;
- vaddr = kmap_atomic(buffer_info->page,
- KM_SKB_DATA_SOFTIRQ);
- memcpy(skb_tail_pointer(skb), vaddr, length);
- kunmap_atomic(vaddr,
- KM_SKB_DATA_SOFTIRQ);
- /* re-use the page, so don't erase
- * buffer_info->page */
- skb_put(skb, length);
- } else {
- skb_fill_page_desc(skb, 0,
- buffer_info->page, 0,
- length);
- e1000_consume_page(buffer_info, skb,
- length);
- }
- }
- }
-
- /* Receive Checksum Offload XXX recompute due to CRC strip? */
- e1000_rx_checksum(adapter,
- (u32)(status) |
- ((u32)(rx_desc->errors) << 24),
- le16_to_cpu(rx_desc->csum), skb);
-
- pskb_trim(skb, skb->len - 4);
-
- /* probably a little skewed due to removing CRC */
- total_rx_bytes += skb->len;
- total_rx_packets++;
-
- /* eth type trans needs skb->data to point to something */
- if (!pskb_may_pull(skb, ETH_HLEN)) {
- e_err(drv, "pskb_may_pull failed.\n");
- dev_kfree_skb(skb);
- goto next_desc;
- }
-
- e1000_receive_skb(adapter, status, rx_desc->special, skb);
-
-next_desc:
- rx_desc->status = 0;
-
- /* return some buffers to hardware, one at a time is too slow */
- if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
- adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
- cleaned_count = 0;
- }
-
- /* use prefetched values */
- rx_desc = next_rxd;
- buffer_info = next_buffer;
- }
- rx_ring->next_to_clean = i;
-
- cleaned_count = E1000_DESC_UNUSED(rx_ring);
- if (cleaned_count)
- adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
-
- adapter->total_rx_packets += total_rx_packets;
- adapter->total_rx_bytes += total_rx_bytes;
- netdev->stats.rx_bytes += total_rx_bytes;
- netdev->stats.rx_packets += total_rx_packets;
- return cleaned;
-}
-
-/*
- * this should improve performance for small packets with large amounts
- * of reassembly being done in the stack
- */
-static void e1000_check_copybreak(struct net_device *netdev,
- struct e1000_buffer *buffer_info,
- u32 length, struct sk_buff **skb)
-{
- struct sk_buff *new_skb;
-
- if (length > copybreak)
- return;
-
- new_skb = netdev_alloc_skb_ip_align(netdev, length);
- if (!new_skb)
- return;
-
- skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
- (*skb)->data - NET_IP_ALIGN,
- length + NET_IP_ALIGN);
- /* save the skb in buffer_info as good */
- buffer_info->skb = *skb;
- *skb = new_skb;
-}
-
-/**
- * e1000_clean_rx_irq - Send received data up the network stack; legacy
- * @adapter: board private structure
- * @rx_ring: ring to clean
- * @work_done: amount of napi work completed this call
- * @work_to_do: max amount of work allowed for this call to do
- */
-static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
- struct e1000_rx_ring *rx_ring,
- int *work_done, int work_to_do)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct net_device *netdev = adapter->netdev;
- struct pci_dev *pdev = adapter->pdev;
- struct e1000_rx_desc *rx_desc, *next_rxd;
- struct e1000_buffer *buffer_info, *next_buffer;
- unsigned long flags;
- u32 length;
- unsigned int i;
- int cleaned_count = 0;
- bool cleaned = false;
- unsigned int total_rx_bytes=0, total_rx_packets=0;
-
- i = rx_ring->next_to_clean;
- rx_desc = E1000_RX_DESC(*rx_ring, i);
- buffer_info = &rx_ring->buffer_info[i];
-
- while (rx_desc->status & E1000_RXD_STAT_DD) {
- struct sk_buff *skb;
- u8 status;
-
- if (*work_done >= work_to_do)
- break;
- (*work_done)++;
- rmb(); /* read descriptor and rx_buffer_info after status DD */
-
- status = rx_desc->status;
- skb = buffer_info->skb;
- buffer_info->skb = NULL;
-
- prefetch(skb->data - NET_IP_ALIGN);
-
- if (++i == rx_ring->count) i = 0;
- next_rxd = E1000_RX_DESC(*rx_ring, i);
- prefetch(next_rxd);
-
- next_buffer = &rx_ring->buffer_info[i];
-
- cleaned = true;
- cleaned_count++;
- dma_unmap_single(&pdev->dev, buffer_info->dma,
- buffer_info->length, DMA_FROM_DEVICE);
- buffer_info->dma = 0;
-
- length = le16_to_cpu(rx_desc->length);
- /* !EOP means multiple descriptors were used to store a single
- * packet, if thats the case we need to toss it. In fact, we
- * to toss every packet with the EOP bit clear and the next
- * frame that _does_ have the EOP bit set, as it is by
- * definition only a frame fragment
- */
- if (unlikely(!(status & E1000_RXD_STAT_EOP)))
- adapter->discarding = true;
-
- if (adapter->discarding) {
- /* All receives must fit into a single buffer */
- e_dbg("Receive packet consumed multiple buffers\n");
- /* recycle */
- buffer_info->skb = skb;
- if (status & E1000_RXD_STAT_EOP)
- adapter->discarding = false;
- goto next_desc;
- }
-
- if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
- u8 last_byte = *(skb->data + length - 1);
- if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
- last_byte)) {
- spin_lock_irqsave(&adapter->stats_lock, flags);
- e1000_tbi_adjust_stats(hw, &adapter->stats,
- length, skb->data);
- spin_unlock_irqrestore(&adapter->stats_lock,
- flags);
- length--;
- } else {
- /* recycle */
- buffer_info->skb = skb;
- goto next_desc;
- }
- }
-
- /* adjust length to remove Ethernet CRC, this must be
- * done after the TBI_ACCEPT workaround above */
- length -= 4;
-
- /* probably a little skewed due to removing CRC */
- total_rx_bytes += length;
- total_rx_packets++;
-
- e1000_check_copybreak(netdev, buffer_info, length, &skb);
-
- skb_put(skb, length);
-
- /* Receive Checksum Offload */
- e1000_rx_checksum(adapter,
- (u32)(status) |
- ((u32)(rx_desc->errors) << 24),
- le16_to_cpu(rx_desc->csum), skb);
-
- e1000_receive_skb(adapter, status, rx_desc->special, skb);
-
-next_desc:
- rx_desc->status = 0;
-
- /* return some buffers to hardware, one at a time is too slow */
- if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
- adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
- cleaned_count = 0;
- }
-
- /* use prefetched values */
- rx_desc = next_rxd;
- buffer_info = next_buffer;
- }
- rx_ring->next_to_clean = i;
-
- cleaned_count = E1000_DESC_UNUSED(rx_ring);
- if (cleaned_count)
- adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
-
- adapter->total_rx_packets += total_rx_packets;
- adapter->total_rx_bytes += total_rx_bytes;
- netdev->stats.rx_bytes += total_rx_bytes;
- netdev->stats.rx_packets += total_rx_packets;
- return cleaned;
-}
-
-/**
- * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
- * @adapter: address of board private structure
- * @rx_ring: pointer to receive ring structure
- * @cleaned_count: number of buffers to allocate this pass
- **/
-
-static void
-e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
- struct e1000_rx_ring *rx_ring, int cleaned_count)
-{
- struct net_device *netdev = adapter->netdev;
