diff options
author | Jeff Kirsher <jeffrey.t.kirsher@intel.com> | 2011-04-07 18:42:33 +0400 |
---|---|---|
committer | Jeff Kirsher <jeffrey.t.kirsher@intel.com> | 2011-08-11 07:03:27 +0400 |
commit | dee1ad47f2ee75f5146d83ca757c1b7861c34c3b (patch) | |
tree | 47cbdefe3d0f9b729724e378ad6a96eaddfd5fbc /drivers/net/e1000 | |
parent | f7917c009c28c941ba151ee66f04dc7f6a2e1e0b (diff) | |
download | linux-dee1ad47f2ee75f5146d83ca757c1b7861c34c3b.tar.xz |
intel: Move the Intel wired LAN drivers
Moves the Intel wired LAN drivers into drivers/net/ethernet/intel/ and
the necessary Kconfig and Makefile changes.
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Diffstat (limited to 'drivers/net/e1000')
-rw-r--r-- | drivers/net/e1000/Makefile | 35 | ||||
-rw-r--r-- | drivers/net/e1000/e1000.h | 361 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_ethtool.c | 1863 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_hw.c | 5824 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_hw.h | 3103 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_main.c | 4974 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_osdep.h | 109 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_param.c | 755 |
8 files changed, 0 insertions, 17024 deletions
diff --git a/drivers/net/e1000/Makefile b/drivers/net/e1000/Makefile deleted file mode 100644 index 4a6ab1522451..000000000000 --- a/drivers/net/e1000/Makefile +++ /dev/null @@ -1,35 +0,0 @@ -################################################################################ -# -# Intel PRO/1000 Linux driver -# Copyright(c) 1999 - 2006 Intel Corporation. -# -# This program is free software; you can redistribute it and/or modify it -# under the terms and conditions of the GNU General Public License, -# version 2, as published by the Free Software Foundation. -# -# This program is distributed in the hope it will be useful, but WITHOUT -# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or -# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for -# more details. -# -# You should have received a copy of the GNU General Public License along with -# this program; if not, write to the Free Software Foundation, Inc., -# 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. -# -# The full GNU General Public License is included in this distribution in -# the file called "COPYING". -# -# Contact Information: -# Linux NICS <linux.nics@intel.com> -# e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> -# Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 -# -################################################################################ - -# -# Makefile for the Intel(R) PRO/1000 ethernet driver -# - -obj-$(CONFIG_E1000) += e1000.o - -e1000-objs := e1000_main.o e1000_hw.o e1000_ethtool.o e1000_param.o diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h deleted file mode 100644 index 24f41da8c4be..000000000000 --- a/drivers/net/e1000/e1000.h +++ /dev/null @@ -1,361 +0,0 @@ -/******************************************************************************* - - Intel PRO/1000 Linux driver - Copyright(c) 1999 - 2006 Intel Corporation. - - This program is free software; you can redistribute it and/or modify it - under the terms and conditions of the GNU General Public License, - version 2, as published by the Free Software Foundation. - - This program is distributed in the hope it will be useful, but WITHOUT - ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - more details. - - You should have received a copy of the GNU General Public License along with - this program; if not, write to the Free Software Foundation, Inc., - 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - - The full GNU General Public License is included in this distribution in - the file called "COPYING". - - Contact Information: - Linux NICS <linux.nics@intel.com> - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - - -/* Linux PRO/1000 Ethernet Driver main header file */ - -#ifndef _E1000_H_ -#define _E1000_H_ - -#include <linux/stddef.h> -#include <linux/module.h> -#include <linux/types.h> -#include <asm/byteorder.h> -#include <linux/init.h> -#include <linux/mm.h> -#include <linux/errno.h> -#include <linux/ioport.h> -#include <linux/pci.h> -#include <linux/kernel.h> -#include <linux/netdevice.h> -#include <linux/etherdevice.h> -#include <linux/skbuff.h> -#include <linux/delay.h> -#include <linux/timer.h> -#include <linux/slab.h> -#include <linux/vmalloc.h> -#include <linux/interrupt.h> -#include <linux/string.h> -#include <linux/pagemap.h> -#include <linux/dma-mapping.h> -#include <linux/bitops.h> -#include <asm/io.h> -#include <asm/irq.h> -#include <linux/capability.h> -#include <linux/in.h> -#include <linux/ip.h> -#include <linux/ipv6.h> -#include <linux/tcp.h> -#include <linux/udp.h> -#include <net/pkt_sched.h> -#include <linux/list.h> -#include <linux/reboot.h> -#include <net/checksum.h> -#include <linux/mii.h> -#include <linux/ethtool.h> -#include <linux/if_vlan.h> - -#define BAR_0 0 -#define BAR_1 1 -#define BAR_5 5 - -#define INTEL_E1000_ETHERNET_DEVICE(device_id) {\ - PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} - -struct e1000_adapter; - -#include "e1000_hw.h" - -#define E1000_MAX_INTR 10 - -/* TX/RX descriptor defines */ -#define E1000_DEFAULT_TXD 256 -#define E1000_MAX_TXD 256 -#define E1000_MIN_TXD 48 -#define E1000_MAX_82544_TXD 4096 - -#define E1000_DEFAULT_RXD 256 -#define E1000_MAX_RXD 256 -#define E1000_MIN_RXD 48 -#define E1000_MAX_82544_RXD 4096 - -#define E1000_MIN_ITR_USECS 10 /* 100000 irq/sec */ -#define E1000_MAX_ITR_USECS 10000 /* 100 irq/sec */ - -/* this is the size past which hardware will drop packets when setting LPE=0 */ -#define MAXIMUM_ETHERNET_VLAN_SIZE 1522 - -/* Supported Rx Buffer Sizes */ -#define E1000_RXBUFFER_128 128 /* Used for packet split */ -#define E1000_RXBUFFER_256 256 /* Used for packet split */ -#define E1000_RXBUFFER_512 512 -#define E1000_RXBUFFER_1024 1024 -#define E1000_RXBUFFER_2048 2048 -#define E1000_RXBUFFER_4096 4096 -#define E1000_RXBUFFER_8192 8192 -#define E1000_RXBUFFER_16384 16384 - -/* SmartSpeed delimiters */ -#define E1000_SMARTSPEED_DOWNSHIFT 3 -#define E1000_SMARTSPEED_MAX 15 - -/* Packet Buffer allocations */ -#define E1000_PBA_BYTES_SHIFT 0xA -#define E1000_TX_HEAD_ADDR_SHIFT 7 -#define E1000_PBA_TX_MASK 0xFFFF0000 - -/* Flow Control Watermarks */ -#define E1000_FC_HIGH_DIFF 0x1638 /* High: 5688 bytes below Rx FIFO size */ -#define E1000_FC_LOW_DIFF 0x1640 /* Low: 5696 bytes below Rx FIFO size */ - -#define E1000_FC_PAUSE_TIME 0xFFFF /* pause for the max or until send xon */ - -/* How many Tx Descriptors do we need to call netif_wake_queue ? */ -#define E1000_TX_QUEUE_WAKE 16 -/* How many Rx Buffers do we bundle into one write to the hardware ? */ -#define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */ - -#define AUTO_ALL_MODES 0 -#define E1000_EEPROM_82544_APM 0x0004 -#define E1000_EEPROM_APME 0x0400 - -#ifndef E1000_MASTER_SLAVE -/* Switch to override PHY master/slave setting */ -#define E1000_MASTER_SLAVE e1000_ms_hw_default -#endif - -#define E1000_MNG_VLAN_NONE (-1) - -/* wrapper around a pointer to a socket buffer, - * so a DMA handle can be stored along with the buffer */ -struct e1000_buffer { - struct sk_buff *skb; - dma_addr_t dma; - struct page *page; - unsigned long time_stamp; - u16 length; - u16 next_to_watch; - u16 mapped_as_page; -}; - -struct e1000_tx_ring { - /* pointer to the descriptor ring memory */ - void *desc; - /* physical address of the descriptor ring */ - dma_addr_t dma; - /* length of descriptor ring in bytes */ - unsigned int size; - /* number of descriptors in the ring */ - unsigned int count; - /* next descriptor to associate a buffer with */ - unsigned int next_to_use; - /* next descriptor to check for DD status bit */ - unsigned int next_to_clean; - /* array of buffer information structs */ - struct e1000_buffer *buffer_info; - - u16 tdh; - u16 tdt; - bool last_tx_tso; -}; - -struct e1000_rx_ring { - /* pointer to the descriptor ring memory */ - void *desc; - /* physical address of the descriptor ring */ - dma_addr_t dma; - /* length of descriptor ring in bytes */ - unsigned int size; - /* number of descriptors in the ring */ - unsigned int count; - /* next descriptor to associate a buffer with */ - unsigned int next_to_use; - /* next descriptor to check for DD status bit */ - unsigned int next_to_clean; - /* array of buffer information structs */ - struct e1000_buffer *buffer_info; - struct sk_buff *rx_skb_top; - - /* cpu for rx queue */ - int cpu; - - u16 rdh; - u16 rdt; -}; - -#define E1000_DESC_UNUSED(R) \ - ((((R)->next_to_clean > (R)->next_to_use) \ - ? 0 : (R)->count) + (R)->next_to_clean - (R)->next_to_use - 1) - -#define E1000_RX_DESC_EXT(R, i) \ - (&(((union e1000_rx_desc_extended *)((R).desc))[i])) -#define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i])) -#define E1000_RX_DESC(R, i) E1000_GET_DESC(R, i, e1000_rx_desc) -#define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc) -#define E1000_CONTEXT_DESC(R, i) E1000_GET_DESC(R, i, e1000_context_desc) - -/* board specific private data structure */ - -struct e1000_adapter { - struct timer_list tx_fifo_stall_timer; - struct timer_list watchdog_timer; - struct timer_list phy_info_timer; - unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; - u16 mng_vlan_id; - u32 bd_number; - u32 rx_buffer_len; - u32 wol; - u32 smartspeed; - u32 en_mng_pt; - u16 link_speed; - u16 link_duplex; - spinlock_t stats_lock; - unsigned int total_tx_bytes; - unsigned int total_tx_packets; - unsigned int total_rx_bytes; - unsigned int total_rx_packets; - /* Interrupt Throttle Rate */ - u32 itr; - u32 itr_setting; - u16 tx_itr; - u16 rx_itr; - - struct work_struct reset_task; - u8 fc_autoneg; - - /* TX */ - struct e1000_tx_ring *tx_ring; /* One per active queue */ - unsigned int restart_queue; - u32 txd_cmd; - u32 tx_int_delay; - u32 tx_abs_int_delay; - u32 gotcl; - u64 gotcl_old; - u64 tpt_old; - u64 colc_old; - u32 tx_timeout_count; - u32 tx_fifo_head; - u32 tx_head_addr; - u32 tx_fifo_size; - u8 tx_timeout_factor; - atomic_t tx_fifo_stall; - bool pcix_82544; - bool detect_tx_hung; - - /* RX */ - bool (*clean_rx)(struct e1000_adapter *adapter, - struct e1000_rx_ring *rx_ring, - int *work_done, int work_to_do); - void (*alloc_rx_buf)(struct e1000_adapter *adapter, - struct e1000_rx_ring *rx_ring, - int cleaned_count); - struct e1000_rx_ring *rx_ring; /* One per active queue */ - struct napi_struct napi; - - int num_tx_queues; - int num_rx_queues; - - u64 hw_csum_err; - u64 hw_csum_good; - u32 alloc_rx_buff_failed; - u32 rx_int_delay; - u32 rx_abs_int_delay; - bool rx_csum; - u32 gorcl; - u64 gorcl_old; - - /* OS defined structs */ - struct net_device *netdev; - struct pci_dev *pdev; - - /* structs defined in e1000_hw.h */ - struct e1000_hw hw; - struct e1000_hw_stats stats; - struct e1000_phy_info phy_info; - struct e1000_phy_stats phy_stats; - - u32 test_icr; - struct e1000_tx_ring test_tx_ring; - struct e1000_rx_ring test_rx_ring; - - int msg_enable; - - /* to not mess up cache alignment, always add to the bottom */ - bool tso_force; - bool smart_power_down; /* phy smart power down */ - bool quad_port_a; - unsigned long flags; - u32 eeprom_wol; - - /* for ioport free */ - int bars; - int need_ioport; - - bool discarding; - - struct work_struct fifo_stall_task; - struct work_struct phy_info_task; -}; - -enum e1000_state_t { - __E1000_TESTING, - __E1000_RESETTING, - __E1000_DOWN -}; - -#undef pr_fmt -#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt - -extern struct net_device *e1000_get_hw_dev(struct e1000_hw *hw); -#define e_dbg(format, arg...) \ - netdev_dbg(e1000_get_hw_dev(hw), format, ## arg) -#define e_err(msglvl, format, arg...) \ - netif_err(adapter, msglvl, adapter->netdev, format, ## arg) -#define e_info(msglvl, format, arg...) \ - netif_info(adapter, msglvl, adapter->netdev, format, ## arg) -#define e_warn(msglvl, format, arg...) \ - netif_warn(adapter, msglvl, adapter->netdev, format, ## arg) -#define e_notice(msglvl, format, arg...) \ - netif_notice(adapter, msglvl, adapter->netdev, format, ## arg) -#define e_dev_info(format, arg...) \ - dev_info(&adapter->pdev->dev, format, ## arg) -#define e_dev_warn(format, arg...) \ - dev_warn(&adapter->pdev->dev, format, ## arg) -#define e_dev_err(format, arg...) \ - dev_err(&adapter->pdev->dev, format, ## arg) - -extern char e1000_driver_name[]; -extern const char e1000_driver_version[]; - -extern int e1000_up(struct e1000_adapter *adapter); -extern void e1000_down(struct e1000_adapter *adapter); -extern void e1000_reinit_locked(struct e1000_adapter *adapter); -extern void e1000_reset(struct e1000_adapter *adapter); -extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx); -extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); -extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); -extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter); -extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter); -extern void e1000_update_stats(struct e1000_adapter *adapter); -extern bool e1000_has_link(struct e1000_adapter *adapter); -extern void e1000_power_up_phy(struct e1000_adapter *); -extern void e1000_set_ethtool_ops(struct net_device *netdev); -extern void e1000_check_options(struct e1000_adapter *adapter); -extern char *e1000_get_hw_dev_name(struct e1000_hw *hw); - -#endif /* _E1000_H_ */ diff --git a/drivers/net/e1000/e1000_ethtool.c b/drivers/net/e1000/e1000_ethtool.c deleted file mode 100644 index 5548d464261a..000000000000 --- a/drivers/net/e1000/e1000_ethtool.c +++ /dev/null @@ -1,1863 +0,0 @@ -/******************************************************************************* - - Intel PRO/1000 Linux driver - Copyright(c) 1999 - 2006 Intel Corporation. - - This program is free software; you can redistribute it and/or modify it - under the terms and conditions of the GNU General Public License, - version 2, as published by the Free Software Foundation. - - This program is distributed in the hope it will be useful, but WITHOUT - ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - more details. - - You should have received a copy of the GNU General Public License along with - this program; if not, write to the Free Software Foundation, Inc., - 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - - The full GNU General Public License is included in this distribution in - the file called "COPYING". - - Contact Information: - Linux NICS <linux.nics@intel.com> - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -/* ethtool support for e1000 */ - -#include "e1000.h" -#include <asm/uaccess.h> - -enum {NETDEV_STATS, E1000_STATS}; - -struct e1000_stats { - char stat_string[ETH_GSTRING_LEN]; - int type; - int sizeof_stat; - int stat_offset; -}; - -#define E1000_STAT(m) E1000_STATS, \ - sizeof(((struct e1000_adapter *)0)->m), \ - offsetof(struct e1000_adapter, m) -#define E1000_NETDEV_STAT(m) NETDEV_STATS, \ - sizeof(((struct net_device *)0)->m), \ - offsetof(struct net_device, m) - -static const struct e1000_stats e1000_gstrings_stats[] = { - { "rx_packets", E1000_STAT(stats.gprc) }, - { "tx_packets", E1000_STAT(stats.gptc) }, - { "rx_bytes", E1000_STAT(stats.gorcl) }, - { "tx_bytes", E1000_STAT(stats.gotcl) }, - { "rx_broadcast", E1000_STAT(stats.bprc) }, - { "tx_broadcast", E1000_STAT(stats.bptc) }, - { "rx_multicast", E1000_STAT(stats.mprc) }, - { "tx_multicast", E1000_STAT(stats.mptc) }, - { "rx_errors", E1000_STAT(stats.rxerrc) }, - { "tx_errors", E1000_STAT(stats.txerrc) }, - { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) }, - { "multicast", E1000_STAT(stats.mprc) }, - { "collisions", E1000_STAT(stats.colc) }, - { "rx_length_errors", E1000_STAT(stats.rlerrc) }, - { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) }, - { "rx_crc_errors", E1000_STAT(stats.crcerrs) }, - { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) }, - { "rx_no_buffer_count", E1000_STAT(stats.rnbc) }, - { "rx_missed_errors", E1000_STAT(stats.mpc) }, - { "tx_aborted_errors", E1000_STAT(stats.ecol) }, - { "tx_carrier_errors", E1000_STAT(stats.tncrs) }, - { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) }, - { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) }, - { "tx_window_errors", E1000_STAT(stats.latecol) }, - { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, - { "tx_deferred_ok", E1000_STAT(stats.dc) }, - { "tx_single_coll_ok", E1000_STAT(stats.scc) }, - { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, - { "tx_timeout_count", E1000_STAT(tx_timeout_count) }, - { "tx_restart_queue", E1000_STAT(restart_queue) }, - { "rx_long_length_errors", E1000_STAT(stats.roc) }, - { "rx_short_length_errors", E1000_STAT(stats.ruc) }, - { "rx_align_errors", E1000_STAT(stats.algnerrc) }, - { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, - { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, - { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, - { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, - { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, - { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, - { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, - { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, - { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }, - { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) }, - { "tx_smbus", E1000_STAT(stats.mgptc) }, - { "rx_smbus", E1000_STAT(stats.mgprc) }, - { "dropped_smbus", E1000_STAT(stats.mgpdc) }, -}; - -#define E1000_QUEUE_STATS_LEN 0 -#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) -#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN) -static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { - "Register test (offline)", "Eeprom test (offline)", - "Interrupt test (offline)", "Loopback test (offline)", - "Link test (on/offline)" -}; -#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) - -static int e1000_get_settings(struct net_device *netdev, - struct ethtool_cmd *ecmd) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - - if (hw->media_type == e1000_media_type_copper) { - - ecmd->supported = (SUPPORTED_10baseT_Half | - SUPPORTED_10baseT_Full | - SUPPORTED_100baseT_Half | - SUPPORTED_100baseT_Full | - SUPPORTED_1000baseT_Full| - SUPPORTED_Autoneg | - SUPPORTED_TP); - ecmd->advertising = ADVERTISED_TP; - - if (hw->autoneg == 1) { - ecmd->advertising |= ADVERTISED_Autoneg; - /* the e1000 autoneg seems to match ethtool nicely */ - ecmd->advertising |= hw->autoneg_advertised; - } - - ecmd->port = PORT_TP; - ecmd->phy_address = hw->phy_addr; - - if (hw->mac_type == e1000_82543) - ecmd->transceiver = XCVR_EXTERNAL; - else - ecmd->transceiver = XCVR_INTERNAL; - - } else { - ecmd->supported = (SUPPORTED_1000baseT_Full | - SUPPORTED_FIBRE | - SUPPORTED_Autoneg); - - ecmd->advertising = (ADVERTISED_1000baseT_Full | - ADVERTISED_FIBRE | - ADVERTISED_Autoneg); - - ecmd->port = PORT_FIBRE; - - if (hw->mac_type >= e1000_82545) - ecmd->transceiver = XCVR_INTERNAL; - else - ecmd->transceiver = XCVR_EXTERNAL; - } - - if (er32(STATUS) & E1000_STATUS_LU) { - - e1000_get_speed_and_duplex(hw, &adapter->link_speed, - &adapter->link_duplex); - ethtool_cmd_speed_set(ecmd, adapter->link_speed); - - /* unfortunately FULL_DUPLEX != DUPLEX_FULL - * and HALF_DUPLEX != DUPLEX_HALF */ - - if (adapter->link_duplex == FULL_DUPLEX) - ecmd->duplex = DUPLEX_FULL; - else - ecmd->duplex = DUPLEX_HALF; - } else { - ethtool_cmd_speed_set(ecmd, -1); - ecmd->duplex = -1; - } - - ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) || - hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; - return 0; -} - -static int e1000_set_settings(struct net_device *netdev, - struct ethtool_cmd *ecmd) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - - while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) - msleep(1); - - if (ecmd->autoneg == AUTONEG_ENABLE) { - hw->autoneg = 1; - if (hw->media_type == e1000_media_type_fiber) - hw->autoneg_advertised = ADVERTISED_1000baseT_Full | - ADVERTISED_FIBRE | - ADVERTISED_Autoneg; - else - hw->autoneg_advertised = ecmd->advertising | - ADVERTISED_TP | - ADVERTISED_Autoneg; - ecmd->advertising = hw->autoneg_advertised; - } else { - u32 speed = ethtool_cmd_speed(ecmd); - if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) { - clear_bit(__E1000_RESETTING, &adapter->flags); - return -EINVAL; - } - } - - /* reset the link */ - - if (netif_running(adapter->netdev)) { - e1000_down(adapter); - e1000_up(adapter); - } else - e1000_reset(adapter); - - clear_bit(__E1000_RESETTING, &adapter->flags); - return 0; -} - -static u32 e1000_get_link(struct net_device *netdev) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - - /* - * If the link is not reported up to netdev, interrupts are disabled, - * and so the physical link state may have changed since we last - * looked. Set get_link_status to make sure that the true link - * state is interrogated, rather than pulling a cached and possibly - * stale link state from the driver. - */ - if (!netif_carrier_ok(netdev)) - adapter->hw.get_link_status = 1; - - return e1000_has_link(adapter); -} - -static void e1000_get_pauseparam(struct net_device *netdev, - struct ethtool_pauseparam *pause) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - - pause->autoneg = - (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); - - if (hw->fc == E1000_FC_RX_PAUSE) - pause->rx_pause = 1; - else if (hw->fc == E1000_FC_TX_PAUSE) - pause->tx_pause = 1; - else if (hw->fc == E1000_FC_FULL) { - pause->rx_pause = 1; - pause->tx_pause = 1; - } -} - -static int e1000_set_pauseparam(struct net_device *netdev, - struct ethtool_pauseparam *pause) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - int retval = 0; - - adapter->fc_autoneg = pause->autoneg; - - while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) - msleep(1); - - if (pause->rx_pause && pause->tx_pause) - hw->fc = E1000_FC_FULL; - else if (pause->rx_pause && !pause->tx_pause) - hw->fc = E1000_FC_RX_PAUSE; - else if (!pause->rx_pause && pause->tx_pause) - hw->fc = E1000_FC_TX_PAUSE; - else if (!pause->rx_pause && !pause->tx_pause) - hw->fc = E1000_FC_NONE; - - hw->original_fc = hw->fc; - - if (adapter->fc_autoneg == AUTONEG_ENABLE) { - if (netif_running(adapter->netdev)) { - e1000_down(adapter); - e1000_up(adapter); - } else - e1000_reset(adapter); - } else - retval = ((hw->media_type == e1000_media_type_fiber) ? - e1000_setup_link(hw) : e1000_force_mac_fc(hw)); - - clear_bit(__E1000_RESETTING, &adapter->flags); - return retval; -} - -static u32 e1000_get_msglevel(struct net_device *netdev) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - return adapter->msg_enable; -} - -static void e1000_set_msglevel(struct net_device *netdev, u32 data) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - adapter->msg_enable = data; -} - -static int e1000_get_regs_len(struct net_device *netdev) -{ -#define E1000_REGS_LEN 32 - return E1000_REGS_LEN * sizeof(u32); -} - -static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs, - void *p) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u32 *regs_buff = p; - u16 phy_data; - - memset(p, 0, E1000_REGS_LEN * sizeof(u32)); - - regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; - - regs_buff[0] = er32(CTRL); - regs_buff[1] = er32(STATUS); - - regs_buff[2] = er32(RCTL); - regs_buff[3] = er32(RDLEN); - regs_buff[4] = er32(RDH); - regs_buff[5] = er32(RDT); - regs_buff[6] = er32(RDTR); - - regs_buff[7] = er32(TCTL); - regs_buff[8] = er32(TDLEN); - regs_buff[9] = er32(TDH); - regs_buff[10] = er32(TDT); - regs_buff[11] = er32(TIDV); - - regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */ - if (hw->phy_type == e1000_phy_igp) { - e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, - IGP01E1000_PHY_AGC_A); - e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & - IGP01E1000_PHY_PAGE_SELECT, &phy_data); - regs_buff[13] = (u32)phy_data; /* cable length */ - e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, - IGP01E1000_PHY_AGC_B); - e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B & - IGP01E1000_PHY_PAGE_SELECT, &phy_data); - regs_buff[14] = (u32)phy_data; /* cable length */ - e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, - IGP01E1000_PHY_AGC_C); - e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C & - IGP01E1000_PHY_PAGE_SELECT, &phy_data); - regs_buff[15] = (u32)phy_data; /* cable length */ - e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, - IGP01E1000_PHY_AGC_D); - e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D & - IGP01E1000_PHY_PAGE_SELECT, &phy_data); - regs_buff[16] = (u32)phy_data; /* cable length */ - regs_buff[17] = 0; /* extended 10bt distance (not needed) */ - e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); - e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS & - IGP01E1000_PHY_PAGE_SELECT, &phy_data); - regs_buff[18] = (u32)phy_data; /* cable polarity */ - e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, - IGP01E1000_PHY_PCS_INIT_REG); - e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG & - IGP01E1000_PHY_PAGE_SELECT, &phy_data); - regs_buff[19] = (u32)phy_data; /* cable polarity */ - regs_buff[20] = 0; /* polarity correction enabled (always) */ - regs_buff[22] = 0; /* phy receive errors (unavailable) */ - regs_buff[23] = regs_buff[18]; /* mdix mode */ - e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); - } else { - e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - regs_buff[13] = (u32)phy_data; /* cable length */ - regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ - regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ - regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ - e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ - regs_buff[18] = regs_buff[13]; /* cable polarity */ - regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ - regs_buff[20] = regs_buff[17]; /* polarity correction */ - /* phy receive errors */ - regs_buff[22] = adapter->phy_stats.receive_errors; - regs_buff[23] = regs_buff[13]; /* mdix mode */ - } - regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */ - e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); - regs_buff[24] = (u32)phy_data; /* phy local receiver status */ - regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ - if (hw->mac_type >= e1000_82540 && - hw->media_type == e1000_media_type_copper) { - regs_buff[26] = er32(MANC); - } -} - -static int e1000_get_eeprom_len(struct net_device *netdev) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - - return hw->eeprom.word_size * 2; -} - -static int e1000_get_eeprom(struct net_device *netdev, - struct ethtool_eeprom *eeprom, u8 *bytes) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u16 *eeprom_buff; - int first_word, last_word; - int ret_val = 0; - u16 i; - - if (eeprom->len == 0) - return -EINVAL; - - eeprom->magic = hw->vendor_id | (hw->device_id << 16); - - first_word = eeprom->offset >> 1; - last_word = (eeprom->offset + eeprom->len - 1) >> 1; - - eeprom_buff = kmalloc(sizeof(u16) * - (last_word - first_word + 1), GFP_KERNEL); - if (!eeprom_buff) - return -ENOMEM; - - if (hw->eeprom.type == e1000_eeprom_spi) - ret_val = e1000_read_eeprom(hw, first_word, - last_word - first_word + 1, - eeprom_buff); - else { - for (i = 0; i < last_word - first_word + 1; i++) { - ret_val = e1000_read_eeprom(hw, first_word + i, 1, - &eeprom_buff[i]); - if (ret_val) - break; - } - } - - /* Device's eeprom is always little-endian, word addressable */ - for (i = 0; i < last_word - first_word + 1; i++) - le16_to_cpus(&eeprom_buff[i]); - - memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), - eeprom->len); - kfree(eeprom_buff); - - return ret_val; -} - -static int e1000_set_eeprom(struct net_device *netdev, - struct ethtool_eeprom *eeprom, u8 *bytes) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u16 *eeprom_buff; - void *ptr; - int max_len, first_word, last_word, ret_val = 0; - u16 i; - - if (eeprom->len == 0) - return -EOPNOTSUPP; - - if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) - return -EFAULT; - - max_len = hw->eeprom.word_size * 2; - - first_word = eeprom->offset >> 1; - last_word = (eeprom->offset + eeprom->len - 1) >> 1; - eeprom_buff = kmalloc(max_len, GFP_KERNEL); - if (!eeprom_buff) - return -ENOMEM; - - ptr = (void *)eeprom_buff; - - if (eeprom->offset & 1) { - /* need read/modify/write of first changed EEPROM word */ - /* only the second byte of the word is being modified */ - ret_val = e1000_read_eeprom(hw, first_word, 1, - &eeprom_buff[0]); - ptr++; - } - if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { - /* need read/modify/write of last changed EEPROM word */ - /* only the first byte of the word is being modified */ - ret_val = e1000_read_eeprom(hw, last_word, 1, - &eeprom_buff[last_word - first_word]); - } - - /* Device's eeprom is always little-endian, word addressable */ - for (i = 0; i < last_word - first_word + 1; i++) - le16_to_cpus(&eeprom_buff[i]); - - memcpy(ptr, bytes, eeprom->len); - - for (i = 0; i < last_word - first_word + 1; i++) - eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); - - ret_val = e1000_write_eeprom(hw, first_word, - last_word - first_word + 1, eeprom_buff); - - /* Update the checksum over the first part of the EEPROM if needed */ - if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG)) - e1000_update_eeprom_checksum(hw); - - kfree(eeprom_buff); - return ret_val; -} - -static void e1000_get_drvinfo(struct net_device *netdev, - struct ethtool_drvinfo *drvinfo) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - char firmware_version[32]; - - strncpy(drvinfo->driver, e1000_driver_name, 32); - strncpy(drvinfo->version, e1000_driver_version, 32); - - sprintf(firmware_version, "N/A"); - strncpy(drvinfo->fw_version, firmware_version, 32); - strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); - drvinfo->regdump_len = e1000_get_regs_len(netdev); - drvinfo->eedump_len = e1000_get_eeprom_len(netdev); -} - -static void e1000_get_ringparam(struct net_device *netdev, - struct ethtool_ringparam *ring) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - e1000_mac_type mac_type = hw->mac_type; - struct e1000_tx_ring *txdr = adapter->tx_ring; - struct e1000_rx_ring *rxdr = adapter->rx_ring; - - ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD : - E1000_MAX_82544_RXD; - ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD : - E1000_MAX_82544_TXD; - ring->rx_mini_max_pending = 0; - ring->rx_jumbo_max_pending = 0; - ring->rx_pending = rxdr->count; - ring->tx_pending = txdr->count; - ring->rx_mini_pending = 0; - ring->rx_jumbo_pending = 0; -} - -static int e1000_set_ringparam(struct net_device *netdev, - struct ethtool_ringparam *ring) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - e1000_mac_type mac_type = hw->mac_type; - struct e1000_tx_ring *txdr, *tx_old; - struct e1000_rx_ring *rxdr, *rx_old; - int i, err; - - if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) - return -EINVAL; - - while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) - msleep(1); - - if (netif_running(adapter->netdev)) - e1000_down(adapter); - - tx_old = adapter->tx_ring; - rx_old = adapter->rx_ring; - - err = -ENOMEM; - txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL); - if (!txdr) - goto err_alloc_tx; - - rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL); - if (!rxdr) - goto err_alloc_rx; - - adapter->tx_ring = txdr; - adapter->rx_ring = rxdr; - - rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD); - rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ? - E1000_MAX_RXD : E1000_MAX_82544_RXD)); - rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); - - txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD); - txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ? - E1000_MAX_TXD : E1000_MAX_82544_TXD)); - txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); - - for (i = 0; i < adapter->num_tx_queues; i++) - txdr[i].count = txdr->count; - for (i = 0; i < adapter->num_rx_queues; i++) - rxdr[i].count = rxdr->count; - - if (netif_running(adapter->netdev)) { - /* Try to get new resources before deleting old */ - err = e1000_setup_all_rx_resources(adapter); - if (err) - goto err_setup_rx; - err = e1000_setup_all_tx_resources(adapter); - if (err) - goto err_setup_tx; - - /* save the new, restore the old in order to free it, - * then restore the new back again */ - - adapter->rx_ring = rx_old; - adapter->tx_ring = tx_old; - e1000_free_all_rx_resources(adapter); - e1000_free_all_tx_resources(adapter); - kfree(tx_old); - kfree(rx_old); - adapter->rx_ring = rxdr; - adapter->tx_ring = txdr; - err = e1000_up(adapter); - if (err) - goto err_setup; - } - - clear_bit(__E1000_RESETTING, &adapter->flags); - return 0; -err_setup_tx: - e1000_free_all_rx_resources(adapter); -err_setup_rx: - adapter->rx_ring = rx_old; - adapter->tx_ring = tx_old; - kfree(rxdr); -err_alloc_rx: - kfree(txdr); -err_alloc_tx: - e1000_up(adapter); -err_setup: - clear_bit(__E1000_RESETTING, &adapter->flags); - return err; -} - -static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg, - u32 mask, u32 write) -{ - struct e1000_hw *hw = &adapter->hw; - static const u32 test[] = - {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; - u8 __iomem *address = hw->hw_addr + reg; - u32 read; - int i; - - for (i = 0; i < ARRAY_SIZE(test); i++) { - writel(write & test[i], address); - read = readl(address); - if (read != (write & test[i] & mask)) { - e_err(drv, "pattern test reg %04X failed: " - "got 0x%08X expected 0x%08X\n", - reg, read, (write & test[i] & mask)); - *data = reg; - return true; - } - } - return false; -} - -static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg, - u32 mask, u32 write) -{ - struct e1000_hw *hw = &adapter->hw; - u8 __iomem *address = hw->hw_addr + reg; - u32 read; - - writel(write & mask, address); - read = readl(address); - if ((read & mask) != (write & mask)) { - e_err(drv, "set/check reg %04X test failed: " - "got 0x%08X expected 0x%08X\n", - reg, (read & mask), (write & mask)); - *data = reg; - return true; - } - return false; -} - -#define REG_PATTERN_TEST(reg, mask, write) \ - do { \ - if (reg_pattern_test(adapter, data, \ - (hw->mac_type >= e1000_82543) \ - ? E1000_##reg : E1000_82542_##reg, \ - mask, write)) \ - return 1; \ - } while (0) - -#define REG_SET_AND_CHECK(reg, mask, write) \ - do { \ - if (reg_set_and_check(adapter, data, \ - (hw->mac_type >= e1000_82543) \ - ? E1000_##reg : E1000_82542_##reg, \ - mask, write)) \ - return 1; \ - } while (0) - -static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) -{ - u32 value, before, after; - u32 i, toggle; - struct e1000_hw *hw = &adapter->hw; - - /* The status register is Read Only, so a write should fail. - * Some bits that get toggled are ignored. - */ - - /* there are several bits on newer hardware that are r/w */ - toggle = 0xFFFFF833; - - before = er32(STATUS); - value = (er32(STATUS) & toggle); - ew32(STATUS, toggle); - after = er32(STATUS) & toggle; - if (value != after) { - e_err(drv, "failed STATUS register test got: " - "0x%08X expected: 0x%08X\n", after, value); - *data = 1; - return 1; - } - /* restore previous status */ - ew32(STATUS, before); - - REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); - REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); - REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); - REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); - - REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); - REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); - REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); - REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF); - REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF); - REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8); - REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF); - REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF); - REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); - REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); - - REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); - - before = 0x06DFB3FE; - REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB); - REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); - - if (hw->mac_type >= e1000_82543) { - - REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF); - REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); - REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); - REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); - REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); - value = E1000_RAR_ENTRIES; - for (i = 0; i < value; i++) { - REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, - 0xFFFFFFFF); - } - - } else { - - REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); - REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); - REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); - REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); - - } - - value = E1000_MC_TBL_SIZE; - for (i = 0; i < value; i++) - REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); - - *data = 0; - return 0; -} - -static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) -{ - struct e1000_hw *hw = &adapter->hw; - u16 temp; - u16 checksum = 0; - u16 i; - - *data = 0; - /* Read and add up the contents of the EEPROM */ - for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { - if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) { - *data = 1; - break; - } - checksum += temp; - } - - /* If Checksum is not Correct return error else test passed */ - if ((checksum != (u16)EEPROM_SUM) && !(*data)) - *data = 2; - - return *data; -} - -static irqreturn_t e1000_test_intr(int irq, void *data) -{ - struct net_device *netdev = (struct net_device *)data; - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - - adapter->test_icr |= er32(ICR); - - return IRQ_HANDLED; -} - -static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) -{ - struct net_device *netdev = adapter->netdev; - u32 mask, i = 0; - bool shared_int = true; - u32 irq = adapter->pdev->irq; - struct e1000_hw *hw = &adapter->hw; - - *data = 0; - - /* NOTE: we don't test MSI interrupts here, yet */ - /* Hook up test interrupt handler just for this test */ - if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, - netdev)) - shared_int = false; - else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, - netdev->name, netdev)) { - *data = 1; - return -1; - } - e_info(hw, "testing %s interrupt\n", (shared_int ? - "shared" : "unshared")); - - /* Disable all the interrupts */ - ew32(IMC, 0xFFFFFFFF); - E1000_WRITE_FLUSH(); - msleep(10); - - /* Test each interrupt */ - for (; i < 10; i++) { - - /* Interrupt to test */ - mask = 1 << i; - - if (!shared_int) { - /* Disable the interrupt to be reported in - * the cause register and then force the same - * interrupt and see if one gets posted. If - * an interrupt was posted to the bus, the - * test failed. - */ - adapter->test_icr = 0; - ew32(IMC, mask); - ew32(ICS, mask); - E1000_WRITE_FLUSH(); - msleep(10); - - if (adapter->test_icr & mask) { - *data = 3; - break; - } - } - - /* Enable the interrupt to be reported in - * the cause register and then force the same - * interrupt and see if one gets posted. If - * an interrupt was not posted to the bus, the - * test failed. - */ - adapter->test_icr = 0; - ew32(IMS, mask); - ew32(ICS, mask); - E1000_WRITE_FLUSH(); - msleep(10); - - if (!(adapter->test_icr & mask)) { - *data = 4; - break; - } - - if (!shared_int) { - /* Disable the other interrupts to be reported in - * the cause register and then force the other - * interrupts and see if any get posted. If - * an interrupt was posted to the bus, the - * test failed. - */ - adapter->test_icr = 0; - ew32(IMC, ~mask & 0x00007FFF); - ew32(ICS, ~mask & 0x00007FFF); - E1000_WRITE_FLUSH(); - msleep(10); - - if (adapter->test_icr) { - *data = 5; - break; - } - } - } - - /* Disable all the interrupts */ - ew32(IMC, 0xFFFFFFFF); - E1000_WRITE_FLUSH(); - msleep(10); - - /* Unhook test interrupt handler */ - free_irq(irq, netdev); - - return *data; -} - -static void e1000_free_desc_rings(struct e1000_adapter *adapter) -{ - struct e1000_tx_ring *txdr = &adapter->test_tx_ring; - struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; - struct pci_dev *pdev = adapter->pdev; - int i; - - if (txdr->desc && txdr->buffer_info) { - for (i = 0; i < txdr->count; i++) { - if (txdr->buffer_info[i].dma) - dma_unmap_single(&pdev->dev, - txdr->buffer_info[i].dma, - txdr->buffer_info[i].length, - DMA_TO_DEVICE); - if (txdr->buffer_info[i].skb) - dev_kfree_skb(txdr->buffer_info[i].skb); - } - } - - if (rxdr->desc && rxdr->buffer_info) { - for (i = 0; i < rxdr->count; i++) { - if (rxdr->buffer_info[i].dma) - dma_unmap_single(&pdev->dev, - rxdr->buffer_info[i].dma, - rxdr->buffer_info[i].length, - DMA_FROM_DEVICE); - if (rxdr->buffer_info[i].skb) - dev_kfree_skb(rxdr->buffer_info[i].skb); - } - } - - if (txdr->desc) { - dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, - txdr->dma); - txdr->desc = NULL; - } - if (rxdr->desc) { - dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, - rxdr->dma); - rxdr->desc = NULL; - } - - kfree(txdr->buffer_info); - txdr->buffer_info = NULL; - kfree(rxdr->buffer_info); - rxdr->buffer_info = NULL; -} - -static int e1000_setup_desc_rings(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - struct e1000_tx_ring *txdr = &adapter->test_tx_ring; - struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; - struct pci_dev *pdev = adapter->pdev; - u32 rctl; - int i, ret_val; - - /* Setup Tx descriptor ring and Tx buffers */ - - if (!txdr->count) - txdr->count = E1000_DEFAULT_TXD; - - txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer), - GFP_KERNEL); - if (!txdr->buffer_info) { - ret_val = 1; - goto err_nomem; - } - - txdr->size = txdr->count * sizeof(struct e1000_tx_desc); - txdr->size = ALIGN(txdr->size, 4096); - txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, - GFP_KERNEL); - if (!txdr->desc) { - ret_val = 2; - goto err_nomem; - } - memset(txdr->desc, 0, txdr->size); - txdr->next_to_use = txdr->next_to_clean = 0; - - ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF)); - ew32(TDBAH, ((u64)txdr->dma >> 32)); - ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc)); - ew32(TDH, 0); - ew32(TDT, 0); - ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | - E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | - E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); - - for (i = 0; i < txdr->count; i++) { - struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); - struct sk_buff *skb; - unsigned int size = 1024; - - skb = alloc_skb(size, GFP_KERNEL); - if (!skb) { - ret_val = 3; - goto err_nomem; - } - skb_put(skb, size); - txdr->buffer_info[i].skb = skb; - txdr->buffer_info[i].length = skb->len; - txdr->buffer_info[i].dma = - dma_map_single(&pdev->dev, skb->data, skb->len, - DMA_TO_DEVICE); - tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma); - tx_desc->lower.data = cpu_to_le32(skb->len); - tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | - E1000_TXD_CMD_IFCS | - E1000_TXD_CMD_RPS); - tx_desc->upper.data = 0; - } - - /* Setup Rx descriptor ring and Rx buffers */ - - if (!rxdr->count) - rxdr->count = E1000_DEFAULT_RXD; - - rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer), - GFP_KERNEL); - if (!rxdr->buffer_info) { - ret_val = 4; - goto err_nomem; - } - - rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); - rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, - GFP_KERNEL); - if (!rxdr->desc) { - ret_val = 5; - goto err_nomem; - } - memset(rxdr->desc, 0, rxdr->size); - rxdr->next_to_use = rxdr->next_to_clean = 0; - - rctl = er32(RCTL); - ew32(RCTL, rctl & ~E1000_RCTL_EN); - ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF)); - ew32(RDBAH, ((u64)rxdr->dma >> 32)); - ew32(RDLEN, rxdr->size); - ew32(RDH, 0); - ew32(RDT, 0); - rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | - E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | - (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); - ew32(RCTL, rctl); - - for (i = 0; i < rxdr->count; i++) { - struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); - struct sk_buff *skb; - - skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL); - if (!skb) { - ret_val = 6; - goto err_nomem; - } - skb_reserve(skb, NET_IP_ALIGN); - rxdr->buffer_info[i].skb = skb; - rxdr->buffer_info[i].length = E1000_RXBUFFER_2048; - rxdr->buffer_info[i].dma = - dma_map_single(&pdev->dev, skb->data, - E1000_RXBUFFER_2048, DMA_FROM_DEVICE); - rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma); - memset(skb->data, 0x00, skb->len); - } - - return 0; - -err_nomem: - e1000_free_desc_rings(adapter); - return ret_val; -} - -static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - - /* Write out to PHY registers 29 and 30 to disable the Receiver. */ - e1000_write_phy_reg(hw, 29, 0x001F); - e1000_write_phy_reg(hw, 30, 0x8FFC); - e1000_write_phy_reg(hw, 29, 0x001A); - e1000_write_phy_reg(hw, 30, 0x8FF0); -} - -static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u16 phy_reg; - - /* Because we reset the PHY above, we need to re-force TX_CLK in the - * Extended PHY Specific Control Register to 25MHz clock. This - * value defaults back to a 2.5MHz clock when the PHY is reset. - */ - e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); - phy_reg |= M88E1000_EPSCR_TX_CLK_25; - e1000_write_phy_reg(hw, - M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); - - /* In addition, because of the s/w reset above, we need to enable - * CRS on TX. This must be set for both full and half duplex - * operation. - */ - e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); - phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - e1000_write_phy_reg(hw, - M88E1000_PHY_SPEC_CTRL, phy_reg); -} - -static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 ctrl_reg; - u16 phy_reg; - - /* Setup the Device Control Register for PHY loopback test. */ - - ctrl_reg = er32(CTRL); - ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */ - E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ - E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ - E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */ - E1000_CTRL_FD); /* Force Duplex to FULL */ - - ew32(CTRL, ctrl_reg); - - /* Read the PHY Specific Control Register (0x10) */ - e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); - - /* Clear Auto-Crossover bits in PHY Specific Control Register - * (bits 6:5). - */ - phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; - e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg); - - /* Perform software reset on the PHY */ - e1000_phy_reset(hw); - - /* Have to setup TX_CLK and TX_CRS after software reset */ - e1000_phy_reset_clk_and_crs(adapter); - - e1000_write_phy_reg(hw, PHY_CTRL, 0x8100); - - /* Wait for reset to complete. */ - udelay(500); - - /* Have to setup TX_CLK and TX_CRS after software reset */ - e1000_phy_reset_clk_and_crs(adapter); - - /* Write out to PHY registers 29 and 30 to disable the Receiver. */ - e1000_phy_disable_receiver(adapter); - - /* Set the loopback bit in the PHY control register. */ - e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); - phy_reg |= MII_CR_LOOPBACK; - e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); - - /* Setup TX_CLK and TX_CRS one more time. */ - e1000_phy_reset_clk_and_crs(adapter); - - /* Check Phy Configuration */ - e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); - if (phy_reg != 0x4100) - return 9; - - e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); - if (phy_reg != 0x0070) - return 10; - - e1000_read_phy_reg(hw, 29, &phy_reg); - if (phy_reg != 0x001A) - return 11; - - return 0; -} - -static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 ctrl_reg = 0; - u32 stat_reg = 0; - - hw->autoneg = false; - - if (hw->phy_type == e1000_phy_m88) { - /* Auto-MDI/MDIX Off */ - e1000_write_phy_reg(hw, - M88E1000_PHY_SPEC_CTRL, 0x0808); - /* reset to update Auto-MDI/MDIX */ - e1000_write_phy_reg(hw, PHY_CTRL, 0x9140); - /* autoneg off */ - e1000_write_phy_reg(hw, PHY_CTRL, 0x8140); - } - - ctrl_reg = er32(CTRL); - - /* force 1000, set loopback */ - e1000_write_phy_reg(hw, PHY_CTRL, 0x4140); - - /* Now set up the MAC to the same speed/duplex as the PHY. */ - ctrl_reg = er32(CTRL); - ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ - ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ - E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ - E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ - E1000_CTRL_FD); /* Force Duplex to FULL */ - - if (hw->media_type == e1000_media_type_copper && - hw->phy_type == e1000_phy_m88) - ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ - else { - /* Set the ILOS bit on the fiber Nic is half - * duplex link is detected. */ - stat_reg = er32(STATUS); - if ((stat_reg & E1000_STATUS_FD) == 0) - ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); - } - - ew32(CTRL, ctrl_reg); - - /* Disable the receiver on the PHY so when a cable is plugged in, the - * PHY does not begin to autoneg when a cable is reconnected to the NIC. - */ - if (hw->phy_type == e1000_phy_m88) - e1000_phy_disable_receiver(adapter); - - udelay(500); - - return 0; -} - -static int e1000_set_phy_loopback(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u16 phy_reg = 0; - u16 count = 0; - - switch (hw->mac_type) { - case e1000_82543: - if (hw->media_type == e1000_media_type_copper) { - /* Attempt to setup Loopback mode on Non-integrated PHY. - * Some PHY registers get corrupted at random, so - * attempt this 10 times. - */ - while (e1000_nonintegrated_phy_loopback(adapter) && - count++ < 10); - if (count < 11) - return 0; - } - break; - - case e1000_82544: - case e1000_82540: - case e1000_82545: - case e1000_82545_rev_3: - case e1000_82546: - case e1000_82546_rev_3: - case e1000_82541: - case e1000_82541_rev_2: - case e1000_82547: - case e1000_82547_rev_2: - return e1000_integrated_phy_loopback(adapter); - break; - default: - /* Default PHY loopback work is to read the MII - * control register and assert bit 14 (loopback mode). - */ - e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); - phy_reg |= MII_CR_LOOPBACK; - e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); - return 0; - break; - } - - return 8; -} - -static int e1000_setup_loopback_test(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 rctl; - - if (hw->media_type == e1000_media_type_fiber || - hw->media_type == e1000_media_type_internal_serdes) { - switch (hw->mac_type) { - case e1000_82545: - case e1000_82546: - case e1000_82545_rev_3: - case e1000_82546_rev_3: - return e1000_set_phy_loopback(adapter); - break; - default: - rctl = er32(RCTL); - rctl |= E1000_RCTL_LBM_TCVR; - ew32(RCTL, rctl); - return 0; - } - } else if (hw->media_type == e1000_media_type_copper) - return e1000_set_phy_loopback(adapter); - - return 7; -} - -static void e1000_loopback_cleanup(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 rctl; - u16 phy_reg; - - rctl = er32(RCTL); - rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); - ew32(RCTL, rctl); - - switch (hw->mac_type) { - case e1000_82545: - case e1000_82546: - case e1000_82545_rev_3: - case e1000_82546_rev_3: - default: - hw->autoneg = true; - e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); - if (phy_reg & MII_CR_LOOPBACK) { - phy_reg &= ~MII_CR_LOOPBACK; - e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); - e1000_phy_reset(hw); - } - break; - } -} - -static void e1000_create_lbtest_frame(struct sk_buff *skb, - unsigned int frame_size) -{ - memset(skb->data, 0xFF, frame_size); - frame_size &= ~1; - memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); - memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); - memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); -} - -static int e1000_check_lbtest_frame(struct sk_buff *skb, - unsigned int frame_size) -{ - frame_size &= ~1; - if (*(skb->data + 3) == 0xFF) { - if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && - (*(skb->data + frame_size / 2 + 12) == 0xAF)) { - return 0; - } - } - return 13; -} - -static int e1000_run_loopback_test(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - struct e1000_tx_ring *txdr = &adapter->test_tx_ring; - struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; - struct pci_dev *pdev = adapter->pdev; - int i, j, k, l, lc, good_cnt, ret_val=0; - unsigned long time; - - ew32(RDT, rxdr->count - 1); - - /* Calculate the loop count based on the largest descriptor ring - * The idea is to wrap the largest ring a number of times using 64 - * send/receive pairs during each loop - */ - - if (rxdr->count <= txdr->count) - lc = ((txdr->count / 64) * 2) + 1; - else - lc = ((rxdr->count / 64) * 2) + 1; - - k = l = 0; - for (j = 0; j <= lc; j++) { /* loop count loop */ - for (i = 0; i < 64; i++) { /* send the packets */ - e1000_create_lbtest_frame(txdr->buffer_info[i].skb, - 1024); - dma_sync_single_for_device(&pdev->dev, - txdr->buffer_info[k].dma, - txdr->buffer_info[k].length, - DMA_TO_DEVICE); - if (unlikely(++k == txdr->count)) k = 0; - } - ew32(TDT, k); - E1000_WRITE_FLUSH(); - msleep(200); - time = jiffies; /* set the start time for the receive */ - good_cnt = 0; - do { /* receive the sent packets */ - dma_sync_single_for_cpu(&pdev->dev, - rxdr->buffer_info[l].dma, - rxdr->buffer_info[l].length, - DMA_FROM_DEVICE); - - ret_val = e1000_check_lbtest_frame( - rxdr->buffer_info[l].skb, - 1024); - if (!ret_val) - good_cnt++; - if (unlikely(++l == rxdr->count)) l = 0; - /* time + 20 msecs (200 msecs on 2.4) is more than - * enough time to complete the receives, if it's - * exceeded, break and error off - */ - } while (good_cnt < 64 && jiffies < (time + 20)); - if (good_cnt != 64) { - ret_val = 13; /* ret_val is the same as mis-compare */ - break; - } - if (jiffies >= (time + 2)) { - ret_val = 14; /* error code for time out error */ - break; - } - } /* end loop count loop */ - return ret_val; -} - -static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) -{ - *data = e1000_setup_desc_rings(adapter); - if (*data) - goto out; - *data = e1000_setup_loopback_test(adapter); - if (*data) - goto err_loopback; - *data = e1000_run_loopback_test(adapter); - e1000_loopback_cleanup(adapter); - -err_loopback: - e1000_free_desc_rings(adapter); -out: - return *data; -} - -static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) -{ - struct e1000_hw *hw = &adapter->hw; - *data = 0; - if (hw->media_type == e1000_media_type_internal_serdes) { - int i = 0; - hw->serdes_has_link = false; - - /* On some blade server designs, link establishment - * could take as long as 2-3 minutes */ - do { - e1000_check_for_link(hw); - if (hw->serdes_has_link) - return *data; - msleep(20); - } while (i++ < 3750); - - *data = 1; - } else { - e1000_check_for_link(hw); - if (hw->autoneg) /* if auto_neg is set wait for it */ - msleep(4000); - - if (!(er32(STATUS) & E1000_STATUS_LU)) { - *data = 1; - } - } - return *data; -} - -static int e1000_get_sset_count(struct net_device *netdev, int sset) -{ - switch (sset) { - case ETH_SS_TEST: - return E1000_TEST_LEN; - case ETH_SS_STATS: - return E1000_STATS_LEN; - default: - return -EOPNOTSUPP; - } -} - -static void e1000_diag_test(struct net_device *netdev, - struct ethtool_test *eth_test, u64 *data) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - bool if_running = netif_running(netdev); - - set_bit(__E1000_TESTING, &adapter->flags); - if (eth_test->flags == ETH_TEST_FL_OFFLINE) { - /* Offline tests */ - - /* save speed, duplex, autoneg settings */ - u16 autoneg_advertised = hw->autoneg_advertised; - u8 forced_speed_duplex = hw->forced_speed_duplex; - u8 autoneg = hw->autoneg; - - e_info(hw, "offline testing starting\n"); - - /* Link test performed before hardware reset so autoneg doesn't - * interfere with test result */ - if (e1000_link_test(adapter, &data[4])) - eth_test->flags |= ETH_TEST_FL_FAILED; - - if (if_running) - /* indicate we're in test mode */ - dev_close(netdev); - else - e1000_reset(adapter); - - if (e1000_reg_test(adapter, &data[0])) - eth_test->flags |= ETH_TEST_FL_FAILED; - - e1000_reset(adapter); - if (e1000_eeprom_test(adapter, &data[1])) - eth_test->flags |= ETH_TEST_FL_FAILED; - - e1000_reset(adapter); - if (e1000_intr_test(adapter, &data[2])) - eth_test->flags |= ETH_TEST_FL_FAILED; - - e1000_reset(adapter); - /* make sure the phy is powered up */ - e1000_power_up_phy(adapter); - if (e1000_loopback_test(adapter, &data[3])) - eth_test->flags |= ETH_TEST_FL_FAILED; - - /* restore speed, duplex, autoneg settings */ - hw->autoneg_advertised = autoneg_advertised; - hw->forced_speed_duplex = forced_speed_duplex; - hw->autoneg = autoneg; - - e1000_reset(adapter); - clear_bit(__E1000_TESTING, &adapter->flags); - if (if_running) - dev_open(netdev); - } else { - e_info(hw, "online testing starting\n"); - /* Online tests */ - if (e1000_link_test(adapter, &data[4])) - eth_test->flags |= ETH_TEST_FL_FAILED; - - /* Online tests aren't run; pass by default */ - data[0] = 0; - data[1] = 0; - data[2] = 0; - data[3] = 0; - - clear_bit(__E1000_TESTING, &adapter->flags); - } - msleep_interruptible(4 * 1000); -} - -static int e1000_wol_exclusion(struct e1000_adapter *adapter, - struct ethtool_wolinfo *wol) -{ - struct e1000_hw *hw = &adapter->hw; - int retval = 1; /* fail by default */ - - switch (hw->device_id) { - case E1000_DEV_ID_82542: - case E1000_DEV_ID_82543GC_FIBER: - case E1000_DEV_ID_82543GC_COPPER: - case E1000_DEV_ID_82544EI_FIBER: - case E1000_DEV_ID_82546EB_QUAD_COPPER: - case E1000_DEV_ID_82545EM_FIBER: - case E1000_DEV_ID_82545EM_COPPER: - case E1000_DEV_ID_82546GB_QUAD_COPPER: - case E1000_DEV_ID_82546GB_PCIE: - /* these don't support WoL at all */ - wol->supported = 0; - break; - case E1000_DEV_ID_82546EB_FIBER: - case E1000_DEV_ID_82546GB_FIBER: - /* Wake events not supported on port B */ - if (er32(STATUS) & E1000_STATUS_FUNC_1) { - wol->supported = 0; - break; - } - /* return success for non excluded adapter ports */ - retval = 0; - break; - case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: - /* quad port adapters only support WoL on port A */ - if (!adapter->quad_port_a) { - wol->supported = 0; - break; - } - /* return success for non excluded adapter ports */ - retval = 0; - break; - default: - /* dual port cards only support WoL on port A from now on - * unless it was enabled in the eeprom for port B - * so exclude FUNC_1 ports from having WoL enabled */ - if (er32(STATUS) & E1000_STATUS_FUNC_1 && - !adapter->eeprom_wol) { - wol->supported = 0; - break; - } - - retval = 0; - } - - return retval; -} - -static void e1000_get_wol(struct net_device *netdev, - struct ethtool_wolinfo *wol) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - - wol->supported = WAKE_UCAST | WAKE_MCAST | - WAKE_BCAST | WAKE_MAGIC; - wol->wolopts = 0; - - /* this function will set ->supported = 0 and return 1 if wol is not - * supported by this hardware */ - if (e1000_wol_exclusion(adapter, wol) || - !device_can_wakeup(&adapter->pdev->dev)) - return; - - /* apply any specific unsupported masks here */ - switch (hw->device_id) { - case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: - /* KSP3 does not suppport UCAST wake-ups */ - wol->supported &= ~WAKE_UCAST; - - if (adapter->wol & E1000_WUFC_EX) - e_err(drv, "Interface does not support directed " - "(unicast) frame wake-up packets\n"); - break; - default: - break; - } - - if (adapter->wol & E1000_WUFC_EX) - wol->wolopts |= WAKE_UCAST; - if (adapter->wol & E1000_WUFC_MC) - wol->wolopts |= WAKE_MCAST; - if (adapter->wol & E1000_WUFC_BC) - wol->wolopts |= WAKE_BCAST; - if (adapter->wol & E1000_WUFC_MAG) - wol->wolopts |= WAKE_MAGIC; -} - -static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - - if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) - return -EOPNOTSUPP; - - if (e1000_wol_exclusion(adapter, wol) || - !device_can_wakeup(&adapter->pdev->dev)) - return wol->wolopts ? -EOPNOTSUPP : 0; - - switch (hw->device_id) { - case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: - if (wol->wolopts & WAKE_UCAST) { - e_err(drv, "Interface does not support directed " - "(unicast) frame wake-up packets\n"); - return -EOPNOTSUPP; - } - break; - default: - break; - } - - /* these settings will always override what we currently have */ - adapter->wol = 0; - - if (wol->wolopts & WAKE_UCAST) - adapter->wol |= E1000_WUFC_EX; - if (wol->wolopts & WAKE_MCAST) - adapter->wol |= E1000_WUFC_MC; - if (wol->wolopts & WAKE_BCAST) - adapter->wol |= E1000_WUFC_BC; - if (wol->wolopts & WAKE_MAGIC) - adapter->wol |= E1000_WUFC_MAG; - - device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); - - return 0; -} - -static int e1000_set_phys_id(struct net_device *netdev, - enum ethtool_phys_id_state state) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - - switch (state) { - case ETHTOOL_ID_ACTIVE: - e1000_setup_led(hw); - return 2; - - case ETHTOOL_ID_ON: - e1000_led_on(hw); - break; - - case ETHTOOL_ID_OFF: - e1000_led_off(hw); - break; - - case ETHTOOL_ID_INACTIVE: - e1000_cleanup_led(hw); - } - - return 0; -} - -static int e1000_get_coalesce(struct net_device *netdev, - struct ethtool_coalesce *ec) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - - if (adapter->hw.mac_type < e1000_82545) - return -EOPNOTSUPP; - - if (adapter->itr_setting <= 4) - ec->rx_coalesce_usecs = adapter->itr_setting; - else - ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; - - return 0; -} - -static int e1000_set_coalesce(struct net_device *netdev, - struct ethtool_coalesce *ec) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - - if (hw->mac_type < e1000_82545) - return -EOPNOTSUPP; - - if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || - ((ec->rx_coalesce_usecs > 4) && - (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || - (ec->rx_coalesce_usecs == 2)) - return -EINVAL; - - if (ec->rx_coalesce_usecs == 4) { - adapter->itr = adapter->itr_setting = 4; - } else if (ec->rx_coalesce_usecs <= 3) { - adapter->itr = 20000; - adapter->itr_setting = ec->rx_coalesce_usecs; - } else { - adapter->itr = (1000000 / ec->rx_coalesce_usecs); - adapter->itr_setting = adapter->itr & ~3; - } - - if (adapter->itr_setting != 0) - ew32(ITR, 1000000000 / (adapter->itr * 256)); - else - ew32(ITR, 0); - - return 0; -} - -static int e1000_nway_reset(struct net_device *netdev) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - if (netif_running(netdev)) - e1000_reinit_locked(adapter); - return 0; -} - -static void e1000_get_ethtool_stats(struct net_device *netdev, - struct ethtool_stats *stats, u64 *data) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - int i; - char *p = NULL; - - e1000_update_stats(adapter); - for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { - switch (e1000_gstrings_stats[i].type) { - case NETDEV_STATS: - p = (char *) netdev + - e1000_gstrings_stats[i].stat_offset; - break; - case E1000_STATS: - p = (char *) adapter + - e1000_gstrings_stats[i].stat_offset; - break; - } - - data[i] = (e1000_gstrings_stats[i].sizeof_stat == - sizeof(u64)) ? *(u64 *)p : *(u32 *)p; - } -/* BUG_ON(i != E1000_STATS_LEN); */ -} - -static void e1000_get_strings(struct net_device *netdev, u32 stringset, - u8 *data) -{ - u8 *p = data; - int i; - - switch (stringset) { - case ETH_SS_TEST: - memcpy(data, *e1000_gstrings_test, - sizeof(e1000_gstrings_test)); - break; - case ETH_SS_STATS: - for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { - memcpy(p, e1000_gstrings_stats[i].stat_string, - ETH_GSTRING_LEN); - p += ETH_GSTRING_LEN; - } -/* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */ - break; - } -} - -static const struct ethtool_ops e1000_ethtool_ops = { - .get_settings = e1000_get_settings, - .set_settings = e1000_set_settings, - .get_drvinfo = e1000_get_drvinfo, - .get_regs_len = e1000_get_regs_len, - .get_regs = e1000_get_regs, - .get_wol = e1000_get_wol, - .set_wol = e1000_set_wol, - .get_msglevel = e1000_get_msglevel, - .set_msglevel = e1000_set_msglevel, - .nway_reset = e1000_nway_reset, - .get_link = e1000_get_link, - .get_eeprom_len = e1000_get_eeprom_len, - .get_eeprom = e1000_get_eeprom, - .set_eeprom = e1000_set_eeprom, - .get_ringparam = e1000_get_ringparam, - .set_ringparam = e1000_set_ringparam, - .get_pauseparam = e1000_get_pauseparam, - .set_pauseparam = e1000_set_pauseparam, - .self_test = e1000_diag_test, - .get_strings = e1000_get_strings, - .set_phys_id = e1000_set_phys_id, - .get_ethtool_stats = e1000_get_ethtool_stats, - .get_sset_count = e1000_get_sset_count, - .get_coalesce = e1000_get_coalesce, - .set_coalesce = e1000_set_coalesce, -}; - -void e1000_set_ethtool_ops(struct net_device *netdev) -{ - SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); -} diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c deleted file mode 100644 index 8545c7aa93eb..000000000000 --- a/drivers/net/e1000/e1000_hw.c +++ /dev/null @@ -1,5824 +0,0 @@ -/******************************************************************************* - - Intel PRO/1000 Linux driver - Copyright(c) 1999 - 2006 Intel Corporation. - - This program is free software; you can redistribute it and/or modify it - under the terms and conditions of the GNU General Public License, - version 2, as published by the Free Software Foundation. - - This program is distributed in the hope it will be useful, but WITHOUT - ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - more details. - - You should have received a copy of the GNU General Public License along with - this program; if not, write to the Free Software Foundation, Inc., - 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - - The full GNU General Public License is included in this distribution in - the file called "COPYING". - - Contact Information: - Linux NICS <linux.nics@intel.com> - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - - */ - -/* e1000_hw.c - * Shared functions for accessing and configuring the MAC - */ - -#include "e1000.h" - -static s32 e1000_check_downshift(struct e1000_hw *hw); -static s32 e1000_check_polarity(struct e1000_hw *hw, - e1000_rev_polarity *polarity); -static void e1000_clear_hw_cntrs(struct e1000_hw *hw); -static void e1000_clear_vfta(struct e1000_hw *hw); -static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, - bool link_up); -static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw); -static s32 e1000_detect_gig_phy(struct e1000_hw *hw); -static s32 e1000_get_auto_rd_done(struct e1000_hw *hw); -static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, - u16 *max_length); -static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); -static s32 e1000_id_led_init(struct e1000_hw *hw); -static void e1000_init_rx_addrs(struct e1000_hw *hw); -static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, - struct e1000_phy_info *phy_info); -static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, - struct e1000_phy_info *phy_info); -static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); -static s32 e1000_wait_autoneg(struct e1000_hw *hw); -static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value); -static s32 e1000_set_phy_type(struct e1000_hw *hw); -static void e1000_phy_init_script(struct e1000_hw *hw); -static s32 e1000_setup_copper_link(struct e1000_hw *hw); -static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw); -static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw); -static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); -static s32 e1000_config_mac_to_phy(struct e1000_hw *hw); -static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl); -static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl); -static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count); -static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw); -static s32 e1000_phy_reset_dsp(struct e1000_hw *hw); -static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw); -static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd); -static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd); -static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count); -static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, - u16 phy_data); -static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, - u16 *phy_data); -static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count); -static s32 e1000_acquire_eeprom(struct e1000_hw *hw); -static void e1000_release_eeprom(struct e1000_hw *hw); -static void e1000_standby_eeprom(struct e1000_hw *hw); -static s32 e1000_set_vco_speed(struct e1000_hw *hw); -static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw); -static s32 e1000_set_phy_mode(struct e1000_hw *hw); -static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data); -static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data); - -/* IGP cable length table */ -static const -u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = { - 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, - 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, - 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, - 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, - 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, - 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, - 100, - 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, - 110, 110, - 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, - 120, 120 -}; - -static DEFINE_SPINLOCK(e1000_eeprom_lock); - -/** - * e1000_set_phy_type - Set the phy type member in the hw struct. - * @hw: Struct containing variables accessed by shared code - */ -static s32 e1000_set_phy_type(struct e1000_hw *hw) -{ - e_dbg("e1000_set_phy_type"); - - if (hw->mac_type == e1000_undefined) - return -E1000_ERR_PHY_TYPE; - - switch (hw->phy_id) { - case M88E1000_E_PHY_ID: - case M88E1000_I_PHY_ID: - case M88E1011_I_PHY_ID: - case M88E1111_I_PHY_ID: - case M88E1118_E_PHY_ID: - hw->phy_type = e1000_phy_m88; - break; - case IGP01E1000_I_PHY_ID: - if (hw->mac_type == e1000_82541 || - hw->mac_type == e1000_82541_rev_2 || - hw->mac_type == e1000_82547 || - hw->mac_type == e1000_82547_rev_2) - hw->phy_type = e1000_phy_igp; - break; - case RTL8211B_PHY_ID: - hw->phy_type = e1000_phy_8211; - break; - case RTL8201N_PHY_ID: - hw->phy_type = e1000_phy_8201; - break; - default: - /* Should never have loaded on this device */ - hw->phy_type = e1000_phy_undefined; - return -E1000_ERR_PHY_TYPE; - } - - return E1000_SUCCESS; -} - -/** - * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY - * @hw: Struct containing variables accessed by shared code - */ -static void e1000_phy_init_script(struct e1000_hw *hw) -{ - u32 ret_val; - u16 phy_saved_data; - - e_dbg("e1000_phy_init_script"); - - if (hw->phy_init_script) { - msleep(20); - - /* Save off the current value of register 0x2F5B to be restored at - * the end of this routine. */ - ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); - - /* Disabled the PHY transmitter */ - e1000_write_phy_reg(hw, 0x2F5B, 0x0003); - msleep(20); - - e1000_write_phy_reg(hw, 0x0000, 0x0140); - msleep(5); - - switch (hw->mac_type) { - case e1000_82541: - case e1000_82547: - e1000_write_phy_reg(hw, 0x1F95, 0x0001); - e1000_write_phy_reg(hw, 0x1F71, 0xBD21); - e1000_write_phy_reg(hw, 0x1F79, 0x0018); - e1000_write_phy_reg(hw, 0x1F30, 0x1600); - e1000_write_phy_reg(hw, 0x1F31, 0x0014); - e1000_write_phy_reg(hw, 0x1F32, 0x161C); - e1000_write_phy_reg(hw, 0x1F94, 0x0003); - e1000_write_phy_reg(hw, 0x1F96, 0x003F); - e1000_write_phy_reg(hw, 0x2010, 0x0008); - break; - - case e1000_82541_rev_2: - case e1000_82547_rev_2: - e1000_write_phy_reg(hw, 0x1F73, 0x0099); - break; - default: - break; - } - - e1000_write_phy_reg(hw, 0x0000, 0x3300); - msleep(20); - - /* Now enable the transmitter */ - e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); - - if (hw->mac_type == e1000_82547) { - u16 fused, fine, coarse; - - /* Move to analog registers page */ - e1000_read_phy_reg(hw, - IGP01E1000_ANALOG_SPARE_FUSE_STATUS, - &fused); - - if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { - e1000_read_phy_reg(hw, - IGP01E1000_ANALOG_FUSE_STATUS, - &fused); - - fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; - coarse = - fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; - - if (coarse > - IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { - coarse -= - IGP01E1000_ANALOG_FUSE_COARSE_10; - fine -= IGP01E1000_ANALOG_FUSE_FINE_1; - } else if (coarse == - IGP01E1000_ANALOG_FUSE_COARSE_THRESH) - fine -= IGP01E1000_ANALOG_FUSE_FINE_10; - - fused = - (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | - (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | - (coarse & - IGP01E1000_ANALOG_FUSE_COARSE_MASK); - - e1000_write_phy_reg(hw, - IGP01E1000_ANALOG_FUSE_CONTROL, - fused); - e1000_write_phy_reg(hw, - IGP01E1000_ANALOG_FUSE_BYPASS, - IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); - } - } - } -} - -/** - * e1000_set_mac_type - Set the mac type member in the hw struct. - * @hw: Struct containing variables accessed by shared code - */ -s32 e1000_set_mac_type(struct e1000_hw *hw) -{ - e_dbg("e1000_set_mac_type"); - - switch (hw->device_id) { - case E1000_DEV_ID_82542: - switch (hw->revision_id) { - case E1000_82542_2_0_REV_ID: - hw->mac_type = e1000_82542_rev2_0; - break; - case E1000_82542_2_1_REV_ID: - hw->mac_type = e1000_82542_rev2_1; - break; - default: - /* Invalid 82542 revision ID */ - return -E1000_ERR_MAC_TYPE; - } - break; - case E1000_DEV_ID_82543GC_FIBER: - case E1000_DEV_ID_82543GC_COPPER: - hw->mac_type = e1000_82543; - break; - case E1000_DEV_ID_82544EI_COPPER: - case E1000_DEV_ID_82544EI_FIBER: - case E1000_DEV_ID_82544GC_COPPER: - case E1000_DEV_ID_82544GC_LOM: - hw->mac_type = e1000_82544; - break; - case E1000_DEV_ID_82540EM: - case E1000_DEV_ID_82540EM_LOM: - case E1000_DEV_ID_82540EP: - case E1000_DEV_ID_82540EP_LOM: - case E1000_DEV_ID_82540EP_LP: - hw->mac_type = e1000_82540; - break; - case E1000_DEV_ID_82545EM_COPPER: - case E1000_DEV_ID_82545EM_FIBER: - hw->mac_type = e1000_82545; - break; - case E1000_DEV_ID_82545GM_COPPER: - case E1000_DEV_ID_82545GM_FIBER: - case E1000_DEV_ID_82545GM_SERDES: - hw->mac_type = e1000_82545_rev_3; - break; - case E1000_DEV_ID_82546EB_COPPER: - case E1000_DEV_ID_82546EB_FIBER: - case E1000_DEV_ID_82546EB_QUAD_COPPER: - hw->mac_type = e1000_82546; - break; - case E1000_DEV_ID_82546GB_COPPER: - case E1000_DEV_ID_82546GB_FIBER: - case E1000_DEV_ID_82546GB_SERDES: - case E1000_DEV_ID_82546GB_PCIE: - case E1000_DEV_ID_82546GB_QUAD_COPPER: - case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: - hw->mac_type = e1000_82546_rev_3; - break; - case E1000_DEV_ID_82541EI: - case E1000_DEV_ID_82541EI_MOBILE: - case E1000_DEV_ID_82541ER_LOM: - hw->mac_type = e1000_82541; - break; - case E1000_DEV_ID_82541ER: - case E1000_DEV_ID_82541GI: - case E1000_DEV_ID_82541GI_LF: - case E1000_DEV_ID_82541GI_MOBILE: - hw->mac_type = e1000_82541_rev_2; - break; - case E1000_DEV_ID_82547EI: - case E1000_DEV_ID_82547EI_MOBILE: - hw->mac_type = e1000_82547; - break; - case E1000_DEV_ID_82547GI: - hw->mac_type = e1000_82547_rev_2; - break; - case E1000_DEV_ID_INTEL_CE4100_GBE: - hw->mac_type = e1000_ce4100; - break; - default: - /* Should never have loaded on this device */ - return -E1000_ERR_MAC_TYPE; - } - - switch (hw->mac_type) { - case e1000_82541: - case e1000_82547: - case e1000_82541_rev_2: - case e1000_82547_rev_2: - hw->asf_firmware_present = true; - break; - default: - break; - } - - /* The 82543 chip does not count tx_carrier_errors properly in - * FD mode - */ - if (hw->mac_type == e1000_82543) - hw->bad_tx_carr_stats_fd = true; - - if (hw->mac_type > e1000_82544) - hw->has_smbus = true; - - return E1000_SUCCESS; -} - -/** - * e1000_set_media_type - Set media type and TBI compatibility. - * @hw: Struct containing variables accessed by shared code - */ -void e1000_set_media_type(struct e1000_hw *hw) -{ - u32 status; - - e_dbg("e1000_set_media_type"); - - if (hw->mac_type != e1000_82543) { - /* tbi_compatibility is only valid on 82543 */ - hw->tbi_compatibility_en = false; - } - - switch (hw->device_id) { - case E1000_DEV_ID_82545GM_SERDES: - case E1000_DEV_ID_82546GB_SERDES: - hw->media_type = e1000_media_type_internal_serdes; - break; - default: - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - hw->media_type = e1000_media_type_fiber; - break; - case e1000_ce4100: - hw->media_type = e1000_media_type_copper; - break; - default: - status = er32(STATUS); - if (status & E1000_STATUS_TBIMODE) { - hw->media_type = e1000_media_type_fiber; - /* tbi_compatibility not valid on fiber */ - hw->tbi_compatibility_en = false; - } else { - hw->media_type = e1000_media_type_copper; - } - break; - } - } -} - -/** - * e1000_reset_hw: reset the hardware completely - * @hw: Struct containing variables accessed by shared code - * - * Reset the transmit and receive units; mask and clear all interrupts. - */ -s32 e1000_reset_hw(struct e1000_hw *hw) -{ - u32 ctrl; - u32 ctrl_ext; - u32 icr; - u32 manc; - u32 led_ctrl; - s32 ret_val; - - e_dbg("e1000_reset_hw"); - - /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ - if (hw->mac_type == e1000_82542_rev2_0) { - e_dbg("Disabling MWI on 82542 rev 2.0\n"); - e1000_pci_clear_mwi(hw); - } - - /* Clear interrupt mask to stop board from generating interrupts */ - e_dbg("Masking off all interrupts\n"); - ew32(IMC, 0xffffffff); - - /* Disable the Transmit and Receive units. Then delay to allow - * any pending transactions to complete before we hit the MAC with - * the global reset. - */ - ew32(RCTL, 0); - ew32(TCTL, E1000_TCTL_PSP); - E1000_WRITE_FLUSH(); - - /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ - hw->tbi_compatibility_on = false; - - /* Delay to allow any outstanding PCI transactions to complete before - * resetting the device - */ - msleep(10); - - ctrl = er32(CTRL); - - /* Must reset the PHY before resetting the MAC */ - if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { - ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST)); - E1000_WRITE_FLUSH(); - msleep(5); - } - - /* Issue a global reset to the MAC. This will reset the chip's - * transmit, receive, DMA, and link units. It will not effect - * the current PCI configuration. The global reset bit is self- - * clearing, and should clear within a microsecond. - */ - e_dbg("Issuing a global reset to MAC\n"); - - switch (hw->mac_type) { - case e1000_82544: - case e1000_82540: - case e1000_82545: - case e1000_82546: - case e1000_82541: - case e1000_82541_rev_2: - /* These controllers can't ack the 64-bit write when issuing the - * reset, so use IO-mapping as a workaround to issue the reset */ - E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); - break; - case e1000_82545_rev_3: - case e1000_82546_rev_3: - /* Reset is performed on a shadow of the control register */ - ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST)); - break; - case e1000_ce4100: - default: - ew32(CTRL, (ctrl | E1000_CTRL_RST)); - break; - } - - /* After MAC reset, force reload of EEPROM to restore power-on settings to - * device. Later controllers reload the EEPROM automatically, so just wait - * for reload to complete. - */ - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - case e1000_82543: - case e1000_82544: - /* Wait for reset to complete */ - udelay(10); - ctrl_ext = er32(CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_EE_RST; - ew32(CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(); - /* Wait for EEPROM reload */ - msleep(2); - break; - case e1000_82541: - case e1000_82541_rev_2: - case e1000_82547: - case e1000_82547_rev_2: - /* Wait for EEPROM reload */ - msleep(20); - break; - default: - /* Auto read done will delay 5ms or poll based on mac type */ - ret_val = e1000_get_auto_rd_done(hw); - if (ret_val) - return ret_val; - break; - } - - /* Disable HW ARPs on ASF enabled adapters */ - if (hw->mac_type >= e1000_82540) { - manc = er32(MANC); - manc &= ~(E1000_MANC_ARP_EN); - ew32(MANC, manc); - } - - if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { - e1000_phy_init_script(hw); - - /* Configure activity LED after PHY reset */ - led_ctrl = er32(LEDCTL); - led_ctrl &= IGP_ACTIVITY_LED_MASK; - led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); - ew32(LEDCTL, led_ctrl); - } - - /* Clear interrupt mask to stop board from generating interrupts */ - e_dbg("Masking off all interrupts\n"); - ew32(IMC, 0xffffffff); - - /* Clear any pending interrupt events. */ - icr = er32(ICR); - - /* If MWI was previously enabled, reenable it. */ - if (hw->mac_type == e1000_82542_rev2_0) { - if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) - e1000_pci_set_mwi(hw); - } - - return E1000_SUCCESS; -} - -/** - * e1000_init_hw: Performs basic configuration of the adapter. - * @hw: Struct containing variables accessed by shared code - * - * Assumes that the controller has previously been reset and is in a - * post-reset uninitialized state. Initializes the receive address registers, - * multicast table, and VLAN filter table. Calls routines to setup link - * configuration and flow control settings. Clears all on-chip counters. Leaves - * the transmit and receive units disabled and uninitialized. - */ -s32 e1000_init_hw(struct e1000_hw *hw) -{ - u32 ctrl; - u32 i; - s32 ret_val; - u32 mta_size; - u32 ctrl_ext; - - e_dbg("e1000_init_hw"); - - /* Initialize Identification LED */ - ret_val = e1000_id_led_init(hw); - if (ret_val) { - e_dbg("Error Initializing Identification LED\n"); - return ret_val; - } - - /* Set the media type and TBI compatibility */ - e1000_set_media_type(hw); - - /* Disabling VLAN filtering. */ - e_dbg("Initializing the IEEE VLAN\n"); - if (hw->mac_type < e1000_82545_rev_3) - ew32(VET, 0); - e1000_clear_vfta(hw); - - /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ - if (hw->mac_type == e1000_82542_rev2_0) { - e_dbg("Disabling MWI on 82542 rev 2.0\n"); - e1000_pci_clear_mwi(hw); - ew32(RCTL, E1000_RCTL_RST); - E1000_WRITE_FLUSH(); - msleep(5); - } - - /* Setup the receive address. This involves initializing all of the Receive - * Address Registers (RARs 0 - 15). - */ - e1000_init_rx_addrs(hw); - - /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ - if (hw->mac_type == e1000_82542_rev2_0) { - ew32(RCTL, 0); - E1000_WRITE_FLUSH(); - msleep(1); - if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) - e1000_pci_set_mwi(hw); - } - - /* Zero out the Multicast HASH table */ - e_dbg("Zeroing the MTA\n"); - mta_size = E1000_MC_TBL_SIZE; - for (i = 0; i < mta_size; i++) { - E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); - /* use write flush to prevent Memory Write Block (MWB) from - * occurring when accessing our register space */ - E1000_WRITE_FLUSH(); - } - - /* Set the PCI priority bit correctly in the CTRL register. This - * determines if the adapter gives priority to receives, or if it - * gives equal priority to transmits and receives. Valid only on - * 82542 and 82543 silicon. - */ - if (hw->dma_fairness && hw->mac_type <= e1000_82543) { - ctrl = er32(CTRL); - ew32(CTRL, ctrl | E1000_CTRL_PRIOR); - } - - switch (hw->mac_type) { - case e1000_82545_rev_3: - case e1000_82546_rev_3: - break; - default: - /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ - if (hw->bus_type == e1000_bus_type_pcix - && e1000_pcix_get_mmrbc(hw) > 2048) - e1000_pcix_set_mmrbc(hw, 2048); - break; - } - - /* Call a subroutine to configure the link and setup flow control. */ - ret_val = e1000_setup_link(hw); - - /* Set the transmit descriptor write-back policy */ - if (hw->mac_type > e1000_82544) { - ctrl = er32(TXDCTL); - ctrl = - (ctrl & ~E1000_TXDCTL_WTHRESH) | - E1000_TXDCTL_FULL_TX_DESC_WB; - ew32(TXDCTL, ctrl); - } - - /* Clear all of the statistics registers (clear on read). It is - * important that we do this after we have tried to establish link - * because the symbol error count will increment wildly if there - * is no link. - */ - e1000_clear_hw_cntrs(hw); - - if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || - hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { - ctrl_ext = er32(CTRL_EXT); - /* Relaxed ordering must be disabled to avoid a parity - * error crash in a PCI slot. */ - ctrl_ext |= E1000_CTRL_EXT_RO_DIS; - ew32(CTRL_EXT, ctrl_ext); - } - - return ret_val; -} - -/** - * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting. - * @hw: Struct containing variables accessed by shared code. - */ -static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw) -{ - u16 eeprom_data; - s32 ret_val; - - e_dbg("e1000_adjust_serdes_amplitude"); - - if (hw->media_type != e1000_media_type_internal_serdes) - return E1000_SUCCESS; - - switch (hw->mac_type) { - case e1000_82545_rev_3: - case e1000_82546_rev_3: - break; - default: - return E1000_SUCCESS; - } - - ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, - &eeprom_data); - if (ret_val) { - return ret_val; - } - - if (eeprom_data != EEPROM_RESERVED_WORD) { - /* Adjust SERDES output amplitude only. */ - eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; - ret_val = - e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); - if (ret_val) - return ret_val; - } - - return E1000_SUCCESS; -} - -/** - * e1000_setup_link - Configures flow control and link settings. - * @hw: Struct containing variables accessed by shared code - * - * Determines which flow control settings to use. Calls the appropriate media- - * specific link configuration function. Configures the flow control settings. - * Assuming the adapter has a valid link partner, a valid link should be - * established. Assumes the hardware has previously been reset and the - * transmitter and receiver are not enabled. - */ -s32 e1000_setup_link(struct e1000_hw *hw) -{ - u32 ctrl_ext; - s32 ret_val; - u16 eeprom_data; - - e_dbg("e1000_setup_link"); - - /* Read and store word 0x0F of the EEPROM. This word contains bits - * that determine the hardware's default PAUSE (flow control) mode, - * a bit that determines whether the HW defaults to enabling or - * disabling auto-negotiation, and the direction of the - * SW defined pins. If there is no SW over-ride of the flow - * control setting, then the variable hw->fc will - * be initialized based on a value in the EEPROM. - */ - if (hw->fc == E1000_FC_DEFAULT) { - ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, - 1, &eeprom_data); - if (ret_val) { - e_dbg("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) - hw->fc = E1000_FC_NONE; - else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == - EEPROM_WORD0F_ASM_DIR) - hw->fc = E1000_FC_TX_PAUSE; - else - hw->fc = E1000_FC_FULL; - } - - /* We want to save off the original Flow Control configuration just - * in case we get disconnected and then reconnected into a different - * hub or switch with different Flow Control capabilities. - */ - if (hw->mac_type == e1000_82542_rev2_0) - hw->fc &= (~E1000_FC_TX_PAUSE); - - if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) - hw->fc &= (~E1000_FC_RX_PAUSE); - - hw->original_fc = hw->fc; - - e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc); - - /* Take the 4 bits from EEPROM word 0x0F that determine the initial - * polarity value for the SW controlled pins, and setup the - * Extended Device Control reg with that info. - * This is needed because one of the SW controlled pins is used for - * signal detection. So this should be done before e1000_setup_pcs_link() - * or e1000_phy_setup() is called. - */ - if (hw->mac_type == e1000_82543) { - ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, - 1, &eeprom_data); - if (ret_val) { - e_dbg("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << - SWDPIO__EXT_SHIFT); - ew32(CTRL_EXT, ctrl_ext); - } - - /* Call the necessary subroutine to configure the link. */ - ret_val = (hw->media_type == e1000_media_type_copper) ? - e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw); - - /* Initialize the flow control address, type, and PAUSE timer - * registers to their default values. This is done even if flow - * control is disabled, because it does not hurt anything to - * initialize these registers. - */ - e_dbg("Initializing the Flow Control address, type and timer regs\n"); - - ew32(FCT, FLOW_CONTROL_TYPE); - ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); - ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); - - ew32(FCTTV, hw->fc_pause_time); - - /* Set the flow control receive threshold registers. Normally, - * these registers will be set to a default threshold that may be - * adjusted later by the driver's runtime code. However, if the - * ability to transmit pause frames in not enabled, then these - * registers will be set to 0. - */ - if (!(hw->fc & E1000_FC_TX_PAUSE)) { - ew32(FCRTL, 0); - ew32(FCRTH, 0); - } else { - /* We need to set up the Receive Threshold high and low water marks - * as well as (optionally) enabling the transmission of XON frames. - */ - if (hw->fc_send_xon) { - ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); - ew32(FCRTH, hw->fc_high_water); - } else { - ew32(FCRTL, hw->fc_low_water); - ew32(FCRTH, hw->fc_high_water); - } - } - return ret_val; -} - -/** - * e1000_setup_fiber_serdes_link - prepare fiber or serdes link - * @hw: Struct containing variables accessed by shared code - * - * Manipulates Physical Coding Sublayer functions in order to configure - * link. Assumes the hardware has been previously reset and the transmitter - * and receiver are not enabled. - */ -static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) -{ - u32 ctrl; - u32 status; - u32 txcw = 0; - u32 i; - u32 signal = 0; - s32 ret_val; - - e_dbg("e1000_setup_fiber_serdes_link"); - - /* On adapters with a MAC newer than 82544, SWDP 1 will be - * set when the optics detect a signal. On older adapters, it will be - * cleared when there is a signal. This applies to fiber media only. - * If we're on serdes media, adjust the output amplitude to value - * set in the EEPROM. - */ - ctrl = er32(CTRL); - if (hw->media_type == e1000_media_type_fiber) - signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; - - ret_val = e1000_adjust_serdes_amplitude(hw); - if (ret_val) - return ret_val; - - /* Take the link out of reset */ - ctrl &= ~(E1000_CTRL_LRST); - - /* Adjust VCO speed to improve BER performance */ - ret_val = e1000_set_vco_speed(hw); - if (ret_val) - return ret_val; - - e1000_config_collision_dist(hw); - - /* Check for a software override of the flow control settings, and setup - * the device accordingly. If auto-negotiation is enabled, then software - * will have to set the "PAUSE" bits to the correct value in the Tranmsit - * Config Word Register (TXCW) and re-start auto-negotiation. However, if - * auto-negotiation is disabled, then software will have to manually - * configure the two flow control enable bits in the CTRL register. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames, but - * not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames but we do - * not support receiving pause frames). - * 3: Both Rx and TX flow control (symmetric) are enabled. - */ - switch (hw->fc) { - case E1000_FC_NONE: - /* Flow control is completely disabled by a software over-ride. */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); - break; - case E1000_FC_RX_PAUSE: - /* RX Flow control is enabled and TX Flow control is disabled by a - * software over-ride. Since there really isn't a way to advertise - * that we are capable of RX Pause ONLY, we will advertise that we - * support both symmetric and asymmetric RX PAUSE. Later, we will - * disable the adapter's ability to send PAUSE frames. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); - break; - case E1000_FC_TX_PAUSE: - /* TX Flow control is enabled, and RX Flow control is disabled, by a - * software over-ride. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); - break; - case E1000_FC_FULL: - /* Flow control (both RX and TX) is enabled by a software over-ride. */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); - break; - default: - e_dbg("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - break; - } - - /* Since auto-negotiation is enabled, take the link out of reset (the link - * will be in reset, because we previously reset the chip). This will - * restart auto-negotiation. If auto-negotiation is successful then the - * link-up status bit will be set and the flow control enable bits (RFCE - * and TFCE) will be set according to their negotiated value. - */ - e_dbg("Auto-negotiation enabled\n"); - - ew32(TXCW, txcw); - ew32(CTRL, ctrl); - E1000_WRITE_FLUSH(); - - hw->txcw = txcw; - msleep(1); - - /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" - * indication in the Device Status Register. Time-out if a link isn't - * seen in 500 milliseconds seconds (Auto-negotiation should complete in - * less than 500 milliseconds even if the other end is doing it in SW). - * For internal serdes, we just assume a signal is present, then poll. - */ - if (hw->media_type == e1000_media_type_internal_serdes || - (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) { - e_dbg("Looking for Link\n"); - for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { - msleep(10); - status = er32(STATUS); - if (status & E1000_STATUS_LU) - break; - } - if (i == (LINK_UP_TIMEOUT / 10)) { - e_dbg("Never got a valid link from auto-neg!!!\n"); - hw->autoneg_failed = 1; - /* AutoNeg failed to achieve a link, so we'll call - * e1000_check_for_link. This routine will force the link up if - * we detect a signal. This will allow us to communicate with - * non-autonegotiating link partners. - */ - ret_val = e1000_check_for_link(hw); - if (ret_val) { - e_dbg("Error while checking for link\n"); - return ret_val; - } - hw->autoneg_failed = 0; - } else { - hw->autoneg_failed = 0; - e_dbg("Valid Link Found\n"); - } - } else { - e_dbg("No Signal Detected\n"); - } - return E1000_SUCCESS; -} - -/** - * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series. - * @hw: Struct containing variables accessed by shared code - * - * Commits changes to PHY configuration by calling e1000_phy_reset(). - */ -static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw) -{ - s32 ret_val; - - /* SW reset the PHY so all changes take effect */ - ret_val = e1000_phy_reset(hw); - if (ret_val) { - e_dbg("Error Resetting the PHY\n"); - return ret_val; - } - - return E1000_SUCCESS; -} - -static s32 gbe_dhg_phy_setup(struct e1000_hw *hw) -{ - s32 ret_val; - u32 ctrl_aux; - - switch (hw->phy_type) { - case e1000_phy_8211: - ret_val = e1000_copper_link_rtl_setup(hw); - if (ret_val) { - e_dbg("e1000_copper_link_rtl_setup failed!\n"); - return ret_val; - } - break; - case e1000_phy_8201: - /* Set RMII mode */ - ctrl_aux = er32(CTL_AUX); - ctrl_aux |= E1000_CTL_AUX_RMII; - ew32(CTL_AUX, ctrl_aux); - E1000_WRITE_FLUSH(); - - /* Disable the J/K bits required for receive */ - ctrl_aux = er32(CTL_AUX); - ctrl_aux |= 0x4; - ctrl_aux &= ~0x2; - ew32(CTL_AUX, ctrl_aux); - E1000_WRITE_FLUSH(); - ret_val = e1000_copper_link_rtl_setup(hw); - - if (ret_val) { - e_dbg("e1000_copper_link_rtl_setup failed!\n"); - return ret_val; - } - break; - default: - e_dbg("Error Resetting the PHY\n"); - return E1000_ERR_PHY_TYPE; - } - - return E1000_SUCCESS; -} - -/** - * e1000_copper_link_preconfig - early configuration for copper - * @hw: Struct containing variables accessed by shared code - * - * Make sure we have a valid PHY and change PHY mode before link setup. - */ -static s32 e1000_copper_link_preconfig(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - u16 phy_data; - - e_dbg("e1000_copper_link_preconfig"); - - ctrl = er32(CTRL); - /* With 82543, we need to force speed and duplex on the MAC equal to what - * the PHY speed and duplex configuration is. In addition, we need to - * perform a hardware reset on the PHY to take it out of reset. - */ - if (hw->mac_type > e1000_82543) { - ctrl |= E1000_CTRL_SLU; - ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - ew32(CTRL, ctrl); - } else { - ctrl |= - (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); - ew32(CTRL, ctrl); - ret_val = e1000_phy_hw_reset(hw); - if (ret_val) - return ret_val; - } - - /* Make sure we have a valid PHY */ - ret_val = e1000_detect_gig_phy(hw); - if (ret_val) { - e_dbg("Error, did not detect valid phy.\n"); - return ret_val; - } - e_dbg("Phy ID = %x\n", hw->phy_id); - - /* Set PHY to class A mode (if necessary) */ - ret_val = e1000_set_phy_mode(hw); - if (ret_val) - return ret_val; - - if ((hw->mac_type == e1000_82545_rev_3) || - (hw->mac_type == e1000_82546_rev_3)) { - ret_val = - e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - phy_data |= 0x00000008; - ret_val = - e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - } - - if (hw->mac_type <= e1000_82543 || - hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || - hw->mac_type == e1000_82541_rev_2 - || hw->mac_type == e1000_82547_rev_2) - hw->phy_reset_disable = false; - - return E1000_SUCCESS; -} - -/** - * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series. - * @hw: Struct containing variables accessed by shared code - */ -static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw) -{ - u32 led_ctrl; - s32 ret_val; - u16 phy_data; - - e_dbg("e1000_copper_link_igp_setup"); - - if (hw->phy_reset_disable) - return E1000_SUCCESS; - - ret_val = e1000_phy_reset(hw); - if (ret_val) { - e_dbg("Error Resetting the PHY\n"); - return ret_val; - } - - /* Wait 15ms for MAC to configure PHY from eeprom settings */ - msleep(15); - /* Configure activity LED after PHY reset */ - led_ctrl = er32(LEDCTL); - led_ctrl &= IGP_ACTIVITY_LED_MASK; - led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); - ew32(LEDCTL, led_ctrl); - - /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ - if (hw->phy_type == e1000_phy_igp) { - /* disable lplu d3 during driver init */ - ret_val = e1000_set_d3_lplu_state(hw, false); - if (ret_val) { - e_dbg("Error Disabling LPLU D3\n"); - return ret_val; - } - } - - /* Configure mdi-mdix settings */ - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); - if (ret_val) - return ret_val; - - if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { - hw->dsp_config_state = e1000_dsp_config_disabled; - /* Force MDI for earlier revs of the IGP PHY */ - phy_data &= - ~(IGP01E1000_PSCR_AUTO_MDIX | - IGP01E1000_PSCR_FORCE_MDI_MDIX); - hw->mdix = 1; - - } else { - hw->dsp_config_state = e1000_dsp_config_enabled; - phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; - - switch (hw->mdix) { - case 1: - phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; - break; - case 2: - phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; - break; - case 0: - default: - phy_data |= IGP01E1000_PSCR_AUTO_MDIX; - break; - } - } - ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); - if (ret_val) - return ret_val; - - /* set auto-master slave resolution settings */ - if (hw->autoneg) { - e1000_ms_type phy_ms_setting = hw->master_slave; - - if (hw->ffe_config_state == e1000_ffe_config_active) - hw->ffe_config_state = e1000_ffe_config_enabled; - - if (hw->dsp_config_state == e1000_dsp_config_activated) - hw->dsp_config_state = e1000_dsp_config_enabled; - - /* when autonegotiation advertisement is only 1000Mbps then we - * should disable SmartSpeed and enable Auto MasterSlave - * resolution as hardware default. */ - if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { - /* Disable SmartSpeed */ - ret_val = - e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &phy_data); - if (ret_val) - return ret_val; - phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = - e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - phy_data); - if (ret_val) - return ret_val; - /* Set auto Master/Slave resolution process */ - ret_val = - e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); - if (ret_val) - return ret_val; - phy_data &= ~CR_1000T_MS_ENABLE; - ret_val = - e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); - if (ret_val) - return ret_val; - } - - ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); - if (ret_val) - return ret_val; - - /* load defaults for future use */ - hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? - ((phy_data & CR_1000T_MS_VALUE) ? - e1000_ms_force_master : - e1000_ms_force_slave) : e1000_ms_auto; - - switch (phy_ms_setting) { - case e1000_ms_force_master: - phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); - break; - case e1000_ms_force_slave: - phy_data |= CR_1000T_MS_ENABLE; - phy_data &= ~(CR_1000T_MS_VALUE); - break; - case e1000_ms_auto: - phy_data &= ~CR_1000T_MS_ENABLE; - default: - break; - } - ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); - if (ret_val) - return ret_val; - } - - return E1000_SUCCESS; -} - -/** - * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series. - * @hw: Struct containing variables accessed by shared code - */ -static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw) -{ - s32 ret_val; - u16 phy_data; - - e_dbg("e1000_copper_link_mgp_setup"); - - if (hw->phy_reset_disable) - return E1000_SUCCESS; - - /* Enable CRS on TX. This must be set for half-duplex operation. */ - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - - /* Options: - * MDI/MDI-X = 0 (default) - * 0 - Auto for all speeds - * 1 - MDI mode - * 2 - MDI-X mode - * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) - */ - phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - - switch (hw->mdix) { - case 1: - phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; - break; - case 2: - phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; - break; - case 3: - phy_data |= M88E1000_PSCR_AUTO_X_1000T; - break; - case 0: - default: - phy_data |= M88E1000_PSCR_AUTO_X_MODE; - break; - } - - /* Options: - * disable_polarity_correction = 0 (default) - * Automatic Correction for Reversed Cable Polarity - * 0 - Disabled - * 1 - Enabled - */ - phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; - if (hw->disable_polarity_correction == 1) - phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - if (hw->phy_revision < M88E1011_I_REV_4) { - /* Force TX_CLK in the Extended PHY Specific Control Register - * to 25MHz clock. - */ - ret_val = - e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, - &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_EPSCR_TX_CLK_25; - - if ((hw->phy_revision == E1000_REVISION_2) && - (hw->phy_id == M88E1111_I_PHY_ID)) { - /* Vidalia Phy, set the downshift counter to 5x */ - phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); - phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; - ret_val = e1000_write_phy_reg(hw, - M88E1000_EXT_PHY_SPEC_CTRL, - phy_data); - if (ret_val) - return ret_val; - } else { - /* Configure Master and Slave downshift values */ - phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | - M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); - phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | - M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); - ret_val = e1000_write_phy_reg(hw, - M88E1000_EXT_PHY_SPEC_CTRL, - phy_data); - if (ret_val) - return ret_val; - } - } - - /* SW Reset the PHY so all changes take effect */ - ret_val = e1000_phy_reset(hw); - if (ret_val) { - e_dbg("Error Resetting the PHY\n"); - return ret_val; - } - - return E1000_SUCCESS; -} - -/** - * e1000_copper_link_autoneg - setup auto-neg - * @hw: Struct containing variables accessed by shared code - * - * Setup auto-negotiation and flow control advertisements, - * and then perform auto-negotiation. - */ -static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) -{ - s32 ret_val; - u16 phy_data; - - e_dbg("e1000_copper_link_autoneg"); - - /* Perform some bounds checking on the hw->autoneg_advertised - * parameter. If this variable is zero, then set it to the default. - */ - hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; - - /* If autoneg_advertised is zero, we assume it was not defaulted - * by the calling code so we set to advertise full capability. - */ - if (hw->autoneg_advertised == 0) - hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; - - /* IFE/RTL8201N PHY only supports 10/100 */ - if (hw->phy_type == e1000_phy_8201) - hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; - - e_dbg("Reconfiguring auto-neg advertisement params\n"); - ret_val = e1000_phy_setup_autoneg(hw); - if (ret_val) { - e_dbg("Error Setting up Auto-Negotiation\n"); - return ret_val; - } - e_dbg("Restarting Auto-Neg\n"); - - /* Restart auto-negotiation by setting the Auto Neg Enable bit and - * the Auto Neg Restart bit in the PHY control register. - */ - ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); - ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); - if (ret_val) - return ret_val; - - /* Does the user want to wait for Auto-Neg to complete here, or - * check at a later time (for example, callback routine). - */ - if (hw->wait_autoneg_complete) { - ret_val = e1000_wait_autoneg(hw); - if (ret_val) { - e_dbg - ("Error while waiting for autoneg to complete\n"); - return ret_val; - } - } - - hw->get_link_status = true; - - return E1000_SUCCESS; -} - -/** - * e1000_copper_link_postconfig - post link setup - * @hw: Struct containing variables accessed by shared code - * - * Config the MAC and the PHY after link is up. - * 1) Set up the MAC to the current PHY speed/duplex - * if we are on 82543. If we - * are on newer silicon, we only need to configure - * collision distance in the Transmit Control Register. - * 2) Set up flow control on the MAC to that established with - * the link partner. - * 3) Config DSP to improve Gigabit link quality for some PHY revisions. - */ -static s32 e1000_copper_link_postconfig(struct e1000_hw *hw) -{ - s32 ret_val; - e_dbg("e1000_copper_link_postconfig"); - - if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) { - e1000_config_collision_dist(hw); - } else { - ret_val = e1000_config_mac_to_phy(hw); - if (ret_val) { - e_dbg("Error configuring MAC to PHY settings\n"); - return ret_val; - } - } - ret_val = e1000_config_fc_after_link_up(hw); - if (ret_val) { - e_dbg("Error Configuring Flow Control\n"); - return ret_val; - } - - /* Config DSP to improve Giga link quality */ - if (hw->phy_type == e1000_phy_igp) { - ret_val = e1000_config_dsp_after_link_change(hw, true); - if (ret_val) { - e_dbg("Error Configuring DSP after link up\n"); - return ret_val; - } - } - - return E1000_SUCCESS; -} - -/** - * e1000_setup_copper_link - phy/speed/duplex setting - * @hw: Struct containing variables accessed by shared code - * - * Detects which PHY is present and sets up the speed and duplex - */ -static s32 e1000_setup_copper_link(struct e1000_hw *hw) -{ - s32 ret_val; - u16 i; - u16 phy_data; - - e_dbg("e1000_setup_copper_link"); - - /* Check if it is a valid PHY and set PHY mode if necessary. */ - ret_val = e1000_copper_link_preconfig(hw); - if (ret_val) - return ret_val; - - if (hw->phy_type == e1000_phy_igp) { - ret_val = e1000_copper_link_igp_setup(hw); - if (ret_val) - return ret_val; - } else if (hw->phy_type == e1000_phy_m88) { - ret_val = e1000_copper_link_mgp_setup(hw); - if (ret_val) - return ret_val; - } else { - ret_val = gbe_dhg_phy_setup(hw); - if (ret_val) { - e_dbg("gbe_dhg_phy_setup failed!\n"); - return ret_val; - } - } - - if (hw->autoneg) { - /* Setup autoneg and flow control advertisement - * and perform autonegotiation */ - ret_val = e1000_copper_link_autoneg(hw); - if (ret_val) - return ret_val; - } else { - /* PHY will be set to 10H, 10F, 100H,or 100F - * depending on value from forced_speed_duplex. */ - e_dbg("Forcing speed and duplex\n"); - ret_val = e1000_phy_force_speed_duplex(hw); - if (ret_val) { - e_dbg("Error Forcing Speed and Duplex\n"); - return ret_val; - } - } - - /* Check link status. Wait up to 100 microseconds for link to become - * valid. - */ - for (i = 0; i < 10; i++) { - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - - if (phy_data & MII_SR_LINK_STATUS) { - /* Config the MAC and PHY after link is up */ - ret_val = e1000_copper_link_postconfig(hw); - if (ret_val) - return ret_val; - - e_dbg("Valid link established!!!\n"); - return E1000_SUCCESS; - } - udelay(10); - } - - e_dbg("Unable to establish link!!!\n"); - return E1000_SUCCESS; -} - -/** - * e1000_phy_setup_autoneg - phy settings - * @hw: Struct containing variables accessed by shared code - * - * Configures PHY autoneg and flow control advertisement settings - */ -s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) -{ - s32 ret_val; - u16 mii_autoneg_adv_reg; - u16 mii_1000t_ctrl_reg; - - e_dbg("e1000_phy_setup_autoneg"); - - /* Read the MII Auto-Neg Advertisement Register (Address 4). */ - ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); - if (ret_val) - return ret_val; - - /* Read the MII 1000Base-T Control Register (Address 9). */ - ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); - if (ret_val) - return ret_val; - else if (hw->phy_type == e1000_phy_8201) - mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; - - /* Need to parse both autoneg_advertised and fc and set up - * the appropriate PHY registers. First we will parse for - * autoneg_advertised software override. Since we can advertise - * a plethora of combinations, we need to check each bit - * individually. - */ - - /* First we clear all the 10/100 mb speed bits in the Auto-Neg - * Advertisement Register (Address 4) and the 1000 mb speed bits in - * the 1000Base-T Control Register (Address 9). - */ - mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; - mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; - - e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised); - - /* Do we want to advertise 10 Mb Half Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_10_HALF) { - e_dbg("Advertise 10mb Half duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; - } - - /* Do we want to advertise 10 Mb Full Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_10_FULL) { - e_dbg("Advertise 10mb Full duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; - } - - /* Do we want to advertise 100 Mb Half Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_100_HALF) { - e_dbg("Advertise 100mb Half duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; - } - - /* Do we want to advertise 100 Mb Full Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_100_FULL) { - e_dbg("Advertise 100mb Full duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; - } - - /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ - if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { - e_dbg - ("Advertise 1000mb Half duplex requested, request denied!\n"); - } - - /* Do we want to advertise 1000 Mb Full Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { - e_dbg("Advertise 1000mb Full duplex\n"); - mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; - } - - /* Check for a software override of the flow control settings, and - * setup the PHY advertisement registers accordingly. If - * auto-negotiation is enabled, then software will have to set the - * "PAUSE" bits to the correct value in the Auto-Negotiation - * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames - * but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * but we do not support receiving pause frames). - * 3: Both Rx and TX flow control (symmetric) are enabled. - * other: No software override. The flow control configuration - * in the EEPROM is used. - */ - switch (hw->fc) { - case E1000_FC_NONE: /* 0 */ - /* Flow control (RX & TX) is completely disabled by a - * software over-ride. - */ - mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - case E1000_FC_RX_PAUSE: /* 1 */ - /* RX Flow control is enabled, and TX Flow control is - * disabled, by a software over-ride. - */ - /* Since there really isn't a way to advertise that we are - * capable of RX Pause ONLY, we will advertise that we - * support both symmetric and asymmetric RX PAUSE. Later - * (in e1000_config_fc_after_link_up) we will disable the - *hw's ability to send PAUSE frames. - */ - mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - case E1000_FC_TX_PAUSE: /* 2 */ - /* TX Flow control is enabled, and RX Flow control is - * disabled, by a software over-ride. - */ - mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; - mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; - break; - case E1000_FC_FULL: /* 3 */ - /* Flow control (both RX and TX) is enabled by a software - * over-ride. - */ - mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - default: - e_dbg("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - } - - ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); - if (ret_val) - return ret_val; - - e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); - - if (hw->phy_type == e1000_phy_8201) { - mii_1000t_ctrl_reg = 0; - } else { - ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, - mii_1000t_ctrl_reg); - if (ret_val) - return ret_val; - } - - return E1000_SUCCESS; -} - -/** - * e1000_phy_force_speed_duplex - force link settings - * @hw: Struct containing variables accessed by shared code - * - * Force PHY speed and duplex settings to hw->forced_speed_duplex - */ -static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - u16 mii_ctrl_reg; - u16 mii_status_reg; - u16 phy_data; - u16 i; - - e_dbg("e1000_phy_force_speed_duplex"); - - /* Turn off Flow control if we are forcing speed and duplex. */ - hw->fc = E1000_FC_NONE; - - e_dbg("hw->fc = %d\n", hw->fc); - - /* Read the Device Control Register. */ - ctrl = er32(CTRL); - - /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ - ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - ctrl &= ~(DEVICE_SPEED_MASK); - - /* Clear the Auto Speed Detect Enable bit. */ - ctrl &= ~E1000_CTRL_ASDE; - - /* Read the MII Control Register. */ - ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); - if (ret_val) - return ret_val; - - /* We need to disable autoneg in order to force link and duplex. */ - - mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; - - /* Are we forcing Full or Half Duplex? */ - if (hw->forced_speed_duplex == e1000_100_full || - hw->forced_speed_duplex == e1000_10_full) { - /* We want to force full duplex so we SET the full duplex bits in the - * Device and MII Control Registers. - */ - ctrl |= E1000_CTRL_FD; - mii_ctrl_reg |= MII_CR_FULL_DUPLEX; - e_dbg("Full Duplex\n"); - } else { - /* We want to force half duplex so we CLEAR the full duplex bits in - * the Device and MII Control Registers. - */ - ctrl &= ~E1000_CTRL_FD; - mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; - e_dbg("Half Duplex\n"); - } - - /* Are we forcing 100Mbps??? */ - if (hw->forced_speed_duplex == e1000_100_full || - hw->forced_speed_duplex == e1000_100_half) { - /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ - ctrl |= E1000_CTRL_SPD_100; - mii_ctrl_reg |= MII_CR_SPEED_100; - mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); - e_dbg("Forcing 100mb "); - } else { - /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ - ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); - mii_ctrl_reg |= MII_CR_SPEED_10; - mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); - e_dbg("Forcing 10mb "); - } - - e1000_config_collision_dist(hw); - - /* Write the configured values back to the Device Control Reg. */ - ew32(CTRL, ctrl); - - if (hw->phy_type == e1000_phy_m88) { - ret_val = - e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI - * forced whenever speed are duplex are forced. - */ - phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - ret_val = - e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - e_dbg("M88E1000 PSCR: %x\n", phy_data); - - /* Need to reset the PHY or these changes will be ignored */ - mii_ctrl_reg |= MII_CR_RESET; - - /* Disable MDI-X support for 10/100 */ - } else { - /* Clear Auto-Crossover to force MDI manually. IGP requires MDI - * forced whenever speed or duplex are forced. - */ - ret_val = - e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; - phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; - - ret_val = - e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); - if (ret_val) - return ret_val; - } - - /* Write back the modified PHY MII control register. */ - ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); - if (ret_val) - return ret_val; - - udelay(1); - - /* The wait_autoneg_complete flag may be a little misleading here. - * Since we are forcing speed and duplex, Auto-Neg is not enabled. - * But we do want to delay for a period while forcing only so we - * don't generate false No Link messages. So we will wait here - * only if the user has set wait_autoneg_complete to 1, which is - * the default. - */ - if (hw->wait_autoneg_complete) { - /* We will wait for autoneg to complete. */ - e_dbg("Waiting for forced speed/duplex link.