- struct pci_dev *pdev = adapter->pdev;
- struct e1000_rx_desc *rx_desc;
- struct e1000_buffer *buffer_info;
- struct sk_buff *skb;
- unsigned int i;
- unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
-
- i = rx_ring->next_to_use;
- buffer_info = &rx_ring->buffer_info[i];
-
- while (cleaned_count--) {
- skb = buffer_info->skb;
- if (skb) {
- skb_trim(skb, 0);
- goto check_page;
- }
-
- skb = netdev_alloc_skb_ip_align(netdev, bufsz);
- if (unlikely(!skb)) {
- /* Better luck next round */
- adapter->alloc_rx_buff_failed++;
- break;
- }
-
- /* Fix for errata 23, can't cross 64kB boundary */
- if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
- struct sk_buff *oldskb = skb;
- e_err(rx_err, "skb align check failed: %u bytes at "
- "%p\n", bufsz, skb->data);
- /* Try again, without freeing the previous */
- skb = netdev_alloc_skb_ip_align(netdev, bufsz);
- /* Failed allocation, critical failure */
- if (!skb) {
- dev_kfree_skb(oldskb);
- adapter->alloc_rx_buff_failed++;
- break;
- }
-
- if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
- /* give up */
- dev_kfree_skb(skb);
- dev_kfree_skb(oldskb);
- break; /* while (cleaned_count--) */
- }
-
- /* Use new allocation */
- dev_kfree_skb(oldskb);
- }
- buffer_info->skb = skb;
- buffer_info->length = adapter->rx_buffer_len;
-check_page:
- /* allocate a new page if necessary */
- if (!buffer_info->page) {
- buffer_info->page = alloc_page(GFP_ATOMIC);
- if (unlikely(!buffer_info->page)) {
- adapter->alloc_rx_buff_failed++;
- break;
- }
- }
-
- if (!buffer_info->dma) {
- buffer_info->dma = dma_map_page(&pdev->dev,
- buffer_info->page, 0,
- buffer_info->length,
- DMA_FROM_DEVICE);
- if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
- put_page(buffer_info->page);
- dev_kfree_skb(skb);
- buffer_info->page = NULL;
- buffer_info->skb = NULL;
- buffer_info->dma = 0;
- adapter->alloc_rx_buff_failed++;
- break; /* while !buffer_info->skb */
- }
- }
-
- rx_desc = E1000_RX_DESC(*rx_ring, i);
- rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
-
- if (unlikely(++i == rx_ring->count))
- i = 0;
- buffer_info = &rx_ring->buffer_info[i];
- }
-
- if (likely(rx_ring->next_to_use != i)) {
- rx_ring->next_to_use = i;
- if (unlikely(i-- == 0))
- i = (rx_ring->count - 1);
-
- /* Force memory writes to complete before letting h/w
- * know there are new descriptors to fetch. (Only
- * applicable for weak-ordered memory model archs,
- * such as IA-64). */
- wmb();
- writel(i, adapter->hw.hw_addr + rx_ring->rdt);
- }
-}
-
-/**
- * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
- * @adapter: address of board private structure
- **/
-
-static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
- struct e1000_rx_ring *rx_ring,
- int cleaned_count)
-{
- struct e1000_hw *hw = &adapter->hw;
- struct net_device *netdev = adapter->netdev;
- struct pci_dev *pdev = adapter->pdev;
- struct e1000_rx_desc *rx_desc;
- struct e1000_buffer *buffer_info;
- struct sk_buff *skb;
- unsigned int i;
- unsigned int bufsz = adapter->rx_buffer_len;
-
- i = rx_ring->next_to_use;
- buffer_info = &rx_ring->buffer_info[i];
-
- while (cleaned_count--) {
- skb = buffer_info->skb;
- if (skb) {
- skb_trim(skb, 0);
- goto map_skb;
- }
-
- skb = netdev_alloc_skb_ip_align(netdev, bufsz);
- if (unlikely(!skb)) {
- /* Better luck next round */
- adapter->alloc_rx_buff_failed++;
- break;
- }
-
- /* Fix for errata 23, can't cross 64kB boundary */
- if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
- struct sk_buff *oldskb = skb;
- e_err(rx_err, "skb align check failed: %u bytes at "
- "%p\n", bufsz, skb->data);
- /* Try again, without freeing the previous */
- skb = netdev_alloc_skb_ip_align(netdev, bufsz);
- /* Failed allocation, critical failure */
- if (!skb) {
- dev_kfree_skb(oldskb);
- adapter->alloc_rx_buff_failed++;
- break;
- }
-
- if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
- /* give up */
- dev_kfree_skb(skb);
- dev_kfree_skb(oldskb);
- adapter->alloc_rx_buff_failed++;
- break; /* while !buffer_info->skb */
- }
-
- /* Use new allocation */
- dev_kfree_skb(oldskb);
- }
- buffer_info->skb = skb;
- buffer_info->length = adapter->rx_buffer_len;
-map_skb:
- buffer_info->dma = dma_map_single(&pdev->dev,
- skb->data,
- buffer_info->length,
- DMA_FROM_DEVICE);
- if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
- dev_kfree_skb(skb);
- buffer_info->skb = NULL;
- buffer_info->dma = 0;
- adapter->alloc_rx_buff_failed++;
- break; /* while !buffer_info->skb */
- }
-
- /*
- * XXX if it was allocated cleanly it will never map to a
- * boundary crossing
- */
-
- /* Fix for errata 23, can't cross 64kB boundary */
- if (!e1000_check_64k_bound(adapter,
- (void *)(unsigned long)buffer_info->dma,
- adapter->rx_buffer_len)) {
- e_err(rx_err, "dma align check failed: %u bytes at "
- "%p\n", adapter->rx_buffer_len,
- (void *)(unsigned long)buffer_info->dma);
- dev_kfree_skb(skb);
- buffer_info->skb = NULL;
-
- dma_unmap_single(&pdev->dev, buffer_info->dma,
- adapter->rx_buffer_len,
- DMA_FROM_DEVICE);
- buffer_info->dma = 0;
-
- adapter->alloc_rx_buff_failed++;
- break; /* while !buffer_info->skb */
- }
- rx_desc = E1000_RX_DESC(*rx_ring, i);
- rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
-
- if (unlikely(++i == rx_ring->count))
- i = 0;
- buffer_info = &rx_ring->buffer_info[i];
- }
-
- if (likely(rx_ring->next_to_use != i)) {
- rx_ring->next_to_use = i;
- if (unlikely(i-- == 0))
- i = (rx_ring->count - 1);
-
- /* Force memory writes to complete before letting h/w
- * know there are new descriptors to fetch. (Only
- * applicable for weak-ordered memory model archs,
- * such as IA-64). */
- wmb();
- writel(i, hw->hw_addr + rx_ring->rdt);
- }
-}
-
-/**
- * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
- * @adapter:
- **/
-
-static void e1000_smartspeed(struct e1000_adapter *adapter)
-{
- struct e1000_hw *hw = &adapter->hw;
- u16 phy_status;
- u16 phy_ctrl;
-
- if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
- !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
- return;
-
- if (adapter->smartspeed == 0) {
- /* If Master/Slave config fault is asserted twice,
- * we assume back-to-back */
- e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
- if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
- e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
- if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
- e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
- if (phy_ctrl & CR_1000T_MS_ENABLE) {
- phy_ctrl &= ~CR_1000T_MS_ENABLE;
- e1000_write_phy_reg(hw, PHY_1000T_CTRL,
- phy_ctrl);
- adapter->smartspeed++;