\n"); - mii_status_reg = 0; - - /* We will wait for autoneg to complete or 4.5 seconds to expire. */ - for (i = PHY_FORCE_TIME; i > 0; i--) { - /* Read the MII Status Register and wait for Auto-Neg Complete bit - * to be set. - */ - ret_val = - e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - ret_val = - e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - if (mii_status_reg & MII_SR_LINK_STATUS) - break; - msleep(100); - } - if ((i == 0) && (hw->phy_type == e1000_phy_m88)) { - /* We didn't get link. Reset the DSP and wait again for link. */ - ret_val = e1000_phy_reset_dsp(hw); - if (ret_val) { - e_dbg("Error Resetting PHY DSP\n"); - return ret_val; - } - } - /* This loop will early-out if the link condition has been met. */ - for (i = PHY_FORCE_TIME; i > 0; i--) { - if (mii_status_reg & MII_SR_LINK_STATUS) - break; - msleep(100); - /* Read the MII Status Register and wait for Auto-Neg Complete bit - * to be set. - */ - ret_val = - e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - ret_val = - e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - } - } - - if (hw->phy_type == e1000_phy_m88) { - /* Because we reset the PHY above, we need to re-force TX_CLK in the - * Extended PHY Specific Control Register to 25MHz clock. This value - * defaults back to a 2.5MHz clock when the PHY is reset. - */ - ret_val = - e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, - &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_EPSCR_TX_CLK_25; - ret_val = - e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, - phy_data); - if (ret_val) - return ret_val; - - /* In addition, because of the s/w reset above, we need to enable CRS on - * TX. This must be set for both full and half duplex operation. - */ - ret_val = - e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - ret_val = - e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) - && (!hw->autoneg) - && (hw->forced_speed_duplex == e1000_10_full - || hw->forced_speed_duplex == e1000_10_half)) { - ret_val = e1000_polarity_reversal_workaround(hw); - if (ret_val) - return ret_val; - } - } - return E1000_SUCCESS; -} - -/** - * e1000_config_collision_dist - set collision distance register - * @hw: Struct containing variables accessed by shared code - * - * Sets the collision distance in the Transmit Control register. - * Link should have been established previously. Reads the speed and duplex - * information from the Device Status register. - */ -void e1000_config_collision_dist(struct e1000_hw *hw) -{ - u32 tctl, coll_dist; - - e_dbg("e1000_config_collision_dist"); - - if (hw->mac_type < e1000_82543) - coll_dist = E1000_COLLISION_DISTANCE_82542; - else - coll_dist = E1000_COLLISION_DISTANCE; - - tctl = er32(TCTL); - - tctl &= ~E1000_TCTL_COLD; - tctl |= coll_dist << E1000_COLD_SHIFT; - - ew32(TCTL, tctl); - E1000_WRITE_FLUSH(); -} - -/** - * e1000_config_mac_to_phy - sync phy and mac settings - * @hw: Struct containing variables accessed by shared code - * @mii_reg: data to write to the MII control register - * - * Sets MAC speed and duplex settings to reflect the those in the PHY - * The contents of the PHY register containing the needed information need to - * be passed in. - */ -static s32 e1000_config_mac_to_phy(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - u16 phy_data; - - e_dbg("e1000_config_mac_to_phy"); - - /* 82544 or newer MAC, Auto Speed Detection takes care of - * MAC speed/duplex configuration.*/ - if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) - return E1000_SUCCESS; - - /* Read the Device Control Register and set the bits to Force Speed - * and Duplex. - */ - ctrl = er32(CTRL); - ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); - - switch (hw->phy_type) { - case e1000_phy_8201: - ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); - if (ret_val) - return ret_val; - - if (phy_data & RTL_PHY_CTRL_FD) - ctrl |= E1000_CTRL_FD; - else - ctrl &= ~E1000_CTRL_FD; - - if (phy_data & RTL_PHY_CTRL_SPD_100) - ctrl |= E1000_CTRL_SPD_100; - else - ctrl |= E1000_CTRL_SPD_10; - - e1000_config_collision_dist(hw); - break; - default: - /* Set up duplex in the Device Control and Transmit Control - * registers depending on negotiated values. - */ - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, - &phy_data); - if (ret_val) - return ret_val; - - if (phy_data & M88E1000_PSSR_DPLX) - ctrl |= E1000_CTRL_FD; - else - ctrl &= ~E1000_CTRL_FD; - - e1000_config_collision_dist(hw); - - /* Set up speed in the Device Control register depending on - * negotiated values. - */ - if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) - ctrl |= E1000_CTRL_SPD_1000; - else if ((phy_data & M88E1000_PSSR_SPEED) == - M88E1000_PSSR_100MBS) - ctrl |= E1000_CTRL_SPD_100; - } - - /* Write the configured values back to the Device Control Reg. */ - ew32(CTRL, ctrl); - return E1000_SUCCESS; -} - -/** - * e1000_force_mac_fc - force flow control settings - * @hw: Struct containing variables accessed by shared code - * - * Forces the MAC's flow control settings. - * Sets the TFCE and RFCE bits in the device control register to reflect - * the adapter settings. TFCE and RFCE need to be explicitly set by - * software when a Copper PHY is used because autonegotiation is managed - * by the PHY rather than the MAC. Software must also configure these - * bits when link is forced on a fiber connection. - */ -s32 e1000_force_mac_fc(struct e1000_hw *hw) -{ - u32 ctrl; - - e_dbg("e1000_force_mac_fc"); - - /* Get the current configuration of the Device Control Register */ - ctrl = er32(CTRL); - - /* Because we didn't get link via the internal auto-negotiation - * mechanism (we either forced link or we got link via PHY - * auto-neg), we have to manually enable/disable transmit an - * receive flow control. - * - * The "Case" statement below enables/disable flow control - * according to the "hw->fc" parameter. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause - * frames but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * frames but we do not receive pause frames). - * 3: Both Rx and TX flow control (symmetric) is enabled. - * other: No other values should be possible at this point. - */ - - switch (hw->fc) { - case E1000_FC_NONE: - ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); - break; - case E1000_FC_RX_PAUSE: - ctrl &= (~E1000_CTRL_TFCE); - ctrl |= E1000_CTRL_RFCE; - break; - case E1000_FC_TX_PAUSE: - ctrl &= (~E1000_CTRL_RFCE); - ctrl |= E1000_CTRL_TFCE; - break; - case E1000_FC_FULL: - ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); - break; - default: - e_dbg("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - } - - /* Disable TX Flow Control for 82542 (rev 2.0) */ - if (hw->mac_type == e1000_82542_rev2_0) - ctrl &= (~E1000_CTRL_TFCE); - - ew32(CTRL, ctrl); - return E1000_SUCCESS; -} - -/** - * e1000_config_fc_after_link_up - configure flow control after autoneg - * @hw: Struct containing variables accessed by shared code - * - * Configures flow control settings after link is established - * Should be called immediately after a valid link has been established. - * Forces MAC flow control settings if link was forced. When in MII/GMII mode - * and autonegotiation is enabled, the MAC flow control settings will be set - * based on the flow control negotiated by the PHY. In TBI mode, the TFCE - * and RFCE bits will be automatically set to the negotiated flow control mode. - */ -static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw) -{ - s32 ret_val; - u16 mii_status_reg; - u16 mii_nway_adv_reg; - u16 mii_nway_lp_ability_reg; - u16 speed; - u16 duplex; - - e_dbg("e1000_config_fc_after_link_up"); - - /* Check for the case where we have fiber media and auto-neg failed - * so we had to force link. In this case, we need to force the - * configuration of the MAC to match the "fc" parameter. - */ - if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) - || ((hw->media_type == e1000_media_type_internal_serdes) - && (hw->autoneg_failed)) - || ((hw->media_type == e1000_media_type_copper) - && (!hw->autoneg))) { - ret_val = e1000_force_mac_fc(hw); - if (ret_val) { - e_dbg("Error forcing flow control settings\n"); - return ret_val; - } - } - - /* Check for the case where we have copper media and auto-neg is - * enabled. In this case, we need to check and see if Auto-Neg - * has completed, and if so, how the PHY and link partner has - * flow control configured. - */ - if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) { - /* Read the MII Status Register and check to see if AutoNeg - * has completed. We read this twice because this reg has - * some "sticky" (latched) bits. - */ - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { - /* The AutoNeg process has completed, so we now need to - * read both the Auto Negotiation Advertisement Register - * (Address 4) and the Auto_Negotiation Base Page Ability - * Register (Address 5) to determine how flow control was - * negotiated. - */ - ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, - &mii_nway_adv_reg); - if (ret_val) - return ret_val; - ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, - &mii_nway_lp_ability_reg); - if (ret_val) - return ret_val; - - /* Two bits in the Auto Negotiation Advertisement Register - * (Address 4) and two bits in the Auto Negotiation Base - * Page Ability Register (Address 5) determine flow control - * for both the PHY and the link partner. The following - * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, - * 1999, describes these PAUSE resolution bits and how flow - * control is determined based upon these settings. - * NOTE: DC = Don't Care - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution - *-------|---------|-------|---------|-------------------- - * 0 | 0 | DC | DC | E1000_FC_NONE - * 0 | 1 | 0 | DC | E1000_FC_NONE - * 0 | 1 | 1 | 0 | E1000_FC_NONE - * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE - * 1 | 0 | 0 | DC | E1000_FC_NONE - * 1 | DC | 1 | DC | E1000_FC_FULL - * 1 | 1 | 0 | 0 | E1000_FC_NONE - * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE - * - */ - /* Are both PAUSE bits set to 1? If so, this implies - * Symmetric Flow Control is enabled at both ends. The - * ASM_DIR bits are irrelevant per the spec. - * - * For Symmetric Flow Control: - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | DC | 1 | DC | E1000_FC_FULL - * - */ - if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { - /* Now we need to check if the user selected RX ONLY - * of pause frames. In this case, we had to advertise - * FULL flow control because we could not advertise RX - * ONLY. Hence, we must now check to see if we need to - * turn OFF the TRANSMISSION of PAUSE frames. - */ - if (hw->original_fc == E1000_FC_FULL) { - hw->fc = E1000_FC_FULL; - e_dbg("Flow Control = FULL.\n"); - } else { - hw->fc = E1000_FC_RX_PAUSE; - e_dbg - ("Flow Control = RX PAUSE frames only.\n"); - } - } - /* For receiving PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE - * - */ - else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) - { - hw->fc = E1000_FC_TX_PAUSE; - e_dbg - ("Flow Control = TX PAUSE frames only.\n"); - } - /* For transmitting PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE - * - */ - else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) - { - hw->fc = E1000_FC_RX_PAUSE; - e_dbg - ("Flow Control = RX PAUSE frames only.\n"); - } - /* Per the IEEE spec, at this point flow control should be - * disabled. However, we want to consider that we could - * be connected to a legacy switch that doesn't advertise - * desired flow control, but can be forced on the link - * partner. So if we advertised no flow control, that is - * what we will resolve to. If we advertised some kind of - * receive capability (Rx Pause Only or Full Flow Control) - * and the link partner advertised none, we will configure - * ourselves to enable Rx Flow Control only. We can do - * this safely for two reasons: If the link partner really - * didn't want flow control enabled, and we enable Rx, no - * harm done since we won't be receiving any PAUSE frames - * anyway. If the intent on the link partner was to have - * flow control enabled, then by us enabling RX only, we - * can at least receive pause frames and process them. - * This is a good idea because in most cases, since we are - * predominantly a server NIC, more times than not we will - * be asked to delay transmission of packets than asking - * our link partner to pause transmission of frames. - */ - else if ((hw->original_fc == E1000_FC_NONE || - hw->original_fc == E1000_FC_TX_PAUSE) || - hw->fc_strict_ieee) { - hw->fc = E1000_FC_NONE; - e_dbg("Flow Control = NONE.\n"); - } else { - hw->fc = E1000_FC_RX_PAUSE; - e_dbg - ("Flow Control = RX PAUSE frames only.\n"); - } - - /* Now we need to do one last check... If we auto- - * negotiated to HALF DUPLEX, flow control should not be - * enabled per IEEE 802.3 spec. - */ - ret_val = - e1000_get_speed_and_duplex(hw, &speed, &duplex); - if (ret_val) { - e_dbg - ("Error getting link speed and duplex\n"); - return ret_val; - } - - if (duplex == HALF_DUPLEX) - hw->fc = E1000_FC_NONE; - - /* Now we call a subroutine to actually force the MAC - * controller to use the correct flow control settings. - */ - ret_val = e1000_force_mac_fc(hw); - if (ret_val) { - e_dbg - ("Error forcing flow control settings\n"); - return ret_val; - } - } else { - e_dbg - ("Copper PHY and Auto Neg has not completed.\n"); - } - } - return E1000_SUCCESS; -} - -/** - * e1000_check_for_serdes_link_generic - Check for link (Serdes) - * @hw: pointer to the HW structure - * - * Checks for link up on the hardware. If link is not up and we have - * a signal, then we need to force link up. - */ -static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) -{ - u32 rxcw; - u32 ctrl; - u32 status; - s32 ret_val = E1000_SUCCESS; - - e_dbg("e1000_check_for_serdes_link_generic"); - - ctrl = er32(CTRL); - status = er32(STATUS); - rxcw = er32(RXCW); - - /* - * If we don't have link (auto-negotiation failed or link partner - * cannot auto-negotiate), and our link partner is not trying to - * auto-negotiate with us (we are receiving idles or data), - * we need to force link up. We also need to give auto-negotiation - * time to complete. - */ - /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ - if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { - if (hw->autoneg_failed == 0) { - hw->autoneg_failed = 1; - goto out; - } - e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n"); - - /* Disable auto-negotiation in the TXCW register */ - ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE)); - - /* Force link-up and also force full-duplex. */ - ctrl = er32(CTRL); - ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); - ew32(CTRL, ctrl); - - /* Configure Flow Control after forcing link up. */ - ret_val = e1000_config_fc_after_link_up(hw); - if (ret_val) { - e_dbg("Error configuring flow control\n"); - goto out; - } - } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { - /* - * If we are forcing link and we are receiving /C/ ordered - * sets, re-enable auto-negotiation in the TXCW register - * and disable forced link in the Device Control register - * in an attempt to auto-negotiate with our link partner. - */ - e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n"); - ew32(TXCW, hw->txcw); - ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); - - hw->serdes_has_link = true; - } else if (!(E1000_TXCW_ANE & er32(TXCW))) { - /* - * If we force link for non-auto-negotiation switch, check - * link status based on MAC synchronization for internal - * serdes media type. - */ - /* SYNCH bit and IV bit are sticky. */ - udelay(10); - rxcw = er32(RXCW); - if (rxcw & E1000_RXCW_SYNCH) { - if (!(rxcw & E1000_RXCW_IV)) { - hw->serdes_has_link = true; - e_dbg("SERDES: Link up - forced.\n"); - } - } else { - hw->serdes_has_link = false; - e_dbg("SERDES: Link down - force failed.\n"); - } - } - - if (E1000_TXCW_ANE & er32(TXCW)) { - status = er32(STATUS); - if (status & E1000_STATUS_LU) { - /* SYNCH bit and IV bit are sticky, so reread rxcw. */ - udelay(10); - rxcw = er32(RXCW); - if (rxcw & E1000_RXCW_SYNCH) { - if (!(rxcw & E1000_RXCW_IV)) { - hw->serdes_has_link = true; - e_dbg("SERDES: Link up - autoneg " - "completed successfully.\n"); - } else { - hw->serdes_has_link = false; - e_dbg("SERDES: Link down - invalid" - "codewords detected in autoneg.\n"); - } - } else { - hw->serdes_has_link = false; - e_dbg("SERDES: Link down - no sync.\n"); - } - } else { - hw->serdes_has_link = false; - e_dbg("SERDES: Link down - autoneg failed\n"); - } - } - - out: - return ret_val; -} - -/** - * e1000_check_for_link - * @hw: Struct containing variables accessed by shared code - * - * Checks to see if the link status of the hardware has changed. - * Called by any function that needs to check the link status of the adapter. - */ -s32 e1000_check_for_link(struct e1000_hw *hw) -{ - u32 rxcw = 0; - u32 ctrl; - u32 status; - u32 rctl; - u32 icr; - u32 signal = 0; - s32 ret_val; - u16 phy_data; - - e_dbg("e1000_check_for_link"); - - ctrl = er32(CTRL); - status = er32(STATUS); - - /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be - * set when the optics detect a signal. On older adapters, it will be - * cleared when there is a signal. This applies to fiber media only. - */ - if ((hw->media_type == e1000_media_type_fiber) || - (hw->media_type == e1000_media_type_internal_serdes)) { - rxcw = er32(RXCW); - - if (hw->media_type == e1000_media_type_fiber) { - signal = - (hw->mac_type > - e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; - if (status & E1000_STATUS_LU) - hw->get_link_status = false; - } - } - - /* If we have a copper PHY then we only want to go out to the PHY - * registers to see if Auto-Neg has completed and/or if our link - * status has changed. The get_link_status flag will be set if we - * receive a Link Status Change interrupt or we have Rx Sequence - * Errors. - */ - if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { - /* First we want to see if the MII Status Register reports - * link. If so, then we want to get the current speed/duplex - * of the PHY. - * Read the register twice since the link bit is sticky. - */ - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - - if (phy_data & MII_SR_LINK_STATUS) { - hw->get_link_status = false; - /* Check if there was DownShift, must be checked immediately after - * link-up */ - e1000_check_downshift(hw); - - /* If we are on 82544 or 82543 silicon and speed/duplex - * are forced to 10H or 10F, then we will implement the polarity - * reversal workaround. We disable interrupts first, and upon - * returning, place the devices interrupt state to its previous - * value except for the link status change interrupt which will - * happen due to the execution of this workaround. - */ - - if ((hw->mac_type == e1000_82544 - || hw->mac_type == e1000_82543) && (!hw->autoneg) - && (hw->forced_speed_duplex == e1000_10_full - || hw->forced_speed_duplex == e1000_10_half)) { - ew32(IMC, 0xffffffff); - ret_val = - e1000_polarity_reversal_workaround(hw); - icr = er32(ICR); - ew32(ICS, (icr & ~E1000_ICS_LSC)); - ew32(IMS, IMS_ENABLE_MASK); - } - - } else { - /* No link detected */ - e1000_config_dsp_after_link_change(hw, false); - return 0; - } - - /* If we are forcing speed/duplex, then we simply return since - * we have already determined whether we have link or not. - */ - if (!hw->autoneg) - return -E1000_ERR_CONFIG; - - /* optimize the dsp settings for the igp phy */ - e1000_config_dsp_after_link_change(hw, true); - - /* We have a M88E1000 PHY and Auto-Neg is enabled. If we - * have Si on board that is 82544 or newer, Auto - * Speed Detection takes care of MAC speed/duplex - * configuration. So we only need to configure Collision - * Distance in the MAC. Otherwise, we need to force - * speed/duplex on the MAC to the current PHY speed/duplex - * settings. - */ - if ((hw->mac_type >= e1000_82544) && - (hw->mac_type != e1000_ce4100)) - e1000_config_collision_dist(hw); - else { - ret_val = e1000_config_mac_to_phy(hw); - if (ret_val) { - e_dbg - ("Error configuring MAC to PHY settings\n"); - return ret_val; - } - } - - /* Configure Flow Control now that Auto-Neg has completed. First, we - * need to restore the desired flow control settings because we may - * have had to re-autoneg with a different link partner. - */ - ret_val = e1000_config_fc_after_link_up(hw); - if (ret_val) { - e_dbg("Error configuring flow control\n"); - return ret_val; - } - - /* At this point we know that we are on copper and we have - * auto-negotiated link. These are conditions for checking the link - * partner capability register. We use the link speed to determine if - * TBI compatibility needs to be turned on or off. If the link is not - * at gigabit speed, then TBI compatibility is not needed. If we are - * at gigabit speed, we turn on TBI compatibility. - */ - if (hw->tbi_compatibility_en) { - u16 speed, duplex; - ret_val = - e1000_get_speed_and_duplex(hw, &speed, &duplex); - if (ret_val) { - e_dbg - ("Error getting link speed and duplex\n"); - return ret_val; - } - if (speed != SPEED_1000) { - /* If link speed is not set to gigabit speed, we do not need - * to enable TBI compatibility. - */ - if (hw->tbi_compatibility_on) { - /* If we previously were in the mode, turn it off. */ - rctl = er32(RCTL); - rctl &= ~E1000_RCTL_SBP; - ew32(RCTL, rctl); - hw->tbi_compatibility_on = false; - } - } else { - /* If TBI compatibility is was previously off, turn it on. For - * compatibility with a TBI link partner, we will store bad - * packets. Some frames have an additional byte on the end and - * will look like CRC errors to to the hardware. - */ - if (!hw->tbi_compatibility_on) { - hw->tbi_compatibility_on = true; - rctl = er32(RCTL); - rctl |= E1000_RCTL_SBP; - ew32(RCTL, rctl); - } - } - } - } - - if ((hw->media_type == e1000_media_type_fiber) || - (hw->media_type == e1000_media_type_internal_serdes)) - e1000_check_for_serdes_link_generic(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_get_speed_and_duplex - * @hw: Struct containing variables accessed by shared code - * @speed: Speed of the connection - * @duplex: Duplex setting of the connection - - * Detects the current speed and duplex settings of the hardware. - */ -s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) -{ - u32 status; - s32 ret_val; - u16 phy_data; - - e_dbg("e1000_get_speed_and_duplex"); - - if (hw->mac_type >= e1000_82543) { - status = er32(STATUS); - if (status & E1000_STATUS_SPEED_1000) { - *speed = SPEED_1000; - e_dbg("1000 Mbs, "); - } else if (status & E1000_STATUS_SPEED_100) { - *speed = SPEED_100; - e_dbg("100 Mbs, "); - } else { - *speed = SPEED_10; - e_dbg("10 Mbs, "); - } - - if (status & E1000_STATUS_FD) { - *duplex = FULL_DUPLEX; - e_dbg("Full Duplex\n"); - } else { - *duplex = HALF_DUPLEX; - e_dbg(" Half Duplex\n"); - } - } else { - e_dbg("1000 Mbs, Full Duplex\n"); - *speed = SPEED_1000; - *duplex = FULL_DUPLEX; - } - - /* IGP01 PHY may advertise full duplex operation after speed downgrade even - * if it is operating at half duplex. Here we set the duplex settings to - * match the duplex in the link partner's capabilities. - */ - if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { - ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); - if (ret_val) - return ret_val; - - if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) - *duplex = HALF_DUPLEX; - else { - ret_val = - e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); - if (ret_val) - return ret_val; - if ((*speed == SPEED_100 - && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) - || (*speed == SPEED_10 - && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) - *duplex = HALF_DUPLEX; - } - } - - return E1000_SUCCESS; -} - -/** - * e1000_wait_autoneg - * @hw: Struct containing variables accessed by shared code - * - * Blocks until autoneg completes or times out (~4.5 seconds) - */ -static s32 e1000_wait_autoneg(struct e1000_hw *hw) -{ - s32 ret_val; - u16 i; - u16 phy_data; - - e_dbg("e1000_wait_autoneg"); - e_dbg("Waiting for Auto-Neg to complete.\n"); - - /* We will wait for autoneg to complete or 4.5 seconds to expire. */ - for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { - /* Read the MII Status Register and wait for Auto-Neg - * Complete bit to be set. - */ - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - if (phy_data & MII_SR_AUTONEG_COMPLETE) { - return E1000_SUCCESS; - } - msleep(100); - } - return E1000_SUCCESS; -} - -/** - * e1000_raise_mdi_clk - Raises the Management Data Clock - * @hw: Struct containing variables accessed by shared code - * @ctrl: Device control register's current value - */ -static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl) -{ - /* Raise the clock input to the Management Data Clock (by setting the MDC - * bit), and then delay 10 microseconds. - */ - ew32(CTRL, (*ctrl | E1000_CTRL_MDC)); - E1000_WRITE_FLUSH(); - udelay(10); -} - -/** - * e1000_lower_mdi_clk - Lowers the Management Data Clock - * @hw: Struct containing variables accessed by shared code - * @ctrl: Device control register's current value - */ -static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl) -{ - /* Lower the clock input to the Management Data Clock (by clearing the MDC - * bit), and then delay 10 microseconds. - */ - ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC)); - E1000_WRITE_FLUSH(); - udelay(10); -} - -/** - * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY - * @hw: Struct containing variables accessed by shared code - * @data: Data to send out to the PHY - * @count: Number of bits to shift out - * - * Bits are shifted out in MSB to LSB order. - */ -static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count) -{ - u32 ctrl; - u32 mask; - - /* We need to shift "count" number of bits out to the PHY. So, the value - * in the "data" parameter will be shifted out to the PHY one bit at a - * time. In order to do this, "data" must be broken down into bits. - */ - mask = 0x01; - mask <<= (count - 1); - - ctrl = er32(CTRL); - - /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ - ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); - - while (mask) { - /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and - * then raising and lowering the Management Data Clock. A "0" is - * shifted out to the PHY by setting the MDIO bit to "0" and then - * raising and lowering the clock. - */ - if (data & mask) - ctrl |= E1000_CTRL_MDIO; - else - ctrl &= ~E1000_CTRL_MDIO; - - ew32(CTRL, ctrl); - E1000_WRITE_FLUSH(); - - udelay(10); - - e1000_raise_mdi_clk(hw, &ctrl); - e1000_lower_mdi_clk(hw, &ctrl); - - mask = mask >> 1; - } -} - -/** - * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY - * @hw: Struct containing variables accessed by shared code - * - * Bits are shifted in in MSB to LSB order. - */ -static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw) -{ - u32 ctrl; - u16 data = 0; - u8 i; - - /* In order to read a register from the PHY, we need to shift in a total - * of 18 bits from the PHY. The first two bit (turnaround) times are used - * to avoid contention on the MDIO pin when a read operation is performed. - * These two bits are ignored by us and thrown away. Bits are "shifted in" - * by raising the input to the Management Data Clock (setting the MDC bit), - * and then reading the value of the MDIO bit. - */ - ctrl = er32(CTRL); - - /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ - ctrl &= ~E1000_CTRL_MDIO_DIR; - ctrl &= ~E1000_CTRL_MDIO; - - ew32(CTRL, ctrl); - E1000_WRITE_FLUSH(); - - /* Raise and Lower the clock before reading in the data. This accounts for - * the turnaround bits. The first clock occurred when we clocked out the - * last bit of the Register Address. - */ - e1000_raise_mdi_clk(hw, &ctrl); - e1000_lower_mdi_clk(hw, &ctrl); - - for (data = 0, i = 0; i < 16; i++) { - data = data << 1; - e1000_raise_mdi_clk(hw, &ctrl); - ctrl = er32(CTRL); - /* Check to see if we shifted in a "1". */ - if (ctrl & E1000_CTRL_MDIO) - data |= 1; - e1000_lower_mdi_clk(hw, &ctrl); - } - - e1000_raise_mdi_clk(hw, &ctrl); - e1000_lower_mdi_clk(hw, &ctrl); - - return data; -} - - -/** - * e1000_read_phy_reg - read a phy register - * @hw: Struct containing variables accessed by shared code - * @reg_addr: address of the PHY register to read - * - * Reads the value from a PHY register, if the value is on a specific non zero - * page, sets the page first. - */ -s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data) -{ - u32 ret_val; - - e_dbg("e1000_read_phy_reg"); - - if ((hw->phy_type == e1000_phy_igp) && - (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { - ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, - (u16) reg_addr); - if (ret_val) - return ret_val; - } - - ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, - phy_data); - - return ret_val; -} - -static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, - u16 *phy_data) -{ - u32 i; - u32 mdic = 0; - const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1; - - e_dbg("e1000_read_phy_reg_ex"); - - if (reg_addr > MAX_PHY_REG_ADDRESS) { - e_dbg("PHY Address %d is out of range\n", reg_addr); - return -E1000_ERR_PARAM; - } - - if (hw->mac_type > e1000_82543) { - /* Set up Op-code, Phy Address, and register address in the MDI - * Control register. The MAC will take care of interfacing with the - * PHY to retrieve the desired data. - */ - if (hw->mac_type == e1000_ce4100) { - mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | - (phy_addr << E1000_MDIC_PHY_SHIFT) | - (INTEL_CE_GBE_MDIC_OP_READ) | - (INTEL_CE_GBE_MDIC_GO)); - - writel(mdic, E1000_MDIO_CMD); - - /* Poll the ready bit to see if the MDI read - * completed - */ - for (i = 0; i < 64; i++) { - udelay(50); - mdic = readl(E1000_MDIO_CMD); - if (!(mdic & INTEL_CE_GBE_MDIC_GO)) - break; - } - - if (mdic & INTEL_CE_GBE_MDIC_GO) { - e_dbg("MDI Read did not complete\n"); - return -E1000_ERR_PHY; - } - - mdic = readl(E1000_MDIO_STS); - if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) { - e_dbg("MDI Read Error\n"); - return -E1000_ERR_PHY; - } - *phy_data = (u16) mdic; - } else { - mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | - (phy_addr << E1000_MDIC_PHY_SHIFT) | - (E1000_MDIC_OP_READ)); - - ew32(MDIC, mdic); - - /* Poll the ready bit to see if the MDI read - * completed - */ - for (i = 0; i < 64; i++) { - udelay(50); - mdic = er32(MDIC); - if (mdic & E1000_MDIC_READY) - break; - } - if (!(mdic & E1000_MDIC_READY)) { - e_dbg("MDI Read did not complete\n"); - return -E1000_ERR_PHY; - } - if (mdic & E1000_MDIC_ERROR) { - e_dbg("MDI Error\n"); - return -E1000_ERR_PHY; - } - *phy_data = (u16) mdic; - } - } else { - /* We must first send a preamble through the MDIO pin to signal the - * beginning of an MII instruction. This is done by sending 32 - * consecutive "1" bits. - */ - e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); - - /* Now combine the next few fields that are required for a read - * operation. We use this method instead of calling the - * e1000_shift_out_mdi_bits routine five different times. The format of - * a MII read instruction consists of a shift out of 14 bits and is - * defined as follows: - * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> - * followed by a shift in of 18 bits. This first two bits shifted in - * are TurnAround bits used to avoid contention on the MDIO pin when a - * READ operation is performed. These two bits are thrown away - * followed by a shift in of 16 bits which contains the desired data. - */ - mdic = ((reg_addr) | (phy_addr << 5) | - (PHY_OP_READ << 10) | (PHY_SOF << 12)); - - e1000_shift_out_mdi_bits(hw, mdic, 14); - - /* Now that we've shifted out the read command to the MII, we need to - * "shift in" the 16-bit value (18 total bits) of the requested PHY - * register address. - */ - *phy_data = e1000_shift_in_mdi_bits(hw); - } - return E1000_SUCCESS; -} - -/** - * e1000_write_phy_reg - write a phy register - * - * @hw: Struct containing variables accessed by shared code - * @reg_addr: address of the PHY register to write - * @data: data to write to the PHY - - * Writes a value to a PHY register - */ -s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data) -{ - u32 ret_val; - - e_dbg("e1000_write_phy_reg"); - - if ((hw->phy_type == e1000_phy_igp) && - (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { - ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, - (u16) reg_addr); - if (ret_val) - return ret_val; - } - - ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, - phy_data); - - return ret_val; -} - -static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, - u16 phy_data) -{ - u32 i; - u32 mdic = 0; - const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1; - - e_dbg("e1000_write_phy_reg_ex"); - - if (reg_addr > MAX_PHY_REG_ADDRESS) { - e_dbg("PHY Address %d is out of range\n", reg_addr); - return -E1000_ERR_PARAM; - } - - if (hw->mac_type > e1000_82543) { - /* Set up Op-code, Phy Address, register address, and data - * intended for the PHY register in the MDI Control register. - * The MAC will take care of interfacing with the PHY to send - * the desired data. - */ - if (hw->mac_type == e1000_ce4100) { - mdic = (((u32) phy_data) | - (reg_addr << E1000_MDIC_REG_SHIFT) | - (phy_addr << E1000_MDIC_PHY_SHIFT) | - (INTEL_CE_GBE_MDIC_OP_WRITE) | - (INTEL_CE_GBE_MDIC_GO)); - - writel(mdic, E1000_MDIO_CMD); - - /* Poll the ready bit to see if the MDI read - * completed - */ - for (i = 0; i < 640; i++) { - udelay(5); - mdic = readl(E1000_MDIO_CMD); - if (!(mdic & INTEL_CE_GBE_MDIC_GO)) - break; - } - if (mdic & INTEL_CE_GBE_MDIC_GO) { - e_dbg("MDI Write did not complete\n"); - return -E1000_ERR_PHY; - } - } else { - mdic = (((u32) phy_data) | - (reg_addr << E1000_MDIC_REG_SHIFT) | - (phy_addr << E1000_MDIC_PHY_SHIFT) | - (E1000_MDIC_OP_WRITE)); - - ew32(MDIC, mdic); - - /* Poll the ready bit to see if the MDI read - * completed - */ - for (i = 0; i < 641; i++) { - udelay(5); - mdic = er32(MDIC); - if (mdic & E1000_MDIC_READY) - break; - } - if (!(mdic & E1000_MDIC_READY)) { - e_dbg("MDI Write did not complete\n"); - return -E1000_ERR_PHY; - } - } - } else { - /* We'll need to use the SW defined pins to shift the write command - * out to the PHY. We first send a preamble to the PHY to signal the - * beginning of the MII instruction. This is done by sending 32 - * consecutive "1" bits. - */ - e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); - - /* Now combine the remaining required fields that will indicate a - * write operation. We use this method instead of calling the - * e1000_shift_out_mdi_bits routine for each field in the command. The - * format of a MII write instruction is as follows: - * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. - */ - mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | - (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); - mdic <<= 16; - mdic |= (u32) phy_data; - - e1000_shift_out_mdi_bits(hw, mdic, 32); - } - - return E1000_SUCCESS; -} - -/** - * e1000_phy_hw_reset - reset the phy, hardware style - * @hw: Struct containing variables accessed by shared code - * - * Returns the PHY to the power-on reset state - */ -s32 e1000_phy_hw_reset(struct e1000_hw *hw) -{ - u32 ctrl, ctrl_ext; - u32 led_ctrl; - - e_dbg("e1000_phy_hw_reset"); - - e_dbg("Resetting Phy...\n"); - - if (hw->mac_type > e1000_82543) { - /* Read the device control register and assert the E1000_CTRL_PHY_RST - * bit. Then, take it out of reset. - * For e1000 hardware, we delay for 10ms between the assert - * and deassert. - */ - ctrl = er32(CTRL); - ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); - E1000_WRITE_FLUSH(); - - msleep(10); - - ew32(CTRL, ctrl); - E1000_WRITE_FLUSH(); - - } else { - /* Read the Extended Device Control Register, assert the PHY_RESET_DIR - * bit to put the PHY into reset. Then, take it out of reset. - */ - ctrl_ext = er32(CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; - ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; - ew32(CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(); - msleep(10); - ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; - ew32(CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(); - } - udelay(150); - - if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { - /* Configure activity LED after PHY reset */ - led_ctrl = er32(LEDCTL); - led_ctrl &= IGP_ACTIVITY_LED_MASK; - led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); - ew32(LEDCTL, led_ctrl); - } - - /* Wait for FW to finish PHY configuration. */ - return e1000_get_phy_cfg_done(hw); -} - -/** - * e1000_phy_reset - reset the phy to commit settings - * @hw: Struct containing variables accessed by shared code - * - * Resets the PHY - * Sets bit 15 of the MII Control register - */ -s32 e1000_phy_reset(struct e1000_hw *hw) -{ - s32 ret_val; - u16 phy_data; - - e_dbg("e1000_phy_reset"); - - switch (hw->phy_type) { - case e1000_phy_igp: - ret_val = e1000_phy_hw_reset(hw); - if (ret_val) - return ret_val; - break; - default: - ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= MII_CR_RESET; - ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); - if (ret_val) - return ret_val; - - udelay(1); - break; - } - - if (hw->phy_type == e1000_phy_igp) - e1000_phy_init_script(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_detect_gig_phy - check the phy type - * @hw: Struct containing variables accessed by shared code - * - * Probes the expected PHY address for known PHY IDs - */ -static s32 e1000_detect_gig_phy(struct e1000_hw *hw) -{ - s32 phy_init_status, ret_val; - u16 phy_id_high, phy_id_low; - bool match = false; - - e_dbg("e1000_detect_gig_phy"); - - if (hw->phy_id != 0) - return E1000_SUCCESS; - - /* Read the PHY ID Registers to identify which PHY is onboard. */ - ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); - if (ret_val) - return ret_val; - - hw->phy_id = (u32) (phy_id_high << 16); - udelay(20); - ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); - if (ret_val) - return ret_val; - - hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK); - hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK; - - switch (hw->mac_type) { - case e1000_82543: - if (hw->phy_id == M88E1000_E_PHY_ID) - match = true; - break; - case e1000_82544: - if (hw->phy_id == M88E1000_I_PHY_ID) - match = true; - break; - case e1000_82540: - case e1000_82545: - case e1000_82545_rev_3: - case e1000_82546: - case e1000_82546_rev_3: - if (hw->phy_id == M88E1011_I_PHY_ID) - match = true; - break; - case e1000_ce4100: - if ((hw->phy_id == RTL8211B_PHY_ID) || - (hw->phy_id == RTL8201N_PHY_ID) || - (hw->phy_id == M88E1118_E_PHY_ID)) - match = true; - break; - case e1000_82541: - case e1000_82541_rev_2: - case e1000_82547: - case e1000_82547_rev_2: - if (hw->phy_id == IGP01E1000_I_PHY_ID) - match = true; - break; - default: - e_dbg("Invalid MAC type %d\n", hw->mac_type); - return -E1000_ERR_CONFIG; - } - phy_init_status = e1000_set_phy_type(hw); - - if ((match) && (phy_init_status == E1000_SUCCESS)) { - e_dbg("PHY ID 0x%X detected\n", hw->phy_id); - return E1000_SUCCESS; - } - e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id); - return -E1000_ERR_PHY; -} - -/** - * e1000_phy_reset_dsp - reset DSP - * @hw: Struct containing variables accessed by shared code - * - * Resets the PHY's DSP - */ -static s32 e1000_phy_reset_dsp(struct e1000_hw *hw) -{ - s32 ret_val; - e_dbg("e1000_phy_reset_dsp"); - - do { - ret_val = e1000_write_phy_reg(hw, 29, 0x001d); - if (ret_val) - break; - ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); - if (ret_val) - break; - ret_val = e1000_write_phy_reg(hw, 30, 0x0000); - if (ret_val) - break; - ret_val = E1000_SUCCESS; - } while (0); - - return ret_val; -} - -/** - * e1000_phy_igp_get_info - get igp specific registers - * @hw: Struct containing variables accessed by shared code - * @phy_info: PHY information structure - * - * Get PHY information from various PHY registers for igp PHY only. - */ -static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, - struct e1000_phy_info *phy_info) -{ - s32 ret_val; - u16 phy_data, min_length, max_length, average; - e1000_rev_polarity polarity; - - e_dbg("e1000_phy_igp_get_info"); - - /* The downshift status is checked only once, after link is established, - * and it stored in the hw->speed_downgraded parameter. */ - phy_info->downshift = (e1000_downshift) hw->speed_downgraded; - - /* IGP01E1000 does not need to support it. */ - phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; - - /* IGP01E1000 always correct polarity reversal */ - phy_info->polarity_correction = e1000_polarity_reversal_enabled; - - /* Check polarity status */ - ret_val = e1000_check_polarity(hw, &polarity); - if (ret_val) - return ret_val; - - phy_info->cable_polarity = polarity; - - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); - if (ret_val) - return ret_val; - - phy_info->mdix_mode = - (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >> - IGP01E1000_PSSR_MDIX_SHIFT); - - if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == - IGP01E1000_PSSR_SPEED_1000MBPS) { - /* Local/Remote Receiver Information are only valid at 1000 Mbps */ - ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); - if (ret_val) - return ret_val; - - phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> - SR_1000T_LOCAL_RX_STATUS_SHIFT) ? - e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; - phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> - SR_1000T_REMOTE_RX_STATUS_SHIFT) ? - e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; - - /* Get cable length */ - ret_val = e1000_get_cable_length(hw, &min_length, &max_length); - if (ret_val) - return ret_val; - - /* Translate to old method */ - average = (max_length + min_length) / 2; - - if (average <= e1000_igp_cable_length_50) - phy_info->cable_length = e1000_cable_length_50; - else if (average <= e1000_igp_cable_length_80) - phy_info->cable_length = e1000_cable_length_50_80; - else if (average <= e1000_igp_cable_length_110) - phy_info->cable_length = e1000_cable_length_80_110; - else if (average <= e1000_igp_cable_length_140) - phy_info->cable_length = e1000_cable_length_110_140; - else - phy_info->cable_length = e1000_cable_length_140; - } - - return E1000_SUCCESS; -} - -/** - * e1000_phy_m88_get_info - get m88 specific registers - * @hw: Struct containing variables accessed by shared code - * @phy_info: PHY information structure - * - * Get PHY information from various PHY registers for m88 PHY only. - */ -static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, - struct e1000_phy_info *phy_info) -{ - s32 ret_val; - u16 phy_data; - e1000_rev_polarity polarity; - - e_dbg("e1000_phy_m88_get_info"); - - /* The downshift status is checked only once, after link is established, - * and it stored in the hw->speed_downgraded parameter. */ - phy_info->downshift = (e1000_downshift) hw->speed_downgraded; - - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_info->extended_10bt_distance = - ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> - M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ? - e1000_10bt_ext_dist_enable_lower : - e1000_10bt_ext_dist_enable_normal; - - phy_info->polarity_correction = - ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> - M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ? - e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; - - /* Check polarity status */ - ret_val = e1000_check_polarity(hw, &polarity); - if (ret_val) - return ret_val; - phy_info->cable_polarity = polarity; - - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if (ret_val) - return ret_val; - - phy_info->mdix_mode = - (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >> - M88E1000_PSSR_MDIX_SHIFT); - - if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { - /* Cable Length Estimation and Local/Remote Receiver Information - * are only valid at 1000 Mbps. - */ - phy_info->cable_length = - (e1000_cable_length) ((phy_data & - M88E1000_PSSR_CABLE_LENGTH) >> - M88E1000_PSSR_CABLE_LENGTH_SHIFT); - - ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); - if (ret_val) - return ret_val; - - phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> - SR_1000T_LOCAL_RX_STATUS_SHIFT) ? - e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; - phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> - SR_1000T_REMOTE_RX_STATUS_SHIFT) ? - e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; - - } - - return E1000_SUCCESS; -} - -/** - * e1000_phy_get_info - request phy info - * @hw: Struct containing variables accessed by shared code - * @phy_info: PHY information structure - * - * Get PHY information from various PHY registers - */ -s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info) -{ - s32 ret_val; - u16 phy_data; - - e_dbg("e1000_phy_get_info"); - - phy_info->cable_length = e1000_cable_length_undefined; - phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; - phy_info->cable_polarity = e1000_rev_polarity_undefined; - phy_info->downshift = e1000_downshift_undefined; - phy_info->polarity_correction = e1000_polarity_reversal_undefined; - phy_info->mdix_mode = e1000_auto_x_mode_undefined; - phy_info->local_rx = e1000_1000t_rx_status_undefined; - phy_info->remote_rx = e1000_1000t_rx_status_undefined; - - if (hw->media_type != e1000_media_type_copper) { - e_dbg("PHY info is only valid for copper media\n"); - return -E1000_ERR_CONFIG; - } - - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - - if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { - e_dbg("PHY info is only valid if link is up\n"); - return -E1000_ERR_CONFIG; - } - - if (hw->phy_type == e1000_phy_igp) - return e1000_phy_igp_get_info(hw, phy_info); - else if ((hw->phy_type == e1000_phy_8211) || - (hw->phy_type == e1000_phy_8201)) - return E1000_SUCCESS; - else - return e1000_phy_m88_get_info(hw, phy_info); -} - -s32 e1000_validate_mdi_setting(struct e1000_hw *hw) -{ - e_dbg("e1000_validate_mdi_settings"); - - if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { - e_dbg("Invalid MDI setting detected\n"); - hw->mdix = 1; - return -E1000_ERR_CONFIG; - } - return E1000_SUCCESS; -} - -/** - * e1000_init_eeprom_params - initialize sw eeprom vars - * @hw: Struct containing variables accessed by shared code - * - * Sets up eeprom variables in the hw struct. Must be called after mac_type - * is configured. - */ -s32 e1000_init_eeprom_params(struct e1000_hw *hw) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - u32 eecd = er32(EECD); - s32 ret_val = E1000_SUCCESS; - u16 eeprom_size; - - e_dbg("e1000_init_eeprom_params"); - - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - case e1000_82543: - case e1000_82544: - eeprom->type = e1000_eeprom_microwire; - eeprom->word_size = 64; - eeprom->opcode_bits = 3; - eeprom->address_bits = 6; - eeprom->delay_usec = 50; - break; - case e1000_82540: - case e1000_82545: - case e1000_82545_rev_3: - case e1000_82546: - case e1000_82546_rev_3: - eeprom->type = e1000_eeprom_microwire; - eeprom->opcode_bits = 3; - eeprom->delay_usec = 50; - if (eecd & E1000_EECD_SIZE) { - eeprom->word_size = 256; - eeprom->address_bits = 8; - } else { - eeprom->word_size = 64; - eeprom->address_bits = 6; - } - break; - case e1000_82541: - case e1000_82541_rev_2: - case e1000_82547: - case e1000_82547_rev_2: - if (eecd & E1000_EECD_TYPE) { - eeprom->type = e1000_eeprom_spi; - eeprom->opcode_bits = 8; - eeprom->delay_usec = 1; - if (eecd & E1000_EECD_ADDR_BITS) { - eeprom->page_size = 32; - eeprom->address_bits = 16; - } else { - eeprom->page_size = 8; - eeprom->address_bits = 8; - } - } else { - eeprom->type = e1000_eeprom_microwire; - eeprom->opcode_bits = 3; - eeprom->delay_usec = 50; - if (eecd & E1000_EECD_ADDR_BITS) { - eeprom->word_size = 256; - eeprom->address_bits = 8; - } else { - eeprom->word_size = 64; - eeprom->address_bits = 6; - } - } - break; - default: - break; - } - - if (eeprom->type == e1000_eeprom_spi) { - /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to - * 32KB (incremented by powers of 2). - */ - /* Set to default value for initial eeprom read. */ - eeprom->word_size = 64; - ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); - if (ret_val) - return ret_val; - eeprom_size = - (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; - /* 256B eeprom size was not supported in earlier hardware, so we - * bump eeprom_size up one to ensure that "1" (which maps to 256B) - * is never the result used in the shifting logic below. */ - if (eeprom_size) - eeprom_size++; - - eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); - } - return ret_val; -} - -/** - * e1000_raise_ee_clk - Raises the EEPROM's clock input. - * @hw: Struct containing variables accessed by shared code - * @eecd: EECD's current value - */ -static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd) -{ - /* Raise the clock input to the EEPROM (by setting the SK bit), and then - * wait <delay> microseconds. - */ - *eecd = *eecd | E1000_EECD_SK; - ew32(EECD, *eecd); - E1000_WRITE_FLUSH(); - udelay(hw->eeprom.delay_usec); -} - -/** - * e1000_lower_ee_clk - Lowers the EEPROM's clock input. - * @hw: Struct containing variables accessed by shared code - * @eecd: EECD's current value - */ -static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd) -{ - /* Lower the clock input to the EEPROM (by clearing the SK bit), and then - * wait 50 microseconds. - */ - *eecd = *eecd & ~E1000_EECD_SK; - ew32(EECD, *eecd); - E1000_WRITE_FLUSH(); - udelay(hw->eeprom.delay_usec); -} - -/** - * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM. - * @hw: Struct containing variables accessed by shared code - * @data: data to send to the EEPROM - * @count: number of bits to shift out - */ -static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - u32 eecd; - u32 mask; - - /* We need to shift "count" bits out to the EEPROM. So, value in the - * "data" parameter will be shifted out to the EEPROM one bit at a time. - * In order to do this, "data" must be broken down into bits. - */ - mask = 0x01 << (count - 1); - eecd = er32(EECD); - if (eeprom->type == e1000_eeprom_microwire) { - eecd &= ~E1000_EECD_DO; - } else if (eeprom->type == e1000_eeprom_spi) { - eecd |= E1000_EECD_DO; - } - do { - /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", - * and then raising and then lowering the clock (the SK bit controls - * the clock input to the EEPROM). A "0" is shifted out to the EEPROM - * by setting "DI" to "0" and then raising and then lowering the clock. - */ - eecd &= ~E1000_EECD_DI; - - if (data & mask) - eecd |= E1000_EECD_DI; - - ew32(EECD, eecd); - E1000_WRITE_FLUSH(); - - udelay(eeprom->delay_usec); - - e1000_raise_ee_clk(hw, &eecd); - e1000_lower_ee_clk(hw, &eecd); - - mask = mask >> 1; - - } while (mask); - - /* We leave the "DI" bit set to "0" when we leave this routine. */ - eecd &= ~E1000_EECD_DI; - ew32(EECD, eecd); -} - -/** - * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM - * @hw: Struct containing variables accessed by shared code - * @count: number of bits to shift in - */ -static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count) -{ - u32 eecd; - u32 i; - u16 data; - - /* In order to read a register from the EEPROM, we need to shift 'count' - * bits in from the EEPROM. Bits are "shifted in" by raising the clock - * input to the EEPROM (setting the SK bit), and then reading the value of - * the "DO" bit. During this "shifting in" process the "DI" bit should - * always be clear. - */ - - eecd = er32(EECD); - - eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); - data = 0; - - for (i = 0; i < count; i++) { - data = data << 1; - e1000_raise_ee_clk(hw, &eecd); - - eecd = er32(EECD); - - eecd &= ~(E1000_EECD_DI); - if (eecd & E1000_EECD_DO) - data |= 1; - - e1000_lower_ee_clk(hw, &eecd); - } - - return data; -} - -/** - * e1000_acquire_eeprom - Prepares EEPROM for access - * @hw: Struct containing variables accessed by shared code - * - * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This - * function should be called before issuing a command to the EEPROM. - */ -static s32 e1000_acquire_eeprom(struct e1000_hw *hw) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - u32 eecd, i = 0; - - e_dbg("e1000_acquire_eeprom"); - - eecd = er32(EECD); - - /* Request EEPROM Access */ - if (hw->mac_type > e1000_82544) { - eecd |= E1000_EECD_REQ; - ew32(EECD, eecd); - eecd = er32(EECD); - while ((!(eecd & E1000_EECD_GNT)) && - (i < E1000_EEPROM_GRANT_ATTEMPTS)) { - i++; - udelay(5); - eecd = er32(EECD); - } - if (!(eecd & E1000_EECD_GNT)) { - eecd &= ~E1000_EECD_REQ; - ew32(EECD, eecd); - e_dbg("Could not acquire EEPROM grant\n"); - return -E1000_ERR_EEPROM; - } - } - - /* Setup EEPROM for Read/Write */ - - if (eeprom->type == e1000_eeprom_microwire) { - /* Clear SK and DI */ - eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); - ew32(EECD, eecd); - - /* Set CS */ - eecd |= E1000_EECD_CS; - ew32(EECD, eecd); - } else if (eeprom->type == e1000_eeprom_spi) { - /* Clear SK and CS */ - eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); - ew32(EECD, eecd); - E1000_WRITE_FLUSH(); - udelay(1); - } - - return E1000_SUCCESS; -} - -/** - * e1000_standby_eeprom - Returns EEPROM to a "standby" state - * @hw: Struct containing variables accessed by shared code - */ -static void e1000_standby_eeprom(struct e1000_hw *hw) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - u32 eecd; - - eecd = er32(EECD); - - if (eeprom->type == e1000_eeprom_microwire) { - eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); - ew32(EECD, eecd); - E1000_WRITE_FLUSH(); - udelay(eeprom->delay_usec); - - /* Clock high */ - eecd |= E1000_EECD_SK; - ew32(EECD, eecd); - E1000_WRITE_FLUSH(); - udelay(eeprom->delay_usec); - - /* Select EEPROM */ - eecd |= E1000_EECD_CS; - ew32(EECD, eecd); - E1000_WRITE_FLUSH(); - udelay(eeprom->delay_usec); - - /* Clock low */ - eecd &= ~E1000_EECD_SK; - ew32(EECD, eecd); - E1000_WRITE_FLUSH(); - udelay(eeprom->delay_usec); - } else if (eeprom->type == e1000_eeprom_spi) { - /* Toggle CS to flush commands */ - eecd |= E1000_EECD_CS; - ew32(EECD, eecd); - E1000_WRITE_FLUSH(); - udelay(eeprom->delay_usec); - eecd &= ~E1000_EECD_CS; - ew32(EECD, eecd); - E1000_WRITE_FLUSH(); - udelay(eeprom->delay_usec); - } -} - -/** - * e1000_release_eeprom - drop chip select - * @hw: Struct containing variables accessed by shared code - * - * Terminates a command by inverting the EEPROM's chip select pin - */ -static void e1000_release_eeprom(struct e1000_hw *hw) -{ - u32 eecd; - - e_dbg("e1000_release_eeprom"); - - eecd = er32(EECD); - - if (hw->eeprom.type == e1000_eeprom_spi) { - eecd |= E1000_EECD_CS; /* Pull CS high */ - eecd &= ~E1000_EECD_SK; /* Lower SCK */ - - ew32(EECD, eecd); - E1000_WRITE_FLUSH(); - - udelay(hw->eeprom.delay_usec); - } else if (hw->eeprom.type == e1000_eeprom_microwire) { - /* cleanup eeprom */ - - /* CS on Microwire is active-high */ - eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); - - ew32(EECD, eecd); - - /* Rising edge of clock */ - eecd |= E1000_EECD_SK; - ew32(EECD, eecd); - E1000_WRITE_FLUSH(); - udelay(hw->eeprom.delay_usec); - - /* Falling edge of clock */ - eecd &= ~E1000_EECD_SK; - ew32(EECD, eecd); - E1000_WRITE_FLUSH(); - udelay(hw->eeprom.delay_usec); - } - - /* Stop requesting EEPROM access */ - if (hw->mac_type > e1000_82544) { - eecd &= ~E1000_EECD_REQ; - ew32(EECD, eecd); - } -} - -/** - * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM. - * @hw: Struct containing variables accessed by shared code - */ -static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw) -{ - u16 retry_count = 0; - u8 spi_stat_reg; - - e_dbg("e1000_spi_eeprom_ready"); - - /* Read "Status Register" repeatedly until the LSB is cleared. The - * EEPROM will signal that the command has been completed by clearing - * bit 0 of the internal status register. If it's not cleared within - * 5 milliseconds, then error out. - */ - retry_count = 0; - do { - e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, - hw->eeprom.opcode_bits); - spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8); - if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) - break; - - udelay(5); - retry_count += 5; - - e1000_standby_eeprom(hw); - } while (retry_count < EEPROM_MAX_RETRY_SPI); - - /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and - * only 0-5mSec on 5V devices) - */ - if (retry_count >= EEPROM_MAX_RETRY_SPI) { - e_dbg("SPI EEPROM Status error\n"); - return -E1000_ERR_EEPROM; - } - - return E1000_SUCCESS; -} - -/** - * e1000_read_eeprom - Reads a 16 bit word from the EEPROM. - * @hw: Struct containing variables accessed by shared code - * @offset: offset of word in the EEPROM to read - * @data: word read from the EEPROM - * @words: number of words to read - */ -s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - s32 ret; - spin_lock(&e1000_eeprom_lock); - ret = e1000_do_read_eeprom(hw, offset, words, data); - spin_unlock(&e1000_eeprom_lock); - return ret; -} - -static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - u32 i = 0; - - e_dbg("e1000_read_eeprom"); - - if (hw->mac_type == e1000_ce4100) { - GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words, - data); - return E1000_SUCCESS; - } - - /* If eeprom is not yet detected, do so now */ - if (eeprom->word_size == 0) - e1000_init_eeprom_params(hw); - - /* A check for invalid values: offset too large, too many words, and not - * enough words. - */ - if ((offset >= eeprom->word_size) - || (words > eeprom->word_size - offset) || (words == 0)) { - e_dbg("\"words\" parameter out of bounds. Words = %d," - "size = %d\n", offset, eeprom->word_size); - return -E1000_ERR_EEPROM; - } - - /* EEPROM's that don't use EERD to read require us to bit-bang the SPI - * directly. In this case, we need to acquire the EEPROM so that - * FW or other port software does not interrupt. - */ - /* Prepare the EEPROM for bit-bang reading */ - if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) - return -E1000_ERR_EEPROM; - - /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have - * acquired the EEPROM at this point, so any returns should release it */ - if (eeprom->type == e1000_eeprom_spi) { - u16 word_in; - u8 read_opcode = EEPROM_READ_OPCODE_SPI; - - if (e1000_spi_eeprom_ready(hw)) { - e1000_release_eeprom(hw); - return -E1000_ERR_EEPROM; - } - - e1000_standby_eeprom(hw); - - /* Some SPI eeproms use the 8th address bit embedded in the opcode */ - if ((eeprom->address_bits == 8) && (offset >= 128)) - read_opcode |= EEPROM_A8_OPCODE_SPI; - - /* Send the READ command (opcode + addr) */ - e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); - e1000_shift_out_ee_bits(hw, (u16) (offset * 2), - eeprom->address_bits); - - /* Read the data. The address of the eeprom internally increments with - * each byte (spi) being read, saving on the overhead of eeprom setup - * and tear-down. The address counter will roll over if reading beyond - * the size of the eeprom, thus allowing the entire memory to be read - * starting from any offset. */ - for (i = 0; i < words; i++) { - word_in = e1000_shift_in_ee_bits(hw, 16); - data[i] = (word_in >> 8) | (word_in << 8); - } - } else if (eeprom->type == e1000_eeprom_microwire) { - for (i = 0; i < words; i++) { - /* Send the READ command (opcode + addr) */ - e1000_shift_out_ee_bits(hw, - EEPROM_READ_OPCODE_MICROWIRE, - eeprom->opcode_bits); - e1000_shift_out_ee_bits(hw, (u16) (offset + i), - eeprom->address_bits); - - /* Read the data. For microwire, each word requires the overhead - * of eeprom setup and tear-down. */ - data[i] = e1000_shift_in_ee_bits(hw, 16); - e1000_standby_eeprom(hw); - } - } - - /* End this read operation */ - e1000_release_eeprom(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum - * @hw: Struct containing variables accessed by shared code - * - * Reads the first 64 16 bit words of the EEPROM and sums the values read. - * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is - * valid. - */ -s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw) -{ - u16 checksum = 0; - u16 i, eeprom_data; - - e_dbg("e1000_validate_eeprom_checksum"); - - for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { - if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { - e_dbg("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - checksum += eeprom_data; - } - - if (checksum == (u16) EEPROM_SUM) - return E1000_SUCCESS; - else { - e_dbg("EEPROM Checksum Invalid\n"); - return -E1000_ERR_EEPROM; - } -} - -/** - * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum - * @hw: Struct containing variables accessed by shared code - * - * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. - * Writes the difference to word offset 63 of the EEPROM. - */ -s32 e1000_update_eeprom_checksum(struct e1000_hw *hw) -{ - u16 checksum = 0; - u16 i, eeprom_data; - - e_dbg("e1000_update_eeprom_checksum"); - - for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { - if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { - e_dbg("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - checksum += eeprom_data; - } - checksum = (u16) EEPROM_SUM - checksum; - if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { - e_dbg("EEPROM Write Error\n"); - return -E1000_ERR_EEPROM; - } - return E1000_SUCCESS; -} - -/** - * e1000_write_eeprom - write words to the different EEPROM types. - * @hw: Struct containing variables accessed by shared code - * @offset: offset within the EEPROM to be written to - * @words: number of words to write - * @data: 16 bit word to be written to the EEPROM - * - * If e1000_update_eeprom_checksum is not called after this function, the - * EEPROM will most likely contain an invalid checksum. - */ -s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - s32 ret; - spin_lock(&e1000_eeprom_lock); - ret = e1000_do_write_eeprom(hw, offset, words, data); - spin_unlock(&e1000_eeprom_lock); - return ret; -} - -static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - s32 status = 0; - - e_dbg("e1000_write_eeprom"); - - if (hw->mac_type == e1000_ce4100) { - GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words, - data); - return E1000_SUCCESS; - } - - /* If eeprom is not yet detected, do so now */ - if (eeprom->word_size == 0) - e1000_init_eeprom_params(hw); - - /* A check for invalid values: offset too large, too many words, and not - * enough words. - */ - if ((offset >= eeprom->word_size) - || (words > eeprom->word_size - offset) || (words == 0)) { - e_dbg("\"words\" parameter out of bounds\n"); - return -E1000_ERR_EEPROM; - } - - /* Prepare the EEPROM for writing */ - if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) - return -E1000_ERR_EEPROM; - - if (eeprom->type == e1000_eeprom_microwire) { - status = e1000_write_eeprom_microwire(hw, offset, words, data); - } else { - status = e1000_write_eeprom_spi(hw, offset, words, data); - msleep(10); - } - - /* Done with writing */ - e1000_release_eeprom(hw); - - return status; -} - -/** - * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM. - * @hw: Struct containing variables accessed by shared code - * @offset: offset within the EEPROM to be written to - * @words: number of words to write - * @data: pointer to array of 8 bit words to be written to the EEPROM - */ -static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - u16 widx = 0; - - e_dbg("e1000_write_eeprom_spi"); - - while (widx < words) { - u8 write_opcode = EEPROM_WRITE_OPCODE_SPI; - - if (e1000_spi_eeprom_ready(hw)) - return -E1000_ERR_EEPROM; - - e1000_standby_eeprom(hw); - - /* Send the WRITE ENABLE command (8 bit opcode ) */ - e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, - eeprom->opcode_bits); - - e1000_standby_eeprom(hw); - - /* Some SPI eeproms use the 8th address bit embedded in the opcode */ - if ((eeprom->address_bits == 8) && (offset >= 128)) - write_opcode |= EEPROM_A8_OPCODE_SPI; - - /* Send the Write command (8-bit opcode + addr) */ - e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); - - e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2), - eeprom->address_bits); - - /* Send the data */ - - /* Loop to allow for up to whole page write (32 bytes) of eeprom */ - while (widx < words) { - u16 word_out = data[widx]; - word_out = (word_out >> 8) | (word_out << 8); - e1000_shift_out_ee_bits(hw, word_out, 16); - widx++; - - /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE - * operation, while the smaller eeproms are capable of an 8-byte - * PAGE WRITE operation. Break the inner loop to pass new address - */ - if ((((offset + widx) * 2) % eeprom->page_size) == 0) { - e1000_standby_eeprom(hw); - break; - } - } - } - - return E1000_SUCCESS; -} - -/** - * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM. - * @hw: Struct containing variables accessed by shared code - * @offset: offset within the EEPROM to be written to - * @words: number of words to write - * @data: pointer to array of 8 bit words to be written to the EEPROM - */ -static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data) -{ - struct e1000_eeprom_info *eeprom = &hw->eeprom; - u32 eecd; - u16 words_written = 0; - u16 i = 0; - - e_dbg("e1000_write_eeprom_microwire"); - - /* Send the write enable command to the EEPROM (3-bit opcode plus - * 6/8-bit dummy address beginning with 11). It's less work to include - * the 11 of the dummy address as part of the opcode than it is to shift - * it over the correct number of bits for the address. This puts the - * EEPROM into write/erase mode. - */ - e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, - (u16) (eeprom->opcode_bits + 2)); - - e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2)); - - /* Prepare the EEPROM */ - e1000_standby_eeprom(hw); - - while (words_written < words) { - /* Send the Write command (3-bit opcode + addr) */ - e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, - eeprom->opcode_bits); - - e1000_shift_out_ee_bits(hw, (u16) (offset + words_written), - eeprom->address_bits); - - /* Send the data */ - e1000_shift_out_ee_bits(hw, data[words_written], 16); - - /* Toggle the CS line. This in effect tells the EEPROM to execute - * the previous command. - */ - e1000_standby_eeprom(hw); - - /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will - * signal that the command has been completed by raising the DO signal. - * If DO does not go high in 10 milliseconds, then error out. - */ - for (i = 0; i < 200; i++) { - eecd = er32(EECD); - if (eecd & E1000_EECD_DO) - break; - udelay(50); - } - if (i == 200) { - e_dbg("EEPROM Write did not complete\n"); - return -E1000_ERR_EEPROM; - } - - /* Recover from write */ - e1000_standby_eeprom(hw); - - words_written++; - } - - /* Send the write disable command to the EEPROM (3-bit opcode plus - * 6/8-bit dummy address beginning with 10). It's less work to include - * the 10 of the dummy address as part of the opcode than it is to shift - * it over the correct number of bits for the address. This takes the - * EEPROM out of write/erase mode. - */ - e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, - (u16) (eeprom->opcode_bits + 2)); - - e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2)); - - return E1000_SUCCESS; -} - -/** - * e1000_read_mac_addr - read the adapters MAC from eeprom - * @hw: Struct containing variables accessed by shared code - * - * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the - * second function of dual function devices - */ -s32 e1000_read_mac_addr(struct e1000_hw *hw) -{ - u16 offset; - u16 eeprom_data, i; - - e_dbg("e1000_read_mac_addr"); - - for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { - offset = i >> 1; - if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { - e_dbg("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF); - hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8); - } - - switch (hw->mac_type) { - default: - break; - case e1000_82546: - case e1000_82546_rev_3: - if (er32(STATUS) & E1000_STATUS_FUNC_1) - hw->perm_mac_addr[5] ^= 0x01; - break; - } - - for (i = 0; i < NODE_ADDRESS_SIZE; i++) - hw->mac_addr[i] = hw->perm_mac_addr[i]; - return E1000_SUCCESS; -} - -/** - * e1000_init_rx_addrs - Initializes receive address filters. - * @hw: Struct containing variables accessed by shared code - * - * Places the MAC address in receive address register 0 and clears the rest - * of the receive address registers. Clears the multicast table. Assumes - * the receiver is in reset when the routine is called. - */ -static void e1000_init_rx_addrs(struct e1000_hw *hw) -{ - u32 i; - u32 rar_num; - - e_dbg("e1000_init_rx_addrs"); - - /* Setup the receive address. */ - e_dbg("Programming MAC Address into RAR[0]\n"); - - e1000_rar_set(hw, hw->mac_addr, 0); - - rar_num = E1000_RAR_ENTRIES; - - /* Zero out the other 15 receive addresses. */ - e_dbg("Clearing RAR[1-15]\n"); - for (i = 1; i < rar_num; i++) { - E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); - E1000_WRITE_FLUSH(); - E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); - E1000_WRITE_FLUSH(); - } -} - -/** - * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table - * @hw: Struct containing variables accessed by shared code - * @mc_addr: the multicast address to hash - */ -u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) -{ - u32 hash_value = 0; - - /* The portion of the address that is used for the hash table is - * determined by the mc_filter_type setting. - */ - switch (hw->mc_filter_type) { - /* [0] [1] [2] [3] [4] [5] - * 01 AA 00 12 34 56 - * LSB MSB - */ - case 0: - /* [47:36] i.e. 0x563 for above example address */ - hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4)); - break; - case 1: - /* [46:35] i.e. 0xAC6 for above example address */ - hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5)); - break; - case 2: - /* [45:34] i.e. 0x5D8 for above example address */ - hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6)); - break; - case 3: - /* [43:32] i.e. 0x634 for above example address */ - hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8)); - break; - } - - hash_value &= 0xFFF; - return hash_value; -} - -/** - * e1000_rar_set - Puts an ethernet address into a receive address register. - * @hw: Struct containing variables accessed by shared code - * @addr: Address to put into receive address register - * @index: Receive address register to write - */ -void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) -{ - u32 rar_low, rar_high; - - /* HW expects these in little endian so we reverse the byte order - * from network order (big endian) to little endian - */ - rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | - ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); - rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); - - /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx - * unit hang. - * - * Description: - * If there are any Rx frames queued up or otherwise present in the HW - * before RSS is enabled, and then we enable RSS, the HW Rx unit will - * hang. To work around this issue, we have to disable receives and - * flush out all Rx frames before we enable RSS. To do so, we modify we - * redirect all Rx traffic to manageability and then reset the HW. - * This flushes away Rx frames, and (since the redirections to - * manageability persists across resets) keeps new ones from coming in - * while we work. Then, we clear the Address Valid AV bit for all MAC - * addresses and undo the re-direction to manageability. - * Now, frames are coming in again, but the MAC won't accept them, so - * far so good. We now proceed to initialize RSS (if necessary) and - * configure the Rx unit. Last, we re-enable the AV bits and continue - * on our merry way. - */ - switch (hw->mac_type) { - default: - /* Indicate to hardware the Address is Valid. */ - rar_high |= E1000_RAH_AV; - break; - } - - E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); - E1000_WRITE_FLUSH(); - E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); - E1000_WRITE_FLUSH(); -} - -/** - * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table. - * @hw: Struct containing variables accessed by shared code - * @offset: Offset in VLAN filer table to write - * @value: Value to write into VLAN filter table - */ -void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) -{ - u32 temp; - - if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { - temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); - E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); - E1000_WRITE_FLUSH(); - E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); - E1000_WRITE_FLUSH(); - } else { - E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); - E1000_WRITE_FLUSH(); - } -} - -/** - * e1000_clear_vfta - Clears the VLAN filer table - * @hw: Struct containing variables accessed by shared code - */ -static void e1000_clear_vfta(struct e1000_hw *hw) -{ - u32 offset; - u32 vfta_value = 0; - u32 vfta_offset = 0; - u32 vfta_bit_in_reg = 0; - - for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { - /* If the offset we want to clear is the same offset of the - * manageability VLAN ID, then clear all bits except that of the - * manageability unit */ - vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; - E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); - E1000_WRITE_FLUSH(); - } -} - -static s32 e1000_id_led_init(struct e1000_hw *hw) -{ - u32 ledctl; - const u32 ledctl_mask = 0x000000FF; - const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; - const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; - u16 eeprom_data, i, temp; - const u16 led_mask = 0x0F; - - e_dbg("e1000_id_led_init"); - - if (hw->mac_type < e1000_82540) { - /* Nothing to do */ - return E1000_SUCCESS; - } - - ledctl = er32(LEDCTL); - hw->ledctl_default = ledctl; - hw->ledctl_mode1 = hw->ledctl_default; - hw->ledctl_mode2 = hw->ledctl_default; - - if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { - e_dbg("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - - if ((eeprom_data == ID_LED_RESERVED_0000) || - (eeprom_data == ID_LED_RESERVED_FFFF)) { - eeprom_data = ID_LED_DEFAULT; - } - - for (i = 0; i < 4; i++) { - temp = (eeprom_data >> (i << 2)) & led_mask; - switch (temp) { - case ID_LED_ON1_DEF2: - case ID_LED_ON1_ON2: - case ID_LED_ON1_OFF2: - hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); - hw->ledctl_mode1 |= ledctl_on << (i << 3); - break; - case ID_LED_OFF1_DEF2: - case ID_LED_OFF1_ON2: - case ID_LED_OFF1_OFF2: - hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); - hw->ledctl_mode1 |= ledctl_off << (i << 3); - break; - default: - /* Do nothing */ - break; - } - switch (temp) { - case ID_LED_DEF1_ON2: - case ID_LED_ON1_ON2: - case ID_LED_OFF1_ON2: - hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); - hw->ledctl_mode2 |= ledctl_on << (i << 3); - break; - case ID_LED_DEF1_OFF2: - case ID_LED_ON1_OFF2: - case ID_LED_OFF1_OFF2: - hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); - hw->ledctl_mode2 |= ledctl_off << (i << 3); - break; - default: - /* Do nothing */ - break; - } - } - return E1000_SUCCESS; -} - -/** - * e1000_setup_led - * @hw: Struct containing variables accessed by shared code - * - * Prepares SW controlable LED for use and saves the current state of the LED. - */ -s32 e1000_setup_led(struct e1000_hw *hw) -{ - u32 ledctl; - s32 ret_val = E1000_SUCCESS; - - e_dbg("e1000_setup_led"); - - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - case e1000_82543: - case e1000_82544: - /* No setup necessary */ - break; - case e1000_82541: - case e1000_82547: - case e1000_82541_rev_2: - case e1000_82547_rev_2: - /* Turn off PHY Smart Power Down (if enabled) */ - ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, - &hw->phy_spd_default); - if (ret_val) - return ret_val; - ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, - (u16) (hw->phy_spd_default & - ~IGP01E1000_GMII_SPD)); - if (ret_val) - return ret_val; - /* Fall Through */ - default: - if (hw->media_type == e1000_media_type_fiber) { - ledctl = er32(LEDCTL); - /* Save current LEDCTL settings */ - hw->ledctl_default = ledctl; - /* Turn off LED0 */ - ledctl &= ~(E1000_LEDCTL_LED0_IVRT | - E1000_LEDCTL_LED0_BLINK | - E1000_LEDCTL_LED0_MODE_MASK); - ledctl |= (E1000_LEDCTL_MODE_LED_OFF << - E1000_LEDCTL_LED0_MODE_SHIFT); - ew32(LEDCTL, ledctl); - } else if (hw->media_type == e1000_media_type_copper) - ew32(LEDCTL, hw->ledctl_mode1); - break; - } - - return E1000_SUCCESS; -} - -/** - * e1000_cleanup_led - Restores the saved state of the SW controlable LED. - * @hw: Struct containing variables accessed by shared code - */ -s32 e1000_cleanup_led(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - e_dbg("e1000_cleanup_led"); - - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - case e1000_82543: - case e1000_82544: - /* No cleanup necessary */ - break; - case e1000_82541: - case e1000_82547: - case e1000_82541_rev_2: - case e1000_82547_rev_2: - /* Turn on PHY Smart Power Down (if previously enabled) */ - ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, - hw->phy_spd_default); - if (ret_val) - return ret_val; - /* Fall Through */ - default: - /* Restore LEDCTL settings */ - ew32(LEDCTL, hw->ledctl_default); - break; - } - - return E1000_SUCCESS; -} - -/** - * e1000_led_on - Turns on the software controllable LED - * @hw: Struct containing variables accessed by shared code - */ -s32 e1000_led_on(struct e1000_hw *hw) -{ - u32 ctrl = er32(CTRL); - - e_dbg("e1000_led_on"); - - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - case e1000_82543: - /* Set SW Defineable Pin 0 to turn on the LED */ - ctrl |= E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - break; - case e1000_82544: - if (hw->media_type == e1000_media_type_fiber) { - /* Set SW Defineable Pin 0 to turn on the LED */ - ctrl |= E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - } else { - /* Clear SW Defineable Pin 0 to turn on the LED */ - ctrl &= ~E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - } - break; - default: - if (hw->media_type == e1000_media_type_fiber) { - /* Clear SW Defineable Pin 0 to turn on the LED */ - ctrl &= ~E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - } else if (hw->media_type == e1000_media_type_copper) { - ew32(LEDCTL, hw->ledctl_mode2); - return E1000_SUCCESS; - } - break; - } - - ew32(CTRL, ctrl); - - return E1000_SUCCESS; -} - -/** - * e1000_led_off - Turns off the software controllable LED - * @hw: Struct containing variables accessed by shared code - */ -s32 e1000_led_off(struct e1000_hw *hw) -{ - u32 ctrl = er32(CTRL); - - e_dbg("e1000_led_off"); - - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - case e1000_82543: - /* Clear SW Defineable Pin 0 to turn off the LED */ - ctrl &= ~E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - break; - case e1000_82544: - if (hw->media_type == e1000_media_type_fiber) { - /* Clear SW Defineable Pin 0 to turn off the LED */ - ctrl &= ~E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - } else { - /* Set SW Defineable Pin 0 to turn off the LED */ - ctrl |= E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - } - break; - default: - if (hw->media_type == e1000_media_type_fiber) { - /* Set SW Defineable Pin 0 to turn off the LED */ - ctrl |= E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - } else if (hw->media_type == e1000_media_type_copper) { - ew32(LEDCTL, hw->ledctl_mode1); - return E1000_SUCCESS; - } - break; - } - - ew32(CTRL, ctrl); - - return E1000_SUCCESS; -} - -/** - * e1000_clear_hw_cntrs - Clears all hardware statistics counters. - * @hw: Struct containing variables accessed by shared code - */ -static void e1000_clear_hw_cntrs(struct e1000_hw *hw) -{ - volatile u32 temp; - - temp = er32(CRCERRS); - temp = er32(SYMERRS); - temp = er32(MPC); - temp = er32(SCC); - temp = er32(ECOL); - temp = er32(MCC); - temp = er32(LATECOL); - temp = er32(COLC); - temp = er32(DC); - temp = er32(SEC); - temp = er32(RLEC); - temp = er32(XONRXC); - temp = er32(XONTXC); - temp = er32(XOFFRXC); - temp = er32(XOFFTXC); - temp = er32(FCRUC); - - temp = er32(PRC64); - temp = er32(PRC127); - temp = er32(PRC255); - temp = er32(PRC511); - temp = er32(PRC1023); - temp = er32(PRC1522); - - temp = er32(GPRC); - temp = er32(BPRC); - temp = er32(MPRC); - temp = er32(GPTC); - temp = er32(GORCL); - temp = er32(GORCH); - temp = er32(GOTCL); - temp = er32(GOTCH); - temp = er32(RNBC); - temp = er32(RUC); - temp = er32(RFC); - temp = er32(ROC); - temp = er32(RJC); - temp = er32(TORL); - temp = er32(TORH); - temp = er32(TOTL); - temp = er32(TOTH); - temp = er32(TPR); - temp = er32(TPT); - - temp = er32(PTC64); - temp = er32(PTC127); - temp = er32(PTC255); - temp = er32(PTC511); - temp = er32(PTC1023); - temp = er32(PTC1522); - - temp = er32(MPTC); - temp = er32(BPTC); - - if (hw->mac_type < e1000_82543) - return; - - temp = er32(ALGNERRC); - temp = er32(RXERRC); - temp = er32(TNCRS); - temp = er32(CEXTERR); - temp = er32(TSCTC); - temp = er32(TSCTFC); - - if (hw->mac_type <= e1000_82544) - return; - - temp = er32(MGTPRC); - temp = er32(MGTPDC); - temp = er32(MGTPTC); -} - -/** - * e1000_reset_adaptive - Resets Adaptive IFS to its default state. - * @hw: Struct containing variables accessed by shared code - * - * Call this after e1000_init_hw. You may override the IFS defaults by setting - * hw->ifs_params_forced to true. However, you must initialize hw-> - * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio - * before calling this function. - */ -void e1000_reset_adaptive(struct e1000_hw *hw) -{ - e_dbg("e1000_reset_adaptive"); - - if (hw->adaptive_ifs) { - if (!hw->ifs_params_forced) { - hw->current_ifs_val = 0; - hw->ifs_min_val = IFS_MIN; - hw->ifs_max_val = IFS_MAX; - hw->ifs_step_size = IFS_STEP; - hw->ifs_ratio = IFS_RATIO; - } - hw->in_ifs_mode = false; - ew32(AIT, 0); - } else { - e_dbg("Not in Adaptive IFS mode!\n"); - } -} - -/** - * e1000_update_adaptive - update adaptive IFS - * @hw: Struct containing variables accessed by shared code - * @tx_packets: Number of transmits since last callback - * @total_collisions: Number of collisions since last callback - * - * Called during the callback/watchdog routine to update IFS value based on - * the ratio of transmits to collisions. - */ -void e1000_update_adaptive(struct e1000_hw *hw) -{ - e_dbg("e1000_update_adaptive"); - - if (hw->adaptive_ifs) { - if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) { - if (hw->tx_packet_delta > MIN_NUM_XMITS) { - hw->in_ifs_mode = true; - if (hw->current_ifs_val < hw->ifs_max_val) { - if (hw->current_ifs_val == 0) - hw->current_ifs_val = - hw->ifs_min_val; - else - hw->current_ifs_val += - hw->ifs_step_size; - ew32(AIT, hw->current_ifs_val); - } - } - } else { - if (hw->in_ifs_mode - && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { - hw->current_ifs_val = 0; - hw->in_ifs_mode = false; - ew32(AIT, 0); - } - } - } else { - e_dbg("Not in Adaptive IFS mode!\n"); - } -} - -/** - * e1000_tbi_adjust_stats - * @hw: Struct containing variables accessed by shared code - * @frame_len: The length of the frame in question - * @mac_addr: The Ethernet destination address of the frame in question - * - * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT - */ -void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, - u32 frame_len, u8 *mac_addr) -{ - u64 carry_bit; - - /* First adjust the frame length. */ - frame_len--; - /* We need to adjust the statistics counters, since the hardware - * counters overcount this packet as a CRC error and undercount - * the packet as a good packet - */ - /* This packet should not be counted as a CRC error. */ - stats->crcerrs--; - /* This packet does count as a Good Packet Received. */ - stats->gprc++; - - /* Adjust the Good Octets received counters */ - carry_bit = 0x80000000 & stats->gorcl; - stats->gorcl += frame_len; - /* If the high bit of Gorcl (the low 32 bits of the Good Octets - * Received Count) was one before the addition, - * AND it is zero after, then we lost the carry out, - * need to add one to Gorch (Good Octets Received Count High). - * This could be simplified if all environments supported - * 64-bit integers. - */ - if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) - stats->gorch++; - /* Is this a broadcast or multicast? Check broadcast first, - * since the test for a multicast frame will test positive on - * a broadcast frame. - */ - if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff)) - /* Broadcast packet */ - stats->bprc++; - else if (*mac_addr & 0x01) - /* Multicast packet */ - stats->mprc++; - - if (frame_len == hw->max_frame_size) { - /* In this case, the hardware has overcounted the number of - * oversize frames. - */ - if (stats->roc > 0) - stats->roc--; - } - - /* Adjust the bin counters when the extra byte put the frame in the - * wrong bin. Remember that the frame_len was adjusted above. - */ - if (frame_len == 64) { - stats->prc64++; - stats->prc127--; - } else if (frame_len == 127) { - stats->prc127++; - stats->prc255--; - } else if (frame_len == 255) { - stats->prc255++; - stats->prc511--; - } else if (frame_len == 511) { - stats->prc511++; - stats->prc1023--; - } else if (frame_len == 1023) { - stats->prc1023++; - stats->prc1522--; - } else if (frame_len == 1522) { - stats->prc1522++; - } -} - -/** - * e1000_get_bus_info - * @hw: Struct containing variables accessed by shared code - * - * Gets the current PCI bus type, speed, and width of the hardware - */ -void e1000_get_bus_info(struct e1000_hw *hw) -{ - u32 status; - - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - hw->bus_type = e1000_bus_type_pci; - hw->bus_speed = e1000_bus_speed_unknown; - hw->bus_width = e1000_bus_width_unknown; - break; - default: - status = er32(STATUS); - hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? - e1000_bus_type_pcix : e1000_bus_type_pci; - - if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { - hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? - e1000_bus_speed_66 : e1000_bus_speed_120; - } else if (hw->bus_type == e1000_bus_type_pci) { - hw->bus_speed = (status & E1000_STATUS_PCI66) ? - e1000_bus_speed_66 : e1000_bus_speed_33; - } else { - switch (status & E1000_STATUS_PCIX_SPEED) { - case E1000_STATUS_PCIX_SPEED_66: - hw->bus_speed = e1000_bus_speed_66; - break; - case E1000_STATUS_PCIX_SPEED_100: - hw->bus_speed = e1000_bus_speed_100; - break; - case E1000_STATUS_PCIX_SPEED_133: - hw->bus_speed = e1000_bus_speed_133; - break; - default: - hw->bus_speed = e1000_bus_speed_reserved; - break; - } - } - hw->bus_width = (status & E1000_STATUS_BUS64) ? - e1000_bus_width_64 : e1000_bus_width_32; - break; - } -} - -/** - * e1000_write_reg_io - * @hw: Struct containing variables accessed by shared code - * @offset: offset to write to - * @value: value to write - * - * Writes a value to one of the devices registers using port I/O (as opposed to - * memory mapped I/O). Only 82544 and newer devices support port I/O. - */ -static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value) -{ - unsigned long io_addr = hw->io_base; - unsigned long io_data = hw->io_base + 4; - - e1000_io_write(hw, io_addr, offset); - e1000_io_write(hw, io_data, value); -} - -/** - * e1000_get_cable_length - Estimates the cable length. - * @hw: Struct containing variables accessed by shared code - * @min_length: The estimated minimum length - * @max_length: The estimated maximum length - * - * returns: - E1000_ERR_XXX - * E1000_SUCCESS - * - * This function always returns a ranged length (minimum & maximum). - * So for M88 phy's, this function interprets the one value returned from the - * register to the minimum and maximum range. - * For IGP phy's, the function calculates the range by the AGC registers. - */ -static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, - u16 *max_length) -{ - s32 ret_val; - u16 agc_value = 0; - u16 i, phy_data; - u16 cable_length; - - e_dbg("e1000_get_cable_length"); - - *min_length = *max_length = 0; - - /* Use old method for Phy older than IGP */ - if (hw->phy_type == e1000_phy_m88) { - - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, - &phy_data); - if (ret_val) - return ret_val; - cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> - M88E1000_PSSR_CABLE_LENGTH_SHIFT; - - /* Convert the enum value to ranged values */ - switch (cable_length) { - case e1000_cable_length_50: - *min_length = 0; - *max_length = e1000_igp_cable_length_50; - break; - case e1000_cable_length_50_80: - *min_length = e1000_igp_cable_length_50; - *max_length = e1000_igp_cable_length_80; - break; - case e1000_cable_length_80_110: - *min_length = e1000_igp_cable_length_80; - *max_length = e1000_igp_cable_length_110; - break; - case e1000_cable_length_110_140: - *min_length = e1000_igp_cable_length_110; - *max_length = e1000_igp_cable_length_140; - break; - case e1000_cable_length_140: - *min_length = e1000_igp_cable_length_140; - *max_length = e1000_igp_cable_length_170; - break; - default: - return -E1000_ERR_PHY; - break; - } - } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ - u16 cur_agc_value; - u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; - static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = { - IGP01E1000_PHY_AGC_A, - IGP01E1000_PHY_AGC_B, - IGP01E1000_PHY_AGC_C, - IGP01E1000_PHY_AGC_D - }; - /* Read the AGC registers for all channels */ - for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { - - ret_val = - e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); - if (ret_val) - return ret_val; - - cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; - - /* Value bound check. */ - if ((cur_agc_value >= - IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) - || (cur_agc_value == 0)) - return -E1000_ERR_PHY; - - agc_value += cur_agc_value; - - /* Update minimal AGC value. */ - if (min_agc_value > cur_agc_value) - min_agc_value = cur_agc_value; - } - - /* Remove the minimal AGC result for length < 50m */ - if (agc_value < - IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { - agc_value -= min_agc_value; - - /* Get the average length of the remaining 3 channels */ - agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); - } else { - /* Get the average length of all the 4 channels. */ - agc_value /= IGP01E1000_PHY_CHANNEL_NUM; - } - - /* Set the range of the calculated length. */ - *min_length = ((e1000_igp_cable_length_table[agc_value] - - IGP01E1000_AGC_RANGE) > 0) ? - (e1000_igp_cable_length_table[agc_value] - - IGP01E1000_AGC_RANGE) : 0; - *max_length = e1000_igp_cable_length_table[agc_value] + - IGP01E1000_AGC_RANGE; - } - - return E1000_SUCCESS; -} - -/** - * e1000_check_polarity - Check the cable polarity - * @hw: Struct containing variables accessed by shared code - * @polarity: output parameter : 0 - Polarity is not reversed - * 1 - Polarity is reversed. - * - * returns: - E1000_ERR_XXX - * E1000_SUCCESS - * - * For phy's older than IGP, this function simply reads the polarity bit in the - * Phy Status register. For IGP phy's, this bit is valid only if link speed is - * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will - * return 0. If the link speed is 1000 Mbps the polarity status is in the - * IGP01E1000_PHY_PCS_INIT_REG. - */ -static s32 e1000_check_polarity(struct e1000_hw *hw, - e1000_rev_polarity *polarity) -{ - s32 ret_val; - u16 phy_data; - - e_dbg("e1000_check_polarity"); - - if (hw->phy_type == e1000_phy_m88) { - /* return the Polarity bit in the Status register. */ - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, - &phy_data); - if (ret_val) - return ret_val; - *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >> - M88E1000_PSSR_REV_POLARITY_SHIFT) ? - e1000_rev_polarity_reversed : e1000_rev_polarity_normal; - - } else if (hw->phy_type == e1000_phy_igp) { - /* Read the Status register to check the speed */ - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, - &phy_data); - if (ret_val) - return ret_val; - - /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to - * find the polarity status */ - if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == - IGP01E1000_PSSR_SPEED_1000MBPS) { - - /* Read the GIG initialization PCS register (0x00B4) */ - ret_val = - e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, - &phy_data); - if (ret_val) - return ret_val; - - /* Check the polarity bits */ - *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? - e1000_rev_polarity_reversed : - e1000_rev_polarity_normal; - } else { - /* For 10 Mbps, read the polarity bit in the status register. (for - * 100 Mbps this bit is always 0) */ - *polarity = - (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ? - e1000_rev_polarity_reversed : - e1000_rev_polarity_normal; - } - } - return E1000_SUCCESS; -} - -/** - * e1000_check_downshift - Check if Downshift occurred - * @hw: Struct containing variables accessed by shared code - * @downshift: output parameter : 0 - No Downshift occurred. - * 1 - Downshift occurred. - * - * returns: - E1000_ERR_XXX - * E1000_SUCCESS - * - * For phy's older than IGP, this function reads the Downshift bit in the Phy - * Specific Status register. For IGP phy's, it reads the Downgrade bit in the - * Link Health register. In IGP this bit is latched high, so the driver must - * read it immediately after link is established. - */ -static s32 e1000_check_downshift(struct e1000_hw *hw) -{ - s32 ret_val; - u16 phy_data; - - e_dbg("e1000_check_downshift"); - - if (hw->phy_type == e1000_phy_igp) { - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, - &phy_data); - if (ret_val) - return ret_val; - - hw->speed_downgraded = - (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; - } else if (hw->phy_type == e1000_phy_m88) { - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, - &phy_data); - if (ret_val) - return ret_val; - - hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> - M88E1000_PSSR_DOWNSHIFT_SHIFT; - } - - return E1000_SUCCESS; -} - -/** - * e1000_config_dsp_after_link_change - * @hw: Struct containing variables accessed by shared code - * @link_up: was link up at the time this was called - * - * returns: - E1000_ERR_PHY if fail to read/write the PHY - * E1000_SUCCESS at any other case. - * - * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a - * gigabit link is achieved to improve link quality. - */ - -static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up) -{ - s32 ret_val; - u16 phy_data, phy_saved_data, speed, duplex, i; - static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = { - IGP01E1000_PHY_AGC_PARAM_A, - IGP01E1000_PHY_AGC_PARAM_B, - IGP01E1000_PHY_AGC_PARAM_C, - IGP01E1000_PHY_AGC_PARAM_D - }; - u16 min_length, max_length; - - e_dbg("e1000_config_dsp_after_link_change"); - - if (hw->phy_type != e1000_phy_igp) - return E1000_SUCCESS; - - if (link_up) { - ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); - if (ret_val) { - e_dbg("Error getting link speed and duplex\n"); - return ret_val; - } - - if (speed == SPEED_1000) { - - ret_val = - e1000_get_cable_length(hw, &min_length, - &max_length); - if (ret_val) - return ret_val; - - if ((hw->dsp_config_state == e1000_dsp_config_enabled) - && min_length >= e1000_igp_cable_length_50) { - - for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { - ret_val = - e1000_read_phy_reg(hw, - dsp_reg_array[i], - &phy_data); - if (ret_val) - return ret_val; - - phy_data &= - ~IGP01E1000_PHY_EDAC_MU_INDEX; - - ret_val = - e1000_write_phy_reg(hw, - dsp_reg_array - [i], phy_data); - if (ret_val) - return ret_val; - } - hw->dsp_config_state = - e1000_dsp_config_activated; - } - - if ((hw->ffe_config_state == e1000_ffe_config_enabled) - && (min_length < e1000_igp_cable_length_50)) { - - u16 ffe_idle_err_timeout = - FFE_IDLE_ERR_COUNT_TIMEOUT_20; - u32 idle_errs = 0; - - /* clear previous idle error counts */ - ret_val = - e1000_read_phy_reg(hw, PHY_1000T_STATUS, - &phy_data); - if (ret_val) - return ret_val; - - for (i = 0; i < ffe_idle_err_timeout; i++) { - udelay(1000); - ret_val = - e1000_read_phy_reg(hw, - PHY_1000T_STATUS, - &phy_data); - if (ret_val) - return ret_val; - - idle_errs += - (phy_data & - SR_1000T_IDLE_ERROR_CNT); - if (idle_errs > - SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) - { - hw->ffe_config_state = - e1000_ffe_config_active; - - ret_val = - e1000_write_phy_reg(hw, - IGP01E1000_PHY_DSP_FFE, - IGP01E1000_PHY_DSP_FFE_CM_CP); - if (ret_val) - return ret_val; - break; - } - - if (idle_errs) - ffe_idle_err_timeout = - FFE_IDLE_ERR_COUNT_TIMEOUT_100; - } - } - } - } else { - if (hw->dsp_config_state == e1000_dsp_config_activated) { - /* Save off the current value of register 0x2F5B to be restored at - * the end of the routines. */ - ret_val = - e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); - - if (ret_val) - return ret_val; - - /* Disable the PHY transmitter */ - ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); - - if (ret_val) - return ret_val; - - mdelay(20); - - ret_val = e1000_write_phy_reg(hw, 0x0000, - IGP01E1000_IEEE_FORCE_GIGA); - if (ret_val) - return ret_val; - for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { - ret_val = - e1000_read_phy_reg(hw, dsp_reg_array[i], - &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; - phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; - - ret_val = - e1000_write_phy_reg(hw, dsp_reg_array[i], - phy_data); - if (ret_val) - return ret_val; - } - - ret_val = e1000_write_phy_reg(hw, 0x0000, - IGP01E1000_IEEE_RESTART_AUTONEG); - if (ret_val) - return ret_val; - - mdelay(20); - - /* Now enable the transmitter */ - ret_val = - e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); - - if (ret_val) - return ret_val; - - hw->dsp_config_state = e1000_dsp_config_enabled; - } - - if (hw->ffe_config_state == e1000_ffe_config_active) { - /* Save off the current value of register 0x2F5B to be restored at - * the end of the routines. */ - ret_val = - e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); - - if (ret_val) - return ret_val; - - /* Disable the PHY transmitter */ - ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); - - if (ret_val) - return ret_val; - - mdelay(20); - - ret_val = e1000_write_phy_reg(hw, 0x0000, - IGP01E1000_IEEE_FORCE_GIGA); - if (ret_val) - return ret_val; - ret_val = - e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, - IGP01E1000_PHY_DSP_FFE_DEFAULT); - if (ret_val) - return ret_val; - - ret_val = e1000_write_phy_reg(hw, 0x0000, - IGP01E1000_IEEE_RESTART_AUTONEG); - if (ret_val) - return ret_val; - - mdelay(20); - - /* Now enable the transmitter */ - ret_val = - e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); - - if (ret_val) - return ret_val; - - hw->ffe_config_state = e1000_ffe_config_enabled; - } - } - return E1000_SUCCESS; -} - -/** - * e1000_set_phy_mode - Set PHY to class A mode - * @hw: Struct containing variables accessed by shared code - * - * Assumes the following operations will follow to enable the new class mode. - * 1. Do a PHY soft reset - * 2. Restart auto-negotiation or force link. - */ -static s32 e1000_set_phy_mode(struct e1000_hw *hw) -{ - s32 ret_val; - u16 eeprom_data; - - e_dbg("e1000_set_phy_mode"); - - if ((hw->mac_type == e1000_82545_rev_3) && - (hw->media_type == e1000_media_type_copper)) { - ret_val = - e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, - &eeprom_data); - if (ret_val) { - return ret_val; - } - - if ((eeprom_data != EEPROM_RESERVED_WORD) && - (eeprom_data & EEPROM_PHY_CLASS_A)) { - ret_val = - e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, - 0x000B); - if (ret_val) - return ret_val; - ret_val = - e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, - 0x8104); - if (ret_val) - return ret_val; - - hw->phy_reset_disable = false; - } - } - - return E1000_SUCCESS; -} - -/** - * e1000_set_d3_lplu_state - set d3 link power state - * @hw: Struct containing variables accessed by shared code - * @active: true to enable lplu false to disable lplu. - * - * This function sets the lplu state according to the active flag. When - * activating lplu this function also disables smart speed and vise versa. - * lplu will not be activated unless the device autonegotiation advertisement - * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. - * - * returns: - E1000_ERR_PHY if fail to read/write the PHY - * E1000_SUCCESS at any other case. - */ -static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) -{ - s32 ret_val; - u16 phy_data; - e_dbg("e1000_set_d3_lplu_state"); - - if (hw->phy_type != e1000_phy_igp) - return E1000_SUCCESS; - - /* During driver activity LPLU should not be used or it will attain link - * from the lowest speeds starting from 10Mbps. The capability is used for - * Dx transitions and states */ - if (hw->mac_type == e1000_82541_rev_2 - || hw->mac_type == e1000_82547_rev_2) { - ret_val = - e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); - if (ret_val) - return ret_val; - } - - if (!active) { - if (hw->mac_type == e1000_82541_rev_2 || - hw->mac_type == e1000_82547_rev_2) { - phy_data &= ~IGP01E1000_GMII_FLEX_SPD; - ret_val = - e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, - phy_data); - if (ret_val) - return ret_val; - } - - /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during - * Dx states where the power conservation is most important. During - * driver activity we should enable SmartSpeed, so performance is - * maintained. */ - if (hw->smart_speed == e1000_smart_speed_on) { - ret_val = - e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &phy_data); - if (ret_val) - return ret_val; - - phy_data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = - e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - phy_data); - if (ret_val) - return ret_val; - } else if (hw->smart_speed == e1000_smart_speed_off) { - ret_val = - e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = - e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - phy_data); - if (ret_val) - return ret_val; - } - } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) - || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) - || (hw->autoneg_advertised == - AUTONEG_ADVERTISE_10_100_ALL)) { - - if (hw->mac_type == e1000_82541_rev_2 || - hw->mac_type == e1000_82547_rev_2) { - phy_data |= IGP01E1000_GMII_FLEX_SPD; - ret_val = - e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, - phy_data); - if (ret_val) - return ret_val; - } - - /* When LPLU is enabled we should disable SmartSpeed */ - ret_val = - e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = - e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - phy_data); - if (ret_val) - return ret_val; - - } - return E1000_SUCCESS; -} - -/** - * e1000_set_vco_speed - * @hw: Struct containing variables accessed by shared code - * - * Change VCO speed register to improve Bit Error Rate performance of SERDES. - */ -static s32 e1000_set_vco_speed(struct e1000_hw *hw) -{ - s32 ret_val; - u16 default_page = 0; - u16 phy_data; - - e_dbg("e1000_set_vco_speed"); - - switch (hw->mac_type) { - case e1000_82545_rev_3: - case e1000_82546_rev_3: - break; - default: - return E1000_SUCCESS; - } - - /* Set PHY register 30, page 5, bit 8 to 0 */ - - ret_val = - e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); - if (ret_val) - return ret_val; - - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); - if (ret_val) - return ret_val; - - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); - if (ret_val) - return ret_val; - - /* Set PHY register 30, page 4, bit 11 to 1 */ - - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); - if (ret_val) - return ret_val; - - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_PHY_VCO_REG_BIT11; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); - if (ret_val) - return ret_val; - - ret_val = - e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); - if (ret_val) - return ret_val; - - return E1000_SUCCESS; -} - - -/** - * e1000_enable_mng_pass_thru - check for bmc pass through - * @hw: Struct containing variables accessed by shared code - * - * Verifies the hardware needs to allow ARPs to be processed by the host - * returns: - true/false - */ -u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw) -{ - u32 manc; - - if (hw->asf_firmware_present) { - manc = er32(MANC); - - if (!(manc & E1000_MANC_RCV_TCO_EN) || - !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) - return false; - if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) - return true; - } - return false; -} - -static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw) -{ - s32 ret_val; - u16 mii_status_reg; - u16 i; - - /* Polarity reversal workaround for forced 10F/10H links. */ - - /* Disable the transmitter on the PHY */ - - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); - if (ret_val) - return ret_val; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); - if (ret_val) - return ret_val; - - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); - if (ret_val) - return ret_val; - - /* This loop will early-out if the NO link condition has been met. */ - for (i = PHY_FORCE_TIME; i > 0; i--) { - /* Read the MII Status Register and wait for Link Status bit - * to be clear. - */ - - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) - break; - mdelay(100); - } - - /* Recommended delay time after link has been lost */ - mdelay(1000); - - /* Now we will re-enable th transmitter on the PHY */ - - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); - if (ret_val) - return ret_val; - mdelay(50); - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); - if (ret_val) - return ret_val; - mdelay(50); - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); - if (ret_val) - return ret_val; - mdelay(50); - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); - if (ret_val) - return ret_val; - - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); - if (ret_val) - return ret_val; - - /* This loop will early-out if the link condition has been met. */ - for (i = PHY_FORCE_TIME; i > 0; i--) { - /* Read the MII Status Register and wait for Link Status bit - * to be set. - */ - - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - if (mii_status_reg & MII_SR_LINK_STATUS) - break; - mdelay(100); - } - return E1000_SUCCESS; -} - -/** - * e1000_get_auto_rd_done - * @hw: Struct containing variables accessed by shared code - * - * Check for EEPROM Auto Read bit done. - * returns: - E1000_ERR_RESET if fail to reset MAC - * E1000_SUCCESS at any other case. - */ -static s32 e1000_get_auto_rd_done(struct e1000_hw *hw) -{ - e_dbg("e1000_get_auto_rd_done"); - msleep(5); - return E1000_SUCCESS; -} - -/** - * e1000_get_phy_cfg_done - * @hw: Struct containing variables accessed by shared code - * - * Checks if the PHY configuration is done - * returns: - E1000_ERR_RESET if fail to reset MAC - * E1000_SUCCESS at any other case. - */ -static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) -{ - e_dbg("e1000_get_phy_cfg_done"); - mdelay(10); - return E1000_SUCCESS; -} diff --git a/drivers/net/e1000/e1000_hw.h b/drivers/net/e1000/e1000_hw.h deleted file mode 100644 index 5c9a8403668b..000000000000 --- a/drivers/net/e1000/e1000_hw.h +++ /dev/null @@ -1,3103 +0,0 @@ -/******************************************************************************* - - Intel PRO/1000 Linux driver - Copyright(c) 1999 - 2006 Intel Corporation. - - This program is free software; you can redistribute it and/or modify it - under the terms and conditions of the GNU General Public License, - version 2, as published by the Free Software Foundation. - - This program is distributed in the hope it will be useful, but WITHOUT - ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - more details. - - You should have received a copy of the GNU General Public License along with - this program; if not, write to the Free Software Foundation, Inc., - 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - - The full GNU General Public License is included in this distribution in - the file called "COPYING". - - Contact Information: - Linux NICS <linux.nics@intel.com> - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -/* e1000_hw.h - * Structures, enums, and macros for the MAC - */ - -#ifndef _E1000_HW_H_ -#define _E1000_HW_H_ - -#include "e1000_osdep.h" - - -/* Forward declarations of structures used by the shared code */ -struct e1000_hw; -struct e1000_hw_stats; - -/* Enumerated types specific to the e1000 hardware */ -/* Media Access Controllers */ -typedef enum { - e1000_undefined = 0, - e1000_82542_rev2_0, - e1000_82542_rev2_1, - e1000_82543, - e1000_82544, - e1000_82540, - e1000_82545, - e1000_82545_rev_3, - e1000_82546, - e1000_ce4100, - e1000_82546_rev_3, - e1000_82541, - e1000_82541_rev_2, - e1000_82547, - e1000_82547_rev_2, - e1000_num_macs -} e1000_mac_type; - -typedef enum { - e1000_eeprom_uninitialized = 0, - e1000_eeprom_spi, - e1000_eeprom_microwire, - e1000_eeprom_flash, - e1000_eeprom_none, /* No NVM support */ - e1000_num_eeprom_types -} e1000_eeprom_type; - -/* Media Types */ -typedef enum { - e1000_media_type_copper = 0, - e1000_media_type_fiber = 1, - e1000_media_type_internal_serdes = 2, - e1000_num_media_types -} e1000_media_type; - -typedef enum { - e1000_10_half = 0, - e1000_10_full = 1, - e1000_100_half = 2, - e1000_100_full = 3 -} e1000_speed_duplex_type; - -/* Flow Control Settings */ -typedef enum { - E1000_FC_NONE = 0, - E1000_FC_RX_PAUSE = 1, - E1000_FC_TX_PAUSE = 2, - E1000_FC_FULL = 3, - E1000_FC_DEFAULT = 0xFF -} e1000_fc_type; - -struct e1000_shadow_ram { - u16 eeprom_word; - bool modified; -}; - -/* PCI bus types */ -typedef enum { - e1000_bus_type_unknown = 0, - e1000_bus_type_pci, - e1000_bus_type_pcix, - e1000_bus_type_reserved -} e1000_bus_type; - -/* PCI bus speeds */ -typedef enum { - e1000_bus_speed_unknown = 0, - e1000_bus_speed_33, - e1000_bus_speed_66, - e1000_bus_speed_100, - e1000_bus_speed_120, - e1000_bus_speed_133, - e1000_bus_speed_reserved -} e1000_bus_speed; - -/* PCI bus widths */ -typedef enum { - e1000_bus_width_unknown = 0, - e1000_bus_width_32, - e1000_bus_width_64, - e1000_bus_width_reserved -} e1000_bus_width; - -/* PHY status info structure and supporting enums */ -typedef enum { - e1000_cable_length_50 = 0, - e1000_cable_length_50_80, - e1000_cable_length_80_110, - e1000_cable_length_110_140, - e1000_cable_length_140, - e1000_cable_length_undefined = 0xFF -} e1000_cable_length; - -typedef enum { - e1000_gg_cable_length_60 = 0, - e1000_gg_cable_length_60_115 = 1, - e1000_gg_cable_length_115_150 = 2, - e1000_gg_cable_length_150 = 4 -} e1000_gg_cable_length; - -typedef enum { - e1000_igp_cable_length_10 = 10, - e1000_igp_cable_length_20 = 20, - e1000_igp_cable_length_30 = 30, - e1000_igp_cable_length_40 = 40, - e1000_igp_cable_length_50 = 50, - e1000_igp_cable_length_60 = 60, - e1000_igp_cable_length_70 = 70, - e1000_igp_cable_length_80 = 80, - e1000_igp_cable_length_90 = 90, - e1000_igp_cable_length_100 = 100, - e1000_igp_cable_length_110 = 110, - e1000_igp_cable_length_115 = 115, - e1000_igp_cable_length_120 = 120, - e1000_igp_cable_length_130 = 130, - e1000_igp_cable_length_140 = 140, - e1000_igp_cable_length_150 = 150, - e1000_igp_cable_length_160 = 160, - e1000_igp_cable_length_170 = 170, - e1000_igp_cable_length_180 = 180 -} e1000_igp_cable_length; - -typedef enum { - e1000_10bt_ext_dist_enable_normal = 0, - e1000_10bt_ext_dist_enable_lower, - e1000_10bt_ext_dist_enable_undefined = 0xFF -} e1000_10bt_ext_dist_enable; - -typedef enum { - e1000_rev_polarity_normal = 0, - e1000_rev_polarity_reversed, - e1000_rev_polarity_undefined = 0xFF -} e1000_rev_polarity; - -typedef enum { - e1000_downshift_normal = 0, - e1000_downshift_activated, - e1000_downshift_undefined = 0xFF -} e1000_downshift; - -typedef enum { - e1000_smart_speed_default = 0, - e1000_smart_speed_on, - e1000_smart_speed_off -} e1000_smart_speed; - -typedef enum { - e1000_polarity_reversal_enabled = 0, - e1000_polarity_reversal_disabled, - e1000_polarity_reversal_undefined = 0xFF -} e1000_polarity_reversal; - -typedef enum { - e1000_auto_x_mode_manual_mdi = 0, - e1000_auto_x_mode_manual_mdix, - e1000_auto_x_mode_auto1, - e1000_auto_x_mode_auto2, - e1000_auto_x_mode_undefined = 0xFF -} e1000_auto_x_mode; - -typedef enum { - e1000_1000t_rx_status_not_ok = 0, - e1000_1000t_rx_status_ok, - e1000_1000t_rx_status_undefined = 0xFF -} e1000_1000t_rx_status; - -typedef enum { - e1000_phy_m88 = 0, - e1000_phy_igp, - e1000_phy_8211, - e1000_phy_8201, - e1000_phy_undefined = 0xFF -} e1000_phy_type; - -typedef enum { - e1000_ms_hw_default = 0, - e1000_ms_force_master, - e1000_ms_force_slave, - e1000_ms_auto -} e1000_ms_type; - -typedef enum { - e1000_ffe_config_enabled = 0, - e1000_ffe_config_active, - e1000_ffe_config_blocked -} e1000_ffe_config; - -typedef enum { - e1000_dsp_config_disabled = 0, - e1000_dsp_config_enabled, - e1000_dsp_config_activated, - e1000_dsp_config_undefined = 0xFF -} e1000_dsp_config; - -struct e1000_phy_info { - e1000_cable_length cable_length; - e1000_10bt_ext_dist_enable extended_10bt_distance; - e1000_rev_polarity cable_polarity; - e1000_downshift downshift; - e1000_polarity_reversal polarity_correction; - e1000_auto_x_mode mdix_mode; - e1000_1000t_rx_status local_rx; - e1000_1000t_rx_status remote_rx; -}; - -struct e1000_phy_stats { - u32 idle_errors; - u32 receive_errors; -}; - -struct e1000_eeprom_info { - e1000_eeprom_type type; - u16 word_size; - u16 opcode_bits; - u16 address_bits; - u16 delay_usec; - u16 page_size; -}; - -/* Flex ASF Information */ -#define E1000_HOST_IF_MAX_SIZE 2048 - -typedef enum { - e1000_byte_align = 0, - e1000_word_align = 1, - e1000_dword_align = 2 -} e1000_align_type; - -/* Error Codes */ -#define E1000_SUCCESS 0 -#define E1000_ERR_EEPROM 1 -#define E1000_ERR_PHY 2 -#define E1000_ERR_CONFIG 3 -#define E1000_ERR_PARAM 4 -#define E1000_ERR_MAC_TYPE 5 -#define E1000_ERR_PHY_TYPE 6 -#define E1000_ERR_RESET 9 -#define E1000_ERR_MASTER_REQUESTS_PENDING 10 -#define E1000_ERR_HOST_INTERFACE_COMMAND 11 -#define E1000_BLK_PHY_RESET 12 - -#define E1000_BYTE_SWAP_WORD(_value) ((((_value) & 0x00ff) << 8) | \ - (((_value) & 0xff00) >> 8)) - -/* Function prototypes */ -/* Initialization */ -s32 e1000_reset_hw(struct e1000_hw *hw); -s32 e1000_init_hw(struct e1000_hw *hw); -s32 e1000_set_mac_type(struct e1000_hw *hw); -void e1000_set_media_type(struct e1000_hw *hw); - -/* Link Configuration */ -s32 e1000_setup_link(struct e1000_hw *hw); -s32 e1000_phy_setup_autoneg(struct e1000_hw *hw); -void e1000_config_collision_dist(struct e1000_hw *hw); -s32 e1000_check_for_link(struct e1000_hw *hw); -s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 * speed, u16 * duplex); -s32 e1000_force_mac_fc(struct e1000_hw *hw); - -/* PHY */ -s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 * phy_data); -s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 data); -s32 e1000_phy_hw_reset(struct e1000_hw *hw); -s32 e1000_phy_reset(struct e1000_hw *hw); -s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); -s32 e1000_validate_mdi_setting(struct e1000_hw *hw); - -/* EEPROM Functions */ -s32 e1000_init_eeprom_params(struct e1000_hw *hw); - -/* MNG HOST IF functions */ -u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw); - -#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64 -#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 /* Host Interface data length */ - -#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 /* Time in ms to process MNG command */ -#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */ -#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */ -#define E1000_MNG_IAMT_MODE 0x3 -#define E1000_MNG_ICH_IAMT_MODE 0x2 -#define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management Technology signature */ - -#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */ -#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT 0x2 /* DHCP parsing enabled */ -#define E1000_VFTA_ENTRY_SHIFT 0x5 -#define E1000_VFTA_ENTRY_MASK 0x7F -#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F - -struct e1000_host_mng_command_header { - u8 command_id; - u8 checksum; - u16 reserved1; - u16 reserved2; - u16 command_length; -}; - -struct e1000_host_mng_command_info { - struct e1000_host_mng_command_header command_header; /* Command Head/Command Result Head has 4 bytes */ - u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; /* Command data can length 0..0x658 */ -}; -#ifdef __BIG_ENDIAN -struct e1000_host_mng_dhcp_cookie { - u32 signature; - u16 vlan_id; - u8 reserved0; - u8 status; - u32 reserved1; - u8 checksum; - u8 reserved3; - u16 reserved2; -}; -#else -struct e1000_host_mng_dhcp_cookie { - u32 signature; - u8 status; - u8 reserved0; - u16 vlan_id; - u32 reserved1; - u16 reserved2; - u8 reserved3; - u8 checksum; -}; -#endif - -bool e1000_check_mng_mode(struct e1000_hw *hw); -s32 e1000_read_eeprom(struct e1000_hw *hw, u16 reg, u16 words, u16 * data); -s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw); -s32 e1000_update_eeprom_checksum(struct e1000_hw *hw); -s32 e1000_write_eeprom(struct e1000_hw *hw, u16 reg, u16 words, u16 * data); -s32 e1000_read_mac_addr(struct e1000_hw *hw); - -/* Filters (multicast, vlan, receive) */ -u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 * mc_addr); -void e1000_mta_set(struct e1000_hw *hw, u32 hash_value); -void e1000_rar_set(struct e1000_hw *hw, u8 * mc_addr, u32 rar_index); -void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value); - -/* LED functions */ -s32 e1000_setup_led(struct e1000_hw *hw); -s32 e1000_cleanup_led(struct e1000_hw *hw); -s32 e1000_led_on(struct e1000_hw *hw); -s32 e1000_led_off(struct e1000_hw *hw); -s32 e1000_blink_led_start(struct e1000_hw *hw); - -/* Adaptive IFS Functions */ - -/* Everything else */ -void e1000_reset_adaptive(struct e1000_hw *hw); -void e1000_update_adaptive(struct e1000_hw *hw); -void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, - u32 frame_len, u8 * mac_addr); -void e1000_get_bus_info(struct e1000_hw *hw); -void e1000_pci_set_mwi(struct e1000_hw *hw); -void e1000_pci_clear_mwi(struct e1000_hw *hw); -void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc); -int e1000_pcix_get_mmrbc(struct e1000_hw *hw); -/* Port I/O is only supported on 82544 and newer */ -void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value); - -#define E1000_READ_REG_IO(a, reg) \ - e1000_read_reg_io((a), E1000_##reg) -#define E1000_WRITE_REG_IO(a, reg, val) \ - e1000_write_reg_io((a), E1000_##reg, val) - -/* PCI Device IDs */ -#define E1000_DEV_ID_82542 0x1000 -#define E1000_DEV_ID_82543GC_FIBER 0x1001 -#define E1000_DEV_ID_82543GC_COPPER 0x1004 -#define E1000_DEV_ID_82544EI_COPPER 0x1008 -#define E1000_DEV_ID_82544EI_FIBER 0x1009 -#define E1000_DEV_ID_82544GC_COPPER 0x100C -#define E1000_DEV_ID_82544GC_LOM 0x100D -#define