- if (!e1000_phy_setup_autoneg(hw) &&
- !e1000_read_phy_reg(hw, PHY_CTRL,
- &phy_ctrl)) {
- phy_ctrl |= (MII_CR_AUTO_NEG_EN |
- MII_CR_RESTART_AUTO_NEG);
- e1000_write_phy_reg(hw, PHY_CTRL,
- phy_ctrl);
- }
- }
- return;
- } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
- /* If still no link, perhaps using 2/3 pair cable */
- e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
- phy_ctrl |= CR_1000T_MS_ENABLE;
- e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
- if (!e1000_phy_setup_autoneg(hw) &&
- !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
- phy_ctrl |= (MII_CR_AUTO_NEG_EN |
- MII_CR_RESTART_AUTO_NEG);
- e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
- }
- }
- /* Restart process after E1000_SMARTSPEED_MAX iterations */
- if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
- adapter->smartspeed = 0;
-}
-
-/**
- * e1000_ioctl -
- * @netdev:
- * @ifreq:
- * @cmd:
- **/
-
-static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
-{
- switch (cmd) {
- case SIOCGMIIPHY:
- case SIOCGMIIREG:
- case SIOCSMIIREG:
- return e1000_mii_ioctl(netdev, ifr, cmd);
- default:
- return -EOPNOTSUPP;
- }
-}
-
-/**
- * e1000_mii_ioctl -
- * @netdev:
- * @ifreq:
- * @cmd:
- **/
-
-static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
- int cmd)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- struct mii_ioctl_data *data = if_mii(ifr);
- int retval;
- u16 mii_reg;
- unsigned long flags;
-
- if (hw->media_type != e1000_media_type_copper)
- return -EOPNOTSUPP;
-
- switch (cmd) {
- case SIOCGMIIPHY:
- data->phy_id = hw->phy_addr;
- break;
- case SIOCGMIIREG:
- spin_lock_irqsave(&adapter->stats_lock, flags);
- if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
- &data->val_out)) {
- spin_unlock_irqrestore(&adapter->stats_lock, flags);
- return -EIO;
- }
- spin_unlock_irqrestore(&adapter->stats_lock, flags);
- break;
- case SIOCSMIIREG:
- if (data->reg_num & ~(0x1F))
- return -EFAULT;
- mii_reg = data->val_in;
- spin_lock_irqsave(&adapter->stats_lock, flags);
- if (e1000_write_phy_reg(hw, data->reg_num,
- mii_reg)) {
- spin_unlock_irqrestore(&adapter->stats_lock, flags);
- return -EIO;
- }
- spin_unlock_irqrestore(&adapter->stats_lock, flags);
- if (hw->media_type == e1000_media_type_copper) {
- switch (data->reg_num) {
- case PHY_CTRL:
- if (mii_reg & MII_CR_POWER_DOWN)
- break;
- if (mii_reg & MII_CR_AUTO_NEG_EN) {
- hw->autoneg = 1;
- hw->autoneg_advertised = 0x2F;
- } else {
- u32 speed;
- if (mii_reg & 0x40)
- speed = SPEED_1000;
- else if (mii_reg & 0x2000)
- speed = SPEED_100;
- else
- speed = SPEED_10;
- retval = e1000_set_spd_dplx(
- adapter, speed,
- ((mii_reg & 0x100)
- ? DUPLEX_FULL :
- DUPLEX_HALF));
- if (retval)
- return retval;
- }
- if (netif_running(adapter->netdev))
- e1000_reinit_locked(adapter);
- else
- e1000_reset(adapter);
- break;
- case M88E1000_PHY_SPEC_CTRL:
- case M88E1000_EXT_PHY_SPEC_CTRL:
- if (e1000_phy_reset(hw))
- return -EIO;
- break;
- }
- } else {
- switch (data->reg_num) {
- case PHY_CTRL:
- if (mii_reg & MII_CR_POWER_DOWN)
- break;
- if (netif_running(adapter->netdev))
- e1000_reinit_locked(adapter);
- else
- e1000_reset(adapter);
- break;
- }
- }
- break;
- default:
- return -EOPNOTSUPP;
- }
- return E1000_SUCCESS;
-}
-
-void e1000_pci_set_mwi(struct e1000_hw *hw)
-{
- struct e1000_adapter *adapter = hw->back;
- int ret_val = pci_set_mwi(adapter->pdev);
-
- if (ret_val)
- e_err(probe, "Error in setting MWI\n");
-}
-
-void e1000_pci_clear_mwi(struct e1000_hw *hw)
-{
- struct e1000_adapter *adapter = hw->back;
-
- pci_clear_mwi(adapter->pdev);
-}
-
-int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
-{
- struct e1000_adapter *adapter = hw->back;
- return pcix_get_mmrbc(adapter->pdev);
-}
-
-void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
-{
- struct e1000_adapter *adapter = hw->back;
- pcix_set_mmrbc(adapter->pdev, mmrbc);
-}
-
-void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
-{
- outl(value, port);
-}
-
-static bool e1000_vlan_used(struct e1000_adapter *adapter)
-{
- u16 vid;
-
- for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
- return true;
- return false;
-}
-
-static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
- bool filter_on)
-{
- struct e1000_hw *hw = &adapter->hw;
- u32 rctl;
-
- if (!test_bit(__E1000_DOWN, &adapter->flags))
- e1000_irq_disable(adapter);
-
- if (filter_on) {
- /* enable VLAN receive filtering */
- rctl = er32(RCTL);
- rctl &= ~E1000_RCTL_CFIEN;
- if (!(adapter->netdev->flags & IFF_PROMISC))
- rctl |= E1000_RCTL_VFE;
- ew32(RCTL, rctl);
- e1000_update_mng_vlan(adapter);
- } else {
- /* disable VLAN receive filtering */
- rctl = er32(RCTL);
- rctl &= ~E1000_RCTL_VFE;
- ew32(RCTL, rctl);
- }
-
- if (!test_bit(__E1000_DOWN, &adapter->flags))
- e1000_irq_enable(adapter);
-}
-
-static void e1000_vlan_mode(struct net_device *netdev, u32 features)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 ctrl;
-
- if (!test_bit(__E1000_DOWN, &adapter->flags))
- e1000_irq_disable(adapter);
-
- ctrl = er32(CTRL);
- if (features & NETIF_F_HW_VLAN_RX) {
- /* enable VLAN tag insert/strip */
- ctrl |= E1000_CTRL_VME;
- } else {
- /* disable VLAN tag insert/strip */
- ctrl &= ~E1000_CTRL_VME;
- }
- ew32(CTRL, ctrl);
-
- if (!test_bit(__E1000_DOWN, &adapter->flags))
- e1000_irq_enable(adapter);
-}
-
-static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 vfta, index;
-
- if ((hw->mng_cookie.status &
- E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
- (vid == adapter->mng_vlan_id))
- return;
-
- if (!e1000_vlan_used(adapter))
- e1000_vlan_filter_on_off(adapter, true);
-
- /* add VID to filter table */
- index = (vid >> 5) & 0x7F;
- vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
- vfta |= (1 << (vid & 0x1F));
- e1000_write_vfta(hw, index, vfta);
-
- set_bit(vid, adapter->active_vlans);
-}
-
-static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 vfta, index;
-
- if (!test_bit(__E1000_DOWN, &adapter->flags))
- e1000_irq_disable(adapter);
- if (!test_bit(__E1000_DOWN, &adapter->flags))
- e1000_irq_enable(adapter);
-
- /* remove VID from filter table */
- index = (vid >> 5) & 0x7F;
- vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
- vfta &= ~(1 << (vid & 0x1F));
- e1000_write_vfta(hw, index, vfta);
-
- clear_bit(vid, adapter->active_vlans);
-
- if (!e1000_vlan_used(adapter))
- e1000_vlan_filter_on_off(adapter, false);
-}
-
-static void e1000_restore_vlan(struct e1000_adapter *adapter)
-{
- u16 vid;
-
- if (!e1000_vlan_used(adapter))
- return;
-
- e1000_vlan_filter_on_off(adapter, true);