E1000_DEV_ID_82540EM 0x100E -#define E1000_DEV_ID_82540EM_LOM 0x1015 -#define E1000_DEV_ID_82540EP_LOM 0x1016 -#define E1000_DEV_ID_82540EP 0x1017 -#define E1000_DEV_ID_82540EP_LP 0x101E -#define E1000_DEV_ID_82545EM_COPPER 0x100F -#define E1000_DEV_ID_82545EM_FIBER 0x1011 -#define E1000_DEV_ID_82545GM_COPPER 0x1026 -#define E1000_DEV_ID_82545GM_FIBER 0x1027 -#define E1000_DEV_ID_82545GM_SERDES 0x1028 -#define E1000_DEV_ID_82546EB_COPPER 0x1010 -#define E1000_DEV_ID_82546EB_FIBER 0x1012 -#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D -#define E1000_DEV_ID_82541EI 0x1013 -#define E1000_DEV_ID_82541EI_MOBILE 0x1018 -#define E1000_DEV_ID_82541ER_LOM 0x1014 -#define E1000_DEV_ID_82541ER 0x1078 -#define E1000_DEV_ID_82547GI 0x1075 -#define E1000_DEV_ID_82541GI 0x1076 -#define E1000_DEV_ID_82541GI_MOBILE 0x1077 -#define E1000_DEV_ID_82541GI_LF 0x107C -#define E1000_DEV_ID_82546GB_COPPER 0x1079 -#define E1000_DEV_ID_82546GB_FIBER 0x107A -#define E1000_DEV_ID_82546GB_SERDES 0x107B -#define E1000_DEV_ID_82546GB_PCIE 0x108A -#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099 -#define E1000_DEV_ID_82547EI 0x1019 -#define E1000_DEV_ID_82547EI_MOBILE 0x101A -#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5 -#define E1000_DEV_ID_INTEL_CE4100_GBE 0x2E6E - -#define NODE_ADDRESS_SIZE 6 -#define ETH_LENGTH_OF_ADDRESS 6 - -/* MAC decode size is 128K - This is the size of BAR0 */ -#define MAC_DECODE_SIZE (128 * 1024) - -#define E1000_82542_2_0_REV_ID 2 -#define E1000_82542_2_1_REV_ID 3 -#define E1000_REVISION_0 0 -#define E1000_REVISION_1 1 -#define E1000_REVISION_2 2 -#define E1000_REVISION_3 3 - -#define SPEED_10 10 -#define SPEED_100 100 -#define SPEED_1000 1000 -#define HALF_DUPLEX 1 -#define FULL_DUPLEX 2 - -/* The sizes (in bytes) of a ethernet packet */ -#define ENET_HEADER_SIZE 14 -#define MINIMUM_ETHERNET_FRAME_SIZE 64 /* With FCS */ -#define ETHERNET_FCS_SIZE 4 -#define MINIMUM_ETHERNET_PACKET_SIZE \ - (MINIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE) -#define CRC_LENGTH ETHERNET_FCS_SIZE -#define MAX_JUMBO_FRAME_SIZE 0x3F00 - -/* 802.1q VLAN Packet Sizes */ -#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMAed) */ - -/* Ethertype field values */ -#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */ -#define ETHERNET_IP_TYPE 0x0800 /* IP packets */ -#define ETHERNET_ARP_TYPE 0x0806 /* Address Resolution Protocol (ARP) */ - -/* Packet Header defines */ -#define IP_PROTOCOL_TCP 6 -#define IP_PROTOCOL_UDP 0x11 - -/* This defines the bits that are set in the Interrupt Mask - * Set/Read Register. Each bit is documented below: - * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) - * o RXSEQ = Receive Sequence Error - */ -#define POLL_IMS_ENABLE_MASK ( \ - E1000_IMS_RXDMT0 | \ - E1000_IMS_RXSEQ) - -/* This defines the bits that are set in the Interrupt Mask - * Set/Read Register. Each bit is documented below: - * o RXT0 = Receiver Timer Interrupt (ring 0) - * o TXDW = Transmit Descriptor Written Back - * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) - * o RXSEQ = Receive Sequence Error - * o LSC = Link Status Change - */ -#define IMS_ENABLE_MASK ( \ - E1000_IMS_RXT0 | \ - E1000_IMS_TXDW | \ - E1000_IMS_RXDMT0 | \ - E1000_IMS_RXSEQ | \ - E1000_IMS_LSC) - -/* Number of high/low register pairs in the RAR. The RAR (Receive Address - * Registers) holds the directed and multicast addresses that we monitor. We - * reserve one of these spots for our directed address, allowing us room for - * E1000_RAR_ENTRIES - 1 multicast addresses. - */ -#define E1000_RAR_ENTRIES 15 - -#define MIN_NUMBER_OF_DESCRIPTORS 8 -#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8 - -/* Receive Descriptor */ -struct e1000_rx_desc { - __le64 buffer_addr; /* Address of the descriptor's data buffer */ - __le16 length; /* Length of data DMAed into data buffer */ - __le16 csum; /* Packet checksum */ - u8 status; /* Descriptor status */ - u8 errors; /* Descriptor Errors */ - __le16 special; -}; - -/* Receive Descriptor - Extended */ -union e1000_rx_desc_extended { - struct { - __le64 buffer_addr; - __le64 reserved; - } read; - struct { - struct { - __le32 mrq; /* Multiple Rx Queues */ - union { - __le32 rss; /* RSS Hash */ - struct { - __le16 ip_id; /* IP id */ - __le16 csum; /* Packet Checksum */ - } csum_ip; - } hi_dword; - } lower; - struct { - __le32 status_error; /* ext status/error */ - __le16 length; - __le16 vlan; /* VLAN tag */ - } upper; - } wb; /* writeback */ -}; - -#define MAX_PS_BUFFERS 4 -/* Receive Descriptor - Packet Split */ -union e1000_rx_desc_packet_split { - struct { - /* one buffer for protocol header(s), three data buffers */ - __le64 buffer_addr[MAX_PS_BUFFERS]; - } read; - struct { - struct { - __le32 mrq; /* Multiple Rx Queues */ - union { - __le32 rss; /* RSS Hash */ - struct { - __le16 ip_id; /* IP id */ - __le16 csum; /* Packet Checksum */ - } csum_ip; - } hi_dword; - } lower; - struct { - __le32 status_error; /* ext status/error */ - __le16 length0; /* length of buffer 0 */ - __le16 vlan; /* VLAN tag */ - } middle; - struct { - __le16 header_status; - __le16 length[3]; /* length of buffers 1-3 */ - } upper; - __le64 reserved; - } wb; /* writeback */ -}; - -/* Receive Descriptor bit definitions */ -#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ -#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ -#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ -#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ -#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */ -#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ -#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ -#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ -#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */ -#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */ -#define E1000_RXD_STAT_ACK 0x8000 /* ACK Packet indication */ -#define E1000_RXD_ERR_CE 0x01 /* CRC Error */ -#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ -#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ -#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ -#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */ -#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */ -#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ -#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ -#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */ -#define E1000_RXD_SPC_PRI_SHIFT 13 -#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */ -#define E1000_RXD_SPC_CFI_SHIFT 12 - -#define E1000_RXDEXT_STATERR_CE 0x01000000 -#define E1000_RXDEXT_STATERR_SE 0x02000000 -#define E1000_RXDEXT_STATERR_SEQ 0x04000000 -#define E1000_RXDEXT_STATERR_CXE 0x10000000 -#define E1000_RXDEXT_STATERR_TCPE 0x20000000 -#define E1000_RXDEXT_STATERR_IPE 0x40000000 -#define E1000_RXDEXT_STATERR_RXE 0x80000000 - -#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000 -#define E1000_RXDPS_HDRSTAT_HDRLEN_MASK 0x000003FF - -/* mask to determine if packets should be dropped due to frame errors */ -#define E1000_RXD_ERR_FRAME_ERR_MASK ( \ - E1000_RXD_ERR_CE | \ - E1000_RXD_ERR_SE | \ - E1000_RXD_ERR_SEQ | \ - E1000_RXD_ERR_CXE | \ - E1000_RXD_ERR_RXE) - -/* Same mask, but for extended and packet split descriptors */ -#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \ - E1000_RXDEXT_STATERR_CE | \ - E1000_RXDEXT_STATERR_SE | \ - E1000_RXDEXT_STATERR_SEQ | \ - E1000_RXDEXT_STATERR_CXE | \ - E1000_RXDEXT_STATERR_RXE) - -/* Transmit Descriptor */ -struct e1000_tx_desc { - __le64 buffer_addr; /* Address of the descriptor's data buffer */ - union { - __le32 data; - struct { - __le16 length; /* Data buffer length */ - u8 cso; /* Checksum offset */ - u8 cmd; /* Descriptor control */ - } flags; - } lower; - union { - __le32 data; - struct { - u8 status; /* Descriptor status */ - u8 css; /* Checksum start */ - __le16 special; - } fields; - } upper; -}; - -/* Transmit Descriptor bit definitions */ -#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */ -#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */ -#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ -#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ -#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ -#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ -#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ -#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ -#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ -#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */ -#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ -#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ -#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ -#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ -#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ -#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ -#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ -#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ -#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ -#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ - -/* Offload Context Descriptor */ -struct e1000_context_desc { - union { - __le32 ip_config; - struct { - u8 ipcss; /* IP checksum start */ - u8 ipcso; /* IP checksum offset */ - __le16 ipcse; /* IP checksum end */ - } ip_fields; - } lower_setup; - union { - __le32 tcp_config; - struct { - u8 tucss; /* TCP checksum start */ - u8 tucso; /* TCP checksum offset */ - __le16 tucse; /* TCP checksum end */ - } tcp_fields; - } upper_setup; - __le32 cmd_and_length; /* */ - union { - __le32 data; - struct { - u8 status; /* Descriptor status */ - u8 hdr_len; /* Header length */ - __le16 mss; /* Maximum segment size */ - } fields; - } tcp_seg_setup; -}; - -/* Offload data descriptor */ -struct e1000_data_desc { - __le64 buffer_addr; /* Address of the descriptor's buffer address */ - union { - __le32 data; - struct { - __le16 length; /* Data buffer length */ - u8 typ_len_ext; /* */ - u8 cmd; /* */ - } flags; - } lower; - union { - __le32 data; - struct { - u8 status; /* Descriptor status */ - u8 popts; /* Packet Options */ - __le16 special; /* */ - } fields; - } upper; -}; - -/* Filters */ -#define E1000_NUM_UNICAST 16 /* Unicast filter entries */ -#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */ -#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ - -/* Receive Address Register */ -struct e1000_rar { - volatile __le32 low; /* receive address low */ - volatile __le32 high; /* receive address high */ -}; - -/* Number of entries in the Multicast Table Array (MTA). */ -#define E1000_NUM_MTA_REGISTERS 128 - -/* IPv4 Address Table Entry */ -struct e1000_ipv4_at_entry { - volatile u32 ipv4_addr; /* IP Address (RW) */ - volatile u32 reserved; -}; - -/* Four wakeup IP addresses are supported */ -#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4 -#define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX -#define E1000_IP6AT_SIZE 1 - -/* IPv6 Address Table Entry */ -struct e1000_ipv6_at_entry { - volatile u8 ipv6_addr[16]; -}; - -/* Flexible Filter Length Table Entry */ -struct e1000_fflt_entry { - volatile u32 length; /* Flexible Filter Length (RW) */ - volatile u32 reserved; -}; - -/* Flexible Filter Mask Table Entry */ -struct e1000_ffmt_entry { - volatile u32 mask; /* Flexible Filter Mask (RW) */ - volatile u32 reserved; -}; - -/* Flexible Filter Value Table Entry */ -struct e1000_ffvt_entry { - volatile u32 value; /* Flexible Filter Value (RW) */ - volatile u32 reserved; -}; - -/* Four Flexible Filters are supported */ -#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4 - -/* Each Flexible Filter is at most 128 (0x80) bytes in length */ -#define E1000_FLEXIBLE_FILTER_SIZE_MAX 128 - -#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX -#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX -#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX - -#define E1000_DISABLE_SERDES_LOOPBACK 0x0400 - -/* Register Set. (82543, 82544) - * - * Registers are defined to be 32 bits and should be accessed as 32 bit values. - * These registers are physically located on the NIC, but are mapped into the - * host memory address space. - * - * RW - register is both readable and writable - * RO - register is read only - * WO - register is write only - * R/clr - register is read only and is cleared when read - * A - register array - */ -#define E1000_CTRL 0x00000 /* Device Control - RW */ -#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */ -#define E1000_STATUS 0x00008 /* Device Status - RO */ -#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */ -#define E1000_EERD 0x00014 /* EEPROM Read - RW */ -#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */ -#define E1000_FLA 0x0001C /* Flash Access - RW */ -#define E1000_MDIC 0x00020 /* MDI Control - RW */ - -extern void __iomem *ce4100_gbe_mdio_base_virt; -#define INTEL_CE_GBE_MDIO_RCOMP_BASE (ce4100_gbe_mdio_base_virt) -#define E1000_MDIO_STS (INTEL_CE_GBE_MDIO_RCOMP_BASE + 0) -#define E1000_MDIO_CMD (INTEL_CE_GBE_MDIO_RCOMP_BASE + 4) -#define E1000_MDIO_DRV (INTEL_CE_GBE_MDIO_RCOMP_BASE + 8) -#define E1000_MDC_CMD (INTEL_CE_GBE_MDIO_RCOMP_BASE + 0xC) -#define E1000_RCOMP_CTL (INTEL_CE_GBE_MDIO_RCOMP_BASE + 0x20) -#define E1000_RCOMP_STS (INTEL_CE_GBE_MDIO_RCOMP_BASE + 0x24) - -#define E1000_SCTL 0x00024 /* SerDes Control - RW */ -#define E1000_FEXTNVM 0x00028 /* Future Extended NVM register */ -#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ -#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ -#define E1000_FCT 0x00030 /* Flow Control Type - RW */ -#define E1000_VET 0x00038 /* VLAN Ether Type - RW */ -#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */ -#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */ -#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ -#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ -#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ -#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */ - -/* Auxiliary Control Register. This register is CE4100 specific, - * RMII/RGMII function is switched by this register - RW - * Following are bits definitions of the Auxiliary Control Register - */ -#define E1000_CTL_AUX 0x000E0 -#define E1000_CTL_AUX_END_SEL_SHIFT 10 -#define E1000_CTL_AUX_ENDIANESS_SHIFT 8 -#define E1000_CTL_AUX_RGMII_RMII_SHIFT 0 - -/* descriptor and packet transfer use CTL_AUX.ENDIANESS */ -#define E1000_CTL_AUX_DES_PKT (0x0 << E1000_CTL_AUX_END_SEL_SHIFT) -/* descriptor use CTL_AUX.ENDIANESS, packet use default */ -#define E1000_CTL_AUX_DES (0x1 << E1000_CTL_AUX_END_SEL_SHIFT) -/* descriptor use default, packet use CTL_AUX.ENDIANESS */ -#define E1000_CTL_AUX_PKT (0x2 << E1000_CTL_AUX_END_SEL_SHIFT) -/* all use CTL_AUX.ENDIANESS */ -#define E1000_CTL_AUX_ALL (0x3 << E1000_CTL_AUX_END_SEL_SHIFT) - -#define E1000_CTL_AUX_RGMII (0x0 << E1000_CTL_AUX_RGMII_RMII_SHIFT) -#define E1000_CTL_AUX_RMII (0x1 << E1000_CTL_AUX_RGMII_RMII_SHIFT) - -/* LW little endian, Byte big endian */ -#define E1000_CTL_AUX_LWLE_BBE (0x0 << E1000_CTL_AUX_ENDIANESS_SHIFT) -#define E1000_CTL_AUX_LWLE_BLE (0x1 << E1000_CTL_AUX_ENDIANESS_SHIFT) -#define E1000_CTL_AUX_LWBE_BBE (0x2 << E1000_CTL_AUX_ENDIANESS_SHIFT) -#define E1000_CTL_AUX_LWBE_BLE (0x3 << E1000_CTL_AUX_ENDIANESS_SHIFT) - -#define E1000_RCTL 0x00100 /* RX Control - RW */ -#define E1000_RDTR1 0x02820 /* RX Delay Timer (1) - RW */ -#define E1000_RDBAL1 0x02900 /* RX Descriptor Base Address Low (1) - RW */ -#define E1000_RDBAH1 0x02904 /* RX Descriptor Base Address High (1) - RW */ -#define E1000_RDLEN1 0x02908 /* RX Descriptor Length (1) - RW */ -#define E1000_RDH1 0x02910 /* RX Descriptor Head (1) - RW */ -#define E1000_RDT1 0x02918 /* RX Descriptor Tail (1) - RW */ -#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ -#define E1000_TXCW 0x00178 /* TX Configuration Word - RW */ -#define E1000_RXCW 0x00180 /* RX Configuration Word - RO */ -#define E1000_TCTL 0x00400 /* TX Control - RW */ -#define E1000_TCTL_EXT 0x00404 /* Extended TX Control - RW */ -#define E1000_TIPG 0x00410 /* TX Inter-packet gap -RW */ -#define E1000_TBT 0x00448 /* TX Burst Timer - RW */ -#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ -#define E1000_LEDCTL 0x00E00 /* LED Control - RW */ -#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ -#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ -#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */ -#define FEXTNVM_SW_CONFIG 0x0001 -#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ -#define E1000_PBS 0x01008 /* Packet Buffer Size */ -#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ -#define E1000_FLASH_UPDATES 1000 -#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */ -#define E1000_FLASHT 0x01028 /* FLASH Timer Register */ -#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */ -#define E1000_FLSWCTL 0x01030 /* FLASH control register */ -#define E1000_FLSWDATA 0x01034 /* FLASH data register */ -#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */ -#define E1000_FLOP 0x0103C /* FLASH Opcode Register */ -#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */ -#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ -#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ -#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */ -#define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */ -#define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */ -#define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */ -#define E1000_RDH 0x02810 /* RX Descriptor Head - RW */ -#define E1000_RDT 0x02818 /* RX Descriptor Tail - RW */ -#define E1000_RDTR 0x02820 /* RX Delay Timer - RW */ -#define E1000_RDBAL0 E1000_RDBAL /* RX Desc Base Address Low (0) - RW */ -#define E1000_RDBAH0 E1000_RDBAH /* RX Desc Base Address High (0) - RW */ -#define E1000_RDLEN0 E1000_RDLEN /* RX Desc Length (0) - RW */ -#define E1000_RDH0 E1000_RDH /* RX Desc Head (0) - RW */ -#define E1000_RDT0 E1000_RDT /* RX Desc Tail (0) - RW */ -#define E1000_RDTR0 E1000_RDTR /* RX Delay Timer (0) - RW */ -#define E1000_RXDCTL 0x02828 /* RX Descriptor Control queue 0 - RW */ -#define E1000_RXDCTL1 0x02928 /* RX Descriptor Control queue 1 - RW */ -#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */ -#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */ -#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */ -#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */ -#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */ -#define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */ -#define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */ -#define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */ -#define E1000_TDFTS 0x03428 /* TX Data FIFO Tail Saved - RW */ -#define E1000_TDFPC 0x03430 /* TX Data FIFO Packet Count - RW */ -#define E1000_TDBAL 0x03800 /* TX Descriptor Base Address Low - RW */ -#define E1000_TDBAH 0x03804 /* TX Descriptor Base Address High - RW */ -#define E1000_TDLEN 0x03808 /* TX Descriptor Length - RW */ -#define E1000_TDH 0x03810 /* TX Descriptor Head - RW */ -#define E1000_TDT 0x03818 /* TX Descripotr Tail - RW */ -#define E1000_TIDV 0x03820 /* TX Interrupt Delay Value - RW */ -#define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */ -#define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */ -#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */ -#define E1000_TARC0 0x03840 /* TX Arbitration Count (0) */ -#define E1000_TDBAL1 0x03900 /* TX Desc Base Address Low (1) - RW */ -#define E1000_TDBAH1 0x03904 /* TX Desc Base Address High (1) - RW */ -#define E1000_TDLEN1 0x03908 /* TX Desc Length (1) - RW */ -#define E1000_TDH1 0x03910 /* TX Desc Head (1) - RW */ -#define E1000_TDT1 0x03918 /* TX Desc Tail (1) - RW */ -#define E1000_TXDCTL1 0x03928 /* TX Descriptor Control (1) - RW */ -#define E1000_TARC1 0x03940 /* TX Arbitration Count (1) */ -#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ -#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ -#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ -#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */ -#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */ -#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */ -#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */ -#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */ -#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */ -#define E1000_COLC 0x04028 /* Collision Count - R/clr */ -#define E1000_DC 0x04030 /* Defer Count - R/clr */ -#define E1000_TNCRS 0x04034 /* TX-No CRS - R/clr */ -#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */ -#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */ -#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */ -#define E1000_XONRXC 0x04048 /* XON RX Count - R/clr */ -#define E1000_XONTXC 0x0404C /* XON TX Count - R/clr */ -#define E1000_XOFFRXC 0x04050 /* XOFF RX Count - R/clr */ -#define E1000_XOFFTXC 0x04054 /* XOFF TX Count - R/clr */ -#define E1000_FCRUC 0x04058 /* Flow Control RX Unsupported Count- R/clr */ -#define E1000_PRC64 0x0405C /* Packets RX (64 bytes) - R/clr */ -#define E1000_PRC127 0x04060 /* Packets RX (65-127 bytes) - R/clr */ -#define E1000_PRC255 0x04064 /* Packets RX (128-255 bytes) - R/clr */ -#define E1000_PRC511 0x04068 /* Packets RX (255-511 bytes) - R/clr */ -#define E1000_PRC1023 0x0406C /* Packets RX (512-1023 bytes) - R/clr */ -#define E1000_PRC1522 0x04070 /* Packets RX (1024-1522 bytes) - R/clr */ -#define E1000_GPRC 0x04074 /* Good Packets RX Count - R/clr */ -#define E1000_BPRC 0x04078 /* Broadcast Packets RX Count - R/clr */ -#define E1000_MPRC 0x0407C /* Multicast Packets RX Count - R/clr */ -#define E1000_GPTC 0x04080 /* Good Packets TX Count - R/clr */ -#define E1000_GORCL 0x04088 /* Good Octets RX Count Low - R/clr */ -#define E1000_GORCH 0x0408C /* Good Octets RX Count High - R/clr */ -#define E1000_GOTCL 0x04090 /* Good Octets TX Count Low - R/clr */ -#define E1000_GOTCH 0x04094 /* Good Octets TX Count High - R/clr */ -#define E1000_RNBC 0x040A0 /* RX No Buffers Count - R/clr */ -#define E1000_RUC 0x040A4 /* RX Undersize Count - R/clr */ -#define E1000_RFC 0x040A8 /* RX Fragment Count - R/clr */ -#define E1000_ROC 0x040AC /* RX Oversize Count - R/clr */ -#define E1000_RJC 0x040B0 /* RX Jabber Count - R/clr */ -#define E1000_MGTPRC 0x040B4 /* Management Packets RX Count - R/clr */ -#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */ -#define E1000_MGTPTC 0x040BC /* Management Packets TX Count - R/clr */ -#define E1000_TORL 0x040C0 /* Total Octets RX Low - R/clr */ -#define E1000_TORH 0x040C4 /* Total Octets RX High - R/clr */ -#define E1000_TOTL 0x040C8 /* Total Octets TX Low - R/clr */ -#define E1000_TOTH 0x040CC /* Total Octets TX High - R/clr */ -#define E1000_TPR 0x040D0 /* Total Packets RX - R/clr */ -#define E1000_TPT 0x040D4 /* Total Packets TX - R/clr */ -#define E1000_PTC64 0x040D8 /* Packets TX (64 bytes) - R/clr */ -#define E1000_PTC127 0x040DC /* Packets TX (65-127 bytes) - R/clr */ -#define E1000_PTC255 0x040E0 /* Packets TX (128-255 bytes) - R/clr */ -#define E1000_PTC511 0x040E4 /* Packets TX (256-511 bytes) - R/clr */ -#define E1000_PTC1023 0x040E8 /* Packets TX (512-1023 bytes) - R/clr */ -#define E1000_PTC1522 0x040EC /* Packets TX (1024-1522 Bytes) - R/clr */ -#define E1000_MPTC 0x040F0 /* Multicast Packets TX Count - R/clr */ -#define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */ -#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */ -#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */ -#define E1000_IAC 0x04100 /* Interrupt Assertion Count */ -#define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Packet Timer Expire Count */ -#define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Absolute Timer Expire Count */ -#define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Packet Timer Expire Count */ -#define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Absolute Timer Expire Count */ -#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */ -#define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Minimum Threshold Count */ -#define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Descriptor Minimum Threshold Count */ -#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */ -#define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */ -#define E1000_RFCTL 0x05008 /* Receive Filter Control */ -#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ -#define E1000_RA 0x05400 /* Receive Address - RW Array */ -#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ -#define E1000_WUC 0x05800 /* Wakeup Control - RW */ -#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */ -#define E1000_WUS 0x05810 /* Wakeup Status - RO */ -#define E1000_MANC 0x05820 /* Management Control - RW */ -#define E1000_IPAV 0x05838 /* IP Address Valid - RW */ -#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */ -#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */ -#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */ -#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */ -#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */ -#define E1000_HOST_IF 0x08800 /* Host Interface */ -#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */ -#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */ - -#define E1000_KUMCTRLSTA 0x00034 /* MAC-PHY interface - RW */ -#define E1000_MDPHYA 0x0003C /* PHY address - RW */ -#define E1000_MANC2H 0x05860 /* Management Control To Host - RW */ -#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */ - -#define E1000_GCR 0x05B00 /* PCI-Ex Control */ -#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */ -#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */ -#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */ -#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */ -#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */ -#define E1000_SWSM 0x05B50 /* SW Semaphore */ -#define E1000_FWSM 0x05B54 /* FW Semaphore */ -#define E1000_FFLT_DBG 0x05F04 /* Debug Register */ -#define E1000_HICR 0x08F00 /* Host Interface Control */ - -/* RSS registers */ -#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */ -#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */ -#define E1000_RETA 0x05C00 /* Redirection Table - RW Array */ -#define E1000_RSSRK 0x05C80 /* RSS Random Key - RW Array */ -#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */ -#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */ -/* Register Set (82542) - * - * Some of the 82542 registers are located at different offsets than they are - * in more current versions of the 8254x. Despite the difference in location, - * the registers function in the same manner. - */ -#define E1000_82542_CTL_AUX E1000_CTL_AUX -#define E1000_82542_CTRL E1000_CTRL -#define E1000_82542_CTRL_DUP E1000_CTRL_DUP -#define E1000_82542_STATUS E1000_STATUS -#define E1000_82542_EECD E1000_EECD -#define E1000_82542_EERD E1000_EERD -#define E1000_82542_CTRL_EXT E1000_CTRL_EXT -#define E1000_82542_FLA E1000_FLA -#define E1000_82542_MDIC E1000_MDIC -#define E1000_82542_SCTL E1000_SCTL -#define E1000_82542_FEXTNVM E1000_FEXTNVM -#define E1000_82542_FCAL E1000_FCAL -#define E1000_82542_FCAH E1000_FCAH -#define E1000_82542_FCT E1000_FCT -#define E1000_82542_VET E1000_VET -#define E1000_82542_RA 0x00040 -#define E1000_82542_ICR E1000_ICR -#define E1000_82542_ITR E1000_ITR -#define E1000_82542_ICS E1000_ICS -#define E1000_82542_IMS E1000_IMS -#define E1000_82542_IMC E1000_IMC -#define E1000_82542_RCTL E1000_RCTL -#define E1000_82542_RDTR 0x00108 -#define E1000_82542_RDBAL 0x00110 -#define E1000_82542_RDBAH 0x00114 -#define E1000_82542_RDLEN 0x00118 -#define E1000_82542_RDH 0x00120 -#define E1000_82542_RDT 0x00128 -#define E1000_82542_RDTR0 E1000_82542_RDTR -#define E1000_82542_RDBAL0 E1000_82542_RDBAL -#define E1000_82542_RDBAH0 E1000_82542_RDBAH -#define E1000_82542_RDLEN0 E1000_82542_RDLEN -#define E1000_82542_RDH0 E1000_82542_RDH -#define E1000_82542_RDT0 E1000_82542_RDT -#define E1000_82542_SRRCTL(_n) (0x280C + ((_n) << 8)) /* Split and Replication - * RX Control - RW */ -#define E1000_82542_DCA_RXCTRL(_n) (0x02814 + ((_n) << 8)) -#define E1000_82542_RDBAH3 0x02B04 /* RX Desc Base High Queue 3 - RW */ -#define E1000_82542_RDBAL3 0x02B00 /* RX Desc Low Queue 3 - RW */ -#define E1000_82542_RDLEN3 0x02B08 /* RX Desc Length Queue 3 - RW */ -#define E1000_82542_RDH3 0x02B10 /* RX Desc Head Queue 3 - RW */ -#define E1000_82542_RDT3 0x02B18 /* RX Desc Tail Queue 3 - RW */ -#define E1000_82542_RDBAL2 0x02A00 /* RX Desc Base Low Queue 2 - RW */ -#define E1000_82542_RDBAH2 0x02A04 /* RX Desc Base High Queue 2 - RW */ -#define E1000_82542_RDLEN2 0x02A08 /* RX Desc Length Queue 2 - RW */ -#define E1000_82542_RDH2 0x02A10 /* RX Desc Head Queue 2 - RW */ -#define E1000_82542_RDT2 0x02A18 /* RX Desc Tail Queue 2 - RW */ -#define E1000_82542_RDTR1 0x00130 -#define E1000_82542_RDBAL1 0x00138 -#define E1000_82542_RDBAH1 0x0013C -#define E1000_82542_RDLEN1 0x00140 -#define E1000_82542_RDH1 0x00148 -#define E1000_82542_RDT1 0x00150 -#define E1000_82542_FCRTH 0x00160 -#define E1000_82542_FCRTL 0x00168 -#define E1000_82542_FCTTV E1000_FCTTV -#define E1000_82542_TXCW E1000_TXCW -#define E1000_82542_RXCW E1000_RXCW -#define E1000_82542_MTA 0x00200 -#define E1000_82542_TCTL E1000_TCTL -#define E1000_82542_TCTL_EXT E1000_TCTL_EXT -#define E1000_82542_TIPG E1000_TIPG -#define E1000_82542_TDBAL 0x00420 -#define E1000_82542_TDBAH 0x00424 -#define E1000_82542_TDLEN 0x00428 -#define E1000_82542_TDH 0x00430 -#define E1000_82542_TDT 0x00438 -#define E1000_82542_TIDV 0x00440 -#define E1000_82542_TBT E1000_TBT -#define E1000_82542_AIT E1000_AIT -#define E1000_82542_VFTA 0x00600 -#define E1000_82542_LEDCTL E1000_LEDCTL -#define E1000_82542_PBA E1000_PBA -#define E1000_82542_PBS E1000_PBS -#define E1000_82542_EEMNGCTL E1000_EEMNGCTL -#define E1000_82542_EEARBC E1000_EEARBC -#define E1000_82542_FLASHT E1000_FLASHT -#define E1000_82542_EEWR E1000_EEWR -#define E1000_82542_FLSWCTL E1000_FLSWCTL -#define E1000_82542_FLSWDATA E1000_FLSWDATA -#define E1000_82542_FLSWCNT E1000_FLSWCNT -#define E1000_82542_FLOP E1000_FLOP -#define E1000_82542_EXTCNF_CTRL E1000_EXTCNF_CTRL -#define E1000_82542_EXTCNF_SIZE E1000_EXTCNF_SIZE -#define E1000_82542_PHY_CTRL E1000_PHY_CTRL -#define E1000_82542_ERT E1000_ERT -#define E1000_82542_RXDCTL E1000_RXDCTL -#define E1000_82542_RXDCTL1 E1000_RXDCTL1 -#define E1000_82542_RADV E1000_RADV -#define E1000_82542_RSRPD E1000_RSRPD -#define E1000_82542_TXDMAC E1000_TXDMAC -#define E1000_82542_KABGTXD E1000_KABGTXD -#define E1000_82542_TDFHS E1000_TDFHS -#define E1000_82542_TDFTS E1000_TDFTS -#define E1000_82542_TDFPC E1000_TDFPC -#define E1000_82542_TXDCTL E1000_TXDCTL -#define E1000_82542_TADV E1000_TADV -#define E1000_82542_TSPMT E1000_TSPMT -#define E1000_82542_CRCERRS E1000_CRCERRS -#define E1000_82542_ALGNERRC E1000_ALGNERRC -#define E1000_82542_SYMERRS E1000_SYMERRS -#define E1000_82542_RXERRC E1000_RXERRC -#define E1000_82542_MPC E1000_MPC -#define E1000_82542_SCC E1000_SCC -#define E1000_82542_ECOL E1000_ECOL -#define E1000_82542_MCC E1000_MCC -#define E1000_82542_LATECOL E1000_LATECOL -#define E1000_82542_COLC E1000_COLC -#define E1000_82542_DC E1000_DC -#define E1000_82542_TNCRS E1000_TNCRS -#define E1000_82542_SEC E1000_SEC -#define E1000_82542_CEXTERR E1000_CEXTERR -#define E1000_82542_RLEC E1000_RLEC -#define E1000_82542_XONRXC E1000_XONRXC -#define E1000_82542_XONTXC E1000_XONTXC -#define E1000_82542_XOFFRXC E1000_XOFFRXC -#define E1000_82542_XOFFTXC E1000_XOFFTXC -#define E1000_82542_FCRUC E1000_FCRUC -#define E1000_82542_PRC64 E1000_PRC64 -#define E1000_82542_PRC127 E1000_PRC127 -#define E1000_82542_PRC255 E1000_PRC255 -#define E1000_82542_PRC511 E1000_PRC511 -#define E1000_82542_PRC1023 E1000_PRC1023 -#define E1000_82542_PRC1522 E1000_PRC1522 -#define E1000_82542_GPRC E1000_GPRC -#define E1000_82542_BPRC E1000_BPRC -#define E1000_82542_MPRC E1000_MPRC -#define E1000_82542_GPTC E1000_GPTC -#define E1000_82542_GORCL E1000_GORCL -#define E1000_82542_GORCH E1000_GORCH -#define E1000_82542_GOTCL E1000_GOTCL -#define E1000_82542_GOTCH E1000_GOTCH -#define E1000_82542_RNBC E1000_RNBC -#define E1000_82542_RUC E1000_RUC -#define E1000_82542_RFC E1000_RFC -#define E1000_82542_ROC E1000_ROC -#define E1000_82542_RJC E1000_RJC -#define E1000_82542_MGTPRC E1000_MGTPRC -#define E1000_82542_MGTPDC E1000_MGTPDC -#define E1000_82542_MGTPTC E1000_MGTPTC -#define E1000_82542_TORL E1000_TORL -#define E1000_82542_TORH E1000_TORH -#define E1000_82542_TOTL E1000_TOTL -#define E1000_82542_TOTH E1000_TOTH -#define E1000_82542_TPR E1000_TPR -#define E1000_82542_TPT E1000_TPT -#define E1000_82542_PTC64 E1000_PTC64 -#define E1000_82542_PTC127 E1000_PTC127 -#define E1000_82542_PTC255 E1000_PTC255 -#define E1000_82542_PTC511 E1000_PTC511 -#define E1000_82542_PTC1023 E1000_PTC1023 -#define E1000_82542_PTC1522 E1000_PTC1522 -#define E1000_82542_MPTC E1000_MPTC -#define E1000_82542_BPTC E1000_BPTC -#define E1000_82542_TSCTC E1000_TSCTC -#define E1000_82542_TSCTFC E1000_TSCTFC -#define E1000_82542_RXCSUM E1000_RXCSUM -#define E1000_82542_WUC E1000_WUC -#define E1000_82542_WUFC E1000_WUFC -#define E1000_82542_WUS E1000_WUS -#define E1000_82542_MANC E1000_MANC -#define E1000_82542_IPAV E1000_IPAV -#define E1000_82542_IP4AT E1000_IP4AT -#define E1000_82542_IP6AT E1000_IP6AT -#define E1000_82542_WUPL E1000_WUPL -#define E1000_82542_WUPM E1000_WUPM -#define E1000_82542_FFLT E1000_FFLT -#define E1000_82542_TDFH 0x08010 -#define E1000_82542_TDFT 0x08018 -#define E1000_82542_FFMT E1000_FFMT -#define E1000_82542_FFVT E1000_FFVT -#define E1000_82542_HOST_IF E1000_HOST_IF -#define E1000_82542_IAM E1000_IAM -#define E1000_82542_EEMNGCTL E1000_EEMNGCTL -#define E1000_82542_PSRCTL E1000_PSRCTL -#define E1000_82542_RAID E1000_RAID -#define E1000_82542_TARC0 E1000_TARC0 -#define E1000_82542_TDBAL1 E1000_TDBAL1 -#define E1000_82542_TDBAH1 E1000_TDBAH1 -#define E1000_82542_TDLEN1 E1000_TDLEN1 -#define E1000_82542_TDH1 E1000_TDH1 -#define E1000_82542_TDT1 E1000_TDT1 -#define E1000_82542_TXDCTL1 E1000_TXDCTL1 -#define E1000_82542_TARC1 E1000_TARC1 -#define E1000_82542_RFCTL E1000_RFCTL -#define E1000_82542_GCR E1000_GCR -#define E1000_82542_GSCL_1 E1000_GSCL_1 -#define E1000_82542_GSCL_2 E1000_GSCL_2 -#define E1000_82542_GSCL_3 E1000_GSCL_3 -#define E1000_82542_GSCL_4 E1000_GSCL_4 -#define E1000_82542_FACTPS E1000_FACTPS -#define E1000_82542_SWSM E1000_SWSM -#define E1000_82542_FWSM E1000_FWSM -#define E1000_82542_FFLT_DBG E1000_FFLT_DBG -#define E1000_82542_IAC E1000_IAC -#define E1000_82542_ICRXPTC E1000_ICRXPTC -#define E1000_82542_ICRXATC E1000_ICRXATC -#define E1000_82542_ICTXPTC E1000_ICTXPTC -#define E1000_82542_ICTXATC E1000_ICTXATC -#define E1000_82542_ICTXQEC E1000_ICTXQEC -#define E1000_82542_ICTXQMTC E1000_ICTXQMTC -#define E1000_82542_ICRXDMTC E1000_ICRXDMTC -#define E1000_82542_ICRXOC E1000_ICRXOC -#define E1000_82542_HICR E1000_HICR - -#define E1000_82542_CPUVEC E1000_CPUVEC -#define E1000_82542_MRQC E1000_MRQC -#define E1000_82542_RETA E1000_RETA -#define E1000_82542_RSSRK E1000_RSSRK -#define E1000_82542_RSSIM E1000_RSSIM -#define E1000_82542_RSSIR E1000_RSSIR -#define E1000_82542_KUMCTRLSTA E1000_KUMCTRLSTA -#define E1000_82542_SW_FW_SYNC E1000_SW_FW_SYNC - -/* Statistics counters collected by the MAC */ -struct e1000_hw_stats { - u64 crcerrs; - u64 algnerrc; - u64 symerrs; - u64 rxerrc; - u64 txerrc; - u64 mpc; - u64 scc; - u64 ecol; - u64 mcc; - u64 latecol; - u64 colc; - u64 dc; - u64 tncrs; - u64 sec; - u64 cexterr; - u64 rlec; - u64 xonrxc; - u64 xontxc; - u64 xoffrxc; - u64 xofftxc; - u64 fcruc; - u64 prc64; - u64 prc127; - u64 prc255; - u64 prc511; - u64 prc1023; - u64 prc1522; - u64 gprc; - u64 bprc; - u64 mprc; - u64 gptc; - u64 gorcl; - u64 gorch; - u64 gotcl; - u64 gotch; - u64 rnbc; - u64 ruc; - u64 rfc; - u64 roc; - u64 rlerrc; - u64 rjc; - u64 mgprc; - u64 mgpdc; - u64 mgptc; - u64 torl; - u64 torh; - u64 totl; - u64 toth; - u64 tpr; - u64 tpt; - u64 ptc64; - u64 ptc127; - u64 ptc255; - u64 ptc511; - u64 ptc1023; - u64 ptc1522; - u64 mptc; - u64 bptc; - u64 tsctc; - u64 tsctfc; - u64 iac; - u64 icrxptc; - u64 icrxatc; - u64 ictxptc; - u64 ictxatc; - u64 ictxqec; - u64 ictxqmtc; - u64 icrxdmtc; - u64 icrxoc; -}; - -/* Structure containing variables used by the shared code (e1000_hw.c) */ -struct e1000_hw { - u8 __iomem *hw_addr; - u8 __iomem *flash_address; - e1000_mac_type mac_type; - e1000_phy_type phy_type; - u32 phy_init_script; - e1000_media_type media_type; - void *back; - struct e1000_shadow_ram *eeprom_shadow_ram; - u32 flash_bank_size; - u32 flash_base_addr; - e1000_fc_type fc; - e1000_bus_speed bus_speed; - e1000_bus_width bus_width; - e1000_bus_type bus_type; - struct e1000_eeprom_info eeprom; - e1000_ms_type master_slave; - e1000_ms_type original_master_slave; - e1000_ffe_config ffe_config_state; - u32 asf_firmware_present; - u32 eeprom_semaphore_present; - unsigned long io_base; - u32 phy_id; - u32 phy_revision; - u32 phy_addr; - u32 original_fc; - u32 txcw; - u32 autoneg_failed; - u32 max_frame_size; - u32 min_frame_size; - u32 mc_filter_type; - u32 num_mc_addrs; - u32 collision_delta; - u32 tx_packet_delta; - u32 ledctl_default; - u32 ledctl_mode1; - u32 ledctl_mode2; - bool tx_pkt_filtering; - struct e1000_host_mng_dhcp_cookie mng_cookie; - u16 phy_spd_default; - u16 autoneg_advertised; - u16 pci_cmd_word; - u16 fc_high_water; - u16 fc_low_water; - u16 fc_pause_time; - u16 current_ifs_val; - u16 ifs_min_val; - u16 ifs_max_val; - u16 ifs_step_size; - u16 ifs_ratio; - u16 device_id; - u16 vendor_id; - u16 subsystem_id; - u16 subsystem_vendor_id; - u8 revision_id; - u8 autoneg; - u8 mdix; - u8 forced_speed_duplex; - u8 wait_autoneg_complete; - u8 dma_fairness; - u8 mac_addr[NODE_ADDRESS_SIZE]; - u8 perm_mac_addr[NODE_ADDRESS_SIZE]; - bool disable_polarity_correction; - bool speed_downgraded; - e1000_smart_speed smart_speed; - e1000_dsp_config dsp_config_state; - bool get_link_status; - bool serdes_has_link; - bool tbi_compatibility_en; - bool tbi_compatibility_on; - bool laa_is_present; - bool phy_reset_disable; - bool initialize_hw_bits_disable; - bool fc_send_xon; - bool fc_strict_ieee; - bool report_tx_early; - bool adaptive_ifs; - bool ifs_params_forced; - bool in_ifs_mode; - bool mng_reg_access_disabled; - bool leave_av_bit_off; - bool bad_tx_carr_stats_fd; - bool has_smbus; -}; - -#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */ -#define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */ -#define E1000_EEPROM_RW_REG_DATA 16 /* Offset to data in EEPROM read/write registers */ -#define E1000_EEPROM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ -#define E1000_EEPROM_RW_REG_START 1 /* First bit for telling part to start operation */ -#define E1000_EEPROM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ -#define E1000_EEPROM_POLL_WRITE 1 /* Flag for polling for write complete */ -#define E1000_EEPROM_POLL_READ 0 /* Flag for polling for read complete */ -/* Register Bit Masks */ -/* Device Control */ -#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ -#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */ -#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ -#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */ -#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ -#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */ -#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */ -#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ -#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ -#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ -#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ -#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */ -#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ -#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ -#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */ -#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ -#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ -#define E1000_CTRL_D_UD_EN 0x00002000 /* Dock/Undock enable */ -#define E1000_CTRL_D_UD_POLARITY 0x00004000 /* Defined polarity of Dock/Undock indication in SDP[0] */ -#define E1000_CTRL_FORCE_PHY_RESET 0x00008000 /* Reset both PHY ports, through PHYRST_N pin */ -#define E1000_CTRL_EXT_LINK_EN 0x00010000 /* enable link status from external LINK_0 and LINK_1 pins */ -#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ -#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ -#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ -#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */ -#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ -#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */ -#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */ -#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */ -#define E1000_CTRL_RST 0x04000000 /* Global reset */ -#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ -#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ -#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */ -#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ -#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ -#define E1000_CTRL_SW2FW_INT 0x02000000 /* Initiate an interrupt to manageability engine */ - -/* Device Status */ -#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ -#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ -#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ -#define E1000_STATUS_FUNC_SHIFT 2 -#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */ -#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ -#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ -#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */ -#define E1000_STATUS_SPEED_MASK 0x000000C0 -#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ -#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ -#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ -#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion - by EEPROM/Flash */ -#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ -#define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */ -#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */ -#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */ -#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */ -#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */ -#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */ -#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */ -#define E1000_STATUS_BMC_SKU_0 0x00100000 /* BMC USB redirect disabled */ -#define E1000_STATUS_BMC_SKU_1 0x00200000 /* BMC SRAM disabled */ -#define E1000_STATUS_BMC_SKU_2 0x00400000 /* BMC SDRAM disabled */ -#define E1000_STATUS_BMC_CRYPTO 0x00800000 /* BMC crypto disabled */ -#define E1000_STATUS_BMC_LITE 0x01000000 /* BMC external code execution disabled */ -#define E1000_STATUS_RGMII_ENABLE 0x02000000 /* RGMII disabled */ -#define E1000_STATUS_FUSE_8 0x04000000 -#define E1000_STATUS_FUSE_9 0x08000000 -#define E1000_STATUS_SERDES0_DIS 0x10000000 /* SERDES disabled on port 0 */ -#define E1000_STATUS_SERDES1_DIS 0x20000000 /* SERDES disabled on port 1 */ - -/* Constants used to interpret the masked PCI-X bus speed. */ -#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */ -#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */ -#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */ - -/* EEPROM/Flash Control */ -#define E1000_EECD_SK 0x00000001 /* EEPROM Clock */ -#define E1000_EECD_CS 0x00000002 /* EEPROM Chip Select */ -#define E1000_EECD_DI 0x00000004 /* EEPROM Data In */ -#define E1000_EECD_DO 0x00000008 /* EEPROM Data Out */ -#define E1000_EECD_FWE_MASK 0x00000030 -#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */ -#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */ -#define E1000_EECD_FWE_SHIFT 4 -#define E1000_EECD_REQ 0x00000040 /* EEPROM Access Request */ -#define E1000_EECD_GNT 0x00000080 /* EEPROM Access Grant */ -#define E1000_EECD_PRES 0x00000100 /* EEPROM Present */ -#define E1000_EECD_SIZE 0x00000200 /* EEPROM Size (0=64 word 1=256 word) */ -#define E1000_EECD_ADDR_BITS 0x00000400 /* EEPROM Addressing bits based on type - * (0-small, 1-large) */ -#define E1000_EECD_TYPE 0x00002000 /* EEPROM Type (1-SPI, 0-Microwire) */ -#ifndef E1000_EEPROM_GRANT_ATTEMPTS -#define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */ -#endif -#define E1000_EECD_AUTO_RD 0x00000200 /* EEPROM Auto Read done */ -#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* EEprom Size */ -#define E1000_EECD_SIZE_EX_SHIFT 11 -#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */ -#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */ -#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */ -#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */ -#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */ -#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */ -#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */ -#define E1000_EECD_SECVAL_SHIFT 22 -#define E1000_STM_OPCODE 0xDB00 -#define E1000_HICR_FW_RESET 0xC0 - -#define E1000_SHADOW_RAM_WORDS 2048 -#define E1000_ICH_NVM_SIG_WORD 0x13 -#define E1000_ICH_NVM_SIG_MASK 0xC0 - -/* EEPROM Read */ -#define E1000_EERD_START 0x00000001 /* Start Read */ -#define E1000_EERD_DONE 0x00000010 /* Read Done */ -#define E1000_EERD_ADDR_SHIFT 8 -#define E1000_EERD_ADDR_MASK 0x0000FF00 /* Read Address */ -#define E1000_EERD_DATA_SHIFT 16 -#define E1000_EERD_DATA_MASK 0xFFFF0000 /* Read Data */ - -/* SPI EEPROM Status Register */ -#define EEPROM_STATUS_RDY_SPI 0x01 -#define EEPROM_STATUS_WEN_SPI 0x02 -#define EEPROM_STATUS_BP0_SPI 0x04 -#define EEPROM_STATUS_BP1_SPI 0x08 -#define EEPROM_STATUS_WPEN_SPI 0x80 - -/* Extended Device Control */ -#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */ -#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */ -#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN -#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */ -#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */ -#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */ -#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */ -#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA -#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */ -#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */ -#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */ -#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */ -#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */ -#define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */ -#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */ -#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ -#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */ -#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */ -#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */ -#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 -#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000 -#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000 -#define E1000_CTRL_EXT_LINK_MODE_KMRN 0x00000000 -#define E1000_CTRL_EXT_LINK_MODE_SERDES 0x00C00000 -#define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000 -#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000 -#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000 -#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 -#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 -#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 -#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */ -#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */ -#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */ -#define E1000_CRTL_EXT_PB_PAREN 0x01000000 /* packet buffer parity error detection enabled */ -#define E1000_CTRL_EXT_DF_PAREN 0x02000000 /* descriptor FIFO parity error detection enable */ -#define E1000_CTRL_EXT_GHOST_PAREN 0x40000000 - -/* MDI Control */ -#define E1000_MDIC_DATA_MASK 0x0000FFFF -#define E1000_MDIC_REG_MASK 0x001F0000 -#define E1000_MDIC_REG_SHIFT 16 -#define E1000_MDIC_PHY_MASK 0x03E00000 -#define E1000_MDIC_PHY_SHIFT 21 -#define E1000_MDIC_OP_WRITE 0x04000000 -#define E1000_MDIC_OP_READ 0x08000000 -#define E1000_MDIC_READY 0x10000000 -#define E1000_MDIC_INT_EN 0x20000000 -#define E1000_MDIC_ERROR 0x40000000 - -#define INTEL_CE_GBE_MDIC_OP_WRITE 0x04000000 -#define INTEL_CE_GBE_MDIC_OP_READ 0x00000000 -#define INTEL_CE_GBE_MDIC_GO 0x80000000 -#define INTEL_CE_GBE_MDIC_READ_ERROR 0x80000000 - -#define E1000_KUMCTRLSTA_MASK 0x0000FFFF -#define E1000_KUMCTRLSTA_OFFSET 0x001F0000 -#define E1000_KUMCTRLSTA_OFFSET_SHIFT 16 -#define E1000_KUMCTRLSTA_REN 0x00200000 - -#define E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL 0x00000000 -#define E1000_KUMCTRLSTA_OFFSET_CTRL 0x00000001 -#define E1000_KUMCTRLSTA_OFFSET_INB_CTRL 0x00000002 -#define E1000_KUMCTRLSTA_OFFSET_DIAG 0x00000003 -#define E1000_KUMCTRLSTA_OFFSET_TIMEOUTS 0x00000004 -#define E1000_KUMCTRLSTA_OFFSET_INB_PARAM 0x00000009 -#define E1000_KUMCTRLSTA_OFFSET_HD_CTRL 0x00000010 -#define E1000_KUMCTRLSTA_OFFSET_M2P_SERDES 0x0000001E -#define E1000_KUMCTRLSTA_OFFSET_M2P_MODES 0x0000001F - -/* FIFO Control */ -#define E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS 0x00000008 -#define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS 0x00000800 - -/* In-Band Control */ -#define E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT 0x00000500 -#define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING 0x00000010 - -/* Half-Duplex Control */ -#define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004 -#define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT 0x00000000 - -#define E1000_KUMCTRLSTA_OFFSET_K0S_CTRL 0x0000001E - -#define E1000_KUMCTRLSTA_DIAG_FELPBK 0x2000 -#define E1000_KUMCTRLSTA_DIAG_NELPBK 0x1000 - -#define E1000_KUMCTRLSTA_K0S_100_EN 0x2000 -#define E1000_KUMCTRLSTA_K0S_GBE_EN 0x1000 -#define E1000_KUMCTRLSTA_K0S_ENTRY_LATENCY_MASK 0x0003 - -#define E1000_KABGTXD_BGSQLBIAS 0x00050000 - -#define E1000_PHY_CTRL_SPD_EN 0x00000001 -#define E1000_PHY_CTRL_D0A_LPLU 0x00000002 -#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004 -#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008 -#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040 -#define E1000_PHY_CTRL_B2B_EN 0x00000080 - -/* LED Control */ -#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F -#define E1000_LEDCTL_LED0_MODE_SHIFT 0 -#define E1000_LEDCTL_LED0_BLINK_RATE 0x0000020 -#define E1000_LEDCTL_LED0_IVRT 0x00000040 -#define E1000_LEDCTL_LED0_BLINK 0x00000080 -#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00 -#define E1000_LEDCTL_LED1_MODE_SHIFT 8 -#define E1000_LEDCTL_LED1_BLINK_RATE 0x0002000 -#define E1000_LEDCTL_LED1_IVRT 0x00004000 -#define E1000_LEDCTL_LED1_BLINK 0x00008000 -#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000 -#define E1000_LEDCTL_LED2_MODE_SHIFT 16 -#define E1000_LEDCTL_LED2_BLINK_RATE 0x00200000 -#define E1000_LEDCTL_LED2_IVRT 0x00400000 -#define E1000_LEDCTL_LED2_BLINK 0x00800000 -#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000 -#define E1000_LEDCTL_LED3_MODE_SHIFT 24 -#define E1000_LEDCTL_LED3_BLINK_RATE 0x20000000 -#define E1000_LEDCTL_LED3_IVRT 0x40000000 -#define E1000_LEDCTL_LED3_BLINK 0x80000000 - -#define E1000_LEDCTL_MODE_LINK_10_1000 0x0 -#define E1000_LEDCTL_MODE_LINK_100_1000 0x1 -#define E1000_LEDCTL_MODE_LINK_UP 0x2 -#define E1000_LEDCTL_MODE_ACTIVITY 0x3 -#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4 -#define E1000_LEDCTL_MODE_LINK_10 0x5 -#define E1000_LEDCTL_MODE_LINK_100 0x6 -#define E1000_LEDCTL_MODE_LINK_1000 0x7 -#define E1000_LEDCTL_MODE_PCIX_MODE 0x8 -#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9 -#define E1000_LEDCTL_MODE_COLLISION 0xA -#define E1000_LEDCTL_MODE_BUS_SPEED 0xB -#define E1000_LEDCTL_MODE_BUS_SIZE 0xC -#define E1000_LEDCTL_MODE_PAUSED 0xD -#define E1000_LEDCTL_MODE_LED_ON 0xE -#define E1000_LEDCTL_MODE_LED_OFF 0xF - -/* Receive Address */ -#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ - -/* Interrupt Cause Read */ -#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ -#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */ -#define E1000_ICR_LSC 0x00000004 /* Link Status Change */ -#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */ -#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */ -#define E1000_ICR_RXO 0x00000040 /* rx overrun */ -#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */ -#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */ -#define E1000_ICR_RXCFG 0x00000400 /* RX /c/ ordered set */ -#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */ -#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */ -#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */ -#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ -#define E1000_ICR_TXD_LOW 0x00008000 -#define E1000_ICR_SRPD 0x00010000 -#define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */ -#define E1000_ICR_MNG 0x00040000 /* Manageability event */ -#define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */ -#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */ -#define E1000_ICR_RXD_FIFO_PAR0 0x00100000 /* queue 0 Rx descriptor FIFO parity error */ -#define E1000_ICR_TXD_FIFO_PAR0 0x00200000 /* queue 0 Tx descriptor FIFO parity error */ -#define E1000_ICR_HOST_ARB_PAR 0x00400000 /* host arb read buffer parity error */ -#define E1000_ICR_PB_PAR 0x00800000 /* packet buffer parity error */ -#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */ -#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */ -#define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */ -#define E1000_ICR_DSW 0x00000020 /* FW changed the status of DISSW bit in the FWSM */ -#define E1000_ICR_PHYINT 0x00001000 /* LAN connected device generates an interrupt */ -#define E1000_ICR_EPRST 0x00100000 /* ME hardware reset occurs */ - -/* Interrupt Cause Set */ -#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ -#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ -#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ -#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ -#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */ -#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ -#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */ -#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ -#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ -#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ -#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ -#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ -#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW -#define E1000_ICS_SRPD E1000_ICR_SRPD -#define E1000_ICS_ACK E1000_ICR_ACK /* Receive Ack frame */ -#define E1000_ICS_MNG E1000_ICR_MNG /* Manageability event */ -#define E1000_ICS_DOCK E1000_ICR_DOCK /* Dock/Undock */ -#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */ -#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */ -#define E1000_ICS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */ -#define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ -#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ -#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ -#define E1000_ICS_DSW E1000_ICR_DSW -#define E1000_ICS_PHYINT E1000_ICR_PHYINT -#define E1000_ICS_EPRST E1000_ICR_EPRST - -/* Interrupt Mask Set */ -#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ -#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ -#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ -#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ -#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */ -#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ -#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */ -#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ -#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ -#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ -#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ -#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ -#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW -#define E1000_IMS_SRPD E1000_ICR_SRPD -#define E1000_IMS_ACK E1000_ICR_ACK /* Receive Ack frame */ -#define E1000_IMS_MNG E1000_ICR_MNG /* Manageability event */ -#define E1000_IMS_DOCK E1000_ICR_DOCK /* Dock/Undock */ -#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */ -#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */ -#define E1000_IMS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */ -#define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ -#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ -#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ -#define E1000_IMS_DSW E1000_ICR_DSW -#define E1000_IMS_PHYINT E1000_ICR_PHYINT -#define E1000_IMS_EPRST E1000_ICR_EPRST - -/* Interrupt Mask Clear */ -#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */ -#define E1000_IMC_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ -#define E1000_IMC_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_IMC_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ -#define E1000_IMC_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ -#define E1000_IMC_RXO E1000_ICR_RXO /* rx overrun */ -#define E1000_IMC_RXT0 E1000_ICR_RXT0 /* rx timer intr */ -#define E1000_IMC_MDAC E1000_ICR_MDAC /* MDIO access complete */ -#define E1000_IMC_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ -#define E1000_IMC_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ -#define E1000_IMC_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ -#define E1000_IMC_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ -#define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ -#define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW -#define E1000_IMC_SRPD E1000_ICR_SRPD -#define E1000_IMC_ACK E1000_ICR_ACK /* Receive Ack frame */ -#define E1000_IMC_MNG E1000_ICR_MNG /* Manageability event */ -#define E1000_IMC_DOCK E1000_ICR_DOCK /* Dock/Undock */ -#define E1000_IMC_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */ -#define E1000_IMC_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */ -#define E1000_IMC_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */ -#define E1000_IMC_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ -#define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ -#define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ -#define E1000_IMC_DSW E1000_ICR_DSW -#define E1000_IMC_PHYINT E1000_ICR_PHYINT -#define E1000_IMC_EPRST E1000_ICR_EPRST - -/* Receive Control */ -#define E1000_RCTL_RST 0x00000001 /* Software reset */ -#define E1000_RCTL_EN 0x00000002 /* enable */ -#define E1000_RCTL_SBP 0x00000004 /* store bad packet */ -#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */ -#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */ -#define E1000_RCTL_LPE 0x00000020 /* long packet enable */ -#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ -#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ -#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */ -#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ -#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */ -#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */ -#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */ -#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */ -#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */ -#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ -#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */ -#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */ -#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */ -#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */ -#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */ -#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ -/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ -#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */ -#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */ -#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */ -#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */ -/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ -#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */ -#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */ -#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */ -#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ -#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ -#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ -#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */ -#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ -#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ -#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ -#define E1000_RCTL_FLXBUF_MASK 0x78000000 /* Flexible buffer size */ -#define E1000_RCTL_FLXBUF_SHIFT 27 /* Flexible buffer shift */ - -/* Use byte values for the following shift parameters - * Usage: - * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) & - * E1000_PSRCTL_BSIZE0_MASK) | - * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) & - * E1000_PSRCTL_BSIZE1_MASK) | - * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) & - * E1000_PSRCTL_BSIZE2_MASK) | - * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |; - * E1000_PSRCTL_BSIZE3_MASK)) - * where value0 = [128..16256], default=256 - * value1 = [1024..64512], default=4096 - * value2 = [0..64512], default=4096 - * value3 = [0..64512], default=0 - */ - -#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F -#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00 -#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000 -#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000 - -#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */ -#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */ -#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */ -#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */ - -/* SW_W_SYNC definitions */ -#define E1000_SWFW_EEP_SM 0x0001 -#define E1000_SWFW_PHY0_SM 0x0002 -#define E1000_SWFW_PHY1_SM 0x0004 -#define E1000_SWFW_MAC_CSR_SM 0x0008 - -/* Receive Descriptor */ -#define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */ -#define E1000_RDT_FPDB 0x80000000 /* Flush descriptor block */ -#define E1000_RDLEN_LEN 0x0007ff80 /* descriptor length */ -#define E1000_RDH_RDH 0x0000ffff /* receive descriptor head */ -#define E1000_RDT_RDT 0x0000ffff /* receive descriptor tail */ - -/* Flow Control */ -#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */ -#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */ -#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ -#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ - -/* Header split receive */ -#define E1000_RFCTL_ISCSI_DIS 0x00000001 -#define E1000_RFCTL_ISCSI_DWC_MASK 0x0000003E -#define E1000_RFCTL_ISCSI_DWC_SHIFT 1 -#define E1000_RFCTL_NFSW_DIS 0x00000040 -#define E1000_RFCTL_NFSR_DIS 0x00000080 -#define E1000_RFCTL_NFS_VER_MASK 0x00000300 -#define E1000_RFCTL_NFS_VER_SHIFT 8 -#define E1000_RFCTL_IPV6_DIS 0x00000400 -#define E1000_RFCTL_IPV6_XSUM_DIS 0x00000800 -#define E1000_RFCTL_ACK_DIS 0x00001000 -#define E1000_RFCTL_ACKD_DIS 0x00002000 -#define E1000_RFCTL_IPFRSP_DIS 0x00004000 -#define E1000_RFCTL_EXTEN 0x00008000 -#define E1000_RFCTL_IPV6_EX_DIS 0x00010000 -#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000 - -/* Receive Descriptor Control */ -#define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */ -#define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */ -#define E1000_RXDCTL_WTHRESH 0x003F0000 /* RXDCTL Writeback Threshold */ -#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */ - -/* Transmit Descriptor Control */ -#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */ -#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */ -#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */ -#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ -#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */ -#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ -#define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc. - still to be processed. */ -/* Transmit Configuration Word */ -#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ -#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */ -#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */ -#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */ -#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */ -#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */ -#define E1000_TXCW_NP 0x00008000 /* TXCW next page */ -#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */ -#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */ -#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ - -/* Receive Configuration Word */ -#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */ -#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */ -#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */ -#define E1000_RXCW_CC 0x10000000 /* Receive config change */ -#define E1000_RXCW_C 0x20000000 /* Receive config */ -#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */ -#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */ - -/* Transmit Control */ -#define E1000_TCTL_RST 0x00000001 /* software reset */ -#define E1000_TCTL_EN 0x00000002 /* enable tx */ -#define E1000_TCTL_BCE 0x00000004 /* busy check enable */ -#define E1000_TCTL_PSP 0x00000008 /* pad short packets */ -#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ -#define E1000_TCTL_COLD 0x003ff000 /* collision distance */ -#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */ -#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */ -#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ -#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */ -#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */ -/* Extended Transmit Control */ -#define E1000_TCTL_EXT_BST_MASK 0x000003FF /* Backoff Slot Time */ -#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */ - -/* Receive Checksum Control */ -#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */ -#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ -#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ -#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */ -#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */ -#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */ - -/* Multiple Receive Queue Control */ -#define E1000_MRQC_ENABLE_MASK 0x00000003 -#define E1000_MRQC_ENABLE_RSS_2Q 0x00000001 -#define E1000_MRQC_ENABLE_RSS_INT 0x00000004 -#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000 -#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000 -#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000 -#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000 -#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000 -#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000 -#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000 - -/* Definitions for power management and wakeup registers */ -/* Wake Up Control */ -#define E1000_WUC_APME 0x00000001 /* APM Enable */ -#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ -#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */ -#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */ -#define E1000_WUC_SPM 0x80000000 /* Enable SPM */ - -/* Wake Up Filter Control */ -#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ -#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ -#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ -#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ -#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ -#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ -#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ -#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */ -#define E1000_WUFC_IGNORE_TCO 0x00008000 /* Ignore WakeOn TCO packets */ -#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ -#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */ -#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */ -#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */ -#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */ -#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */ -#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ - -/* Wake Up Status */ -#define E1000_WUS_LNKC 0x00000001 /* Link Status Changed */ -#define E1000_WUS_MAG 0x00000002 /* Magic Packet Received */ -#define E1000_WUS_EX 0x00000004 /* Directed Exact Received */ -#define E1000_WUS_MC 0x00000008 /* Directed Multicast Received */ -#define E1000_WUS_BC 0x00000010 /* Broadcast Received */ -#define E1000_WUS_ARP 0x00000020 /* ARP Request Packet Received */ -#define E1000_WUS_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Received */ -#define E1000_WUS_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Received */ -#define E1000_WUS_FLX0 0x00010000 /* Flexible Filter 0 Match */ -#define E1000_WUS_FLX1 0x00020000 /* Flexible Filter 1 Match */ -#define E1000_WUS_FLX2 0x00040000 /* Flexible Filter 2 Match */ -#define E1000_WUS_FLX3 0x00080000 /* Flexible Filter 3 Match */ -#define E1000_WUS_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ - -/* Management Control */ -#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ -#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ -#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */ -#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */ -#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */ -#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */ -#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */ -#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */ -#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ -#define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery - * Filtering */ -#define E1000_MANC_ARP_RES_EN 0x00008000 /* Enable ARP response Filtering */ -#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */ -#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ -#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */ -#define E1000_MANC_RCV_ALL 0x00080000 /* Receive All Enabled */ -#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ -#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 /* Enable MAC address - * filtering */ -#define E1000_MANC_EN_MNG2HOST 0x00200000 /* Enable MNG packets to host - * memory */ -#define E1000_MANC_EN_IP_ADDR_FILTER 0x00400000 /* Enable IP address - * filtering */ -#define E1000_MANC_EN_XSUM_FILTER 0x00800000 /* Enable checksum filtering */ -#define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */ -#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */ -#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */ -#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */ -#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */ -#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */ -#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */ - -#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */ -#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */ - -/* SW Semaphore Register */ -#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ -#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ -#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */ -#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */ - -/* FW Semaphore Register */ -#define E1000_FWSM_MODE_MASK 0x0000000E /* FW mode */ -#define E1000_FWSM_MODE_SHIFT 1 -#define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */ - -#define E1000_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI reset */ -#define E1000_FWSM_DISSW 0x10000000 /* FW disable SW Write Access */ -#define E1000_FWSM_SKUSEL_MASK 0x60000000 /* LAN SKU select */ -#define E1000_FWSM_SKUEL_SHIFT 29 -#define E1000_FWSM_SKUSEL_EMB 0x0 /* Embedded SKU */ -#define E1000_FWSM_SKUSEL_CONS 0x1 /* Consumer SKU */ -#define E1000_FWSM_SKUSEL_PERF_100 0x2 /* Perf & Corp 10/100 SKU */ -#define E1000_FWSM_SKUSEL_PERF_GBE 0x3 /* Perf & Copr GbE SKU */ - -/* FFLT Debug Register */ -#define E1000_FFLT_DBG_INVC 0x00100000 /* Invalid /C/ code handling */ - -typedef enum { - e1000_mng_mode_none = 0, - e1000_mng_mode_asf, - e1000_mng_mode_pt, - e1000_mng_mode_ipmi, - e1000_mng_mode_host_interface_only -} e1000_mng_mode; - -/* Host Interface Control Register */ -#define E1000_HICR_EN 0x00000001 /* Enable Bit - RO */ -#define E1000_HICR_C 0x00000002 /* Driver sets this bit when done - * to put command in RAM */ -#define E1000_HICR_SV 0x00000004 /* Status Validity */ -#define E1000_HICR_FWR 0x00000080 /* FW reset. Set by the Host */ - -/* Host Interface Command Interface - Address range 0x8800-0x8EFF */ -#define E1000_HI_MAX_DATA_LENGTH 252 /* Host Interface data length */ -#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Number of bytes in range */ -#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Number of dwords in range */ -#define E1000_HI_COMMAND_TIMEOUT 500 /* Time in ms to process HI command */ - -struct e1000_host_command_header { - u8 command_id; - u8 command_length; - u8 command_options; /* I/F bits for command, status for return */ - u8 checksum; -}; -struct e1000_host_command_info { - struct e1000_host_command_header command_header; /* Command Head/Command Result Head has 4 bytes */ - u8 command_data[E1000_HI_MAX_DATA_LENGTH]; /* Command data can length 0..252 */ -}; - -/* Host SMB register #0 */ -#define E1000_HSMC0R_CLKIN 0x00000001 /* SMB Clock in */ -#define E1000_HSMC0R_DATAIN 0x00000002 /* SMB Data in */ -#define E1000_HSMC0R_DATAOUT 0x00000004 /* SMB Data out */ -#define E1000_HSMC0R_CLKOUT 0x00000008 /* SMB Clock out */ - -/* Host SMB register #1 */ -#define E1000_HSMC1R_CLKIN E1000_HSMC0R_CLKIN -#define E1000_HSMC1R_DATAIN E1000_HSMC0R_DATAIN -#define E1000_HSMC1R_DATAOUT E1000_HSMC0R_DATAOUT -#define E1000_HSMC1R_CLKOUT E1000_HSMC0R_CLKOUT - -/* FW Status Register */ -#define E1000_FWSTS_FWS_MASK 0x000000FF /* FW Status */ - -/* Wake Up Packet Length */ -#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */ - -#define E1000_MDALIGN 4096 - -/* PCI-Ex registers*/ - -/* PCI-Ex Control Register */ -#define E1000_GCR_RXD_NO_SNOOP 0x00000001 -#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002 -#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004 -#define E1000_GCR_TXD_NO_SNOOP 0x00000008 -#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010 -#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020 - -#define PCI_EX_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \ - E1000_GCR_RXDSCW_NO_SNOOP | \ - E1000_GCR_RXDSCR_NO_SNOOP | \ - E1000_GCR_TXD_NO_SNOOP | \ - E1000_GCR_TXDSCW_NO_SNOOP | \ - E1000_GCR_TXDSCR_NO_SNOOP) - -#define PCI_EX_82566_SNOOP_ALL PCI_EX_NO_SNOOP_ALL - -#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 -/* Function Active and Power State to MNG */ -#define E1000_FACTPS_FUNC0_POWER_STATE_MASK 0x00000003 -#define E1000_FACTPS_LAN0_VALID 0x00000004 -#define E1000_FACTPS_FUNC0_AUX_EN 0x00000008 -#define E1000_FACTPS_FUNC1_POWER_STATE_MASK 0x000000C0 -#define E1000_FACTPS_FUNC1_POWER_STATE_SHIFT 6 -#define E1000_FACTPS_LAN1_VALID 0x00000100 -#define E1000_FACTPS_FUNC1_AUX_EN 0x00000200 -#define E1000_FACTPS_FUNC2_POWER_STATE_MASK 0x00003000 -#define E1000_FACTPS_FUNC2_POWER_STATE_SHIFT 12 -#define E1000_FACTPS_IDE_ENABLE 0x00004000 -#define E1000_FACTPS_FUNC2_AUX_EN 0x00008000 -#define E1000_FACTPS_FUNC3_POWER_STATE_MASK 0x000C0000 -#define E1000_FACTPS_FUNC3_POWER_STATE_SHIFT 18 -#define E1000_FACTPS_SP_ENABLE 0x00100000 -#define E1000_FACTPS_FUNC3_AUX_EN 0x00200000 -#define E1000_FACTPS_FUNC4_POWER_STATE_MASK 0x03000000 -#define E1000_FACTPS_FUNC4_POWER_STATE_SHIFT 24 -#define E1000_FACTPS_IPMI_ENABLE 0x04000000 -#define E1000_FACTPS_FUNC4_AUX_EN 0x08000000 -#define E1000_FACTPS_MNGCG 0x20000000 -#define E1000_FACTPS_LAN_FUNC_SEL 0x40000000 -#define E1000_FACTPS_PM_STATE_CHANGED 0x80000000 - -/* PCI-Ex Config Space */ -#define PCI_EX_LINK_STATUS 0x12 -#define PCI_EX_LINK_WIDTH_MASK 0x3F0 -#define PCI_EX_LINK_WIDTH_SHIFT 4 - -/* EEPROM Commands - Microwire */ -#define EEPROM_READ_OPCODE_MICROWIRE 0x6 /* EEPROM read opcode */ -#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5 /* EEPROM write opcode */ -#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7 /* EEPROM erase opcode */ -#define EEPROM_EWEN_OPCODE_MICROWIRE 0x13 /* EEPROM erase/write enable */ -#define EEPROM_EWDS_OPCODE_MICROWIRE 0x10 /* EEPROM erase/write disable */ - -/* EEPROM Commands - SPI */ -#define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ -#define EEPROM_READ_OPCODE_SPI 0x03 /* EEPROM read opcode */ -#define EEPROM_WRITE_OPCODE_SPI 0x02 /* EEPROM write opcode */ -#define EEPROM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ -#define EEPROM_WREN_OPCODE_SPI 0x06 /* EEPROM set Write Enable latch */ -#define EEPROM_WRDI_OPCODE_SPI 0x04 /* EEPROM reset Write Enable latch */ -#define EEPROM_RDSR_OPCODE_SPI 0x05 /* EEPROM read Status register */ -#define EEPROM_WRSR_OPCODE_SPI 0x01 /* EEPROM write Status register */ -#define EEPROM_ERASE4K_OPCODE_SPI 0x20 /* EEPROM ERASE 4KB */ -#define EEPROM_ERASE64K_OPCODE_SPI 0xD8 /* EEPROM ERASE 64KB */ -#define EEPROM_ERASE256_OPCODE_SPI 0xDB /* EEPROM ERASE 256B */ - -/* EEPROM Size definitions */ -#define EEPROM_WORD_SIZE_SHIFT 6 -#define EEPROM_SIZE_SHIFT 10 -#define EEPROM_SIZE_MASK 0x1C00 - -/* EEPROM Word Offsets */ -#define EEPROM_COMPAT 0x0003 -#define EEPROM_ID_LED_SETTINGS 0x0004 -#define EEPROM_VERSION 0x0005 -#define EEPROM_SERDES_AMPLITUDE 0x0006 /* For SERDES output amplitude adjustment. */ -#define EEPROM_PHY_CLASS_WORD 0x0007 -#define EEPROM_INIT_CONTROL1_REG 0x000A -#define EEPROM_INIT_CONTROL2_REG 0x000F -#define EEPROM_SWDEF_PINS_CTRL_PORT_1 0x0010 -#define EEPROM_INIT_CONTROL3_PORT_B 0x0014 -#define EEPROM_INIT_3GIO_3 0x001A -#define EEPROM_SWDEF_PINS_CTRL_PORT_0 0x0020 -#define EEPROM_INIT_CONTROL3_PORT_A 0x0024 -#define EEPROM_CFG 0x0012 -#define EEPROM_FLASH_VERSION 0x0032 -#define EEPROM_CHECKSUM_REG 0x003F - -#define E1000_EEPROM_CFG_DONE 0x00040000 /* MNG config cycle done */ -#define E1000_EEPROM_CFG_DONE_PORT_1 0x00080000 /* ...for second port */ - -/* Word definitions for ID LED Settings */ -#define ID_LED_RESERVED_0000 0x0000 -#define ID_LED_RESERVED_FFFF 0xFFFF -#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ - (ID_LED_OFF1_OFF2 << 8) | \ - (ID_LED_DEF1_DEF2 << 4) | \ - (ID_LED_DEF1_DEF2)) -#define ID_LED_DEF1_DEF2 0x1 -#define ID_LED_DEF1_ON2 0x2 -#define ID_LED_DEF1_OFF2 0x3 -#define ID_LED_ON1_DEF2 0x4 -#define ID_LED_ON1_ON2 0x5 -#define ID_LED_ON1_OFF2 0x6 -#define ID_LED_OFF1_DEF2 0x7 -#define ID_LED_OFF1_ON2 0x8 -#define ID_LED_OFF1_OFF2 0x9 - -#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF -#define IGP_ACTIVITY_LED_ENABLE 0x0300 -#define IGP_LED3_MODE 0x07000000 - -/* Mask bits for SERDES amplitude adjustment in Word 6 of the EEPROM */ -#define EEPROM_SERDES_AMPLITUDE_MASK 0x000F - -/* Mask bit for PHY class in Word 7 of the EEPROM */ -#define EEPROM_PHY_CLASS_A 0x8000 - -/* Mask bits for fields in Word 0x0a of the EEPROM */ -#define EEPROM_WORD0A_ILOS 0x0010 -#define EEPROM_WORD0A_SWDPIO 0x01E0 -#define EEPROM_WORD0A_LRST 0x0200 -#define EEPROM_WORD0A_FD 0x0400 -#define EEPROM_WORD0A_66MHZ 0x0800 - -/* Mask bits for fields in Word 0x0f of the EEPROM */ -#define EEPROM_WORD0F_PAUSE_MASK 0x3000 -#define EEPROM_WORD0F_PAUSE 0x1000 -#define EEPROM_WORD0F_ASM_DIR 0x2000 -#define EEPROM_WORD0F_ANE 0x0800 -#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0 -#define EEPROM_WORD0F_LPLU 0x0001 - -/* Mask bits for fields in Word 0x10/0x20 of the EEPROM */ -#define EEPROM_WORD1020_GIGA_DISABLE 0x0010 -#define EEPROM_WORD1020_GIGA_DISABLE_NON_D0A 0x0008 - -/* Mask bits for fields in Word 0x1a of the EEPROM */ -#define EEPROM_WORD1A_ASPM_MASK 0x000C - -/* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */ -#define EEPROM_SUM 0xBABA - -/* EEPROM Map defines (WORD OFFSETS)*/ -#define EEPROM_NODE_ADDRESS_BYTE_0 0 -#define EEPROM_PBA_BYTE_1 8 - -#define EEPROM_RESERVED_WORD 0xFFFF - -/* EEPROM Map Sizes (Byte Counts) */ -#define PBA_SIZE 4 - -/* Collision related configuration parameters */ -#define E1000_COLLISION_THRESHOLD 15 -#define E1000_CT_SHIFT 4 -/* Collision distance is a 0-based value that applies to - * half-duplex-capable hardware only. */ -#define E1000_COLLISION_DISTANCE 63 -#define E1000_COLLISION_DISTANCE_82542 64 -#define E1000_FDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE -#define E1000_HDX_COLLISION_DISTANCE E1000_COLLISION_DISTANCE -#define E1000_COLD_SHIFT 12 - -/* Number of Transmit and Receive Descriptors must be a multiple of 8 */ -#define REQ_TX_DESCRIPTOR_MULTIPLE 8 -#define REQ_RX_DESCRIPTOR_MULTIPLE 8 - -/* Default values for the transmit IPG register */ -#define DEFAULT_82542_TIPG_IPGT 10 -#define DEFAULT_82543_TIPG_IPGT_FIBER 9 -#define DEFAULT_82543_TIPG_IPGT_COPPER 8 - -#define E1000_TIPG_IPGT_MASK 0x000003FF -#define E1000_TIPG_IPGR1_MASK 0x000FFC00 -#define E1000_TIPG_IPGR2_MASK 0x3FF00000 - -#define DEFAULT_82542_TIPG_IPGR1 2 -#define DEFAULT_82543_TIPG_IPGR1 8 -#define E1000_TIPG_IPGR1_SHIFT 10 - -#define DEFAULT_82542_TIPG_IPGR2 10 -#define DEFAULT_82543_TIPG_IPGR2 6 -#define E1000_TIPG_IPGR2_SHIFT 20 - -#define E1000_TXDMAC_DPP 0x00000001 - -/* Adaptive IFS defines */ -#define TX_THRESHOLD_START 8 -#define TX_THRESHOLD_INCREMENT 10 -#define TX_THRESHOLD_DECREMENT 1 -#define TX_THRESHOLD_STOP 190 -#define TX_THRESHOLD_DISABLE 0 -#define TX_THRESHOLD_TIMER_MS 10000 -#define MIN_NUM_XMITS 1000 -#define IFS_MAX 80 -#define IFS_STEP 10 -#define IFS_MIN 40 -#define IFS_RATIO 4 - -/* Extended Configuration Control and Size */ -#define E1000_EXTCNF_CTRL_PCIE_WRITE_ENABLE 0x00000001 -#define E1000_EXTCNF_CTRL_PHY_WRITE_ENABLE 0x00000002 -#define E1000_EXTCNF_CTRL_D_UD_ENABLE 0x00000004 -#define E1000_EXTCNF_CTRL_D_UD_LATENCY 0x00000008 -#define E1000_EXTCNF_CTRL_D_UD_OWNER 0x00000010 -#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 -#define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040 -#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER 0x0FFF0000 - -#define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH 0x000000FF -#define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH 0x0000FF00 -#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH 0x00FF0000 -#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001 -#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020 - -/* PBA constants */ -#define E1000_PBA_8K 0x0008 /* 8KB, default Rx allocation */ -#define E1000_PBA_12K 0x000C /* 12KB, default Rx allocation */ -#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ -#define E1000_PBA_20K 0x0014 -#define E1000_PBA_22K 0x0016 -#define E1000_PBA_24K 0x0018 -#define E1000_PBA_30K 0x001E -#define E1000_PBA_32K 0x0020 -#define E1000_PBA_34K 0x0022 -#define E1000_PBA_38K 0x0026 -#define E1000_PBA_40K 0x0028 -#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */ - -#define E1000_PBS_16K E1000_PBA_16K - -/* Flow Control Constants */ -#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 -#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 -#define FLOW_CONTROL_TYPE 0x8808 - -/* The historical defaults for the flow control values are given below. */ -#define FC_DEFAULT_HI_THRESH (0x8000) /* 32KB */ -#define FC_DEFAULT_LO_THRESH (0x4000) /* 16KB */ -#define FC_DEFAULT_TX_TIMER (0x100) /* ~130 us */ - -/* PCIX Config space */ -#define PCIX_COMMAND_REGISTER 0xE6 -#define PCIX_STATUS_REGISTER_LO 0xE8 -#define PCIX_STATUS_REGISTER_HI 0xEA - -#define PCIX_COMMAND_MMRBC_MASK 0x000C -#define PCIX_COMMAND_MMRBC_SHIFT 0x2 -#define PCIX_STATUS_HI_MMRBC_MASK 0x0060 -#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5 -#define PCIX_STATUS_HI_MMRBC_4K 0x3 -#define PCIX_STATUS_HI_MMRBC_2K 0x2 - -/* Number of bits required to shift right the "pause" bits from the - * EEPROM (bits 13:12) to the "pause" (bits 8:7) field in the TXCW register. - */ -#define PAUSE_SHIFT 5 - -/* Number of bits required to shift left the "SWDPIO" bits from the - * EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field in the CTRL register. - */ -#define SWDPIO_SHIFT 17 - -/* Number of bits required to shift left the "SWDPIO_EXT" bits from the - * EEPROM word F (bits 7:4) to the bits 11:8 of The Extended CTRL register. - */ -#define SWDPIO__EXT_SHIFT 4 - -/* Number of bits required to shift left the "ILOS" bit from the EEPROM - * (bit 4) to the "ILOS" (bit 7) field in the CTRL register. - */ -#define ILOS_SHIFT 3 - -#define RECEIVE_BUFFER_ALIGN_SIZE (256) - -/* Number of milliseconds we wait for auto-negotiation to complete */ -#define LINK_UP_TIMEOUT 500 - -/* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */ -#define AUTO_READ_DONE_TIMEOUT 10 -/* Number of milliseconds we wait for PHY configuration done after MAC reset */ -#define PHY_CFG_TIMEOUT 100 - -#define E1000_TX_BUFFER_SIZE ((u32)1514) - -/* The carrier extension symbol, as received by the NIC. */ -#define CARRIER_EXTENSION 0x0F - -/* TBI_ACCEPT macro definition: - * - * This macro requires: - * adapter = a pointer to struct e1000_hw - * status = the 8 bit status field of the RX descriptor with EOP set - * error = the 8 bit error field of the RX descriptor with EOP set - * length = the sum of all the length fields of the RX descriptors that - * make up the current frame - * last_byte = the last byte of the frame DMAed by the hardware - * max_frame_length = the maximum frame length we want to accept. - * min_frame_length = the minimum frame length we want to accept. - * - * This macro is a conditional that should be used in the interrupt - * handler's Rx processing routine when RxErrors have been detected. - * - * Typical use: - * ... - * if (TBI_ACCEPT) { - * accept_frame = true; - * e1000_tbi_adjust_stats(adapter, MacAddress); - * frame_length--; - * } else { - * accept_frame = false; - * } - * ... - */ - -#define TBI_ACCEPT(adapter, status, errors, length, last_byte) \ - ((adapter)->tbi_compatibility_on && \ - (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \ - ((last_byte) == CARRIER_EXTENSION) && \ - (((status) & E1000_RXD_STAT_VP) ? \ - (((length) > ((adapter)->min_frame_size - VLAN_TAG_SIZE)) && \ - ((length) <= ((adapter)->max_frame_size + 1))) : \ - (((length) > (adapter)->min_frame_size) && \ - ((length) <= ((adapter)->max_frame_size + VLAN_TAG_SIZE + 1))))) - -/* Structures, enums, and macros for the PHY */ - -/* Bit definitions for the Management Data IO (MDIO) and Management Data - * Clock (MDC) pins in the Device Control Register. - */ -#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0 -#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0 -#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2 -#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2 -#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3 -#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3 -#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR -#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA - -/* PHY 1000 MII Register/Bit Definitions */ -/* PHY Registers defined by IEEE */ -#define PHY_CTRL 0x00 /* Control Register */ -#define PHY_STATUS 0x01 /* Status Register */ -#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ -#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ -#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ -#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ -#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */ -#define PHY_NEXT_PAGE_TX 0x07 /* Next Page TX */ -#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */ -#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ -#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ -#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */ - -#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ -#define MAX_PHY_MULTI_PAGE_REG 0xF /* Registers equal on all pages */ - -/* M88E1000 Specific Registers */ -#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */ -#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */ -#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */ -#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */ -#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */ -#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */ - -#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */ -#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */ -#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */ -#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */ -#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */ - -#define IGP01E1000_IEEE_REGS_PAGE 0x0000 -#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300 -#define IGP01E1000_IEEE_FORCE_GIGA 0x0140 - -/* IGP01E1000 Specific Registers */ -#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* PHY Specific Port Config Register */ -#define IGP01E1000_PHY_PORT_STATUS 0x11 /* PHY Specific Status Register */ -#define IGP01E1000_PHY_PORT_CTRL 0x12 /* PHY Specific Control Register */ -#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */ -#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO Register */ -#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */ -#define IGP02E1000_PHY_POWER_MGMT 0x19 -#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* PHY Page Select Core Register */ - -/* IGP01E1000 AGC Registers - stores the cable length values*/ -#define IGP01E1000_PHY_AGC_A 0x1172 -#define IGP01E1000_PHY_AGC_B 0x1272 -#define IGP01E1000_PHY_AGC_C 0x1472 -#define IGP01E1000_PHY_AGC_D 0x1872 - -/* IGP02E1000 AGC Registers for cable length values */ -#define IGP02E1000_PHY_AGC_A 0x11B1 -#define IGP02E1000_PHY_AGC_B 0x12B1 -#define IGP02E1000_PHY_AGC_C 0x14B1 -#define IGP02E1000_PHY_AGC_D 0x18B1 - -/* IGP01E1000 DSP Reset Register */ -#define IGP01E1000_PHY_DSP_RESET 0x1F33 -#define IGP01E1000_PHY_DSP_SET 0x1F71 -#define IGP01E1000_PHY_DSP_FFE 0x1F35 - -#define IGP01E1000_PHY_CHANNEL_NUM 4 -#define IGP02E1000_PHY_CHANNEL_NUM 4 - -#define IGP01E1000_PHY_AGC_PARAM_A 0x1171 -#define IGP01E1000_PHY_AGC_PARAM_B 0x1271 -#define IGP01E1000_PHY_AGC_PARAM_C 0x1471 -#define IGP01E1000_PHY_AGC_PARAM_D 0x1871 - -#define IGP01E1000_PHY_EDAC_MU_INDEX 0xC000 -#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000 - -#define IGP01E1000_PHY_ANALOG_TX_STATE 0x2890 -#define IGP01E1000_PHY_ANALOG_CLASS_A 0x2000 -#define IGP01E1000_PHY_FORCE_ANALOG_ENABLE 0x0004 -#define IGP01E1000_PHY_DSP_FFE_CM_CP 0x0069 - -#define IGP01E1000_PHY_DSP_FFE_DEFAULT 0x002A -/* IGP01E1000 PCS Initialization register - stores the polarity status when - * speed = 1000 Mbps. */ -#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4 -#define IGP01E1000_PHY_PCS_CTRL_REG 0x00B5 - -#define IGP01E1000_ANALOG_REGS_PAGE 0x20C0 - -/* PHY Control Register */ -#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */ -#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */ -#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ -#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ -#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */ -#define MII_CR_POWER_DOWN 0x0800 /* Power down */ -#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ -#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */ -#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ -#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ - -/* PHY Status Register */ -#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */ -#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */ -#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ -#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */ -#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */ -#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ -#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */ -#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */ -#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */ -#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */ -#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */ -#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */ -#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */ -#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */ -#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */ - -/* Autoneg Advertisement Register */ -#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */ -#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ -#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ -#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ -#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ -#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */ -#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ -#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ -#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */ -#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */ - -/* Link Partner Ability Register (Base Page) */ -#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */ -#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */ -#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */ -#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */ -#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */ -#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */ -#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ -#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */ -#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */ -#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */ -#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */ - -/* Autoneg Expansion Register */ -#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */ -#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */ -#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */ -#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */ -#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP is 100TX Full Duplex Capable */ - -/* Next Page TX Register */ -#define NPTX_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */ -#define NPTX_TOGGLE 0x0800 /* Toggles between exchanges - * of different NP - */ -#define NPTX_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg - * 0 = cannot comply with msg - */ -#define NPTX_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */ -#define NPTX_NEXT_PAGE 0x8000 /* 1 = addition NP will follow - * 0 = sending last NP - */ - -/* Link Partner Next Page Register */ -#define LP_RNPR_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */ -#define LP_RNPR_TOGGLE 0x0800 /* Toggles between exchanges - * of different NP - */ -#define LP_RNPR_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg - * 0 = cannot comply with msg - */ -#define LP_RNPR_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */ -#define LP_RNPR_ACKNOWLDGE 0x4000 /* 1 = ACK / 0 = NO ACK */ -#define LP_RNPR_NEXT_PAGE 0x8000 /* 1 = addition NP will follow - * 0 = sending last NP - */ - -/* 1000BASE-T Control Register */ -#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */ -#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ -#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ -#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */ - /* 0=DTE device */ -#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */ - /* 0=Configure PHY as Slave */ -#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */ - /* 0=Automatic Master/Slave config */ -#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */ -#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */ -#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */ -#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */ -#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */ - -/* 1000BASE-T Status Register */ -#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */ -#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */ -#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */ -#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */ -#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ -#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ -#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local TX is Master, 0=Slave */ -#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */ -#define SR_1000T_REMOTE_RX_STATUS_SHIFT 12 -#define SR_1000T_LOCAL_RX_STATUS_SHIFT 13 -#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5 -#define FFE_IDLE_ERR_COUNT_TIMEOUT_20 20 -#define FFE_IDLE_ERR_COUNT_TIMEOUT_100 100 - -/* Extended Status Register */ -#define IEEE_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */ -#define IEEE_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */ -#define IEEE_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */ -#define IEEE_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */ - -#define PHY_TX_POLARITY_MASK 0x0100 /* register 10h bit 8 (polarity bit) */ -#define PHY_TX_NORMAL_POLARITY 0 /* register 10h bit 8 (normal polarity) */ - -#define AUTO_POLARITY_DISABLE 0x0010 /* register 11h bit 4 */ - /* (0=enable, 1=disable) */ - -/* M88E1000 PHY Specific Control Register */ -#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */ -#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */ -#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */ -#define M88E1000_PSCR_CLK125_DISABLE 0x0010 /* 1=CLK125 low, - * 0=CLK125 toggling - */ -#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */ - /* Manual MDI configuration */ -#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ -#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover, - * 100BASE-TX/10BASE-T: - * MDI Mode - */ -#define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled - * all speeds. - */ -#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080 - /* 1=Enable Extended 10BASE-T distance - * (Lower 10BASE-T RX Threshold) - * 0=Normal 10BASE-T RX Threshold */ -#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100 - /* 1=5-Bit interface in 100BASE-TX - * 0=MII interface in 100BASE-TX */ -#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */ -#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */ -#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */ - -#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT 1 -#define M88E1000_PSCR_AUTO_X_MODE_SHIFT 5 -#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7 - -/* M88E1000 PHY Specific Status Register */ -#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */ -#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ -#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ -#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ -#define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M; - * 3=110-140M;4=>140M */ -#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */ -#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */ -#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */ -#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */ -#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ -#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */ -#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */ -#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ - -#define M88E1000_PSSR_REV_POLARITY_SHIFT 1 -#define M88E1000_PSSR_DOWNSHIFT_SHIFT 5 -#define M88E1000_PSSR_MDIX_SHIFT 6 -#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 - -/* M88E1000 Extended PHY Specific Control Register */ -#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */ -#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 /* 1=Lost lock detect enabled. - * Will assert lost lock and bring - * link down if idle not seen - * within 1ms in 1000BASE-T - */ -/* Number of times we will attempt to autonegotiate before downshifting if we - * are the master */ -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00 -/* Number of times we will attempt to autonegotiate before downshifting if we - * are the slave */ -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300 -#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */ -#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ -#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */ - -/* M88EC018 Rev 2 specific DownShift settings */ -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X 0x0000 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X 0x0200 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X 0x0400 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X 0x0600 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X 0x0A00 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X 0x0C00 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X 0x0E00 - -/* IGP01E1000 Specific Port Config Register - R/W */ -#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT 0x0010 -#define IGP01E1000_PSCFR_PRE_EN 0x0020 -#define IGP01E1000_PSCFR_SMART_SPEED 0x0080 -#define IGP01E1000_PSCFR_DISABLE_TPLOOPBACK 0x0100 -#define IGP01E1000_PSCFR_DISABLE_JABBER 0x0400 -#define IGP01E1000_PSCFR_DISABLE_TRANSMIT 0x2000 - -/* IGP01E1000 Specific Port Status Register - R/O */ -#define IGP01E1000_PSSR_AUTONEG_FAILED 0x0001 /* RO LH SC */ -#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002 -#define IGP01E1000_PSSR_CABLE_LENGTH 0x007C -#define IGP01E1000_PSSR_FULL_DUPLEX 0x0200 -#define IGP01E1000_PSSR_LINK_UP 0x0400 -#define IGP01E1000_PSSR_MDIX 0x0800 -#define IGP01E1000_PSSR_SPEED_MASK 0xC000 /* speed bits mask */ -#define IGP01E1000_PSSR_SPEED_10MBPS 0x4000 -#define IGP01E1000_PSSR_SPEED_100MBPS 0x8000 -#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000 -#define IGP01E1000_PSSR_CABLE_LENGTH_SHIFT 0x0002 /* shift right 2 */ -#define IGP01E1000_PSSR_MDIX_SHIFT 0x000B /* shift right 11 */ - -/* IGP01E1000 Specific Port Control Register - R/W */ -#define IGP01E1000_PSCR_TP_LOOPBACK 0x0010 -#define IGP01E1000_PSCR_CORRECT_NC_SCMBLR 0x0200 -#define IGP01E1000_PSCR_TEN_CRS_SELECT 0x0400 -#define IGP01E1000_PSCR_FLIP_CHIP 0x0800 -#define IGP01E1000_PSCR_AUTO_MDIX 0x1000 -#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0-MDI, 1-MDIX */ - -/* IGP01E1000 Specific Port Link Health Register */ -#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000 -#define IGP01E1000_PLHR_GIG_SCRAMBLER_ERROR 0x4000 -#define IGP01E1000_PLHR_MASTER_FAULT 0x2000 -#define IGP01E1000_PLHR_MASTER_RESOLUTION 0x1000 -#define IGP01E1000_PLHR_GIG_REM_RCVR_NOK 0x0800 /* LH */ -#define IGP01E1000_PLHR_IDLE_ERROR_CNT_OFLOW 0x0400 /* LH */ -#define IGP01E1000_PLHR_DATA_ERR_1 0x0200 /* LH */ -#define IGP01E1000_PLHR_DATA_ERR_0 0x0100 -#define IGP01E1000_PLHR_AUTONEG_FAULT 0x0040 -#define IGP01E1000_PLHR_AUTONEG_ACTIVE 0x0010 -#define IGP01E1000_PLHR_VALID_CHANNEL_D 0x0008 -#define IGP01E1000_PLHR_VALID_CHANNEL_C 0x0004 -#define IGP01E1000_PLHR_VALID_CHANNEL_B 0x0002 -#define IGP01E1000_PLHR_VALID_CHANNEL_A 0x0001 - -/* IGP01E1000 Channel Quality Register */ -#define IGP01E1000_MSE_CHANNEL_D 0x000F -#define IGP01E1000_MSE_CHANNEL_C 0x00F0 -#define IGP01E1000_MSE_CHANNEL_B 0x0F00 -#define IGP01E1000_MSE_CHANNEL_A 0xF000 - -#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */ -#define IGP02E1000_PM_D3_LPLU 0x0004 /* Enable LPLU in non-D0a modes */ -#define IGP02E1000_PM_D0_LPLU 0x0002 /* Enable LPLU in D0a mode */ - -/* IGP01E1000 DSP reset macros */ -#define DSP_RESET_ENABLE 0x0 -#define DSP_RESET_DISABLE 0x2 -#define E1000_MAX_DSP_RESETS 10 - -/* IGP01E1000 & IGP02E1000 AGC Registers */ - -#define IGP01E1000_AGC_LENGTH_SHIFT 7 /* Coarse - 13:11, Fine - 10:7 */ -#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Coarse - 15:13, Fine - 12:9 */ - -/* IGP02E1000 AGC Register Length 9-bit mask */ -#define IGP02E1000_AGC_LENGTH_MASK 0x7F - -/* 7 bits (3 Coarse + 4 Fine) --> 128 optional values */ -#define IGP01E1000_AGC_LENGTH_TABLE_SIZE 128 -#define IGP02E1000_AGC_LENGTH_TABLE_SIZE 113 - -/* The precision error of the cable length is +/- 10 meters */ -#define IGP01E1000_AGC_RANGE 10 -#define IGP02E1000_AGC_RANGE 15 - -/* IGP01E1000 PCS Initialization register */ -/* bits 3:6 in the PCS registers stores the channels polarity */ -#define IGP01E1000_PHY_POLARITY_MASK 0x0078 - -/* IGP01E1000 GMII FIFO Register */ -#define IGP01E1000_GMII_FLEX_SPD 0x10 /* Enable flexible speed - * on Link-Up */ -#define IGP01E1000_GMII_SPD 0x20 /* Enable SPD */ - -/* IGP01E1000 Analog Register */ -#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1 -#define IGP01E1000_ANALOG_FUSE_STATUS 0x20D0 -#define IGP01E1000_ANALOG_FUSE_CONTROL 0x20DC -#define IGP01E1000_ANALOG_FUSE_BYPASS 0x20DE - -#define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000 -#define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80 -#define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070 -#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100 -#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002 - -#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040 -#define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010 -#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080 -#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500 - -/* Bit definitions for valid PHY IDs. */ -/* I = Integrated - * E = External - */ -#define M88_VENDOR 0x0141 -#define M88E1000_E_PHY_ID 0x01410C50 -#define M88E1000_I_PHY_ID 0x01410C30 -#define M88E1011_I_PHY_ID 0x01410C20 -#define IGP01E1000_I_PHY_ID 0x02A80380 -#define M88E1000_12_PHY_ID M88E1000_E_PHY_ID -#define M88E1000_14_PHY_ID M88E1000_E_PHY_ID -#define M88E1011_I_REV_4 0x04 -#define M88E1111_I_PHY_ID 0x01410CC0 -#define M88E1118_E_PHY_ID 0x01410E40 -#define L1LXT971A_PHY_ID 0x001378E0 - -#define RTL8211B_PHY_ID 0x001CC910 -#define RTL8201N_PHY_ID 0x8200 -#define RTL_PHY_CTRL_FD 0x0100 /* Full duplex.0=half; 1=full */ -#define RTL_PHY_CTRL_SPD_100 0x200000 /* Force 100Mb */ - -/* Bits... - * 15-5: page - * 4-0: register offset - */ -#define PHY_PAGE_SHIFT 5 -#define PHY_REG(page, reg) \ - (((page) << PHY_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS)) - -#define IGP3_PHY_PORT_CTRL \ - PHY_REG(769, 17) /* Port General Configuration */ -#define IGP3_PHY_RATE_ADAPT_CTRL \ - PHY_REG(769, 25) /* Rate Adapter Control Register */ - -#define IGP3_KMRN_FIFO_CTRL_STATS \ - PHY_REG(770, 16) /* KMRN FIFO's control/status register */ -#define IGP3_KMRN_POWER_MNG_CTRL \ - PHY_REG(770, 17) /* KMRN Power Management Control Register */ -#define IGP3_KMRN_INBAND_CTRL \ - PHY_REG(770, 18) /* KMRN Inband Control Register */ -#define IGP3_KMRN_DIAG \ - PHY_REG(770, 19) /* KMRN Diagnostic register */ -#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 /* RX PCS is not synced */ -#define IGP3_KMRN_ACK_TIMEOUT \ - PHY_REG(770, 20) /* KMRN Acknowledge Timeouts register */ - -#define IGP3_VR_CTRL \ - PHY_REG(776, 18) /* Voltage regulator control register */ -#define IGP3_VR_CTRL_MODE_SHUT 0x0200 /* Enter powerdown, shutdown VRs */ -#define IGP3_VR_CTRL_MODE_MASK 0x0300 /* Shutdown VR Mask */ - -#define IGP3_CAPABILITY \ - PHY_REG(776, 19) /* IGP3 Capability Register */ - -/* Capabilities for SKU Control */ -#define IGP3_CAP_INITIATE_TEAM 0x0001 /* Able to initiate a team */ -#define IGP3_CAP_WFM 0x0002 /* Support WoL and PXE */ -#define IGP3_CAP_ASF 0x0004 /* Support ASF */ -#define IGP3_CAP_LPLU 0x0008 /* Support Low Power Link Up */ -#define IGP3_CAP_DC_AUTO_SPEED 0x0010 /* Support AC/DC Auto Link Speed */ -#define IGP3_CAP_SPD 0x0020 /* Support Smart Power Down */ -#define IGP3_CAP_MULT_QUEUE 0x0040 /* Support 2 tx & 2 rx queues */ -#define IGP3_CAP_RSS 0x0080 /* Support RSS */ -#define IGP3_CAP_8021PQ 0x0100 /* Support 802.1Q & 802.1p */ -#define IGP3_CAP_AMT_CB 0x0200 /* Support active manageability and circuit breaker */ - -#define IGP3_PPC_JORDAN_EN 0x0001 -#define IGP3_PPC_JORDAN_GIGA_SPEED 0x0002 - -#define IGP3_KMRN_PMC_EE_IDLE_LINK_DIS 0x0001 -#define IGP3_KMRN_PMC_K0S_ENTRY_LATENCY_MASK 0x001E -#define IGP3_KMRN_PMC_K0S_MODE1_EN_GIGA 0x0020 -#define IGP3_KMRN_PMC_K0S_MODE1_EN_100 0x0040 - -#define IGP3E1000_PHY_MISC_CTRL 0x1B /* Misc. Ctrl register */ -#define IGP3_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Duplex Manual Set */ - -#define IGP3_KMRN_EXT_CTRL PHY_REG(770, 18) -#define IGP3_KMRN_EC_DIS_INBAND 0x0080 - -#define IGP03E1000_E_PHY_ID 0x02A80390 -#define IFE_E_PHY_ID 0x02A80330 /* 10/100 PHY */ -#define IFE_PLUS_E_PHY_ID 0x02A80320 -#define IFE_C_E_PHY_ID 0x02A80310 - -#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 /* 100BaseTx Extended Status, Control and Address */ -#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY special control register */ -#define IFE_PHY_RCV_FALSE_CARRIER 0x13 /* 100BaseTx Receive False Carrier Counter */ -#define IFE_PHY_RCV_DISCONNECT 0x14 /* 100BaseTx Receive Disconnect Counter */ -#define IFE_PHY_RCV_ERROT_FRAME 0x15 /* 100BaseTx Receive Error Frame Counter */ -#define IFE_PHY_RCV_SYMBOL_ERR 0x16 /* Receive Symbol Error Counter */ -#define IFE_PHY_PREM_EOF_ERR 0x17 /* 100BaseTx Receive Premature End Of Frame Error Counter */ -#define IFE_PHY_RCV_EOF_ERR 0x18 /* 10BaseT Receive End Of Frame Error Counter */ -#define IFE_PHY_TX_JABBER_DETECT 0x19 /* 10BaseT Transmit Jabber Detect Counter */ -#define IFE_PHY_EQUALIZER 0x1A /* PHY Equalizer Control and Status */ -#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY special control and LED configuration */ -#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control register */ -#define IFE_PHY_HWI_CONTROL 0x1D /* Hardware Integrity Control (HWI) */ - -#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE 0x2000 /* Default 1 = Disable auto reduced power down */ -#define IFE_PESC_100BTX_POWER_DOWN 0x0400 /* Indicates the power state of 100BASE-TX */ -#define IFE_PESC_10BTX_POWER_DOWN 0x0200 /* Indicates the power state of 10BASE-T */ -#define IFE_PESC_POLARITY_REVERSED 0x0100 /* Indicates 10BASE-T polarity */ -#define IFE_PESC_PHY_ADDR_MASK 0x007C /* Bit 6:2 for sampled PHY address */ -#define IFE_PESC_SPEED 0x0002 /* Auto-negotiation speed result 1=100Mbs, 0=10Mbs */ -#define IFE_PESC_DUPLEX 0x0001 /* Auto-negotiation duplex result 1=Full, 0=Half */ -#define IFE_PESC_POLARITY_REVERSED_SHIFT 8 - -#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100 /* 1 = Dynamic Power Down disabled */ -#define IFE_PSC_FORCE_POLARITY 0x0020 /* 1=Reversed Polarity, 0=Normal */ -#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 /* 1=Auto Polarity Disabled, 0=Enabled */ -#define IFE_PSC_JABBER_FUNC_DISABLE 0x0001 /* 1=Jabber Disabled, 0=Normal Jabber Operation */ -#define IFE_PSC_FORCE_POLARITY_SHIFT 5 -#define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT 4 - -#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable MDI/MDI-X feature, default 0=disabled */ -#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDIX-X, 0=force MDI */ -#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */ -#define IFE_PMC_AUTO_MDIX_COMPLETE 0x0010 /* Resolution algorithm is completed */ -#define IFE_PMC_MDIX_MODE_SHIFT 6 -#define IFE_PHC_MDIX_RESET_ALL_MASK 0x0000 /* Disable auto MDI-X */ - -#define IFE_PHC_HWI_ENABLE 0x8000 /* Enable the HWI feature */ -#define IFE_PHC_ABILITY_CHECK 0x4000 /* 1= Test Passed, 0=failed */ -#define IFE_PHC_TEST_EXEC 0x2000 /* PHY launch test pulses on the wire */ -#define IFE_PHC_HIGHZ 0x0200 /* 1 = Open Circuit */ -#define IFE_PHC_LOWZ 0x0400 /* 1 = Short Circuit */ -#define IFE_PHC_LOW_HIGH_Z_MASK 0x0600 /* Mask for indication type of problem on the line */ -#define IFE_PHC_DISTANCE_MASK 0x01FF /* Mask for distance to the cable problem, in 80cm granularity */ -#define IFE_PHC_RESET_ALL_MASK 0x0000 /* Disable HWI */ -#define IFE_PSCL_PROBE_MODE 0x0020 /* LED Probe mode */ -#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */ -#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */ - -#define ICH_FLASH_COMMAND_TIMEOUT 5000 /* 5000 uSecs - adjusted */ -#define ICH_FLASH_ERASE_TIMEOUT 3000000 /* Up to 3 seconds - worst case */ -#define ICH_FLASH_CYCLE_REPEAT_COUNT 10 /* 10 cycles */ -#define ICH_FLASH_SEG_SIZE_256 256 -#define ICH_FLASH_SEG_SIZE_4K 4096 -#define ICH_FLASH_SEG_SIZE_64K 65536 - -#define ICH_CYCLE_READ 0x0 -#define ICH_CYCLE_RESERVED 0x1 -#define ICH_CYCLE_WRITE 0x2 -#define ICH_CYCLE_ERASE 0x3 - -#define ICH_FLASH_GFPREG 0x0000 -#define ICH_FLASH_HSFSTS 0x0004 -#define ICH_FLASH_HSFCTL 0x0006 -#define ICH_FLASH_FADDR 0x0008 -#define ICH_FLASH_FDATA0 0x0010 -#define ICH_FLASH_FRACC 0x0050 -#define ICH_FLASH_FREG0 0x0054 -#define ICH_FLASH_FREG1 0x0058 -#define ICH_FLASH_FREG2 0x005C -#define ICH_FLASH_FREG3 0x0060 -#define ICH_FLASH_FPR0 0x0074 -#define ICH_FLASH_FPR1 0x0078 -#define ICH_FLASH_SSFSTS 0x0090 -#define ICH_FLASH_SSFCTL 0x0092 -#define ICH_FLASH_PREOP 0x0094 -#define ICH_FLASH_OPTYPE 0x0096 -#define ICH_FLASH_OPMENU 0x0098 - -#define ICH_FLASH_REG_MAPSIZE 0x00A0 -#define ICH_FLASH_SECTOR_SIZE 4096 -#define ICH_GFPREG_BASE_MASK 0x1FFF -#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF - -/* Miscellaneous PHY bit definitions. */ -#define PHY_PREAMBLE 0xFFFFFFFF -#define PHY_SOF 0x01 -#define PHY_OP_READ 0x02 -#define PHY_OP_WRITE 0x01 -#define PHY_TURNAROUND 0x02 -#define PHY_PREAMBLE_SIZE 32 -#define MII_CR_SPEED_1000 0x0040 -#define MII_CR_SPEED_100 0x2000 -#define MII_CR_SPEED_10 0x0000 -#define E1000_PHY_ADDRESS 0x01 -#define PHY_AUTO_NEG_TIME 45 /* 4.5 Seconds */ -#define PHY_FORCE_TIME 20 /* 2.0 Seconds */ -#define PHY_REVISION_MASK 0xFFFFFFF0 -#define DEVICE_SPEED_MASK 0x00000300 /* Device Ctrl Reg Speed Mask */ -#define REG4_SPEED_MASK 0x01E0 -#define REG9_SPEED_MASK 0x0300 -#define ADVERTISE_10_HALF 0x0001 -#define ADVERTISE_10_FULL 0x0002 -#define ADVERTISE_100_HALF 0x0004 -#define ADVERTISE_100_FULL 0x0008 -#define ADVERTISE_1000_HALF 0x0010 -#define ADVERTISE_1000_FULL 0x0020 -#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F /* Everything but 1000-Half */ -#define AUTONEG_ADVERTISE_10_100_ALL 0x000F /* All 10/100 speeds */ -#define AUTONEG_ADVERTISE_10_ALL 0x0003 /* 10Mbps Full & Half speeds */ - -#endif /* _E1000_HW_H_ */ diff --git a/drivers/net/e1000/e1000_main.c b/drivers/net/e1000/e1000_main.c deleted file mode 100644 index f97afda941d7..000000000000 --- a/drivers/net/e1000/e1000_main.c +++ /dev/null @@ -1,4974 +0,0 @@ -/******************************************************************************* - - Intel PRO/1000 Linux driver - Copyright(c) 1999 - 2006 Intel Corporation. - - This program is free software; you can redistribute it and/or modify it - under the terms and conditions of the GNU General Public License, - version 2, as published by the Free Software Foundation. - - This program is distributed in the hope it will be useful, but WITHOUT - ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - more details. - - You should have received a copy of the GNU General Public License along with - this program; if not, write to the Free Software Foundation, Inc., - 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - - The full GNU General Public License is included in this distribution in - the file called "COPYING". - - Contact Information: - Linux NICS <linux.nics@intel.com> - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#include "e1000.h" -#include <net/ip6_checksum.h> -#include <linux/io.h> -#include <linux/prefetch.h> -#include <linux/bitops.h> -#include <linux/if_vlan.h> - -/* Intel Media SOC GbE MDIO physical base address */ -static unsigned long ce4100_gbe_mdio_base_phy; -/* Intel Media SOC GbE MDIO virtual base address */ -void __iomem *ce4100_gbe_mdio_base_virt; - -char e1000_driver_name[] = "e1000"; -static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; -#define DRV_VERSION "7.3.21-k8-NAPI" -const char e1000_driver_version[] = DRV_VERSION; -static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; - -/* e1000_pci_tbl - PCI Device ID Table - * - * Last entry must be all 0s - * - * Macro expands to... - * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} - */ -static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = { - INTEL_E1000_ETHERNET_DEVICE(0x1000), - INTEL_E1000_ETHERNET_DEVICE(0x1001), - INTEL_E1000_ETHERNET_DEVICE(0x1004), - INTEL_E1000_ETHERNET_DEVICE(0x1008), - INTEL_E1000_ETHERNET_DEVICE(0x1009), - INTEL_E1000_ETHERNET_DEVICE(0x100C), - INTEL_E1000_ETHERNET_DEVICE(0x100D), - INTEL_E1000_ETHERNET_DEVICE(0x100E), - INTEL_E1000_ETHERNET_DEVICE(0x100F), - INTEL_E1000_ETHERNET_DEVICE(0x1010), - INTEL_E1000_ETHERNET_DEVICE(0x1011), - INTEL_E1000_ETHERNET_DEVICE(0x1012), - INTEL_E1000_ETHERNET_DEVICE(0x1013), - INTEL_E1000_ETHERNET_DEVICE(0x1014), - INTEL_E1000_ETHERNET_DEVICE(0x1015), - INTEL_E1000_ETHERNET_DEVICE(0x1016), - INTEL_E1000_ETHERNET_DEVICE(0x1017), - INTEL_E1000_ETHERNET_DEVICE(0x1018), - INTEL_E1000_ETHERNET_DEVICE(0x1019), - INTEL_E1000_ETHERNET_DEVICE(0x101A), - INTEL_E1000_ETHERNET_DEVICE(0x101D), - INTEL_E1000_ETHERNET_DEVICE(0x101E), - INTEL_E1000_ETHERNET_DEVICE(0x1026), - INTEL_E1000_ETHERNET_DEVICE(0x1027), - INTEL_E1000_ETHERNET_DEVICE(0x1028), - INTEL_E1000_ETHERNET_DEVICE(0x1075), - INTEL_E1000_ETHERNET_DEVICE(0x1076), - INTEL_E1000_ETHERNET_DEVICE(0x1077), - INTEL_E1000_ETHERNET_DEVICE(0x1078), - INTEL_E1000_ETHERNET_DEVICE(0x1079), - INTEL_E1000_ETHERNET_DEVICE(0x107A), - INTEL_E1000_ETHERNET_DEVICE(0x107B), - INTEL_E1000_ETHERNET_DEVICE(0x107C), - INTEL_E1000_ETHERNET_DEVICE(0x108A), - INTEL_E1000_ETHERNET_DEVICE(0x1099), - INTEL_E1000_ETHERNET_DEVICE(0x10B5), - INTEL_E1000_ETHERNET_DEVICE(0x2E6E), - /* required last entry */ - {0,} -}; - -MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); - -int e1000_up(struct e1000_adapter *adapter); -void e1000_down(struct e1000_adapter *adapter); -void e1000_reinit_locked(struct e1000_adapter *adapter); -void e1000_reset(struct e1000_adapter *adapter); -int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); -int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); -void e1000_free_all_tx_resources(struct e1000_adapter *adapter); -void e1000_free_all_rx_resources(struct e1000_adapter *adapter); -static int e1000_setup_tx_resources(struct e1000_adapter *adapter, - struct e1000_tx_ring *txdr); -static int e1000_setup_rx_resources(struct e1000_adapter *adapter, - struct e1000_rx_ring *rxdr); -static void