- for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
- e1000_vlan_rx_add_vid(adapter->netdev, vid);
-}
-
-int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
-{
- struct e1000_hw *hw = &adapter->hw;
-
- hw->autoneg = 0;
-
- /* Make sure dplx is at most 1 bit and lsb of speed is not set
- * for the switch() below to work */
- if ((spd & 1) || (dplx & ~1))
- goto err_inval;
-
- /* Fiber NICs only allow 1000 gbps Full duplex */
- if ((hw->media_type == e1000_media_type_fiber) &&
- spd != SPEED_1000 &&
- dplx != DUPLEX_FULL)
- goto err_inval;
-
- switch (spd + dplx) {
- case SPEED_10 + DUPLEX_HALF:
- hw->forced_speed_duplex = e1000_10_half;
- break;
- case SPEED_10 + DUPLEX_FULL:
- hw->forced_speed_duplex = e1000_10_full;
- break;
- case SPEED_100 + DUPLEX_HALF:
- hw->forced_speed_duplex = e1000_100_half;
- break;
- case SPEED_100 + DUPLEX_FULL:
- hw->forced_speed_duplex = e1000_100_full;
- break;
- case SPEED_1000 + DUPLEX_FULL:
- hw->autoneg = 1;
- hw->autoneg_advertised = ADVERTISE_1000_FULL;
- break;
- case SPEED_1000 + DUPLEX_HALF: /* not supported */
- default:
- goto err_inval;
- }
- return 0;
-
-err_inval:
- e_err(probe, "Unsupported Speed/Duplex configuration\n");
- return -EINVAL;
-}
-
-static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
-{
- struct net_device *netdev = pci_get_drvdata(pdev);
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 ctrl, ctrl_ext, rctl, status;
- u32 wufc = adapter->wol;
-#ifdef CONFIG_PM
- int retval = 0;
-#endif
-
- netif_device_detach(netdev);
-
- if (netif_running(netdev)) {
- WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
- e1000_down(adapter);
- }
-
-#ifdef CONFIG_PM
- retval = pci_save_state(pdev);
- if (retval)
- return retval;
-#endif
-
- status = er32(STATUS);
- if (status & E1000_STATUS_LU)
- wufc &= ~E1000_WUFC_LNKC;
-
- if (wufc) {
- e1000_setup_rctl(adapter);
- e1000_set_rx_mode(netdev);
-
- /* turn on all-multi mode if wake on multicast is enabled */
- if (wufc & E1000_WUFC_MC) {
- rctl = er32(RCTL);
- rctl |= E1000_RCTL_MPE;
- ew32(RCTL, rctl);
- }
-
- if (hw->mac_type >= e1000_82540) {
- ctrl = er32(CTRL);
- /* advertise wake from D3Cold */
- #define E1000_CTRL_ADVD3WUC 0x00100000
- /* phy power management enable */
- #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
- ctrl |= E1000_CTRL_ADVD3WUC |
- E1000_CTRL_EN_PHY_PWR_MGMT;
- ew32(CTRL, ctrl);
- }
-
- if (hw->media_type == e1000_media_type_fiber ||
- hw->media_type == e1000_media_type_internal_serdes) {
- /* keep the laser running in D3 */
- ctrl_ext = er32(CTRL_EXT);
- ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
- ew32(CTRL_EXT, ctrl_ext);
- }
-
- ew32(WUC, E1000_WUC_PME_EN);
- ew32(WUFC, wufc);
- } else {
- ew32(WUC, 0);
- ew32(WUFC, 0);
- }
-
- e1000_release_manageability(adapter);
-
- *enable_wake = !!wufc;
-
- /* make sure adapter isn't asleep if manageability is enabled */
- if (adapter->en_mng_pt)
- *enable_wake = true;
-
- if (netif_running(netdev))
- e1000_free_irq(adapter);
-
- pci_disable_device(pdev);
-
- return 0;
-}
-
-#ifdef CONFIG_PM
-static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
-{
- int retval;
- bool wake;
-
- retval = __e1000_shutdown(pdev, &wake);
- if (retval)
- return retval;
-
- if (wake) {
- pci_prepare_to_sleep(pdev);
- } else {
- pci_wake_from_d3(pdev, false);
- pci_set_power_state(pdev, PCI_D3hot);
- }
-
- return 0;
-}
-
-static int e1000_resume(struct pci_dev *pdev)
-{
- struct net_device *netdev = pci_get_drvdata(pdev);
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- u32 err;
-
- pci_set_power_state(pdev, PCI_D0);
- pci_restore_state(pdev);
- pci_save_state(pdev);
-
- if (adapter->need_ioport)
- err = pci_enable_device(pdev);
- else
- err = pci_enable_device_mem(pdev);
- if (err) {
- pr_err("Cannot enable PCI device from suspend\n");
- return err;
- }
- pci_set_master(pdev);
-
- pci_enable_wake(pdev, PCI_D3hot, 0);
- pci_enable_wake(pdev, PCI_D3cold, 0);
-
- if (netif_running(netdev)) {
- err = e1000_request_irq(adapter);
- if (err)
- return err;
- }
-
- e1000_power_up_phy(adapter);
- e1000_reset(adapter);
- ew32(WUS, ~0);
-
- e1000_init_manageability(adapter);
-
- if (netif_running(netdev))
- e1000_up(adapter);
-
- netif_device_attach(netdev);
-
- return 0;
-}
-#endif
-
-static void e1000_shutdown(struct pci_dev *pdev)
-{
- bool wake;
-
- __e1000_shutdown(pdev, &wake);
-
- if (system_state == SYSTEM_POWER_OFF) {
- pci_wake_from_d3(pdev, wake);
- pci_set_power_state(pdev, PCI_D3hot);
- }
-}
-
-#ifdef CONFIG_NET_POLL_CONTROLLER
-/*
- * Polling 'interrupt' - used by things like netconsole to send skbs
- * without having to re-enable interrupts. It's not called while
- * the interrupt routine is executing.
- */
-static void e1000_netpoll(struct net_device *netdev)
-{
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- disable_irq(adapter->pdev->irq);
- e1000_intr(adapter->pdev->irq, netdev);
- enable_irq(adapter->pdev->irq);
-}
-#endif
-
-/**
- * e1000_io_error_detected - called when PCI error is detected
- * @pdev: Pointer to PCI device
- * @state: The current pci connection state
- *
- * This function is called after a PCI bus error affecting
- * this device has been detected.
- */
-static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
- pci_channel_state_t state)
-{
- struct net_device *netdev = pci_get_drvdata(pdev);
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- netif_device_detach(netdev);
-
- if (state == pci_channel_io_perm_failure)
- return PCI_ERS_RESULT_DISCONNECT;
-
- if (netif_running(netdev))
- e1000_down(adapter);
- pci_disable_device(pdev);
-
- /* Request a slot slot reset. */
- return PCI_ERS_RESULT_NEED_RESET;
-}
-
-/**
- * e1000_io_slot_reset - called after the pci bus has been reset.
- * @pdev: Pointer to PCI device
- *
- * Restart the card from scratch, as if from a cold-boot. Implementation
- * resembles the first-half of the e1000_resume routine.
- */
-static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
-{
- struct net_device *netdev = pci_get_drvdata(pdev);
- struct e1000_adapter *adapter = netdev_priv(netdev);
- struct e1000_hw *hw = &adapter->hw;
- int err;
-
- if (adapter->need_ioport)
- err = pci_enable_device(pdev);
- else
- err = pci_enable_device_mem(pdev);
- if (err) {
- pr_err("Cannot re-enable PCI device after reset.\n");
- return PCI_ERS_RESULT_DISCONNECT;
- }
- pci_set_master(pdev);
-
- pci_enable_wake(pdev, PCI_D3hot, 0);
- pci_enable_wake(pdev, PCI_D3cold, 0);
-
- e1000_reset(adapter);
- ew32(WUS, ~0);
-
- return PCI_ERS_RESULT_RECOVERED;
-}
-
-/**
- * e1000_io_resume - called when traffic can start flowing again.