e1000_free_tx_resources(struct e1000_adapter *adapter, - struct e1000_tx_ring *tx_ring); -static void e1000_free_rx_resources(struct e1000_adapter *adapter, - struct e1000_rx_ring *rx_ring); -void e1000_update_stats(struct e1000_adapter *adapter); - -static int e1000_init_module(void); -static void e1000_exit_module(void); -static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); -static void __devexit e1000_remove(struct pci_dev *pdev); -static int e1000_alloc_queues(struct e1000_adapter *adapter); -static int e1000_sw_init(struct e1000_adapter *adapter); -static int e1000_open(struct net_device *netdev); -static int e1000_close(struct net_device *netdev); -static void e1000_configure_tx(struct e1000_adapter *adapter); -static void e1000_configure_rx(struct e1000_adapter *adapter); -static void e1000_setup_rctl(struct e1000_adapter *adapter); -static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); -static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); -static void e1000_clean_tx_ring(struct e1000_adapter *adapter, - struct e1000_tx_ring *tx_ring); -static void e1000_clean_rx_ring(struct e1000_adapter *adapter, - struct e1000_rx_ring *rx_ring); -static void e1000_set_rx_mode(struct net_device *netdev); -static void e1000_update_phy_info(unsigned long data); -static void e1000_update_phy_info_task(struct work_struct *work); -static void e1000_watchdog(unsigned long data); -static void e1000_82547_tx_fifo_stall(unsigned long data); -static void e1000_82547_tx_fifo_stall_task(struct work_struct *work); -static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, - struct net_device *netdev); -static struct net_device_stats * e1000_get_stats(struct net_device *netdev); -static int e1000_change_mtu(struct net_device *netdev, int new_mtu); -static int e1000_set_mac(struct net_device *netdev, void *p); -static irqreturn_t e1000_intr(int irq, void *data); -static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, - struct e1000_tx_ring *tx_ring); -static int e1000_clean(struct napi_struct *napi, int budget); -static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, - struct e1000_rx_ring *rx_ring, - int *work_done, int work_to_do); -static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, - struct e1000_rx_ring *rx_ring, - int *work_done, int work_to_do); -static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, - struct e1000_rx_ring *rx_ring, - int cleaned_count); -static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, - struct e1000_rx_ring *rx_ring, - int cleaned_count); -static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); -static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, - int cmd); -static void e1000_enter_82542_rst(struct e1000_adapter *adapter); -static void e1000_leave_82542_rst(struct e1000_adapter *adapter); -static void e1000_tx_timeout(struct net_device *dev); -static void e1000_reset_task(struct work_struct *work); -static void e1000_smartspeed(struct e1000_adapter *adapter); -static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, - struct sk_buff *skb); - -static bool e1000_vlan_used(struct e1000_adapter *adapter); -static void e1000_vlan_mode(struct net_device *netdev, u32 features); -static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid); -static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid); -static void e1000_restore_vlan(struct e1000_adapter *adapter); - -#ifdef CONFIG_PM -static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); -static int e1000_resume(struct pci_dev *pdev); -#endif -static void e1000_shutdown(struct pci_dev *pdev); - -#ifdef CONFIG_NET_POLL_CONTROLLER -/* for netdump / net console */ -static void e1000_netpoll (struct net_device *netdev); -#endif - -#define COPYBREAK_DEFAULT 256 -static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; -module_param(copybreak, uint, 0644); -MODULE_PARM_DESC(copybreak, - "Maximum size of packet that is copied to a new buffer on receive"); - -static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, - pci_channel_state_t state); -static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); -static void e1000_io_resume(struct pci_dev *pdev); - -static struct pci_error_handlers e1000_err_handler = { - .error_detected = e1000_io_error_detected, - .slot_reset = e1000_io_slot_reset, - .resume = e1000_io_resume, -}; - -static struct pci_driver e1000_driver = { - .name = e1000_driver_name, - .id_table = e1000_pci_tbl, - .probe = e1000_probe, - .remove = __devexit_p(e1000_remove), -#ifdef CONFIG_PM - /* Power Management Hooks */ - .suspend = e1000_suspend, - .resume = e1000_resume, -#endif - .shutdown = e1000_shutdown, - .err_handler = &e1000_err_handler -}; - -MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); -MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); -MODULE_LICENSE("GPL"); -MODULE_VERSION(DRV_VERSION); - -static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE; -module_param(debug, int, 0); -MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); - -/** - * e1000_get_hw_dev - return device - * used by hardware layer to print debugging information - * - **/ -struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) -{ - struct e1000_adapter *adapter = hw->back; - return adapter->netdev; -} - -/** - * e1000_init_module - Driver Registration Routine - * - * e1000_init_module is the first routine called when the driver is - * loaded. All it does is register with the PCI subsystem. - **/ - -static int __init e1000_init_module(void) -{ - int ret; - pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version); - - pr_info("%s\n", e1000_copyright); - - ret = pci_register_driver(&e1000_driver); - if (copybreak != COPYBREAK_DEFAULT) { - if (copybreak == 0) - pr_info("copybreak disabled\n"); - else - pr_info("copybreak enabled for " - "packets <= %u bytes\n", copybreak); - } - return ret; -} - -module_init(e1000_init_module); - -/** - * e1000_exit_module - Driver Exit Cleanup Routine - * - * e1000_exit_module is called just before the driver is removed - * from memory. - **/ - -static void __exit e1000_exit_module(void) -{ - pci_unregister_driver(&e1000_driver); -} - -module_exit(e1000_exit_module); - -static int e1000_request_irq(struct e1000_adapter *adapter) -{ - struct net_device *netdev = adapter->netdev; - irq_handler_t handler = e1000_intr; - int irq_flags = IRQF_SHARED; - int err; - - err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, - netdev); - if (err) { - e_err(probe, "Unable to allocate interrupt Error: %d\n", err); - } - - return err; -} - -static void e1000_free_irq(struct e1000_adapter *adapter) -{ - struct net_device *netdev = adapter->netdev; - - free_irq(adapter->pdev->irq, netdev); -} - -/** - * e1000_irq_disable - Mask off interrupt generation on the NIC - * @adapter: board private structure - **/ - -static void e1000_irq_disable(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - - ew32(IMC, ~0); - E1000_WRITE_FLUSH(); - synchronize_irq(adapter->pdev->irq); -} - -/** - * e1000_irq_enable - Enable default interrupt generation settings - * @adapter: board private structure - **/ - -static void e1000_irq_enable(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - - ew32(IMS, IMS_ENABLE_MASK); - E1000_WRITE_FLUSH(); -} - -static void e1000_update_mng_vlan(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - struct net_device *netdev = adapter->netdev; - u16 vid = hw->mng_cookie.vlan_id; - u16 old_vid = adapter->mng_vlan_id; - - if (!e1000_vlan_used(adapter)) - return; - - if (!test_bit(vid, adapter->active_vlans)) { - if (hw->mng_cookie.status & - E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { - e1000_vlan_rx_add_vid(netdev, vid); - adapter->mng_vlan_id = vid; - } else { - adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; - } - if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && - (vid != old_vid) && - !test_bit(old_vid, adapter->active_vlans)) - e1000_vlan_rx_kill_vid(netdev, old_vid); - } else { - adapter->mng_vlan_id = vid; - } -} - -static void e1000_init_manageability(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - - if (adapter->en_mng_pt) { - u32 manc = er32(MANC); - - /* disable hardware interception of ARP */ - manc &= ~(E1000_MANC_ARP_EN); - - ew32(MANC, manc); - } -} - -static void e1000_release_manageability(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - - if (adapter->en_mng_pt) { - u32 manc = er32(MANC); - - /* re-enable hardware interception of ARP */ - manc |= E1000_MANC_ARP_EN; - - ew32(MANC, manc); - } -} - -/** - * e1000_configure - configure the hardware for RX and TX - * @adapter = private board structure - **/ -static void e1000_configure(struct e1000_adapter *adapter) -{ - struct net_device *netdev = adapter->netdev; - int i; - - e1000_set_rx_mode(netdev); - - e1000_restore_vlan(adapter); - e1000_init_manageability(adapter); - - e1000_configure_tx(adapter); - e1000_setup_rctl(adapter); - e1000_configure_rx(adapter); - /* call E1000_DESC_UNUSED which always leaves - * at least 1 descriptor unused to make sure - * next_to_use != next_to_clean */ - for (i = 0; i < adapter->num_rx_queues; i++) { - struct e1000_rx_ring *ring = &adapter->rx_ring[i]; - adapter->alloc_rx_buf(adapter, ring, - E1000_DESC_UNUSED(ring)); - } -} - -int e1000_up(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - - /* hardware has been reset, we need to reload some things */ - e1000_configure(adapter); - - clear_bit(__E1000_DOWN, &adapter->flags); - - napi_enable(&adapter->napi); - - e1000_irq_enable(adapter); - - netif_wake_queue(adapter->netdev); - - /* fire a link change interrupt to start the watchdog */ - ew32(ICS, E1000_ICS_LSC); - return 0; -} - -/** - * e1000_power_up_phy - restore link in case the phy was powered down - * @adapter: address of board private structure - * - * The phy may be powered down to save power and turn off link when the - * driver is unloaded and wake on lan is not enabled (among others) - * *** this routine MUST be followed by a call to e1000_reset *** - * - **/ - -void e1000_power_up_phy(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u16 mii_reg = 0; - - /* Just clear the power down bit to wake the phy back up */ - if (hw->media_type == e1000_media_type_copper) { - /* according to the manual, the phy will retain its - * settings across a power-down/up cycle */ - e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); - mii_reg &= ~MII_CR_POWER_DOWN; - e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); - } -} - -static void e1000_power_down_phy(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - - /* Power down the PHY so no link is implied when interface is down * - * The PHY cannot be powered down if any of the following is true * - * (a) WoL is enabled - * (b) AMT is active - * (c) SoL/IDER session is active */ - if (!adapter->wol && hw->mac_type >= e1000_82540 && - hw->media_type == e1000_media_type_copper) { - u16 mii_reg = 0; - - switch (hw->mac_type) { - case e1000_82540: - case e1000_82545: - case e1000_82545_rev_3: - case e1000_82546: - case e1000_ce4100: - case e1000_82546_rev_3: - case e1000_82541: - case e1000_82541_rev_2: - case e1000_82547: - case e1000_82547_rev_2: - if (er32(MANC) & E1000_MANC_SMBUS_EN) - goto out; - break; - default: - goto out; - } - e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); - mii_reg |= MII_CR_POWER_DOWN; - e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); - mdelay(1); - } -out: - return; -} - -void e1000_down(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - struct net_device *netdev = adapter->netdev; - u32 rctl, tctl; - - - /* disable receives in the hardware */ - rctl = er32(RCTL); - ew32(RCTL, rctl & ~E1000_RCTL_EN); - /* flush and sleep below */ - - netif_tx_disable(netdev); - - /* disable transmits in the hardware */ - tctl = er32(TCTL); - tctl &= ~E1000_TCTL_EN; - ew32(TCTL, tctl); - /* flush both disables and wait for them to finish */ - E1000_WRITE_FLUSH(); - msleep(10); - - napi_disable(&adapter->napi); - - e1000_irq_disable(adapter); - - /* - * Setting DOWN must be after irq_disable to prevent - * a screaming interrupt. Setting DOWN also prevents - * timers and tasks from rescheduling. - */ - set_bit(__E1000_DOWN, &adapter->flags); - - del_timer_sync(&adapter->tx_fifo_stall_timer); - del_timer_sync(&adapter->watchdog_timer); - del_timer_sync(&adapter->phy_info_timer); - - adapter->link_speed = 0; - adapter->link_duplex = 0; - netif_carrier_off(netdev); - - e1000_reset(adapter); - e1000_clean_all_tx_rings(adapter); - e1000_clean_all_rx_rings(adapter); -} - -static void e1000_reinit_safe(struct e1000_adapter *adapter) -{ - while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) - msleep(1); - rtnl_lock(); - e1000_down(adapter); - e1000_up(adapter); - rtnl_unlock(); - clear_bit(__E1000_RESETTING, &adapter->flags); -} - -void e1000_reinit_locked(struct e1000_adapter *adapter) -{ - /* if rtnl_lock is not held the call path is bogus */ - ASSERT_RTNL(); - WARN_ON(in_interrupt()); - while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) - msleep(1); - e1000_down(adapter); - e1000_up(adapter); - clear_bit(__E1000_RESETTING, &adapter->flags); -} - -void e1000_reset(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 pba = 0, tx_space, min_tx_space, min_rx_space; - bool legacy_pba_adjust = false; - u16 hwm; - - /* Repartition Pba for greater than 9k mtu - * To take effect CTRL.RST is required. - */ - - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - case e1000_82543: - case e1000_82544: - case e1000_82540: - case e1000_82541: - case e1000_82541_rev_2: - legacy_pba_adjust = true; - pba = E1000_PBA_48K; - break; - case e1000_82545: - case e1000_82545_rev_3: - case e1000_82546: - case e1000_ce4100: - case e1000_82546_rev_3: - pba = E1000_PBA_48K; - break; - case e1000_82547: - case e1000_82547_rev_2: - legacy_pba_adjust = true; - pba = E1000_PBA_30K; - break; - case e1000_undefined: - case e1000_num_macs: - break; - } - - if (legacy_pba_adjust) { - if (hw->max_frame_size > E1000_RXBUFFER_8192) - pba -= 8; /* allocate more FIFO for Tx */ - - if (hw->mac_type == e1000_82547) { - adapter->tx_fifo_head = 0; - adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; - adapter->tx_fifo_size = - (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; - atomic_set(&adapter->tx_fifo_stall, 0); - } - } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { - /* adjust PBA for jumbo frames */ - ew32(PBA, pba); - - /* To maintain wire speed transmits, the Tx FIFO should be - * large enough to accommodate two full transmit packets, - * rounded up to the next 1KB and expressed in KB. Likewise, - * the Rx FIFO should be large enough to accommodate at least - * one full receive packet and is similarly rounded up and - * expressed in KB. */ - pba = er32(PBA); - /* upper 16 bits has Tx packet buffer allocation size in KB */ - tx_space = pba >> 16; - /* lower 16 bits has Rx packet buffer allocation size in KB */ - pba &= 0xffff; - /* - * the tx fifo also stores 16 bytes of information about the tx - * but don't include ethernet FCS because hardware appends it - */ - min_tx_space = (hw->max_frame_size + - sizeof(struct e1000_tx_desc) - - ETH_FCS_LEN) * 2; - min_tx_space = ALIGN(min_tx_space, 1024); - min_tx_space >>= 10; - /* software strips receive CRC, so leave room for it */ - min_rx_space = hw->max_frame_size; - min_rx_space = ALIGN(min_rx_space, 1024); - min_rx_space >>= 10; - - /* If current Tx allocation is less than the min Tx FIFO size, - * and the min Tx FIFO size is less than the current Rx FIFO - * allocation, take space away from current Rx allocation */ - if (tx_space < min_tx_space && - ((min_tx_space - tx_space) < pba)) { - pba = pba - (min_tx_space - tx_space); - - /* PCI/PCIx hardware has PBA alignment constraints */ - switch (hw->mac_type) { - case e1000_82545 ... e1000_82546_rev_3: - pba &= ~(E1000_PBA_8K - 1); - break; - default: - break; - } - - /* if short on rx space, rx wins and must trump tx - * adjustment or use Early Receive if available */ - if (pba < min_rx_space) - pba = min_rx_space; - } - } - - ew32(PBA, pba); - - /* - * flow control settings: - * The high water mark must be low enough to fit one full frame - * (or the size used for early receive) above it in the Rx FIFO. - * Set it to the lower of: - * - 90% of the Rx FIFO size, and - * - the full Rx FIFO size minus the early receive size (for parts - * with ERT support assuming ERT set to E1000_ERT_2048), or - * - the full Rx FIFO size minus one full frame - */ - hwm = min(((pba << 10) * 9 / 10), - ((pba << 10) - hw->max_frame_size)); - - hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ - hw->fc_low_water = hw->fc_high_water - 8; - hw->fc_pause_time = E1000_FC_PAUSE_TIME; - hw->fc_send_xon = 1; - hw->fc = hw->original_fc; - - /* Allow time for pending master requests to run */ - e1000_reset_hw(hw); - if (hw->mac_type >= e1000_82544) - ew32(WUC, 0); - - if (e1000_init_hw(hw)) - e_dev_err("Hardware Error\n"); - e1000_update_mng_vlan(adapter); - - /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ - if (hw->mac_type >= e1000_82544 && - hw->autoneg == 1 && - hw->autoneg_advertised == ADVERTISE_1000_FULL) { - u32 ctrl = er32(CTRL); - /* clear phy power management bit if we are in gig only mode, - * which if enabled will attempt negotiation to 100Mb, which - * can cause a loss of link at power off or driver unload */ - ctrl &= ~E1000_CTRL_SWDPIN3; - ew32(CTRL, ctrl); - } - - /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ - ew32(VET, ETHERNET_IEEE_VLAN_TYPE); - - e1000_reset_adaptive(hw); - e1000_phy_get_info(hw, &adapter->phy_info); - - e1000_release_manageability(adapter); -} - -/** - * Dump the eeprom for users having checksum issues - **/ -static void e1000_dump_eeprom(struct e1000_adapter *adapter) -{ - struct net_device *netdev = adapter->netdev; - struct ethtool_eeprom eeprom; - const struct ethtool_ops *ops = netdev->ethtool_ops; - u8 *data; - int i; - u16 csum_old, csum_new = 0; - - eeprom.len = ops->get_eeprom_len(netdev); - eeprom.offset = 0; - - data = kmalloc(eeprom.len, GFP_KERNEL); - if (!data) { - pr_err("Unable to allocate memory to dump EEPROM data\n"); - return; - } - - ops->get_eeprom(netdev, &eeprom, data); - - csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + - (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); - for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) - csum_new += data[i] + (data[i + 1] << 8); - csum_new = EEPROM_SUM - csum_new; - - pr_err("/*********************/\n"); - pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old); - pr_err("Calculated : 0x%04x\n", csum_new); - - pr_err("Offset Values\n"); - pr_err("======== ======\n"); - print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); - - pr_err("Include this output when contacting your support provider.\n"); - pr_err("This is not a software error! Something bad happened to\n"); - pr_err("your hardware or EEPROM image. Ignoring this problem could\n"); - pr_err("result in further problems, possibly loss of data,\n"); - pr_err("corruption or system hangs!\n"); - pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n"); - pr_err("which is invalid and requires you to set the proper MAC\n"); - pr_err("address manually before continuing to enable this network\n"); - pr_err("device. Please inspect the EEPROM dump and report the\n"); - pr_err("issue to your hardware vendor or Intel Customer Support.\n"); - pr_err("/*********************/\n"); - - kfree(data); -} - -/** - * e1000_is_need_ioport - determine if an adapter needs ioport resources or not - * @pdev: PCI device information struct - * - * Return true if an adapter needs ioport resources - **/ -static int e1000_is_need_ioport(struct pci_dev *pdev) -{ - switch (pdev->device) { - case E1000_DEV_ID_82540EM: - case E1000_DEV_ID_82540EM_LOM: - case E1000_DEV_ID_82540EP: - case E1000_DEV_ID_82540EP_LOM: - case E1000_DEV_ID_82540EP_LP: - case E1000_DEV_ID_82541EI: - case E1000_DEV_ID_82541EI_MOBILE: - case E1000_DEV_ID_82541ER: - case E1000_DEV_ID_82541ER_LOM: - case E1000_DEV_ID_82541GI: - case E1000_DEV_ID_82541GI_LF: - case E1000_DEV_ID_82541GI_MOBILE: - case E1000_DEV_ID_82544EI_COPPER: - case E1000_DEV_ID_82544EI_FIBER: - case E1000_DEV_ID_82544GC_COPPER: - case E1000_DEV_ID_82544GC_LOM: - case E1000_DEV_ID_82545EM_COPPER: - case E1000_DEV_ID_82545EM_FIBER: - case E1000_DEV_ID_82546EB_COPPER: - case E1000_DEV_ID_82546EB_FIBER: - case E1000_DEV_ID_82546EB_QUAD_COPPER: - return true; - default: - return false; - } -} - -static u32 e1000_fix_features(struct net_device *netdev, u32 features) -{ - /* - * Since there is no support for separate rx/tx vlan accel - * enable/disable make sure tx flag is always in same state as rx. - */ - if (features & NETIF_F_HW_VLAN_RX) - features |= NETIF_F_HW_VLAN_TX; - else - features &= ~NETIF_F_HW_VLAN_TX; - - return features; -} - -static int e1000_set_features(struct net_device *netdev, u32 features) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - u32 changed = features ^ netdev->features; - - if (changed & NETIF_F_HW_VLAN_RX) - e1000_vlan_mode(netdev, features); - - if (!(changed & NETIF_F_RXCSUM)) - return 0; - - adapter->rx_csum = !!(features & NETIF_F_RXCSUM); - - if (netif_running(netdev)) - e1000_reinit_locked(adapter); - else - e1000_reset(adapter); - - return 0; -} - -static const struct net_device_ops e1000_netdev_ops = { - .ndo_open = e1000_open, - .ndo_stop = e1000_close, - .ndo_start_xmit = e1000_xmit_frame, - .ndo_get_stats = e1000_get_stats, - .ndo_set_rx_mode = e1000_set_rx_mode, - .ndo_set_mac_address = e1000_set_mac, - .ndo_tx_timeout = e1000_tx_timeout, - .ndo_change_mtu = e1000_change_mtu, - .ndo_do_ioctl = e1000_ioctl, - .ndo_validate_addr = eth_validate_addr, - .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, - .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, -#ifdef CONFIG_NET_POLL_CONTROLLER - .ndo_poll_controller = e1000_netpoll, -#endif - .ndo_fix_features = e1000_fix_features, - .ndo_set_features = e1000_set_features, -}; - -/** - * e1000_init_hw_struct - initialize members of hw struct - * @adapter: board private struct - * @hw: structure used by e1000_hw.c - * - * Factors out initialization of the e1000_hw struct to its own function - * that can be called very early at init (just after struct allocation). - * Fields are initialized based on PCI device information and - * OS network device settings (MTU size). - * Returns negative error codes if MAC type setup fails. - */ -static int e1000_init_hw_struct(struct e1000_adapter *adapter, - struct e1000_hw *hw) -{ - struct pci_dev *pdev = adapter->pdev; - - /* PCI config space info */ - hw->vendor_id = pdev->vendor; - hw->device_id = pdev->device; - hw->subsystem_vendor_id = pdev->subsystem_vendor; - hw->subsystem_id = pdev->subsystem_device; - hw->revision_id = pdev->revision; - - pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); - - hw->max_frame_size = adapter->netdev->mtu + - ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; - hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; - - /* identify the MAC */ - if (e1000_set_mac_type(hw)) { - e_err(probe, "Unknown MAC Type\n"); - return -EIO; - } - - switch (hw->mac_type) { - default: - break; - case e1000_82541: - case e1000_82547: - case e1000_82541_rev_2: - case e1000_82547_rev_2: - hw->phy_init_script = 1; - break; - } - - e1000_set_media_type(hw); - e1000_get_bus_info(hw); - - hw->wait_autoneg_complete = false; - hw->tbi_compatibility_en = true; - hw->adaptive_ifs = true; - - /* Copper options */ - - if (hw->media_type == e1000_media_type_copper) { - hw->mdix = AUTO_ALL_MODES; - hw->disable_polarity_correction = false; - hw->master_slave = E1000_MASTER_SLAVE; - } - - return 0; -} - -/** - * e1000_probe - Device Initialization Routine - * @pdev: PCI device information struct - * @ent: entry in e1000_pci_tbl - * - * Returns 0 on success, negative on failure - * - * e1000_probe initializes an adapter identified by a pci_dev structure. - * The OS initialization, configuring of the adapter private structure, - * and a hardware reset occur. - **/ -static int __devinit e1000_probe(struct pci_dev *pdev, - const struct pci_device_id *ent) -{ - struct net_device *netdev; - struct e1000_adapter *adapter; - struct e1000_hw *hw; - - static int cards_found = 0; - static int global_quad_port_a = 0; /* global ksp3 port a indication */ - int i, err, pci_using_dac; - u16 eeprom_data = 0; - u16 tmp = 0; - u16 eeprom_apme_mask = E1000_EEPROM_APME; - int bars, need_ioport; - - /* do not allocate ioport bars when not needed */ - need_ioport = e1000_is_need_ioport(pdev); - if (need_ioport) { - bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); - err = pci_enable_device(pdev); - } else { - bars = pci_select_bars(pdev, IORESOURCE_MEM); - err = pci_enable_device_mem(pdev); - } - if (err) - return err; - - err = pci_request_selected_regions(pdev, bars, e1000_driver_name); - if (err) - goto err_pci_reg; - - pci_set_master(pdev); - err = pci_save_state(pdev); - if (err) - goto err_alloc_etherdev; - - err = -ENOMEM; - netdev = alloc_etherdev(sizeof(struct e1000_adapter)); - if (!netdev) - goto err_alloc_etherdev; - - SET_NETDEV_DEV(netdev, &pdev->dev); - - pci_set_drvdata(pdev, netdev); - adapter = netdev_priv(netdev); - adapter->netdev = netdev; - adapter->pdev = pdev; - adapter->msg_enable = (1 << debug) - 1; - adapter->bars = bars; - adapter->need_ioport = need_ioport; - - hw = &adapter->hw; - hw->back = adapter; - - err = -EIO; - hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); - if (!hw->hw_addr) - goto err_ioremap; - - if (adapter->need_ioport) { - for (i = BAR_1; i <= BAR_5; i++) { - if (pci_resource_len(pdev, i) == 0) - continue; - if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { - hw->io_base = pci_resource_start(pdev, i); - break; - } - } - } - - /* make ready for any if (hw->...) below */ - err = e1000_init_hw_struct(adapter, hw); - if (err) - goto err_sw_init; - - /* - * there is a workaround being applied below that limits - * 64-bit DMA addresses to 64-bit hardware. There are some - * 32-bit adapters that Tx hang when given 64-bit DMA addresses - */ - pci_using_dac = 0; - if ((hw->bus_type == e1000_bus_type_pcix) && - !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) { - /* - * according to DMA-API-HOWTO, coherent calls will always - * succeed if the set call did - */ - dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); - pci_using_dac = 1; - } else { - err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); - if (err) { - pr_err("No usable DMA config, aborting\n"); - goto err_dma; - } - dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); - } - - netdev->netdev_ops = &e1000_netdev_ops; - e1000_set_ethtool_ops(netdev); - netdev->watchdog_timeo = 5 * HZ; - netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); - - strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); - - adapter->bd_number = cards_found; - - /* setup the private structure */ - - err = e1000_sw_init(adapter); - if (err) - goto err_sw_init; - - err = -EIO; - if (hw->mac_type == e1000_ce4100) { - ce4100_gbe_mdio_base_phy = pci_resource_start(pdev, BAR_1); - ce4100_gbe_mdio_base_virt = ioremap(ce4100_gbe_mdio_base_phy, - pci_resource_len(pdev, BAR_1)); - - if (!ce4100_gbe_mdio_base_virt) - goto err_mdio_ioremap; - } - - if (hw->mac_type >= e1000_82543) { - netdev->hw_features = NETIF_F_SG | - NETIF_F_HW_CSUM | - NETIF_F_HW_VLAN_RX; - netdev->features = NETIF_F_HW_VLAN_TX | - NETIF_F_HW_VLAN_FILTER; - } - - if ((hw->mac_type >= e1000_82544) && - (hw->mac_type != e1000_82547)) - netdev->hw_features |= NETIF_F_TSO; - - netdev->features |= netdev->hw_features; - netdev->hw_features |= NETIF_F_RXCSUM; - - if (pci_using_dac) { - netdev->features |= NETIF_F_HIGHDMA; - netdev->vlan_features |= NETIF_F_HIGHDMA; - } - - netdev->vlan_features |= NETIF_F_TSO; - netdev->vlan_features |= NETIF_F_HW_CSUM; - netdev->vlan_features |= NETIF_F_SG; - - adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); - - /* initialize eeprom parameters */ - if (e1000_init_eeprom_params(hw)) { - e_err(probe, "EEPROM initialization failed\n"); - goto err_eeprom; - } - - /* before reading the EEPROM, reset the controller to - * put the device in a known good starting state */ - - e1000_reset_hw(hw); - - /* make sure the EEPROM is good */ - if (e1000_validate_eeprom_checksum(hw) < 0) { - e_err(probe, "The EEPROM Checksum Is Not Valid\n"); - e1000_dump_eeprom(adapter); - /* - * set MAC address to all zeroes to invalidate and temporary - * disable this device for the user. This blocks regular - * traffic while still permitting ethtool ioctls from reaching - * the hardware as well as allowing the user to run the - * interface after manually setting a hw addr using - * `ip set address` - */ - memset(hw->mac_addr, 0, netdev->addr_len); - } else { - /* copy the MAC address out of the EEPROM */ - if (e1000_read_mac_addr(hw)) - e_err(probe, "EEPROM Read Error\n"); - } - /* don't block initalization here due to bad MAC address */ - memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); - memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len); - - if (!is_valid_ether_addr(netdev->perm_addr)) - e_err(probe, "Invalid MAC Address\n"); - - init_timer(&adapter->tx_fifo_stall_timer); - adapter->tx_fifo_stall_timer.function = e1000_82547_tx_fifo_stall; - adapter->tx_fifo_stall_timer.data = (unsigned long)adapter; - - init_timer(&adapter->watchdog_timer); - adapter->watchdog_timer.function = e1000_watchdog; - adapter->watchdog_timer.data = (unsigned long) adapter; - - init_timer(&adapter->phy_info_timer); - adapter->phy_info_timer.function = e1000_update_phy_info; - adapter->phy_info_timer.data = (unsigned long)adapter; - - INIT_WORK(&adapter->fifo_stall_task, e1000_82547_tx_fifo_stall_task); - INIT_WORK(&adapter->reset_task, e1000_reset_task); - INIT_WORK(&adapter->phy_info_task, e1000_update_phy_info_task); - - e1000_check_options(adapter); - - /* Initial Wake on LAN setting - * If APM wake is enabled in the EEPROM, - * enable the ACPI Magic Packet filter - */ - - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - case e1000_82543: - break; - case e1000_82544: - e1000_read_eeprom(hw, - EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); - eeprom_apme_mask = E1000_EEPROM_82544_APM; - break; - case e1000_82546: - case e1000_82546_rev_3: - if (er32(STATUS) & E1000_STATUS_FUNC_1){ - e1000_read_eeprom(hw, - EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); - break; - } - /* Fall Through */ - default: - e1000_read_eeprom(hw, - EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); - break; - } - if (eeprom_data & eeprom_apme_mask) - adapter->eeprom_wol |= E1000_WUFC_MAG; - - /* now that we have the eeprom settings, apply the special cases - * where the eeprom may be wrong or the board simply won't support - * wake on lan on a particular port */ - switch (pdev->device) { - case E1000_DEV_ID_82546GB_PCIE: - adapter->eeprom_wol = 0; - break; - case E1000_DEV_ID_82546EB_FIBER: - case E1000_DEV_ID_82546GB_FIBER: - /* Wake events only supported on port A for dual fiber - * regardless of eeprom setting */ - if (er32(STATUS) & E1000_STATUS_FUNC_1) - adapter->eeprom_wol = 0; - break; - case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: - /* if quad port adapter, disable WoL on all but port A */ - if (global_quad_port_a != 0) - adapter->eeprom_wol = 0; - else - adapter->quad_port_a = 1; - /* Reset for multiple quad port adapters */ - if (++global_quad_port_a == 4) - global_quad_port_a = 0; - break; - } - - /* initialize the wol settings based on the eeprom settings */ - adapter->wol = adapter->eeprom_wol; - device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); - - /* Auto detect PHY address */ - if (hw->mac_type == e1000_ce4100) { - for (i = 0; i < 32; i++) { - hw->phy_addr = i; - e1000_read_phy_reg(hw, PHY_ID2, &tmp); - if (tmp == 0 || tmp == 0xFF) { - if (i == 31) - goto err_eeprom; - continue; - } else - break; - } - } - - /* reset the hardware with the new settings */ - e1000_reset(adapter); - - strcpy(netdev->name, "eth%d"); - err = register_netdev(netdev); - if (err) - goto err_register; - - e1000_vlan_mode(netdev, netdev->features); - - /* print bus type/speed/width info */ - e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n", - ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""), - ((hw->bus_speed == e1000_bus_speed_133) ? 133 : - (hw->bus_speed == e1000_bus_speed_120) ? 120 : - (hw->bus_speed == e1000_bus_speed_100) ? 100 : - (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33), - ((hw->bus_width == e1000_bus_width_64) ? 64 : 32), - netdev->dev_addr); - - /* carrier off reporting is important to ethtool even BEFORE open */ - netif_carrier_off(netdev); - - e_info(probe, "Intel(R) PRO/1000 Network Connection\n"); - - cards_found++; - return 0; - -err_register: -err_eeprom: - e1000_phy_hw_reset(hw); - - if (hw->flash_address) - iounmap(hw->flash_address); - kfree(adapter->tx_ring); - kfree(adapter->rx_ring); -err_dma: -err_sw_init: -err_mdio_ioremap: - iounmap(ce4100_gbe_mdio_base_virt); - iounmap(hw->hw_addr); -err_ioremap: - free_netdev(netdev); -err_alloc_etherdev: - pci_release_selected_regions(pdev, bars); -err_pci_reg: - pci_disable_device(pdev); - return err; -} - -/** - * e1000_remove - Device Removal Routine - * @pdev: PCI device information struct - * - * e1000_remove is called by the PCI subsystem to alert the driver - * that it should release a PCI device. The could be caused by a - * Hot-Plug event, or because the driver is going to be removed from - * memory. - **/ - -static void __devexit e1000_remove(struct pci_dev *pdev) -{ - struct net_device *netdev = pci_get_drvdata(pdev); - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - - set_bit(__E1000_DOWN, &adapter->flags); - del_timer_sync(&adapter->tx_fifo_stall_timer); - del_timer_sync(&adapter->watchdog_timer); - del_timer_sync(&adapter->phy_info_timer); - - cancel_work_sync(&adapter->reset_task); - - e1000_release_manageability(adapter); - - unregister_netdev(netdev); - - e1000_phy_hw_reset(hw); - - kfree(adapter->tx_ring); - kfree(adapter->rx_ring); - - iounmap(hw->hw_addr); - if (hw->flash_address) - iounmap(hw->flash_address); - pci_release_selected_regions(pdev, adapter->bars); - - free_netdev(netdev); - - pci_disable_device(pdev); -} - -/** - * e1000_sw_init - Initialize general software structures (struct e1000_adapter) - * @adapter: board private structure to initialize - * - * e1000_sw_init initializes the Adapter private data structure. - * e1000_init_hw_struct MUST be called before this function - **/ - -static int __devinit e1000_sw_init(struct e1000_adapter *adapter) -{ - adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; - - adapter->num_tx_queues = 1; - adapter->num_rx_queues = 1; - - if (e1000_alloc_queues(adapter)) { - e_err(probe, "Unable to allocate memory for queues\n"); - return -ENOMEM; - } - - /* Explicitly disable IRQ since the NIC can be in any state. */ - e1000_irq_disable(adapter); - - spin_lock_init(&adapter->stats_lock); - - set_bit(__E1000_DOWN, &adapter->flags); - - return 0; -} - -/** - * e1000_alloc_queues - Allocate memory for all rings - * @adapter: board private structure to initialize - * - * We allocate one ring per queue at run-time since we don't know the - * number of queues at compile-time. - **/ - -static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) -{ - adapter->tx_ring = kcalloc(adapter->num_tx_queues, - sizeof(struct e1000_tx_ring), GFP_KERNEL); - if (!adapter->tx_ring) - return -ENOMEM; - - adapter->rx_ring = kcalloc(adapter->num_rx_queues, - sizeof(struct e1000_rx_ring), GFP_KERNEL); - if (!adapter->rx_ring) { - kfree(adapter->tx_ring); - return -ENOMEM; - } - - return E1000_SUCCESS; -} - -/** - * e1000_open - Called when a network interface is made active - * @netdev: network interface device structure - * - * Returns 0 on success, negative value on failure - * - * The open entry point is called when a network interface is made - * active by the system (IFF_UP). At this point all resources needed - * for transmit and receive operations are allocated, the interrupt - * handler is registered with the OS, the watchdog timer is started, - * and the stack is notified that the interface is ready. - **/ - -static int e1000_open(struct net_device *netdev) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - int err; - - /* disallow open during test */ - if (test_bit(__E1000_TESTING, &adapter->flags)) - return -EBUSY; - - netif_carrier_off(netdev); - - /* allocate transmit descriptors */ - err = e1000_setup_all_tx_resources(adapter); - if (err) - goto err_setup_tx; - - /* allocate receive descriptors */ - err = e1000_setup_all_rx_resources(adapter); - if (err) - goto err_setup_rx; - - e1000_power_up_phy(adapter); - - adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; - if ((hw->mng_cookie.status & - E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { - e1000_update_mng_vlan(adapter); - } - - /* before we allocate an interrupt, we must be ready to handle it. - * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt - * as soon as we call pci_request_irq, so we have to setup our - * clean_rx handler before we do so. */ - e1000_configure(adapter); - - err = e1000_request_irq(adapter); - if (err) - goto err_req_irq; - - /* From here on the code is the same as e1000_up() */ - clear_bit(__E1000_DOWN, &adapter->flags); - - napi_enable(&adapter->napi); - - e1000_irq_enable(adapter); - - netif_start_queue(netdev); - - /* fire a link status change interrupt to start the watchdog */ - ew32(ICS, E1000_ICS_LSC); - - return E1000_SUCCESS; - -err_req_irq: - e1000_power_down_phy(adapter); - e1000_free_all_rx_resources(adapter); -err_setup_rx: - e1000_free_all_tx_resources(adapter); -err_setup_tx: - e1000_reset(adapter); - - return err; -} - -/** - * e1000_close - Disables a network interface - * @netdev: network interface device structure - * - * Returns 0, this is not allowed to fail - * - * The close entry point is called when an interface is de-activated - * by the OS. The hardware is still under the drivers control, but - * needs to be disabled. A global MAC reset is issued to stop the - * hardware, and all transmit and receive resources are freed. - **/ - -static int e1000_close(struct net_device *netdev) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - - WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); - e1000_down(adapter); - e1000_power_down_phy(adapter); - e1000_free_irq(adapter); - - e1000_free_all_tx_resources(adapter); - e1000_free_all_rx_resources(adapter); - - /* kill manageability vlan ID if supported, but not if a vlan with - * the same ID is registered on the host OS (let 8021q kill it) */ - if ((hw->mng_cookie.status & - E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && - !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) { - e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); - } - - return 0; -} - -/** - * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary - * @adapter: address of board private structure - * @start: address of beginning of memory - * @len: length of memory - **/ -static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, - unsigned long len) -{ - struct e1000_hw *hw = &adapter->hw; - unsigned long begin = (unsigned long)start; - unsigned long end = begin + len; - - /* First rev 82545 and 82546 need to not allow any memory - * write location to cross 64k boundary due to errata 23 */ - if (hw->mac_type == e1000_82545 || - hw->mac_type == e1000_ce4100 || - hw->mac_type == e1000_82546) { - return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; - } - - return true; -} - -/** - * e1000_setup_tx_resources - allocate Tx resources (Descriptors) - * @adapter: board private structure - * @txdr: tx descriptor ring (for a specific queue) to setup - * - * Return 0 on success, negative on failure - **/ - -static int e1000_setup_tx_resources(struct e1000_adapter *adapter, - struct e1000_tx_ring *txdr) -{ - struct pci_dev *pdev = adapter->pdev; - int size; - - size = sizeof(struct e1000_buffer) * txdr->count; - txdr->buffer_info = vzalloc(size); - if (!txdr->buffer_info) { - e_err(probe, "Unable to allocate memory for the Tx descriptor " - "ring\n"); - return -ENOMEM; - } - - /* round up to nearest 4K */ - - txdr->size = txdr->count * sizeof(struct e1000_tx_desc); - txdr->size = ALIGN(txdr->size, 4096); - - txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, - GFP_KERNEL); - if (!txdr->desc) { -setup_tx_desc_die: - vfree(txdr->buffer_info); - e_err(probe, "Unable to allocate memory for the Tx descriptor " - "ring\n"); - return -ENOMEM; - } - - /* Fix for errata 23, can't cross 64kB boundary */ - if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { - void *olddesc = txdr->desc; - dma_addr_t olddma = txdr->dma; - e_err(tx_err, "txdr align check failed: %u bytes at %p\n", - txdr->size, txdr->desc); - /* Try again, without freeing the previous */ - txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, - &txdr->dma, GFP_KERNEL); - /* Failed allocation, critical failure */ - if (!txdr->desc) { - dma_free_coherent(&pdev->dev, txdr->size, olddesc, - olddma); - goto setup_tx_desc_die; - } - - if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { - /* give up */ - dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, - txdr->dma); - dma_free_coherent(&pdev->dev, txdr->size, olddesc, - olddma); - e_err(probe, "Unable to allocate aligned memory " - "for the transmit descriptor ring\n"); - vfree(txdr->buffer_info); - return -ENOMEM; - } else { - /* Free old allocation, new allocation was successful */ - dma_free_coherent(&pdev->dev, txdr->size, olddesc, - olddma); - } - } - memset(txdr->desc, 0, txdr->size); - - txdr->next_to_use = 0; - txdr->next_to_clean = 0; - - return 0; -} - -/** - * e1000_setup_all_tx_resources - wrapper to allocate Tx resources - * (Descriptors) for all queues - * @adapter: board private structure - * - * Return 0 on success, negative on failure - **/ - -int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) -{ - int i, err = 0; - - for (i = 0; i < adapter->num_tx_queues; i++) { - err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); - if (err) { - e_err(probe, "Allocation for Tx Queue %u failed\n", i); - for (i-- ; i >= 0; i--) - e1000_free_tx_resources(adapter, - &adapter->tx_ring[i]); - break; - } - } - - return err; -} - -/** - * e1000_configure_tx - Configure 8254x Transmit Unit after Reset - * @adapter: board private structure - * - * Configure the Tx unit of the MAC after a reset. - **/ - -static void e1000_configure_tx(struct e1000_adapter *adapter) -{ - u64 tdba; - struct e1000_hw *hw = &adapter->hw; - u32 tdlen, tctl, tipg; - u32 ipgr1, ipgr2; - - /* Setup the HW Tx Head and Tail descriptor pointers */ - - switch (adapter->num_tx_queues) { - case 1: - default: - tdba = adapter->tx_ring[0].dma; - tdlen = adapter->tx_ring[0].count * - sizeof(struct e1000_tx_desc); - ew32(TDLEN, tdlen); - ew32(TDBAH, (tdba >> 32)); - ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); - ew32(TDT, 0); - ew32(TDH, 0); - adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH); - adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT); - break; - } - - /* Set the default values for the Tx Inter Packet Gap timer */ - if ((hw->media_type == e1000_media_type_fiber || - hw->media_type == e1000_media_type_internal_serdes)) - tipg = DEFAULT_82543_TIPG_IPGT_FIBER; - else - tipg = DEFAULT_82543_TIPG_IPGT_COPPER; - - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - tipg = DEFAULT_82542_TIPG_IPGT; - ipgr1 = DEFAULT_82542_TIPG_IPGR1; - ipgr2 = DEFAULT_82542_TIPG_IPGR2; - break; - default: - ipgr1 = DEFAULT_82543_TIPG_IPGR1; - ipgr2 = DEFAULT_82543_TIPG_IPGR2; - break; - } - tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; - tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; - ew32(TIPG, tipg); - - /* Set the Tx Interrupt Delay register */ - - ew32(TIDV, adapter->tx_int_delay); - if (hw->mac_type >= e1000_82540) - ew32(TADV, adapter->tx_abs_int_delay); - - /* Program the Transmit Control Register */ - - tctl = er32(TCTL); - tctl &= ~E1000_TCTL_CT; - tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | - (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); - - e1000_config_collision_dist(hw); - - /* Setup Transmit Descriptor Settings for eop descriptor */ - adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; - - /* only set IDE if we are delaying interrupts using the timers */ - if (adapter->tx_int_delay) - adapter->txd_cmd |= E1000_TXD_CMD_IDE; - - if (hw->mac_type < e1000_82543) - adapter->txd_cmd |= E1000_TXD_CMD_RPS; - else - adapter->txd_cmd |= E1000_TXD_CMD_RS; - - /* Cache if we're 82544 running in PCI-X because we'll - * need this to apply a workaround later in the send path. */ - if (hw->mac_type == e1000_82544 && - hw->bus_type == e1000_bus_type_pcix) - adapter->pcix_82544 = 1; - - ew32(TCTL, tctl); - -} - -/** - * e1000_setup_rx_resources - allocate Rx resources (Descriptors) - * @adapter: board private structure - * @rxdr: rx descriptor ring (for a specific queue) to setup - * - * Returns 0 on success, negative on failure - **/ - -static int e1000_setup_rx_resources(struct e1000_adapter *adapter, - struct e1000_rx_ring *rxdr) -{ - struct pci_dev *pdev = adapter->pdev; - int size, desc_len; - - size = sizeof(struct e1000_buffer) * rxdr->count; - rxdr->buffer_info = vzalloc(size); - if (!rxdr->buffer_info) { - e_err(probe, "Unable to allocate memory for the Rx descriptor " - "ring\n"); - return -ENOMEM; - } - - desc_len = sizeof(struct e1000_rx_desc); - - /* Round up to nearest 4K */ - - rxdr->size = rxdr->count * desc_len; - rxdr->size = ALIGN(rxdr->size, 4096); - - rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, - GFP_KERNEL); - - if (!rxdr->desc) { - e_err(probe, "Unable to allocate memory for the Rx descriptor " - "ring\n"); -setup_rx_desc_die: - vfree(rxdr->buffer_info); - return -ENOMEM; - } - - /* Fix for errata 23, can't cross 64kB boundary */ - if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { - void *olddesc = rxdr->desc; - dma_addr_t olddma = rxdr->dma; - e_err(rx_err, "rxdr align check failed: %u bytes at %p\n", - rxdr->size, rxdr->desc); - /* Try again, without freeing the previous */ - rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, - &rxdr->dma, GFP_KERNEL); - /* Failed allocation, critical failure */ - if (!rxdr->desc) { - dma_free_coherent(&pdev->dev, rxdr->size, olddesc, - olddma); - e_err(probe, "Unable to allocate memory for the Rx " - "descriptor ring\n"); - goto setup_rx_desc_die; - } - - if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { - /* give up */ - dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, - rxdr->dma); - dma_free_coherent(&pdev->dev, rxdr->size, olddesc, - olddma); - e_err(probe, "Unable to allocate aligned memory for " - "the Rx descriptor ring\n"); - goto setup_rx_desc_die; - } else { - /* Free old allocation, new allocation was successful */ - dma_free_coherent(&pdev->dev, rxdr->size, olddesc, - olddma); - } - } - memset(rxdr->desc, 0, rxdr->size); - - rxdr->next_to_clean = 0; - rxdr->next_to_use = 0; - rxdr->rx_skb_top = NULL; - - return 0; -} - -/** - * e1000_setup_all_rx_resources - wrapper to allocate Rx resources - * (Descriptors) for all queues - * @adapter: board private structure - * - * Return 0 on success, negative on failure - **/ - -int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) -{ - int i, err = 0; - - for (i = 0; i < adapter->num_rx_queues; i++) { - err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); - if (err) { - e_err(probe, "Allocation for Rx Queue %u failed\n", i); - for (i-- ; i >= 0; i--) - e1000_free_rx_resources(adapter, - &adapter->rx_ring[i]); - break; - } - } - - return err; -} - -/** - * e1000_setup_rctl - configure the receive control registers - * @adapter: Board private structure - **/ -static void e1000_setup_rctl(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u32 rctl; - - rctl = er32(RCTL); - - rctl &= ~(3 << E1000_RCTL_MO_SHIFT); - - rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | - E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | - (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); - - if (hw->tbi_compatibility_on == 1) - rctl |= E1000_RCTL_SBP; - else - rctl &= ~E1000_RCTL_SBP; - - if (adapter->netdev->mtu <= ETH_DATA_LEN) - rctl &= ~E1000_RCTL_LPE; - else - rctl |= E1000_RCTL_LPE; - - /* Setup buffer sizes */ - rctl &= ~E1000_RCTL_SZ_4096; - rctl |= E1000_RCTL_BSEX; - switch (adapter->rx_buffer_len) { - case E1000_RXBUFFER_2048: - default: - rctl |= E1000_RCTL_SZ_2048; - rctl &= ~E1000_RCTL_BSEX; - break; - case E1000_RXBUFFER_4096: - rctl |= E1000_RCTL_SZ_4096; - break; - case E1000_RXBUFFER_8192: - rctl |= E1000_RCTL_SZ_8192; - break; - case E1000_RXBUFFER_16384: - rctl |= E1000_RCTL_SZ_16384; - break; - } - - ew32(RCTL, rctl); -} - -/** - * e1000_configure_rx - Configure 8254x Receive Unit after Reset - * @adapter: board private structure - * - * Configure the Rx unit of the MAC after a reset. - **/ - -static void e1000_configure_rx(struct e1000_adapter *adapter) -{ - u64 rdba; - struct e1000_hw *hw = &adapter->hw; - u32 rdlen, rctl, rxcsum; - - if (adapter->netdev->mtu > ETH_DATA_LEN) { - rdlen = adapter->rx_ring[0].count * - sizeof(struct e1000_rx_desc); - adapter->clean_rx = e1000_clean_jumbo_rx_irq; - adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; - } else { - rdlen = adapter->rx_ring[0].count * - sizeof(struct e1000_rx_desc); - adapter->clean_rx = e1000_clean_rx_irq; - adapter->alloc_rx_buf = e1000_alloc_rx_buffers; - } - - /* disable receives while setting up the descriptors */ - rctl = er32(RCTL); - ew32(RCTL, rctl & ~E1000_RCTL_EN); - - /* set the Receive Delay Timer Register */ - ew32(RDTR, adapter->rx_int_delay); - - if (hw->mac_type >= e1000_82540) { - ew32(RADV, adapter->rx_abs_int_delay); - if (adapter->itr_setting != 0) - ew32(ITR, 1000000000 / (adapter->itr * 256)); - } - - /* Setup the HW Rx Head and Tail Descriptor Pointers and - * the Base and Length of the Rx Descriptor Ring */ - switch (adapter->num_rx_queues) { - case 1: - default: - rdba = adapter->rx_ring[0].dma; - ew32(RDLEN, rdlen); - ew32(RDBAH, (rdba >> 32)); - ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); - ew32(RDT, 0); - ew32(RDH, 0); - adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH); - adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT); - break; - } - - /* Enable 82543 Receive Checksum Offload for TCP and UDP */ - if (hw->mac_type >= e1000_82543) { - rxcsum = er32(RXCSUM); - if (adapter->rx_csum) - rxcsum |= E1000_RXCSUM_TUOFL; - else - /* don't need to clear IPPCSE as it defaults to 0 */ - rxcsum &= ~E1000_RXCSUM_TUOFL; - ew32(RXCSUM, rxcsum); - } - - /* Enable Receives */ - ew32(RCTL, rctl); -} - -/** - * e1000_free_tx_resources - Free Tx Resources per Queue - * @adapter: board private structure - * @tx_ring: Tx descriptor ring for a specific queue - * - * Free all transmit software resources - **/ - -static void e1000_free_tx_resources(struct e1000_adapter *adapter, - struct e1000_tx_ring *tx_ring) -{ - struct pci_dev *pdev = adapter->pdev; - - e1000_clean_tx_ring(adapter, tx_ring); - - vfree(tx_ring->buffer_info); - tx_ring->buffer_info = NULL; - - dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, - tx_ring->dma); - - tx_ring->desc = NULL; -} - -/** - * e1000_free_all_tx_resources - Free Tx Resources for All Queues - * @adapter: board private structure - * - * Free all transmit software resources - **/ - -void e1000_free_all_tx_resources(struct e1000_adapter *adapter) -{ - int i; - - for (i = 0; i < adapter->num_tx_queues; i++) - e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); -} - -static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, - struct e1000_buffer *buffer_info) -{ - if (buffer_info->dma) { - if (buffer_info->mapped_as_page) - dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, - buffer_info->length, DMA_TO_DEVICE); - else - dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, - buffer_info->length, - DMA_TO_DEVICE); - buffer_info->dma = 0; - } - if (buffer_info->skb) { - dev_kfree_skb_any(buffer_info->skb); - buffer_info->skb = NULL; - } - buffer_info->time_stamp = 0; - /* buffer_info must be completely set up in the transmit path */ -} - -/** - * e1000_clean_tx_ring - Free Tx Buffers - * @adapter: board private structure - * @tx_ring: ring to be cleaned - **/ - -static void e1000_clean_tx_ring(struct e1000_adapter *adapter, - struct e1000_tx_ring *tx_ring) -{ - struct e1000_hw *hw = &adapter->hw; - struct e1000_buffer *buffer_info; - unsigned long size; - unsigned int i; - - /* Free all the Tx ring sk_buffs */ - - for (i = 0; i < tx_ring->count; i++) { - buffer_info = &tx_ring->buffer_info[i]; - e1000_unmap_and_free_tx_resource(adapter, buffer_info); - } - - size = sizeof(struct e1000_buffer) * tx_ring->count; - memset(tx_ring->buffer_info, 0, size); - - /* Zero out the descriptor ring */ - - memset(tx_ring->desc, 0, tx_ring->size); - - tx_ring->next_to_use = 0; - tx_ring->next_to_clean = 0; - tx_ring->last_tx_tso = 0; - - writel(0, hw->hw_addr + tx_ring->tdh); - writel(0, hw->hw_addr + tx_ring->tdt); -} - -/** - * e1000_clean_all_tx_rings - Free Tx Buffers for all queues - * @adapter: board private structure - **/ - -static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) -{ - int i; - - for (i = 0; i < adapter->num_tx_queues; i++) - e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); -} - -/** - * e1000_free_rx_resources - Free Rx Resources - * @adapter: board private structure - * @rx_ring: ring to clean the resources from - * - * Free all receive software resources - **/ - -static void e1000_free_rx_resources(struct e1000_adapter *adapter, - struct e1000_rx_ring *rx_ring) -{ - struct pci_dev *pdev = adapter->pdev; - - e1000_clean_rx_ring(adapter, rx_ring); - - vfree(rx_ring->buffer_info); - rx_ring->buffer_info = NULL; - - dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, - rx_ring->dma); - - rx_ring->desc = NULL; -} - -/** - * e1000_free_all_rx_resources - Free Rx Resources for All Queues - * @adapter: board private structure - * - * Free all receive software resources - **/ - -void e1000_free_all_rx_resources(struct e1000_adapter *adapter) -{ - int i; - - for (i = 0; i < adapter->num_rx_queues; i++) - e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); -} - -/** - * e1000_clean_rx_ring - Free Rx Buffers per Queue - * @adapter: board private structure - * @rx_ring: ring to free buffers from - **/ - -static void e1000_clean_rx_ring(struct e1000_adapter *adapter, - struct e1000_rx_ring *rx_ring) -{ - struct e1000_hw *hw = &adapter->hw; - struct e1000_buffer *buffer_info; - struct pci_dev *pdev = adapter->pdev; - unsigned long size; - unsigned int i; - - /* Free all the Rx ring sk_buffs */ - for (i = 0; i < rx_ring->count; i++) { - buffer_info = &rx_ring->buffer_info[i]; - if (buffer_info->dma && - adapter->clean_rx == e1000_clean_rx_irq) { - dma_unmap_single(&pdev->dev, buffer_info->dma, - buffer_info->length, - DMA_FROM_DEVICE); - } else if (buffer_info->dma && - adapter->clean_rx == e1000_clean_jumbo_rx_irq) { - dma_unmap_page(&pdev->dev, buffer_info->dma, - buffer_info->length, - DMA_FROM_DEVICE); - } - - buffer_info->dma = 0; - if (buffer_info->page) { - put_page(buffer_info->page); - buffer_info->page = NULL; - } - if (buffer_info->skb) { - dev_kfree_skb(buffer_info->skb); - buffer_info->skb = NULL; - } - } - - /* there also may be some cached data from a chained receive */ - if (rx_ring->rx_skb_top) { - dev_kfree_skb(rx_ring->rx_skb_top); - rx_ring->rx_skb_top = NULL; - } - - size = sizeof(struct e1000_buffer) * rx_ring->count; - memset(rx_ring->buffer_info, 0, size); - - /* Zero out the descriptor ring */ - memset(rx_ring->desc, 0, rx_ring->size); - - rx_ring->next_to_clean = 0; - rx_ring->next_to_use = 0; - - writel(0, hw->hw_addr + rx_ring->rdh); - writel(0, hw->hw_addr + rx_ring->rdt); -} - -/** - * e1000_clean_all_rx_rings - Free Rx Buffers for all queues - * @adapter: board private structure - **/ - -static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) -{ - int i; - - for (i = 0; i < adapter->num_rx_queues; i++) - e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); -} - -/* The 82542 2.0 (revision 2) needs to have the receive unit in reset - * and memory write and invalidate disabled for certain operations - */ -static void e1000_enter_82542_rst(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - struct net_device *netdev = adapter->netdev; - u32 rctl; - - e1000_pci_clear_mwi(hw); - - rctl = er32(RCTL); - rctl |= E1000_RCTL_RST; - ew32(RCTL, rctl); - E1000_WRITE_FLUSH(); - mdelay(5); - - if (netif_running(netdev)) - e1000_clean_all_rx_rings(adapter); -} - -static void e1000_leave_82542_rst(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - struct net_device *netdev = adapter->netdev; - u32 rctl; - - rctl = er32(RCTL); - rctl &= ~E1000_RCTL_RST; - ew32(RCTL, rctl); - E1000_WRITE_FLUSH(); - mdelay(5); - - if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) - e1000_pci_set_mwi(hw); - - if (netif_running(netdev)) { - /* No need to loop, because 82542 supports only 1 queue */ - struct e1000_rx_ring *ring = &adapter->rx_ring[0]; - e1000_configure_rx(adapter); - adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); - } -} - -/** - * e1000_set_mac - Change the Ethernet Address of the NIC - * @netdev: network interface device structure - * @p: pointer to an address structure - * - * Returns 0 on success, negative on failure - **/ - -static int e1000_set_mac(struct net_device *netdev, void *p) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - struct sockaddr *addr = p; - - if (!is_valid_ether_addr(addr->sa_data)) - return -EADDRNOTAVAIL; - - /* 82542 2.0 needs to be in reset to write receive address registers */ - - if (hw->mac_type == e1000_82542_rev2_0) - e1000_enter_82542_rst(adapter); - - memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); - memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); - - e1000_rar_set(hw, hw->mac_addr, 0); - - if (hw->mac_type == e1000_82542_rev2_0) - e1000_leave_82542_rst(adapter); - - return 0; -} - -/** - * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set - * @netdev: network interface device structure - * - * The set_rx_mode entry point is called whenever the unicast or multicast - * address lists or the network interface flags are updated. This routine is - * responsible for configuring the hardware for proper unicast, multicast, - * promiscuous mode, and all-multi behavior. - **/ - -static void e1000_set_rx_mode(struct net_device *netdev) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - struct netdev_hw_addr *ha; - bool use_uc = false; - u32 rctl; - u32 hash_value; - int i, rar_entries = E1000_RAR_ENTRIES; - int mta_reg_count = E1000_NUM_MTA_REGISTERS; - u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); - - if (!mcarray) { - e_err(probe, "memory allocation failed\n"); - return; - } - - /* Check for Promiscuous and All Multicast modes */ - - rctl = er32(RCTL); - - if (netdev->flags & IFF_PROMISC) { - rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); - rctl &= ~E1000_RCTL_VFE; - } else { - if (netdev->flags & IFF_ALLMULTI) - rctl |= E1000_RCTL_MPE; - else - rctl &= ~E1000_RCTL_MPE; - /* Enable VLAN filter if there is a VLAN */ - if (e1000_vlan_used(adapter)) - rctl |= E1000_RCTL_VFE; - } - - if (netdev_uc_count(netdev) > rar_entries - 1) { - rctl |= E1000_RCTL_UPE; - } else if (!