- * @pdev: Pointer to PCI device
- *
- * This callback is called when the error recovery driver tells us that
- * its OK to resume normal operation. Implementation resembles the
- * second-half of the e1000_resume routine.
- */
-static void e1000_io_resume(struct pci_dev *pdev)
-{
- struct net_device *netdev = pci_get_drvdata(pdev);
- struct e1000_adapter *adapter = netdev_priv(netdev);
-
- e1000_init_manageability(adapter);
-
- if (netif_running(netdev)) {
- if (e1000_up(adapter)) {
- pr_info("can't bring device back up after reset\n");
- return;
- }
- }
-
- netif_device_attach(netdev);
-}
-
-/* e1000_main.c */
diff --git a/drivers/net/e1000/e1000_osdep.h b/drivers/net/e1000/e1000_osdep.h
deleted file mode 100644
index 33e7c45a4fe4..000000000000
--- a/drivers/net/e1000/e1000_osdep.h
+++ /dev/null
@@ -1,109 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2006 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-
-/* glue for the OS independent part of e1000
- * includes register access macros
- */
-
-#ifndef _E1000_OSDEP_H_
-#define _E1000_OSDEP_H_
-
-#include <asm/io.h>
-
-#define CONFIG_RAM_BASE 0x60000
-#define GBE_CONFIG_OFFSET 0x0
-
-#define GBE_CONFIG_RAM_BASE \
- ((unsigned int)(CONFIG_RAM_BASE + GBE_CONFIG_OFFSET))
-
-#define GBE_CONFIG_BASE_VIRT \
- ((void __iomem *)phys_to_virt(GBE_CONFIG_RAM_BASE))
-
-#define GBE_CONFIG_FLASH_WRITE(base, offset, count, data) \
- (iowrite16_rep(base + offset, data, count))
-
-#define GBE_CONFIG_FLASH_READ(base, offset, count, data) \
- (ioread16_rep(base + (offset << 1), data, count))
-
-#define er32(reg) \
- (readl(hw->hw_addr + ((hw->mac_type >= e1000_82543) \
- ? E1000_##reg : E1000_82542_##reg)))
-
-#define ew32(reg, value) \
- (writel((value), (hw->hw_addr + ((hw->mac_type >= e1000_82543) \
- ? E1000_##reg : E1000_82542_##reg))))
-
-#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) ( \
- writel((value), ((a)->hw_addr + \
- (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
- ((offset) << 2))))
-
-#define E1000_READ_REG_ARRAY(a, reg, offset) ( \
- readl((a)->hw_addr + \
- (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
- ((offset) << 2)))
-
-#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY
-#define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY
-
-#define E1000_WRITE_REG_ARRAY_WORD(a, reg, offset, value) ( \
- writew((value), ((a)->hw_addr + \
- (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
- ((offset) << 1))))
-
-#define E1000_READ_REG_ARRAY_WORD(a, reg, offset) ( \
- readw((a)->hw_addr + \
- (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
- ((offset) << 1)))
-
-#define E1000_WRITE_REG_ARRAY_BYTE(a, reg, offset, value) ( \
- writeb((value), ((a)->hw_addr + \
- (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
- (offset))))
-
-#define E1000_READ_REG_ARRAY_BYTE(a, reg, offset) ( \
- readb((a)->hw_addr + \
- (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \
- (offset)))
-
-#define E1000_WRITE_FLUSH() er32(STATUS)
-
-#define E1000_WRITE_ICH_FLASH_REG(a, reg, value) ( \
- writel((value), ((a)->flash_address + reg)))
-
-#define E1000_READ_ICH_FLASH_REG(a, reg) ( \
- readl((a)->flash_address + reg))
-
-#define E1000_WRITE_ICH_FLASH_REG16(a, reg, value) ( \
- writew((value), ((a)->flash_address + reg)))
-
-#define E1000_READ_ICH_FLASH_REG16(a, reg) ( \
- readw((a)->flash_address + reg))
-
-#endif /* _E1000_OSDEP_H_ */
diff --git a/drivers/net/e1000/e1000_param.c b/drivers/net/e1000/e1000_param.c
deleted file mode 100644
index 1301eba8b57a..000000000000
--- a/drivers/net/e1000/e1000_param.c
+++ /dev/null
@@ -1,755 +0,0 @@
-/*******************************************************************************
-
- Intel PRO/1000 Linux driver
- Copyright(c) 1999 - 2006 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- Linux NICS <linux.nics@intel.com>
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-#include "e1000.h"
-
-/* This is the only thing that needs to be changed to adjust the
- * maximum number of ports that the driver can manage.
- */
-
-#define E1000_MAX_NIC 32
-
-#define OPTION_UNSET -1
-#define OPTION_DISABLED 0
-#define OPTION_ENABLED 1
-
-/* All parameters are treated the same, as an integer array of values.
- * This macro just reduces the need to repeat the same declaration code
- * over and over (plus this helps to avoid typo bugs).
- */
-
-#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET }
-#define E1000_PARAM(X, desc) \
- static int __devinitdata X[E1000_MAX_NIC+1] = E1000_PARAM_INIT; \
- static unsigned int num_##X; \
- module_param_array_named(X, X, int, &num_##X, 0); \
- MODULE_PARM_DESC(X, desc);
-
-/* Transmit Descriptor Count
- *
- * Valid Range: 80-256 for 82542 and 82543 gigabit ethernet controllers
- * Valid Range: 80-4096 for 82544 and newer
- *
- * Default Value: 256
- */
-E1000_PARAM(TxDescriptors, "Number of transmit descriptors");
-
-/* Receive Descriptor Count
- *
- * Valid Range: 80-256 for 82542 and 82543 gigabit ethernet controllers
- * Valid Range: 80-4096 for 82544 and newer
- *
- * Default Value: 256
- */
-E1000_PARAM(RxDescriptors, "Number of receive descriptors");
-
-/* User Specified Speed Override
- *
- * Valid Range: 0, 10, 100, 1000
- * - 0 - auto-negotiate at all supported speeds
- * - 10 - only link at 10 Mbps
- * - 100 - only link at 100 Mbps
- * - 1000 - only link at 1000 Mbps
- *
- * Default Value: 0
- */
-E1000_PARAM(Speed, "Speed setting");
-
-/* User Specified Duplex Override
- *
- * Valid Range: 0-2
- * - 0 - auto-negotiate for duplex
- * - 1 - only link at half duplex
- * - 2 - only link at full duplex
- *
- * Default Value: 0
- */
-E1000_PARAM(Duplex, "Duplex setting");
-
-/* Auto-negotiation Advertisement Override
- *
- * Valid Range: 0x01-0x0F, 0x20-0x2F (copper); 0x20 (fiber)
- *
- * The AutoNeg value is a bit mask describing which speed and duplex
- * combinations should be advertised during auto-negotiation.
- * The supported speed and duplex modes are listed below
- *
- * Bit 7 6 5 4 3 2 1 0
- * Speed (Mbps) N/A N/A 1000 N/A 100 100 10 10
- * Duplex Full Full Half Full Half
- *
- * Default Value: 0x2F (copper); 0x20 (fiber)
- */
-E1000_PARAM(AutoNeg, "Advertised auto-negotiation setting");
-#define AUTONEG_ADV_DEFAULT 0x2F
-#define AUTONEG_ADV_MASK 0x2F
-
-/* User Specified Flow Control Override
- *
- * Valid Range: 0-3
- * - 0 - No Flow Control
- * - 1 - Rx only, respond to PAUSE frames but do not generate them
- * - 2 - Tx only, generate PAUSE frames but ignore them on receive
- * - 3 - Full Flow Control Support
- *
- * Default Value: Read flow control settings from the EEPROM
- */
-E1000_PARAM(FlowControl, "Flow Control setting");
-#define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL
-
-/* XsumRX - Receive Checksum Offload Enable/Disable
- *
- * Valid Range: 0, 1
- * - 0 - disables all checksum offload
- * - 1 - enables receive IP/TCP/UDP checksum offload
- * on 82543 and newer -based NICs
- *
- * Default Value: 1
- */
-E1000_PARAM(XsumRX, "Disable or enable Receive Checksum offload");
-
-/* Transmit Interrupt Delay in units of 1.024 microseconds
- * Tx interrupt delay needs to typically be set to something non zero
- *
- * Valid Range: 0-65535
- */
-E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay");
-#define DEFAULT_TIDV 8
-#define MAX_TXDELAY 0xFFFF
-#define MIN_TXDELAY 0
-
-/* Transmit Absolute Interrupt Delay in units of 1.024 microseconds
- *
- * Valid Range: 0-65535
- */
-E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay");
-#define DEFAULT_TADV 32
-#define MAX_TXABSDELAY 0xFFFF
-#define MIN_TXABSDELAY 0
-
-/* Receive Interrupt Delay in units of 1.024 microseconds
- * hardware will likely hang if you set this to anything but zero.
- *
- * Valid Range: 0-65535
- */
-E1000_PARAM(RxIntDelay, "Receive Interrupt Delay");
-#define DEFAULT_RDTR 0
-#define MAX_RXDELAY 0xFFFF
-#define MIN_RXDELAY 0
-
-/* Receive Absolute Interrupt Delay in units of 1.024 microseconds
- *
- * Valid Range: 0-65535
- */
-E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay");
-#define DEFAULT_RADV 8
-#define MAX_RXABSDELAY 0xFFFF
-#define MIN_RXABSDELAY 0
-
-/* Interrupt Throttle Rate (interrupts/sec)
- *
- * Valid Range: 100-100000 (0=off, 1=dynamic, 3=dynamic conservative)
- */
-E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate");
-#define DEFAULT_ITR 3
-#define MAX_ITR 100000
-#define MIN_ITR 100
-
-/* Enable Smart Power Down of the PHY
- *
- * Valid Range: 0, 1
- *
- * Default Value: 0 (disabled)
- */
-E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down");
-
-struct e1000_option {
- enum { enable_option, range_option, list_option } type;
- const char *name;
- const char *err;
- int def;
- union {
- struct { /* range_option info */
- int min;
- int max;
- } r;
- struct { /* list_option info */
- int nr;
- const struct e1000_opt_list { int i; char *str; } *p;
- } l;
- } arg;
-};
-
-static int __devinit e1000_validate_option(unsigned int *value,
- const struct e1000_option *opt,
- struct e1000_adapter *adapter)
-{
- if (*value == OPTION_UNSET) {
- *value = opt->def;
- return 0;
- }
-
- switch (opt->type) {
- case enable_option:
- switch (*value) {
- case OPTION_ENABLED:
- e_dev_info("%s Enabled\n", opt->name);
- return 0;
- case OPTION_DISABLED:
- e_dev_info("%s Disabled\n", opt->name);
- return 0;
- }
- break;
- case range_option:
- if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
- e_dev_info("%s set to %i\n", opt->name, *value);
- return 0;
- }
- break;
- case list_option: {
- int i;
- const struct e1000_opt_list *ent;
-
- for (i = 0; i < opt->arg.l.nr; i++) {
- ent = &opt->arg.l.p[i];
- if (*value == ent->i) {
- if (ent->str[0] != '\0')
- e_dev_info("%s\n", ent->str);
- return 0;
- }
- }
- }
- break;
- default:
- BUG();
- }
-
- e_dev_info("Invalid %s value specified (%i) %s\n",
- opt->name, *value, opt->err);
- *value = opt->def;
- return -1;
-}
-
-static void e1000_check_fiber_options(struct e1000_adapter *adapter);
-static void e1000_check_copper_options(struct e1000_adapter *adapter);
-
-/**
- * e1000_check_options - Range Checking for Command Line Parameters
- * @adapter: board private structure
- *
- * This routine checks all command line parameters for valid user
- * input. If an invalid value is given, or if no user specified
- * value exists, a default value is used. The final value is stored
- * in a variable in the adapter structure.
- **/
-
-void __devinit e1000_check_options(struct e1000_adapter *adapter)
-{
- struct e1000_option opt;
- int bd = adapter->bd_number;
-
- if (bd >= E1000_MAX_NIC) {
- e_dev_warn("Warning: no configuration for board #%i "
- "using defaults for all values\n", bd);
- }
-
- { /* Transmit Descriptor Count */
- struct e1000_tx_ring *tx_ring = adapter->tx_ring;
- int i;
- e1000_mac_type mac_type = adapter->hw.mac_type;
-
- opt = (struct e1000_option) {
- .type = range_option,
- .name = "Transmit Descriptors",
- .err = "using default of "
- __MODULE_STRING(E1000_DEFAULT_TXD),
- .def = E1000_DEFAULT_TXD,
- .arg = { .r = {
- .min = E1000_MIN_TXD,
- .max = mac_type < e1000_82544 ? E1000_MAX_TXD : E1000_MAX_82544_TXD
- }}
- };
-
- if (num_TxDescriptors > bd) {
- tx_ring->count = TxDescriptors[bd];
- e1000_validate_option(&tx_ring->count, &opt, adapter);
- tx_ring->count = ALIGN(tx_ring->count,
- REQ_TX_DESCRIPTOR_MULTIPLE);
- } else {
- tx_ring->count = opt.def;
- }
- for (i = 0; i < adapter->num_tx_queues; i++)
- tx_ring[i].count = tx_ring->count;
- }
- { /* Receive Descriptor Count */
- struct e1000_rx_ring *rx_ring = adapter->rx_ring;
- int i;
- e1000_mac_type mac_type = adapter->hw.mac_type;
-
- opt = (struct e1000_option) {
- .type = range_option,
- .name = "Receive Descriptors",
- .err = "using default of "
- __MODULE_STRING(E1000_DEFAULT_RXD),
- .def = E1000_DEFAULT_RXD,
- .arg = { .r = {
- .min = E1000_MIN_RXD,
- .max = mac_type < e1000_82544 ? E1000_MAX_RXD : E1000_MAX_82544_RXD
- }}
- };
-
- if (num_RxDescriptors > bd) {
- rx_ring->count = RxDescriptors[bd];
- e1000_validate_option(&rx_ring->count, &opt, adapter);
- rx_ring->count = ALIGN(rx_ring->count,
- REQ_RX_DESCRIPTOR_MULTIPLE);
- } else {
- rx_ring->count = opt.def;
- }
- for (i = 0; i < adapter->num_rx_queues; i++)
- rx_ring[i].count = rx_ring->count;
- }
- { /* Checksum Offload Enable/Disable */
- opt = (struct e1000_option) {
- .type = enable_option,
- .name = "Checksum Offload",
- .err = "defaulting to Enabled",
- .def = OPTION_ENABLED
- };
-
- if (num_XsumRX > bd) {
- unsigned int rx_csum = XsumRX[bd];
- e1000_validate_option(&rx_csum, &opt, adapter);
- adapter->rx_csum = rx_csum;
- } else {
- adapter->rx_csum = opt.def;
- }
- }
- { /* Flow Control */
-
- static const struct e1000_opt_list fc_list[] = {
- { E1000_FC_NONE, "Flow Control Disabled" },
- { E1000_FC_RX_PAUSE, "Flow Control Receive Only" },
- { E1000_FC_TX_PAUSE, "Flow Control Transmit Only" },
- { E1000_FC_FULL, "Flow Control Enabled" },
- { E1000_FC_DEFAULT, "Flow Control Hardware Default" }
- };
-
- opt = (struct e1000_option) {
- .type = list_option,
- .name = "Flow Control",
- .err = "reading default settings from EEPROM",
- .def = E1000_FC_DEFAULT,
- .arg = { .l = { .nr = ARRAY_SIZE(fc_list),
- .p = fc_list }}
- };
-
- if (num_FlowControl > bd) {
- unsigned int fc = FlowControl[bd];
- e1000_validate_option(&fc, &opt, adapter);
- adapter->hw.fc = adapter->hw.original_fc = fc;
- } else {
- adapter->hw.fc = adapter->hw.original_fc = opt.def;
- }
- }
- { /* Transmit Interrupt Delay */
- opt = (struct e1000_option) {
- .type = range_option,
- .name = "Transmit Interrupt Delay",
- .err = "using default of " __MODULE_STRING(DEFAULT_TIDV),
- .def = DEFAULT_TIDV,
- .arg = { .r = { .min = MIN_TXDELAY,
- .max = MAX_TXDELAY }}
- };
-
- if (num_TxIntDelay > bd) {
- adapter->tx_int_delay = TxIntDelay[bd];
- e1000_validate_option(&adapter->tx_int_delay, &opt,
- adapter);
- } else {
- adapter->tx_int_delay = opt.def;
- }
- }
- { /* Transmit Absolute Interrupt Delay */
- opt = (struct e1000_option) {
- .type = range_option,
- .name = "Transmit Absolute Interrupt Delay",
- .err = "using default of " __MODULE_STRING(DEFAULT_TADV),
- .def = DEFAULT_TADV,
- .arg = { .r = { .min = MIN_TXABSDELAY,
- .max = MAX_TXABSDELAY }}
- };
-
- if (num_TxAbsIntDelay > bd) {
- adapter->tx_abs_int_delay = TxAbsIntDelay[bd];
- e1000_validate_option(&adapter->tx_abs_int_delay, &opt,
- adapter);
- } else {
- adapter->tx_abs_int_delay = opt.def;
- }
- }
- { /* Receive Interrupt Delay */
- opt = (struct e1000_option) {
- .type = range_option,
- .name = "Receive Interrupt Delay",
- .err = "using default of " __MODULE_STRING(DEFAULT_RDTR),
- .def = DEFAULT_RDTR,
- .arg = { .r = { .min = MIN_RXDELAY,
- .max = MAX_RXDELAY }}
- };
-
- if (num_RxIntDelay > bd) {
- adapter->rx_int_delay = RxIntDelay[bd];
- e1000_validate_option(&adapter->rx_int_delay, &opt,
- adapter);
- } else {
- adapter->rx_int_delay = opt.def;
- }
- }
- { /* Receive Absolute Interrupt Delay */
- opt = (struct e1000_option) {
- .type = range_option,
- .name = "Receive Absolute Interrupt Delay",
- .err = "using default of " __MODULE_STRING(DEFAULT_RADV),
- .def = DEFAULT_RADV,
- .arg = { .r = { .min = MIN_RXABSDELAY,
- .max = MAX_RXABSDELAY }}
- };
-
- if (num_RxAbsIntDelay > bd) {
- adapter->rx_abs_int_delay = RxAbsIntDelay[bd];
- e1000_validate_option(&adapter->rx_abs_int_delay, &opt,
- adapter);
- } else {
- adapter->rx_abs_int_delay = opt.def;
- }
- }
- { /* Interrupt Throttling Rate */
- opt = (struct e1000_option) {
- .type = range_option,
- .name = "Interrupt Throttling Rate (ints/sec)",
- .err = "using default of " __MODULE_STRING(DEFAULT_ITR),
- .def = DEFAULT_ITR,
- .arg = { .r = { .min = MIN_ITR,
- .max = MAX_ITR }}
- };
-
- if (num_InterruptThrottleRate > bd) {
- adapter->itr = InterruptThrottleRate[bd];
- switch (adapter->itr) {
- case 0:
- e_dev_info("%s turned off\n", opt.name);
- break;
- case 1:
- e_dev_info("%s set to dynamic mode\n",
- opt.name);
- adapter->itr_setting = adapter->itr;
- adapter->itr = 20000;
- break;
- case 3:
- e_dev_info("%s set to dynamic conservative "
- "mode\n", opt.name);
- adapter->itr_setting = adapter->itr;
- adapter->itr = 20000;
- break;
- case 4:
- e_dev_info("%s set to simplified "
- "(2000-8000) ints mode\n", opt.name);
- adapter->itr_setting = adapter->itr;
- break;
- default:
- e1000_validate_option(&adapter->itr, &opt,
- adapter);
- /* save the setting, because the dynamic bits
- * change itr.
- * clear the lower two bits because they are
- * used as control */
- adapter->itr_setting = adapter->itr & ~3;
- break;
- }
- } else {
- adapter->itr_setting = opt.def;
- adapter->itr = 20000;
- }
- }
- { /* Smart Power Down */
- opt = (struct e1000_option) {
- .type = enable_option,
- .name = "PHY Smart Power Down",
- .err = "defaulting to Disabled",
- .def = OPTION_DISABLED
- };
-
- if (num_SmartPowerDownEnable > bd) {
- unsigned int spd = SmartPowerDownEnable[bd];
- e1000_validate_option(&spd, &opt, adapter);
- adapter->smart_power_down = spd;
- } else {
- adapter->smart_power_down = opt.def;
- }
- }
-
- switch (adapter->hw.media_type) {
- case e1000_media_type_fiber:
- case e1000_media_type_internal_serdes:
- e1000_check_fiber_options(adapter);
- break;
- case e1000_media_type_copper:
- e1000_check_copper_options(adapter);
- break;
- default:
- BUG();
- }
-}
-
-/**
- * e1000_check_fiber_options - Range Checking for Link Options, Fiber Version
- * @adapter: board private structure
- *
- * Handles speed and duplex options on fiber adapters
- **/
-
-static void __devinit e1000_check_fiber_options(struct e1000_adapter *adapter)
-{
- int bd = adapter->bd_number;
- if (num_Speed > bd) {
- e_dev_info("Speed not valid for fiber adapters, parameter "
- "ignored\n");
- }
-
- if (num_Duplex > bd) {
- e_dev_info("Duplex not valid for fiber adapters, parameter "
- "ignored\n");
- }
-
- if ((num_AutoNeg > bd) && (AutoNeg[bd] != 0x20)) {
- e_dev_info("AutoNeg other than 1000/Full is not valid for fiber"
- "adapters, parameter ignored\n");
- }
-}
-
-/**
- * e1000_check_copper_options - Range Checking for Link Options, Copper Version
- * @adapter: board private structure
- *
- * Handles speed and duplex options on copper adapters
- **/
-
-static void __devinit e1000_check_copper_options(struct e1000_adapter *adapter)
-{
- struct e1000_option opt;
- unsigned int speed, dplx, an;
- int bd = adapter->bd_number;
-
- { /* Speed */
- static const struct e1000_opt_list speed_list[] = {
- { 0, "" },
- { SPEED_10, "" },
- { SPEED_100, "" },
- { SPEED_1000, "" }};
-
- opt = (struct e1000_option) {
- .type = list_option,
- .name = "Speed",
- .err = "parameter ignored",
- .def = 0,
- .arg = { .l = { .nr = ARRAY_SIZE(speed_list),
- .p = speed_list }}
- };
-
- if (num_Speed > bd) {
- speed = Speed[bd];
- e1000_validate_option(&speed, &opt, adapter);
- } else {
- speed = opt.def;
- }
- }
- { /* Duplex */
- static const struct e1000_opt_list dplx_list[] = {
- { 0, "" },
- { HALF_DUPLEX, "" },
- { FULL_DUPLEX, "" }};
-
- opt = (struct e1000_option) {
- .type = list_option,
- .name = "Duplex",
- .err = "parameter ignored",
- .def = 0,
- .arg = { .l = { .nr = ARRAY_SIZE(dplx_list),
- .p = dplx_list }}
- };
-
- if (num_Duplex > bd) {
- dplx = Duplex[bd];
- e1000_validate_option(&dplx, &opt, adapter);
- } else {
- dplx = opt.def;
- }
- }
-
- if ((num_AutoNeg > bd) && (speed != 0 || dplx != 0)) {
- e_dev_info("AutoNeg specified along with Speed or Duplex, "
- "parameter ignored\n");
- adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
- } else { /* Autoneg */
- static const struct e1000_opt_list an_list[] =
- #define AA "AutoNeg advertising "
- {{ 0x01, AA "10/HD" },
- { 0x02, AA "10/FD" },
- { 0x03, AA "10/FD, 10/HD" },
- { 0x04, AA "100/HD" },
- { 0x05, AA "100/HD, 10/HD" },
- { 0x06, AA "100/HD, 10/FD" },
- { 0x07, AA "100/HD, 10/FD, 10/HD" },
- { 0x08, AA "100/FD" },
- { 0x09, AA "100/FD, 10/HD" },
- { 0x0a, AA "100/FD, 10/FD" },
- { 0x0b, AA "100/FD, 10/FD, 10/HD" },
- { 0x0c, AA "100/FD, 100/HD" },
- { 0x0d, AA "100/FD, 100/HD, 10/HD" },
- { 0x0e, AA "100/FD, 100/HD, 10/FD" },
- { 0x0f, AA "100/FD, 100/HD, 10/FD, 10/HD" },
- { 0x20, AA "1000/FD" },
- { 0x21, AA "1000/FD, 10/HD" },
- { 0x22, AA "1000/FD, 10/FD" },
- { 0x23, AA "1000/FD, 10/FD, 10/HD" },
- { 0x24, AA "1000/FD, 100/HD" },
- { 0x25, AA "1000/FD, 100/HD, 10/HD" },
- { 0x26, AA "1000/FD, 100/HD, 10/FD" },
- { 0x27, AA "1000/FD, 100/HD, 10/FD, 10/HD" },
- { 0x28, AA "1000/FD, 100/FD" },
- { 0x29, AA "1000/FD, 100/FD, 10/HD" },
- { 0x2a, AA "1000/FD, 100/FD, 10/FD" },
- { 0x2b, AA "1000/FD, 100/FD, 10/FD, 10/HD" },
- { 0x2c, AA "1000/FD, 100/FD, 100/HD" },
- { 0x2d, AA "1000/FD, 100/FD, 100/HD, 10/HD" },
- { 0x2e, AA "1000/FD, 100/FD, 100/HD, 10/FD" },
- { 0x2f, AA "1000/FD, 100/FD, 100/HD, 10/FD, 10/HD" }};
-
- opt = (struct e1000_option) {
- .type = list_option,
- .name = "AutoNeg",
- .err = "parameter ignored",
- .def = AUTONEG_ADV_DEFAULT,
- .arg = { .l = { .nr = ARRAY_SIZE(an_list),
- .p = an_list }}
- };
-
- if (num_AutoNeg > bd) {
- an = AutoNeg[bd];
- e1000_validate_option(&an, &opt, adapter);
- } else {
- an = opt.def;
- }
- adapter->hw.autoneg_advertised = an;
- }
-
- switch (speed + dplx) {
- case 0:
- adapter->hw.autoneg = adapter->fc_autoneg = 1;
- if ((num_Speed > bd) && (speed != 0 || dplx != 0))
- e_dev_info("Speed and duplex autonegotiation "
- "enabled\n");
- break;
- case HALF_DUPLEX:
- e_dev_info("Half Duplex specified without Speed\n");
- e_dev_info("Using Autonegotiation at Half Duplex only\n");
- adapter->hw.autoneg = adapter->fc_autoneg = 1;
- adapter->hw.autoneg_advertised = ADVERTISE_10_HALF |
- ADVERTISE_100_HALF;
- break;
- case FULL_DUPLEX:
- e_dev_info("Full Duplex specified without Speed\n");
- e_dev_info("Using Autonegotiation at Full Duplex only\n");
- adapter->hw.autoneg = adapter->fc_autoneg = 1;
- adapter->hw.autoneg_advertised = ADVERTISE_10_FULL |
- ADVERTISE_100_FULL |
- ADVERTISE_1000_FULL;
- break;
- case SPEED_10:
- e_dev_info("10 Mbps Speed specified without Duplex\n");
- e_dev_info("Using Autonegotiation at 10 Mbps only\n");
- adapter->hw.autoneg = adapter->fc_autoneg = 1;
- adapter->hw.autoneg_advertised = ADVERTISE_10_HALF |
- ADVERTISE_10_FULL;
- break;
- case SPEED_10 + HALF_DUPLEX:
- e_dev_info("Forcing to 10 Mbps Half Duplex\n");
- adapter->hw.autoneg = adapter->fc_autoneg = 0;
- adapter->hw.forced_speed_duplex = e1000_10_half;
- adapter->hw.autoneg_advertised = 0;
- break;
- case SPEED_10 + FULL_DUPLEX:
- e_dev_info("Forcing to 10 Mbps Full Duplex\n");
- adapter->hw.autoneg = adapter->fc_autoneg = 0;
- adapter->hw.forced_speed_duplex = e1000_10_full;
- adapter->hw.autoneg_advertised = 0;
- break;
- case SPEED_100:
- e_dev_info("100 Mbps Speed specified without Duplex\n");
- e_dev_info("Using Autonegotiation at 100 Mbps only\n");
- adapter->hw.autoneg = adapter->fc_autoneg = 1;
- adapter->hw.autoneg_advertised = ADVERTISE_100_HALF |
- ADVERTISE_100_FULL;
- break;
- case SPEED_100 + HALF_DUPLEX:
- e_dev_info("Forcing to 100 Mbps Half Duplex\n");
- adapter->hw.autoneg = adapter->fc_autoneg = 0;
- adapter->hw.forced_speed_duplex = e1000_100_half;
- adapter->hw.autoneg_advertised = 0;
- break;
- case SPEED_100 + FULL_DUPLEX:
- e_dev_info("Forcing to 100 Mbps Full Duplex\n");
- adapter->hw.autoneg = adapter->fc_autoneg = 0;
- adapter->hw.forced_speed_duplex = e1000_100_full;
- adapter->hw.autoneg_advertised = 0;
- break;
- case SPEED_1000:
- e_dev_info("1000 Mbps Speed specified without Duplex\n");
- goto full_duplex_only;
- case SPEED_1000 + HALF_DUPLEX:
- e_dev_info("Half Duplex is not supported at 1000 Mbps\n");
- /* fall through */
- case SPEED_1000 + FULL_DUPLEX:
-full_duplex_only:
- e_dev_info("Using Autonegotiation at 1000 Mbps Full Duplex "
- "only\n");
- adapter->hw.autoneg = adapter->fc_autoneg = 1;
- adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
- break;
- default:
- BUG();
- }
-
- /* Speed, AutoNeg and MDI/MDI-X must all play nice */
- if (e1000_validate_mdi_setting(&(adapter->hw)) < 0) {
- e_dev_info("Speed, AutoNeg and MDI-X specs are incompatible. "
- "Setting MDI-X to a compatible value.\n");
- }
-}
-