(netdev->flags & IFF_PROMISC)) { - rctl &= ~E1000_RCTL_UPE; - use_uc = true; - } - - ew32(RCTL, rctl); - - /* 82542 2.0 needs to be in reset to write receive address registers */ - - if (hw->mac_type == e1000_82542_rev2_0) - e1000_enter_82542_rst(adapter); - - /* load the first 14 addresses into the exact filters 1-14. Unicast - * addresses take precedence to avoid disabling unicast filtering - * when possible. - * - * RAR 0 is used for the station MAC address - * if there are not 14 addresses, go ahead and clear the filters - */ - i = 1; - if (use_uc) - netdev_for_each_uc_addr(ha, netdev) { - if (i == rar_entries) - break; - e1000_rar_set(hw, ha->addr, i++); - } - - netdev_for_each_mc_addr(ha, netdev) { - if (i == rar_entries) { - /* load any remaining addresses into the hash table */ - u32 hash_reg, hash_bit, mta; - hash_value = e1000_hash_mc_addr(hw, ha->addr); - hash_reg = (hash_value >> 5) & 0x7F; - hash_bit = hash_value & 0x1F; - mta = (1 << hash_bit); - mcarray[hash_reg] |= mta; - } else { - e1000_rar_set(hw, ha->addr, i++); - } - } - - for (; i < rar_entries; i++) { - E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); - E1000_WRITE_FLUSH(); - E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); - E1000_WRITE_FLUSH(); - } - - /* write the hash table completely, write from bottom to avoid - * both stupid write combining chipsets, and flushing each write */ - for (i = mta_reg_count - 1; i >= 0 ; i--) { - /* - * If we are on an 82544 has an errata where writing odd - * offsets overwrites the previous even offset, but writing - * backwards over the range solves the issue by always - * writing the odd offset first - */ - E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); - } - E1000_WRITE_FLUSH(); - - if (hw->mac_type == e1000_82542_rev2_0) - e1000_leave_82542_rst(adapter); - - kfree(mcarray); -} - -/* Need to wait a few seconds after link up to get diagnostic information from - * the phy */ - -static void e1000_update_phy_info(unsigned long data) -{ - struct e1000_adapter *adapter = (struct e1000_adapter *)data; - schedule_work(&adapter->phy_info_task); -} - -static void e1000_update_phy_info_task(struct work_struct *work) -{ - struct e1000_adapter *adapter = container_of(work, - struct e1000_adapter, - phy_info_task); - struct e1000_hw *hw = &adapter->hw; - - rtnl_lock(); - e1000_phy_get_info(hw, &adapter->phy_info); - rtnl_unlock(); -} - -/** - * e1000_82547_tx_fifo_stall - Timer Call-back - * @data: pointer to adapter cast into an unsigned long - **/ -static void e1000_82547_tx_fifo_stall(unsigned long data) -{ - struct e1000_adapter *adapter = (struct e1000_adapter *)data; - schedule_work(&adapter->fifo_stall_task); -} - -/** - * e1000_82547_tx_fifo_stall_task - task to complete work - * @work: work struct contained inside adapter struct - **/ -static void e1000_82547_tx_fifo_stall_task(struct work_struct *work) -{ - struct e1000_adapter *adapter = container_of(work, - struct e1000_adapter, - fifo_stall_task); - struct e1000_hw *hw = &adapter->hw; - struct net_device *netdev = adapter->netdev; - u32 tctl; - - rtnl_lock(); - if (atomic_read(&adapter->tx_fifo_stall)) { - if ((er32(TDT) == er32(TDH)) && - (er32(TDFT) == er32(TDFH)) && - (er32(TDFTS) == er32(TDFHS))) { - tctl = er32(TCTL); - ew32(TCTL, tctl & ~E1000_TCTL_EN); - ew32(TDFT, adapter->tx_head_addr); - ew32(TDFH, adapter->tx_head_addr); - ew32(TDFTS, adapter->tx_head_addr); - ew32(TDFHS, adapter->tx_head_addr); - ew32(TCTL, tctl); - E1000_WRITE_FLUSH(); - - adapter->tx_fifo_head = 0; - atomic_set(&adapter->tx_fifo_stall, 0); - netif_wake_queue(netdev); - } else if (!test_bit(__E1000_DOWN, &adapter->flags)) { - mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1); - } - } - rtnl_unlock(); -} - -bool e1000_has_link(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - bool link_active = false; - - /* get_link_status is set on LSC (link status) interrupt or rx - * sequence error interrupt (except on intel ce4100). - * get_link_status will stay false until the - * e1000_check_for_link establishes link for copper adapters - * ONLY - */ - switch (hw->media_type) { - case e1000_media_type_copper: - if (hw->mac_type == e1000_ce4100) - hw->get_link_status = 1; - if (hw->get_link_status) { - e1000_check_for_link(hw); - link_active = !hw->get_link_status; - } else { - link_active = true; - } - break; - case e1000_media_type_fiber: - e1000_check_for_link(hw); - link_active = !!(er32(STATUS) & E1000_STATUS_LU); - break; - case e1000_media_type_internal_serdes: - e1000_check_for_link(hw); - link_active = hw->serdes_has_link; - break; - default: - break; - } - - return link_active; -} - -/** - * e1000_watchdog - Timer Call-back - * @data: pointer to adapter cast into an unsigned long - **/ -static void e1000_watchdog(unsigned long data) -{ - struct e1000_adapter *adapter = (struct e1000_adapter *)data; - struct e1000_hw *hw = &adapter->hw; - struct net_device *netdev = adapter->netdev; - struct e1000_tx_ring *txdr = adapter->tx_ring; - u32 link, tctl; - - link = e1000_has_link(adapter); - if ((netif_carrier_ok(netdev)) && link) - goto link_up; - - if (link) { - if (!netif_carrier_ok(netdev)) { - u32 ctrl; - bool txb2b = true; - /* update snapshot of PHY registers on LSC */ - e1000_get_speed_and_duplex(hw, - &adapter->link_speed, - &adapter->link_duplex); - - ctrl = er32(CTRL); - pr_info("%s NIC Link is Up %d Mbps %s, " - "Flow Control: %s\n", - netdev->name, - adapter->link_speed, - adapter->link_duplex == FULL_DUPLEX ? - "Full Duplex" : "Half Duplex", - ((ctrl & E1000_CTRL_TFCE) && (ctrl & - E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & - E1000_CTRL_RFCE) ? "RX" : ((ctrl & - E1000_CTRL_TFCE) ? "TX" : "None"))); - - /* adjust timeout factor according to speed/duplex */ - adapter->tx_timeout_factor = 1; - switch (adapter->link_speed) { - case SPEED_10: - txb2b = false; - adapter->tx_timeout_factor = 16; - break; - case SPEED_100: - txb2b = false; - /* maybe add some timeout factor ? */ - break; - } - - /* enable transmits in the hardware */ - tctl = er32(TCTL); - tctl |= E1000_TCTL_EN; - ew32(TCTL, tctl); - - netif_carrier_on(netdev); - if (!test_bit(__E1000_DOWN, &adapter->flags)) - mod_timer(&adapter->phy_info_timer, - round_jiffies(jiffies + 2 * HZ)); - adapter->smartspeed = 0; - } - } else { - if (netif_carrier_ok(netdev)) { - adapter->link_speed = 0; - adapter->link_duplex = 0; - pr_info("%s NIC Link is Down\n", - netdev->name); - netif_carrier_off(netdev); - - if (!test_bit(__E1000_DOWN, &adapter->flags)) - mod_timer(&adapter->phy_info_timer, - round_jiffies(jiffies + 2 * HZ)); - } - - e1000_smartspeed(adapter); - } - -link_up: - e1000_update_stats(adapter); - - hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; - adapter->tpt_old = adapter->stats.tpt; - hw->collision_delta = adapter->stats.colc - adapter->colc_old; - adapter->colc_old = adapter->stats.colc; - - adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; - adapter->gorcl_old = adapter->stats.gorcl; - adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; - adapter->gotcl_old = adapter->stats.gotcl; - - e1000_update_adaptive(hw); - - if (!netif_carrier_ok(netdev)) { - if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { - /* We've lost link, so the controller stops DMA, - * but we've got queued Tx work that's never going - * to get done, so reset controller to flush Tx. - * (Do the reset outside of interrupt context). */ - adapter->tx_timeout_count++; - schedule_work(&adapter->reset_task); - /* return immediately since reset is imminent */ - return; - } - } - - /* Simple mode for Interrupt Throttle Rate (ITR) */ - if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { - /* - * Symmetric Tx/Rx gets a reduced ITR=2000; - * Total asymmetrical Tx or Rx gets ITR=8000; - * everyone else is between 2000-8000. - */ - u32 goc = (adapter->gotcl + adapter->gorcl) / 10000; - u32 dif = (adapter->gotcl > adapter->gorcl ? - adapter->gotcl - adapter->gorcl : - adapter->gorcl - adapter->gotcl) / 10000; - u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; - - ew32(ITR, 1000000000 / (itr * 256)); - } - - /* Cause software interrupt to ensure rx ring is cleaned */ - ew32(ICS, E1000_ICS_RXDMT0); - - /* Force detection of hung controller every watchdog period */ - adapter->detect_tx_hung = true; - - /* Reset the timer */ - if (!test_bit(__E1000_DOWN, &adapter->flags)) - mod_timer(&adapter->watchdog_timer, - round_jiffies(jiffies + 2 * HZ)); -} - -enum latency_range { - lowest_latency = 0, - low_latency = 1, - bulk_latency = 2, - latency_invalid = 255 -}; - -/** - * e1000_update_itr - update the dynamic ITR value based on statistics - * @adapter: pointer to adapter - * @itr_setting: current adapter->itr - * @packets: the number of packets during this measurement interval - * @bytes: the number of bytes during this measurement interval - * - * Stores a new ITR value based on packets and byte - * counts during the last interrupt. The advantage of per interrupt - * computation is faster updates and more accurate ITR for the current - * traffic pattern. Constants in this function were computed - * based on theoretical maximum wire speed and thresholds were set based - * on testing data as well as attempting to minimize response time - * while increasing bulk throughput. - * this functionality is controlled by the InterruptThrottleRate module - * parameter (see e1000_param.c) - **/ -static unsigned int e1000_update_itr(struct e1000_adapter *adapter, - u16 itr_setting, int packets, int bytes) -{ - unsigned int retval = itr_setting; - struct e1000_hw *hw = &adapter->hw; - - if (unlikely(hw->mac_type < e1000_82540)) - goto update_itr_done; - - if (packets == 0) - goto update_itr_done; - - switch (itr_setting) { - case lowest_latency: - /* jumbo frames get bulk treatment*/ - if (bytes/packets > 8000) - retval = bulk_latency; - else if ((packets < 5) && (bytes > 512)) - retval = low_latency; - break; - case low_latency: /* 50 usec aka 20000 ints/s */ - if (bytes > 10000) { - /* jumbo frames need bulk latency setting */ - if (bytes/packets > 8000) - retval = bulk_latency; - else if ((packets < 10) || ((bytes/packets) > 1200)) - retval = bulk_latency; - else if ((packets > 35)) - retval = lowest_latency; - } else if (bytes/packets > 2000) - retval = bulk_latency; - else if (packets <= 2 && bytes < 512) - retval = lowest_latency; - break; - case bulk_latency: /* 250 usec aka 4000 ints/s */ - if (bytes > 25000) { - if (packets > 35) - retval = low_latency; - } else if (bytes < 6000) { - retval = low_latency; - } - break; - } - -update_itr_done: - return retval; -} - -static void e1000_set_itr(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u16 current_itr; - u32 new_itr = adapter->itr; - - if (unlikely(hw->mac_type < e1000_82540)) - return; - - /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ - if (unlikely(adapter->link_speed != SPEED_1000)) { - current_itr = 0; - new_itr = 4000; - goto set_itr_now; - } - - adapter->tx_itr = e1000_update_itr(adapter, - adapter->tx_itr, - adapter->total_tx_packets, - adapter->total_tx_bytes); - /* conservative mode (itr 3) eliminates the lowest_latency setting */ - if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) - adapter->tx_itr = low_latency; - - adapter->rx_itr = e1000_update_itr(adapter, - adapter->rx_itr, - adapter->total_rx_packets, - adapter->total_rx_bytes); - /* conservative mode (itr 3) eliminates the lowest_latency setting */ - if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) - adapter->rx_itr = low_latency; - - current_itr = max(adapter->rx_itr, adapter->tx_itr); - - switch (current_itr) { - /* counts and packets in update_itr are dependent on these numbers */ - case lowest_latency: - new_itr = 70000; - break; - case low_latency: - new_itr = 20000; /* aka hwitr = ~200 */ - break; - case bulk_latency: - new_itr = 4000; - break; - default: - break; - } - -set_itr_now: - if (new_itr != adapter->itr) { - /* this attempts to bias the interrupt rate towards Bulk - * by adding intermediate steps when interrupt rate is - * increasing */ - new_itr = new_itr > adapter->itr ? - min(adapter->itr + (new_itr >> 2), new_itr) : - new_itr; - adapter->itr = new_itr; - ew32(ITR, 1000000000 / (new_itr * 256)); - } -} - -#define E1000_TX_FLAGS_CSUM 0x00000001 -#define E1000_TX_FLAGS_VLAN 0x00000002 -#define E1000_TX_FLAGS_TSO 0x00000004 -#define E1000_TX_FLAGS_IPV4 0x00000008 -#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 -#define E1000_TX_FLAGS_VLAN_SHIFT 16 - -static int e1000_tso(struct e1000_adapter *adapter, - struct e1000_tx_ring *tx_ring, struct sk_buff *skb) -{ - struct e1000_context_desc *context_desc; - struct e1000_buffer *buffer_info; - unsigned int i; - u32 cmd_length = 0; - u16 ipcse = 0, tucse, mss; - u8 ipcss, ipcso, tucss, tucso, hdr_len; - int err; - - if (skb_is_gso(skb)) { - if (skb_header_cloned(skb)) { - err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); - if (err) - return err; - } - - hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); - mss = skb_shinfo(skb)->gso_size; - if (skb->protocol == htons(ETH_P_IP)) { - struct iphdr *iph = ip_hdr(skb); - iph->tot_len = 0; - iph->check = 0; - tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, - iph->daddr, 0, - IPPROTO_TCP, - 0); - cmd_length = E1000_TXD_CMD_IP; - ipcse = skb_transport_offset(skb) - 1; - } else if (skb->protocol == htons(ETH_P_IPV6)) { - ipv6_hdr(skb)->payload_len = 0; - tcp_hdr(skb)->check = - ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, - &ipv6_hdr(skb)->daddr, - 0, IPPROTO_TCP, 0); - ipcse = 0; - } - ipcss = skb_network_offset(skb); - ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; - tucss = skb_transport_offset(skb); - tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; - tucse = 0; - - cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | - E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); - - i = tx_ring->next_to_use; - context_desc = E1000_CONTEXT_DESC(*tx_ring, i); - buffer_info = &tx_ring->buffer_info[i]; - - context_desc->lower_setup.ip_fields.ipcss = ipcss; - context_desc->lower_setup.ip_fields.ipcso = ipcso; - context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); - context_desc->upper_setup.tcp_fields.tucss = tucss; - context_desc->upper_setup.tcp_fields.tucso = tucso; - context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); - context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); - context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; - context_desc->cmd_and_length = cpu_to_le32(cmd_length); - - buffer_info->time_stamp = jiffies; - buffer_info->next_to_watch = i; - - if (++i == tx_ring->count) i = 0; - tx_ring->next_to_use = i; - - return true; - } - return false; -} - -static bool e1000_tx_csum(struct e1000_adapter *adapter, - struct e1000_tx_ring *tx_ring, struct sk_buff *skb) -{ - struct e1000_context_desc *context_desc; - struct e1000_buffer *buffer_info; - unsigned int i; - u8 css; - u32 cmd_len = E1000_TXD_CMD_DEXT; - - if (skb->ip_summed != CHECKSUM_PARTIAL) - return false; - - switch (skb->protocol) { - case cpu_to_be16(ETH_P_IP): - if (ip_hdr(skb)->protocol == IPPROTO_TCP) - cmd_len |= E1000_TXD_CMD_TCP; - break; - case cpu_to_be16(ETH_P_IPV6): - /* XXX not handling all IPV6 headers */ - if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) - cmd_len |= E1000_TXD_CMD_TCP; - break; - default: - if (unlikely(net_ratelimit())) - e_warn(drv, "checksum_partial proto=%x!\n", - skb->protocol); - break; - } - - css = skb_checksum_start_offset(skb); - - i = tx_ring->next_to_use; - buffer_info = &tx_ring->buffer_info[i]; - context_desc = E1000_CONTEXT_DESC(*tx_ring, i); - - context_desc->lower_setup.ip_config = 0; - context_desc->upper_setup.tcp_fields.tucss = css; - context_desc->upper_setup.tcp_fields.tucso = - css + skb->csum_offset; - context_desc->upper_setup.tcp_fields.tucse = 0; - context_desc->tcp_seg_setup.data = 0; - context_desc->cmd_and_length = cpu_to_le32(cmd_len); - - buffer_info->time_stamp = jiffies; - buffer_info->next_to_watch = i; - - if (unlikely(++i == tx_ring->count)) i = 0; - tx_ring->next_to_use = i; - - return true; -} - -#define E1000_MAX_TXD_PWR 12 -#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) - -static int e1000_tx_map(struct e1000_adapter *adapter, - struct e1000_tx_ring *tx_ring, - struct sk_buff *skb, unsigned int first, - unsigned int max_per_txd, unsigned int nr_frags, - unsigned int mss) -{ - struct e1000_hw *hw = &adapter->hw; - struct pci_dev *pdev = adapter->pdev; - struct e1000_buffer *buffer_info; - unsigned int len = skb_headlen(skb); - unsigned int offset = 0, size, count = 0, i; - unsigned int f; - - i = tx_ring->next_to_use; - - while (len) { - buffer_info = &tx_ring->buffer_info[i]; - size = min(len, max_per_txd); - /* Workaround for Controller erratum -- - * descriptor for non-tso packet in a linear SKB that follows a - * tso gets written back prematurely before the data is fully - * DMA'd to the controller */ - if (!skb->data_len && tx_ring->last_tx_tso && - !skb_is_gso(skb)) { - tx_ring->last_tx_tso = 0; - size -= 4; - } - - /* Workaround for premature desc write-backs - * in TSO mode. Append 4-byte sentinel desc */ - if (unlikely(mss && !nr_frags && size == len && size > 8)) - size -= 4; - /* work-around for errata 10 and it applies - * to all controllers in PCI-X mode - * The fix is to make sure that the first descriptor of a - * packet is smaller than 2048 - 16 - 16 (or 2016) bytes - */ - if (unlikely((hw->bus_type == e1000_bus_type_pcix) && - (size > 2015) && count == 0)) - size = 2015; - - /* Workaround for potential 82544 hang in PCI-X. Avoid - * terminating buffers within evenly-aligned dwords. */ - if (unlikely(adapter->pcix_82544 && - !((unsigned long)(skb->data + offset + size - 1) & 4) && - size > 4)) - size -= 4; - - buffer_info->length = size; - /* set time_stamp *before* dma to help avoid a possible race */ - buffer_info->time_stamp = jiffies; - buffer_info->mapped_as_page = false; - buffer_info->dma = dma_map_single(&pdev->dev, - skb->data + offset, - size, DMA_TO_DEVICE); - if (dma_mapping_error(&pdev->dev, buffer_info->dma)) - goto dma_error; - buffer_info->next_to_watch = i; - - len -= size; - offset += size; - count++; - if (len) { - i++; - if (unlikely(i == tx_ring->count)) - i = 0; - } - } - - for (f = 0; f < nr_frags; f++) { - struct skb_frag_struct *frag; - - frag = &skb_shinfo(skb)->frags[f]; - len = frag->size; - offset = frag->page_offset; - - while (len) { - i++; - if (unlikely(i == tx_ring->count)) - i = 0; - - buffer_info = &tx_ring->buffer_info[i]; - size = min(len, max_per_txd); - /* Workaround for premature desc write-backs - * in TSO mode. Append 4-byte sentinel desc */ - if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8)) - size -= 4; - /* Workaround for potential 82544 hang in PCI-X. - * Avoid terminating buffers within evenly-aligned - * dwords. */ - if (unlikely(adapter->pcix_82544 && - !((unsigned long)(page_to_phys(frag->page) + offset - + size - 1) & 4) && - size > 4)) - size -= 4; - - buffer_info->length = size; - buffer_info->time_stamp = jiffies; - buffer_info->mapped_as_page = true; - buffer_info->dma = dma_map_page(&pdev->dev, frag->page, - offset, size, - DMA_TO_DEVICE); - if (dma_mapping_error(&pdev->dev, buffer_info->dma)) - goto dma_error; - buffer_info->next_to_watch = i; - - len -= size; - offset += size; - count++; - } - } - - tx_ring->buffer_info[i].skb = skb; - tx_ring->buffer_info[first].next_to_watch = i; - - return count; - -dma_error: - dev_err(&pdev->dev, "TX DMA map failed\n"); - buffer_info->dma = 0; - if (count) - count--; - - while (count--) { - if (i==0) - i += tx_ring->count; - i--; - buffer_info = &tx_ring->buffer_info[i]; - e1000_unmap_and_free_tx_resource(adapter, buffer_info); - } - - return 0; -} - -static void e1000_tx_queue(struct e1000_adapter *adapter, - struct e1000_tx_ring *tx_ring, int tx_flags, - int count) -{ - struct e1000_hw *hw = &adapter->hw; - struct e1000_tx_desc *tx_desc = NULL; - struct e1000_buffer *buffer_info; - u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; - unsigned int i; - - if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { - txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | - E1000_TXD_CMD_TSE; - txd_upper |= E1000_TXD_POPTS_TXSM << 8; - - if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) - txd_upper |= E1000_TXD_POPTS_IXSM << 8; - } - - if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { - txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; - txd_upper |= E1000_TXD_POPTS_TXSM << 8; - } - - if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { - txd_lower |= E1000_TXD_CMD_VLE; - txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); - } - - i = tx_ring->next_to_use; - - while (count--) { - buffer_info = &tx_ring->buffer_info[i]; - tx_desc = E1000_TX_DESC(*tx_ring, i); - tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); - tx_desc->lower.data = - cpu_to_le32(txd_lower | buffer_info->length); - tx_desc->upper.data = cpu_to_le32(txd_upper); - if (unlikely(++i == tx_ring->count)) i = 0; - } - - tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); - - /* Force memory writes to complete before letting h/w - * know there are new descriptors to fetch. (Only - * applicable for weak-ordered memory model archs, - * such as IA-64). */ - wmb(); - - tx_ring->next_to_use = i; - writel(i, hw->hw_addr + tx_ring->tdt); - /* we need this if more than one processor can write to our tail - * at a time, it syncronizes IO on IA64/Altix systems */ - mmiowb(); -} - -/** - * 82547 workaround to avoid controller hang in half-duplex environment. - * The workaround is to avoid queuing a large packet that would span - * the internal Tx FIFO ring boundary by notifying the stack to resend - * the packet at a later time. This gives the Tx FIFO an opportunity to - * flush all packets. When that occurs, we reset the Tx FIFO pointers - * to the beginning of the Tx FIFO. - **/ - -#define E1000_FIFO_HDR 0x10 -#define E1000_82547_PAD_LEN 0x3E0 - -static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, - struct sk_buff *skb) -{ - u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; - u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; - - skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); - - if (adapter->link_duplex != HALF_DUPLEX) - goto no_fifo_stall_required; - - if (atomic_read(&adapter->tx_fifo_stall)) - return 1; - - if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { - atomic_set(&adapter->tx_fifo_stall, 1); - return 1; - } - -no_fifo_stall_required: - adapter->tx_fifo_head += skb_fifo_len; - if (adapter->tx_fifo_head >= adapter->tx_fifo_size) - adapter->tx_fifo_head -= adapter->tx_fifo_size; - return 0; -} - -static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_tx_ring *tx_ring = adapter->tx_ring; - - netif_stop_queue(netdev); - /* Herbert's original patch had: - * smp_mb__after_netif_stop_queue(); - * but since that doesn't exist yet, just open code it. */ - smp_mb(); - - /* We need to check again in a case another CPU has just - * made room available. */ - if (likely(E1000_DESC_UNUSED(tx_ring) < size)) - return -EBUSY; - - /* A reprieve! */ - netif_start_queue(netdev); - ++adapter->restart_queue; - return 0; -} - -static int e1000_maybe_stop_tx(struct net_device *netdev, - struct e1000_tx_ring *tx_ring, int size) -{ - if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) - return 0; - return __e1000_maybe_stop_tx(netdev, size); -} - -#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) -static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, - struct net_device *netdev) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - struct e1000_tx_ring *tx_ring; - unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; - unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; - unsigned int tx_flags = 0; - unsigned int len = skb_headlen(skb); - unsigned int nr_frags; - unsigned int mss; - int count = 0; - int tso; - unsigned int f; - - /* This goes back to the question of how to logically map a tx queue - * to a flow. Right now, performance is impacted slightly negatively - * if using multiple tx queues. If the stack breaks away from a - * single qdisc implementation, we can look at this again. */ - tx_ring = adapter->tx_ring; - - if (unlikely(skb->len <= 0)) { - dev_kfree_skb_any(skb); - return NETDEV_TX_OK; - } - - mss = skb_shinfo(skb)->gso_size; - /* The controller does a simple calculation to - * make sure there is enough room in the FIFO before - * initiating the DMA for each buffer. The calc is: - * 4 = ceil(buffer len/mss). To make sure we don't - * overrun the FIFO, adjust the max buffer len if mss - * drops. */ - if (mss) { - u8 hdr_len; - max_per_txd = min(mss << 2, max_per_txd); - max_txd_pwr = fls(max_per_txd) - 1; - - hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); - if (skb->data_len && hdr_len == len) { - switch (hw->mac_type) { - unsigned int pull_size; - case e1000_82544: - /* Make sure we have room to chop off 4 bytes, - * and that the end alignment will work out to - * this hardware's requirements - * NOTE: this is a TSO only workaround - * if end byte alignment not correct move us - * into the next dword */ - if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4) - break; - /* fall through */ - pull_size = min((unsigned int)4, skb->data_len); - if (!__pskb_pull_tail(skb, pull_size)) { - e_err(drv, "__pskb_pull_tail " - "failed.\n"); - dev_kfree_skb_any(skb); - return NETDEV_TX_OK; - } - len = skb_headlen(skb); - break; - default: - /* do nothing */ - break; - } - } - } - - /* reserve a descriptor for the offload context */ - if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) - count++; - count++; - - /* Controller Erratum workaround */ - if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) - count++; - - count += TXD_USE_COUNT(len, max_txd_pwr); - - if (adapter->pcix_82544) - count++; - - /* work-around for errata 10 and it applies to all controllers - * in PCI-X mode, so add one more descriptor to the count - */ - if (unlikely((hw->bus_type == e1000_bus_type_pcix) && - (len > 2015))) - count++; - - nr_frags = skb_shinfo(skb)->nr_frags; - for (f = 0; f < nr_frags; f++) - count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, - max_txd_pwr); - if (adapter->pcix_82544) - count += nr_frags; - - /* need: count + 2 desc gap to keep tail from touching - * head, otherwise try next time */ - if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) - return NETDEV_TX_BUSY; - - if (unlikely(hw->mac_type == e1000_82547)) { - if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) { - netif_stop_queue(netdev); - if (!test_bit(__E1000_DOWN, &adapter->flags)) - mod_timer(&adapter->tx_fifo_stall_timer, - jiffies + 1); - return NETDEV_TX_BUSY; - } - } - - if (vlan_tx_tag_present(skb)) { - tx_flags |= E1000_TX_FLAGS_VLAN; - tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); - } - - first = tx_ring->next_to_use; - - tso = e1000_tso(adapter, tx_ring, skb); - if (tso < 0) { - dev_kfree_skb_any(skb); - return NETDEV_TX_OK; - } - - if (likely(tso)) { - if (likely(hw->mac_type != e1000_82544)) - tx_ring->last_tx_tso = 1; - tx_flags |= E1000_TX_FLAGS_TSO; - } else if (likely(e1000_tx_csum(adapter, tx_ring, skb))) - tx_flags |= E1000_TX_FLAGS_CSUM; - - if (likely(skb->protocol == htons(ETH_P_IP))) - tx_flags |= E1000_TX_FLAGS_IPV4; - - count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, - nr_frags, mss); - - if (count) { - e1000_tx_queue(adapter, tx_ring, tx_flags, count); - /* Make sure there is space in the ring for the next send. */ - e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2); - - } else { - dev_kfree_skb_any(skb); - tx_ring->buffer_info[first].time_stamp = 0; - tx_ring->next_to_use = first; - } - - return NETDEV_TX_OK; -} - -/** - * e1000_tx_timeout - Respond to a Tx Hang - * @netdev: network interface device structure - **/ - -static void e1000_tx_timeout(struct net_device *netdev) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - - /* Do the reset outside of interrupt context */ - adapter->tx_timeout_count++; - schedule_work(&adapter->reset_task); -} - -static void e1000_reset_task(struct work_struct *work) -{ - struct e1000_adapter *adapter = - container_of(work, struct e1000_adapter, reset_task); - - e1000_reinit_safe(adapter); -} - -/** - * e1000_get_stats - Get System Network Statistics - * @netdev: network interface device structure - * - * Returns the address of the device statistics structure. - * The statistics are actually updated from the timer callback. - **/ - -static struct net_device_stats *e1000_get_stats(struct net_device *netdev) -{ - /* only return the current stats */ - return &netdev->stats; -} - -/** - * e1000_change_mtu - Change the Maximum Transfer Unit - * @netdev: network interface device structure - * @new_mtu: new value for maximum frame size - * - * Returns 0 on success, negative on failure - **/ - -static int e1000_change_mtu(struct net_device *netdev, int new_mtu) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; - - if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || - (max_frame > MAX_JUMBO_FRAME_SIZE)) { - e_err(probe, "Invalid MTU setting\n"); - return -EINVAL; - } - - /* Adapter-specific max frame size limits. */ - switch (hw->mac_type) { - case e1000_undefined ... e1000_82542_rev2_1: - if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) { - e_err(probe, "Jumbo Frames not supported.\n"); - return -EINVAL; - } - break; - default: - /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ - break; - } - - while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) - msleep(1); - /* e1000_down has a dependency on max_frame_size */ - hw->max_frame_size = max_frame; - if (netif_running(netdev)) - e1000_down(adapter); - - /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN - * means we reserve 2 more, this pushes us to allocate from the next - * larger slab size. - * i.e. RXBUFFER_2048 --> size-4096 slab - * however with the new *_jumbo_rx* routines, jumbo receives will use - * fragmented skbs */ - - if (max_frame <= E1000_RXBUFFER_2048) - adapter->rx_buffer_len = E1000_RXBUFFER_2048; - else -#if (PAGE_SIZE >= E1000_RXBUFFER_16384) - adapter->rx_buffer_len = E1000_RXBUFFER_16384; -#elif (PAGE_SIZE >= E1000_RXBUFFER_4096) - adapter->rx_buffer_len = PAGE_SIZE; -#endif - - /* adjust allocation if LPE protects us, and we aren't using SBP */ - if (!hw->tbi_compatibility_on && - ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) || - (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) - adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; - - pr_info("%s changing MTU from %d to %d\n", - netdev->name, netdev->mtu, new_mtu); - netdev->mtu = new_mtu; - - if (netif_running(netdev)) - e1000_up(adapter); - else - e1000_reset(adapter); - - clear_bit(__E1000_RESETTING, &adapter->flags); - - return 0; -} - -/** - * e1000_update_stats - Update the board statistics counters - * @adapter: board private structure - **/ - -void e1000_update_stats(struct e1000_adapter *adapter) -{ - struct net_device *netdev = adapter->netdev; - struct e1000_hw *hw = &adapter->hw; - struct pci_dev *pdev = adapter->pdev; - unsigned long flags; - u16 phy_tmp; - -#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF - - /* - * Prevent stats update while adapter is being reset, or if the pci - * connection is down. - */ - if (adapter->link_speed == 0) - return; - if (pci_channel_offline(pdev)) - return; - - spin_lock_irqsave(&adapter->stats_lock, flags); - - /* these counters are modified from e1000_tbi_adjust_stats, - * called from the interrupt context, so they must only - * be written while holding adapter->stats_lock - */ - - adapter->stats.crcerrs += er32(CRCERRS); - adapter->stats.gprc += er32(GPRC); - adapter->stats.gorcl += er32(GORCL); - adapter->stats.gorch += er32(GORCH); - adapter->stats.bprc += er32(BPRC); - adapter->stats.mprc += er32(MPRC); - adapter->stats.roc += er32(ROC); - - adapter->stats.prc64 += er32(PRC64); - adapter->stats.prc127 += er32(PRC127); - adapter->stats.prc255 += er32(PRC255); - adapter->stats.prc511 += er32(PRC511); - adapter->stats.prc1023 += er32(PRC1023); - adapter->stats.prc1522 += er32(PRC1522); - - adapter->stats.symerrs += er32(SYMERRS); - adapter->stats.mpc += er32(MPC); - adapter->stats.scc += er32(SCC); - adapter->stats.ecol += er32(ECOL); - adapter->stats.mcc += er32(MCC); - adapter->stats.latecol += er32(LATECOL); - adapter->stats.dc += er32(DC); - adapter->stats.sec += er32(SEC); - adapter->stats.rlec += er32(RLEC); - adapter->stats.xonrxc += er32(XONRXC); - adapter->stats.xontxc += er32(XONTXC); - adapter->stats.xoffrxc += er32(XOFFRXC); - adapter->stats.xofftxc += er32(XOFFTXC); - adapter->stats.fcruc += er32(FCRUC); - adapter->stats.gptc += er32(GPTC); - adapter->stats.gotcl += er32(GOTCL); - adapter->stats.gotch += er32(GOTCH); - adapter->stats.rnbc += er32(RNBC); - adapter->stats.ruc += er32(RUC); - adapter->stats.rfc += er32(RFC); - adapter->stats.rjc += er32(RJC); - adapter->stats.torl += er32(TORL); - adapter->stats.torh += er32(TORH); - adapter->stats.totl += er32(TOTL); - adapter->stats.toth += er32(TOTH); - adapter->stats.tpr += er32(TPR); - - adapter->stats.ptc64 += er32(PTC64); - adapter->stats.ptc127 += er32(PTC127); - adapter->stats.ptc255 += er32(PTC255); - adapter->stats.ptc511 += er32(PTC511); - adapter->stats.ptc1023 += er32(PTC1023); - adapter->stats.ptc1522 += er32(PTC1522); - - adapter->stats.mptc += er32(MPTC); - adapter->stats.bptc += er32(BPTC); - - /* used for adaptive IFS */ - - hw->tx_packet_delta = er32(TPT); - adapter->stats.tpt += hw->tx_packet_delta; - hw->collision_delta = er32(COLC); - adapter->stats.colc += hw->collision_delta; - - if (hw->mac_type >= e1000_82543) { - adapter->stats.algnerrc += er32(ALGNERRC); - adapter->stats.rxerrc += er32(RXERRC); - adapter->stats.tncrs += er32(TNCRS); - adapter->stats.cexterr += er32(CEXTERR); - adapter->stats.tsctc += er32(TSCTC); - adapter->stats.tsctfc += er32(TSCTFC); - } - - /* Fill out the OS statistics structure */ - netdev->stats.multicast = adapter->stats.mprc; - netdev->stats.collisions = adapter->stats.colc; - - /* Rx Errors */ - - /* RLEC on some newer hardware can be incorrect so build - * our own version based on RUC and ROC */ - netdev->stats.rx_errors = adapter->stats.rxerrc + - adapter->stats.crcerrs + adapter->stats.algnerrc + - adapter->stats.ruc + adapter->stats.roc + - adapter->stats.cexterr; - adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; - netdev->stats.rx_length_errors = adapter->stats.rlerrc; - netdev->stats.rx_crc_errors = adapter->stats.crcerrs; - netdev->stats.rx_frame_errors = adapter->stats.algnerrc; - netdev->stats.rx_missed_errors = adapter->stats.mpc; - - /* Tx Errors */ - adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; - netdev->stats.tx_errors = adapter->stats.txerrc; - netdev->stats.tx_aborted_errors = adapter->stats.ecol; - netdev->stats.tx_window_errors = adapter->stats.latecol; - netdev->stats.tx_carrier_errors = adapter->stats.tncrs; - if (hw->bad_tx_carr_stats_fd && - adapter->link_duplex == FULL_DUPLEX) { - netdev->stats.tx_carrier_errors = 0; - adapter->stats.tncrs = 0; - } - - /* Tx Dropped needs to be maintained elsewhere */ - - /* Phy Stats */ - if (hw->media_type == e1000_media_type_copper) { - if ((adapter->link_speed == SPEED_1000) && - (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { - phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; - adapter->phy_stats.idle_errors += phy_tmp; - } - - if ((hw->mac_type <= e1000_82546) && - (hw->phy_type == e1000_phy_m88) && - !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) - adapter->phy_stats.receive_errors += phy_tmp; - } - - /* Management Stats */ - if (hw->has_smbus) { - adapter->stats.mgptc += er32(MGTPTC); - adapter->stats.mgprc += er32(MGTPRC); - adapter->stats.mgpdc += er32(MGTPDC); - } - - spin_unlock_irqrestore(&adapter->stats_lock, flags); -} - -/** - * e1000_intr - Interrupt Handler - * @irq: interrupt number - * @data: pointer to a network interface device structure - **/ - -static irqreturn_t e1000_intr(int irq, void *data) -{ - struct net_device *netdev = data; - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u32 icr = er32(ICR); - - if (unlikely((!icr))) - return IRQ_NONE; /* Not our interrupt */ - - /* - * we might have caused the interrupt, but the above - * read cleared it, and just in case the driver is - * down there is nothing to do so return handled - */ - if (unlikely(test_bit(__E1000_DOWN, &adapter->flags))) - return IRQ_HANDLED; - - if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { - hw->get_link_status = 1; - /* guard against interrupt when we're going down */ - if (!test_bit(__E1000_DOWN, &adapter->flags)) - mod_timer(&adapter->watchdog_timer, jiffies + 1); - } - - /* disable interrupts, without the synchronize_irq bit */ - ew32(IMC, ~0); - E1000_WRITE_FLUSH(); - - if (likely(napi_schedule_prep(&adapter->napi))) { - adapter->total_tx_bytes = 0; - adapter->total_tx_packets = 0; - adapter->total_rx_bytes = 0; - adapter->total_rx_packets = 0; - __napi_schedule(&adapter->napi); - } else { - /* this really should not happen! if it does it is basically a - * bug, but not a hard error, so enable ints and continue */ - if (!test_bit(__E1000_DOWN, &adapter->flags)) - e1000_irq_enable(adapter); - } - - return IRQ_HANDLED; -} - -/** - * e1000_clean - NAPI Rx polling callback - * @adapter: board private structure - **/ -static int e1000_clean(struct napi_struct *napi, int budget) -{ - struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); - int tx_clean_complete = 0, work_done = 0; - - tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); - - adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget); - - if (!tx_clean_complete) - work_done = budget; - - /* If budget not fully consumed, exit the polling mode */ - if (work_done < budget) { - if (likely(adapter->itr_setting & 3)) - e1000_set_itr(adapter); - napi_complete(napi); - if (!test_bit(__E1000_DOWN, &adapter->flags)) - e1000_irq_enable(adapter); - } - - return work_done; -} - -/** - * e1000_clean_tx_irq - Reclaim resources after transmit completes - * @adapter: board private structure - **/ -static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, - struct e1000_tx_ring *tx_ring) -{ - struct e1000_hw *hw = &adapter->hw; - struct net_device *netdev = adapter->netdev; - struct e1000_tx_desc *tx_desc, *eop_desc; - struct e1000_buffer *buffer_info; - unsigned int i, eop; - unsigned int count = 0; - unsigned int total_tx_bytes=0, total_tx_packets=0; - - i = tx_ring->next_to_clean; - eop = tx_ring->buffer_info[i].next_to_watch; - eop_desc = E1000_TX_DESC(*tx_ring, eop); - - while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && - (count < tx_ring->count)) { - bool cleaned = false; - rmb(); /* read buffer_info after eop_desc */ - for ( ; !cleaned; count++) { - tx_desc = E1000_TX_DESC(*tx_ring, i); - buffer_info = &tx_ring->buffer_info[i]; - cleaned = (i == eop); - - if (cleaned) { - struct sk_buff *skb = buffer_info->skb; - unsigned int segs, bytecount; - segs = skb_shinfo(skb)->gso_segs ?: 1; - /* multiply data chunks by size of headers */ - bytecount = ((segs - 1) * skb_headlen(skb)) + - skb->len; - total_tx_packets += segs; - total_tx_bytes += bytecount; - } - e1000_unmap_and_free_tx_resource(adapter, buffer_info); - tx_desc->upper.data = 0; - - if (unlikely(++i == tx_ring->count)) i = 0; - } - - eop = tx_ring->buffer_info[i].next_to_watch; - eop_desc = E1000_TX_DESC(*tx_ring, eop); - } - - tx_ring->next_to_clean = i; - -#define TX_WAKE_THRESHOLD 32 - if (unlikely(count && netif_carrier_ok(netdev) && - E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { - /* Make sure that anybody stopping the queue after this - * sees the new next_to_clean. - */ - smp_mb(); - - if (netif_queue_stopped(netdev) && - !(test_bit(__E1000_DOWN, &adapter->flags))) { - netif_wake_queue(netdev); - ++adapter->restart_queue; - } - } - - if (adapter->detect_tx_hung) { - /* Detect a transmit hang in hardware, this serializes the - * check with the clearing of time_stamp and movement of i */ - adapter->detect_tx_hung = false; - if (tx_ring->buffer_info[eop].time_stamp && - time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + - (adapter->tx_timeout_factor * HZ)) && - !(er32(STATUS) & E1000_STATUS_TXOFF)) { - - /* detected Tx unit hang */ - e_err(drv, "Detected Tx Unit Hang\n" - " Tx Queue <%lu>\n" - " TDH <%x>\n" - " TDT <%x>\n" - " next_to_use <%x>\n" - " next_to_clean <%x>\n" - "buffer_info[next_to_clean]\n" - " time_stamp <%lx>\n" - " next_to_watch <%x>\n" - " jiffies <%lx>\n" - " next_to_watch.status <%x>\n", - (unsigned long)((tx_ring - adapter->tx_ring) / - sizeof(struct e1000_tx_ring)), - readl(hw->hw_addr + tx_ring->tdh), - readl(hw->hw_addr + tx_ring->tdt), - tx_ring->next_to_use, - tx_ring->next_to_clean, - tx_ring->buffer_info[eop].time_stamp, - eop, - jiffies, - eop_desc->upper.fields.status); - netif_stop_queue(netdev); - } - } - adapter->total_tx_bytes += total_tx_bytes; - adapter->total_tx_packets += total_tx_packets; - netdev->stats.tx_bytes += total_tx_bytes; - netdev->stats.tx_packets += total_tx_packets; - return count < tx_ring->count; -} - -/** - * e1000_rx_checksum - Receive Checksum Offload for 82543 - * @adapter: board private structure - * @status_err: receive descriptor status and error fields - * @csum: receive descriptor csum field - * @sk_buff: socket buffer with received data - **/ - -static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, - u32 csum, struct sk_buff *skb) -{ - struct e1000_hw *hw = &adapter->hw; - u16 status = (u16)status_err; - u8 errors = (u8)(status_err >> 24); - - skb_checksum_none_assert(skb); - - /* 82543 or newer only */ - if (unlikely(hw->mac_type < e1000_82543)) return; - /* Ignore Checksum bit is set */ - if (unlikely(status & E1000_RXD_STAT_IXSM)) return; - /* TCP/UDP checksum error bit is set */ - if (unlikely(errors & E1000_RXD_ERR_TCPE)) { - /* let the stack verify checksum errors */ - adapter->hw_csum_err++; - return; - } - /* TCP/UDP Checksum has not been calculated */ - if (!(status & E1000_RXD_STAT_TCPCS)) - return; - - /* It must be a TCP or UDP packet with a valid checksum */ - if (likely(status & E1000_RXD_STAT_TCPCS)) { - /* TCP checksum is good */ - skb->ip_summed = CHECKSUM_UNNECESSARY; - } - adapter->hw_csum_good++; -} - -/** - * e1000_consume_page - helper function - **/ -static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, - u16 length) -{ - bi->page = NULL; - skb->len += length; - skb->data_len += length; - skb->truesize += length; -} - -/** - * e1000_receive_skb - helper function to handle rx indications - * @adapter: board private structure - * @status: descriptor status field as written by hardware - * @vlan: descriptor vlan field as written by hardware (no le/be conversion) - * @skb: pointer to sk_buff to be indicated to stack - */ -static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status, - __le16 vlan, struct sk_buff *skb) -{ - skb->protocol = eth_type_trans(skb, adapter->netdev); - - if (status & E1000_RXD_STAT_VP) { - u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; - - __vlan_hwaccel_put_tag(skb, vid); - } - napi_gro_receive(&adapter->napi, skb); -} - -/** - * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy - * @adapter: board private structure - * @rx_ring: ring to clean - * @work_done: amount of napi work completed this call - * @work_to_do: max amount of work allowed for this call to do - * - * the return value indicates whether actual cleaning was done, there - * is no guarantee that everything was cleaned - */ -static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, - struct e1000_rx_ring *rx_ring, - int *work_done, int work_to_do) -{ - struct e1000_hw *hw = &adapter->hw; - struct net_device *netdev = adapter->netdev; - struct pci_dev *pdev = adapter->pdev; - struct e1000_rx_desc *rx_desc, *next_rxd; - struct e1000_buffer *buffer_info, *next_buffer; - unsigned long irq_flags; - u32 length; - unsigned int i; - int cleaned_count = 0; - bool cleaned = false; - unsigned int total_rx_bytes=0, total_rx_packets=0; - - i = rx_ring->next_to_clean; - rx_desc = E1000_RX_DESC(*rx_ring, i); - buffer_info = &rx_ring->buffer_info[i]; - - while (rx_desc->status & E1000_RXD_STAT_DD) { - struct sk_buff *skb; - u8 status; - - if (*work_done >= work_to_do) - break; - (*work_done)++; - rmb(); /* read descriptor and rx_buffer_info after status DD */ - - status = rx_desc->status; - skb = buffer_info->skb; - buffer_info->skb = NULL; - - if (++i == rx_ring->count) i = 0; - next_rxd = E1000_RX_DESC(*rx_ring, i); - prefetch(next_rxd); - - next_buffer = &rx_ring->buffer_info[i]; - - cleaned = true; - cleaned_count++; - dma_unmap_page(&pdev->dev, buffer_info->dma, - buffer_info->length, DMA_FROM_DEVICE); - buffer_info->dma = 0; - - length = le16_to_cpu(rx_desc->length); - - /* errors is only valid for DD + EOP descriptors */ - if (unlikely((status & E1000_RXD_STAT_EOP) && - (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { - u8 last_byte = *(skb->data + length - 1); - if (TBI_ACCEPT(hw, status, rx_desc->errors, length, - last_byte)) { - spin_lock_irqsave(&adapter->stats_lock, - irq_flags); - e1000_tbi_adjust_stats(hw, &adapter->stats, - length, skb->data); - spin_unlock_irqrestore(&adapter->stats_lock, - irq_flags); - length--; - } else { - /* recycle both page and skb */ - buffer_info->skb = skb; - /* an error means any chain goes out the window - * too */ - if (rx_ring->rx_skb_top) - dev_kfree_skb(rx_ring->rx_skb_top); - rx_ring->rx_skb_top = NULL; - goto next_desc; - } - } - -#define rxtop rx_ring->rx_skb_top - if (!(status & E1000_RXD_STAT_EOP)) { - /* this descriptor is only the beginning (or middle) */ - if (!rxtop) { - /* this is the beginning of a chain */ - rxtop = skb; - skb_fill_page_desc(rxtop, 0, buffer_info->page, - 0, length); - } else { - /* this is the middle of a chain */ - skb_fill_page_desc(rxtop, - skb_shinfo(rxtop)->nr_frags, - buffer_info->page, 0, length); - /* re-use the skb, only consumed the page */ - buffer_info->skb = skb; - } - e1000_consume_page(buffer_info, rxtop, length); - goto next_desc; - } else { - if (rxtop) { - /* end of the chain */ - skb_fill_page_desc(rxtop, - skb_shinfo(rxtop)->nr_frags, - buffer_info->page, 0, length); - /* re-use the current skb, we only consumed the - * page */ - buffer_info->skb = skb; - skb = rxtop; - rxtop = NULL; - e1000_consume_page(buffer_info, skb, length); - } else { - /* no chain, got EOP, this buf is the packet - * copybreak to save the put_page/alloc_page */ - if (length <= copybreak && - skb_tailroom(skb) >= length) { - u8 *vaddr; - vaddr = kmap_atomic(buffer_info->page, - KM_SKB_DATA_SOFTIRQ); - memcpy(skb_tail_pointer(skb), vaddr, length); - kunmap_atomic(vaddr, - KM_SKB_DATA_SOFTIRQ); - /* re-use the page, so don't erase - * buffer_info->page */ - skb_put(skb, length); - } else { - skb_fill_page_desc(skb, 0, - buffer_info->page, 0, - length); - e1000_consume_page(buffer_info, skb, - length); - } - } - } - - /* Receive Checksum Offload XXX recompute due to CRC strip? */ - e1000_rx_checksum(adapter, - (u32)(status) | - ((u32)(rx_desc->errors) << 24), - le16_to_cpu(rx_desc->csum), skb); - - pskb_trim(skb, skb->len - 4); - - /* probably a little skewed due to removing CRC */ - total_rx_bytes += skb->len; - total_rx_packets++; - - /* eth type trans needs skb->data to point to something */ - if (!pskb_may_pull(skb, ETH_HLEN)) { - e_err(drv, "pskb_may_pull failed.\n"); - dev_kfree_skb(skb); - goto next_desc; - } - - e1000_receive_skb(adapter, status, rx_desc->special, skb); - -next_desc: - rx_desc->status = 0; - - /* return some buffers to hardware, one at a time is too slow */ - if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { - adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); - cleaned_count = 0; - } - - /* use prefetched values */ - rx_desc = next_rxd; - buffer_info = next_buffer; - } - rx_ring->next_to_clean = i; - - cleaned_count = E1000_DESC_UNUSED(rx_ring); - if (cleaned_count) - adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); - - adapter->total_rx_packets += total_rx_packets; - adapter->total_rx_bytes += total_rx_bytes; - netdev->stats.rx_bytes += total_rx_bytes; - netdev->stats.rx_packets += total_rx_packets; - return cleaned; -} - -/* - * this should improve performance for small packets with large amounts - * of reassembly being done in the stack - */ -static void e1000_check_copybreak(struct net_device *netdev, - struct e1000_buffer *buffer_info, - u32 length, struct sk_buff **skb) -{ - struct sk_buff *new_skb; - - if (length > copybreak) - return; - - new_skb = netdev_alloc_skb_ip_align(netdev, length); - if (!new_skb) - return; - - skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN, - (*skb)->data - NET_IP_ALIGN, - length + NET_IP_ALIGN); - /* save the skb in buffer_info as good */ - buffer_info->skb = *skb; - *skb = new_skb; -} - -/** - * e1000_clean_rx_irq - Send received data up the network stack; legacy - * @adapter: board private structure - * @rx_ring: ring to clean - * @work_done: amount of napi work completed this call - * @work_to_do: max amount of work allowed for this call to do - */ -static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, - struct e1000_rx_ring *rx_ring, - int *work_done, int work_to_do) -{ - struct e1000_hw *hw = &adapter->hw; - struct net_device *netdev = adapter->netdev; - struct pci_dev *pdev = adapter->pdev; - struct e1000_rx_desc *rx_desc, *next_rxd; - struct e1000_buffer *buffer_info, *next_buffer; - unsigned long flags; - u32 length; - unsigned int i; - int cleaned_count = 0; - bool cleaned = false; - unsigned int total_rx_bytes=0, total_rx_packets=0; - - i = rx_ring->next_to_clean; - rx_desc = E1000_RX_DESC(*rx_ring, i); - buffer_info = &rx_ring->buffer_info[i]; - - while (rx_desc->status & E1000_RXD_STAT_DD) { - struct sk_buff *skb; - u8 status; - - if (*work_done >= work_to_do) - break; - (*work_done)++; - rmb(); /* read descriptor and rx_buffer_info after status DD */ - - status = rx_desc->status; - skb = buffer_info->skb; - buffer_info->skb = NULL; - - prefetch(skb->data - NET_IP_ALIGN); - - if (++i == rx_ring->count) i = 0; - next_rxd = E1000_RX_DESC(*rx_ring, i); - prefetch(next_rxd); - - next_buffer = &rx_ring->buffer_info[i]; - - cleaned = true; - cleaned_count++; - dma_unmap_single(&pdev->dev, buffer_info->dma, - buffer_info->length, DMA_FROM_DEVICE); - buffer_info->dma = 0; - - length = le16_to_cpu(rx_desc->length); - /* !EOP means multiple descriptors were used to store a single - * packet, if thats the case we need to toss it. In fact, we - * to toss every packet with the EOP bit clear and the next - * frame that _does_ have the EOP bit set, as it is by - * definition only a frame fragment - */ - if (unlikely(!(status & E1000_RXD_STAT_EOP))) - adapter->discarding = true; - - if (adapter->discarding) { - /* All receives must fit into a single buffer */ - e_dbg("Receive packet consumed multiple buffers\n"); - /* recycle */ - buffer_info->skb = skb; - if (status & E1000_RXD_STAT_EOP) - adapter->discarding = false; - goto next_desc; - } - - if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { - u8 last_byte = *(skb->data + length - 1); - if (TBI_ACCEPT(hw, status, rx_desc->errors, length, - last_byte)) { - spin_lock_irqsave(&adapter->stats_lock, flags); - e1000_tbi_adjust_stats(hw, &adapter->stats, - length, skb->data); - spin_unlock_irqrestore(&adapter->stats_lock, - flags); - length--; - } else { - /* recycle */ - buffer_info->skb = skb; - goto next_desc; - } - } - - /* adjust length to remove Ethernet CRC, this must be - * done after the TBI_ACCEPT workaround above */ - length -= 4; - - /* probably a little skewed due to removing CRC */ - total_rx_bytes += length; - total_rx_packets++; - - e1000_check_copybreak(netdev, buffer_info, length, &skb); - - skb_put(skb, length); - - /* Receive Checksum Offload */ - e1000_rx_checksum(adapter, - (u32)(status) | - ((u32)(rx_desc->errors) << 24), - le16_to_cpu(rx_desc->csum), skb); - - e1000_receive_skb(adapter, status, rx_desc->special, skb); - -next_desc: - rx_desc->status = 0; - - /* return some buffers to hardware, one at a time is too slow */ - if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { - adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); - cleaned_count = 0; - } - - /* use prefetched values */ - rx_desc = next_rxd; - buffer_info = next_buffer; - } - rx_ring->next_to_clean = i; - - cleaned_count = E1000_DESC_UNUSED(rx_ring); - if (cleaned_count) - adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); - - adapter->total_rx_packets += total_rx_packets; - adapter->total_rx_bytes += total_rx_bytes; - netdev->stats.rx_bytes += total_rx_bytes; - netdev->stats.rx_packets += total_rx_packets; - return cleaned; -} - -/** - * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers - * @adapter: address of board private structure - * @rx_ring: pointer to receive ring structure - * @cleaned_count: number of buffers to allocate this pass - **/ - -static void -e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, - struct e1000_rx_ring *rx_ring, int cleaned_count) -{ - struct net_device *netdev = adapter->netdev; - struct pci_dev *pdev = adapter->pdev; - struct e1000_rx_desc *rx_desc; - struct e1000_buffer *buffer_info; - struct sk_buff *skb; - unsigned int i; - unsigned int bufsz = 256 - 16 /*for skb_reserve */ ; - - i = rx_ring->next_to_use; - buffer_info = &rx_ring->buffer_info[i]; - - while (cleaned_count--) { - skb = buffer_info->skb; - if (skb) { - skb_trim(skb, 0); - goto check_page; - } - - skb = netdev_alloc_skb_ip_align(netdev, bufsz); - if (unlikely(!skb)) { - /* Better luck next round */ - adapter->alloc_rx_buff_failed++; - break; - } - - /* Fix for errata 23, can't cross 64kB boundary */ - if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { - struct sk_buff *oldskb = skb; - e_err(rx_err, "skb align check failed: %u bytes at " - "%p\n", bufsz, skb->data); - /* Try again, without freeing the previous */ - skb = netdev_alloc_skb_ip_align(netdev, bufsz); - /* Failed allocation, critical failure */ - if (!skb) { - dev_kfree_skb(oldskb); - adapter->alloc_rx_buff_failed++; - break; - } - - if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { - /* give up */ - dev_kfree_skb(skb); - dev_kfree_skb(oldskb); - break; /* while (cleaned_count--) */ - } - - /* Use new allocation */ - dev_kfree_skb(oldskb); - } - buffer_info->skb = skb; - buffer_info->length = adapter->rx_buffer_len; -check_page: - /* allocate a new page if necessary */ - if (!buffer_info->page) { - buffer_info->page = alloc_page(GFP_ATOMIC); - if (unlikely(!buffer_info->page)) { - adapter->alloc_rx_buff_failed++; - break; - } - } - - if (!buffer_info->dma) { - buffer_info->dma = dma_map_page(&pdev->dev, - buffer_info->page, 0, - buffer_info->length, - DMA_FROM_DEVICE); - if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { - put_page(buffer_info->page); - dev_kfree_skb(skb); - buffer_info->page = NULL; - buffer_info->skb = NULL; - buffer_info->dma = 0; - adapter->alloc_rx_buff_failed++; - break; /* while !buffer_info->skb */ - } - } - - rx_desc = E1000_RX_DESC(*rx_ring, i); - rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); - - if (unlikely(++i == rx_ring->count)) - i = 0; - buffer_info = &rx_ring->buffer_info[i]; - } - - if (likely(rx_ring->next_to_use != i)) { - rx_ring->next_to_use = i; - if (unlikely(i-- == 0)) - i = (rx_ring->count - 1); - - /* Force memory writes to complete before letting h/w - * know there are new descriptors to fetch. (Only - * applicable for weak-ordered memory model archs, - * such as IA-64). */ - wmb(); - writel(i, adapter->hw.hw_addr + rx_ring->rdt); - } -} - -/** - * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended - * @adapter: address of board private structure - **/ - -static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, - struct e1000_rx_ring *rx_ring, - int cleaned_count) -{ - struct e1000_hw *hw = &adapter->hw; - struct net_device *netdev = adapter->netdev; - struct pci_dev *pdev = adapter->pdev; - struct e1000_rx_desc *rx_desc; - struct e1000_buffer *buffer_info; - struct sk_buff *skb; - unsigned int i; - unsigned int bufsz = adapter->rx_buffer_len; - - i = rx_ring->next_to_use; - buffer_info = &rx_ring->buffer_info[i]; - - while (cleaned_count--) { - skb = buffer_info->skb; - if (skb) { - skb_trim(skb, 0); - goto map_skb; - } - - skb = netdev_alloc_skb_ip_align(netdev, bufsz); - if (unlikely(!skb)) { - /* Better luck next round */ - adapter->alloc_rx_buff_failed++; - break; - } - - /* Fix for errata 23, can't cross 64kB boundary */ - if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { - struct sk_buff *oldskb = skb; - e_err(rx_err, "skb align check failed: %u bytes at " - "%p\n", bufsz, skb->data); - /* Try again, without freeing the previous */ - skb = netdev_alloc_skb_ip_align(netdev, bufsz); - /* Failed allocation, critical failure */ - if (!skb) { - dev_kfree_skb(oldskb); - adapter->alloc_rx_buff_failed++; - break; - } - - if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { - /* give up */ - dev_kfree_skb(skb); - dev_kfree_skb(oldskb); - adapter->alloc_rx_buff_failed++; - break; /* while !buffer_info->skb */ - } - - /* Use new allocation */ - dev_kfree_skb(oldskb); - } - buffer_info->skb = skb; - buffer_info->length = adapter->rx_buffer_len; -map_skb: - buffer_info->dma = dma_map_single(&pdev->dev, - skb->data, - buffer_info->length, - DMA_FROM_DEVICE); - if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { - dev_kfree_skb(skb); - buffer_info->skb = NULL; - buffer_info->dma = 0; - adapter->alloc_rx_buff_failed++; - break; /* while !buffer_info->skb */ - } - - /* - * XXX if it was allocated cleanly it will never map to a - * boundary crossing - */ - - /* Fix for errata 23, can't cross 64kB boundary */ - if (!e1000_check_64k_bound(adapter, - (void *)(unsigned long)buffer_info->dma, - adapter->rx_buffer_len)) { - e_err(rx_err, "dma align check failed: %u bytes at " - "%p\n", adapter->rx_buffer_len, - (void *)(unsigned long)buffer_info->dma); - dev_kfree_skb(skb); - buffer_info->skb = NULL; - - dma_unmap_single(&pdev->dev, buffer_info->dma, - adapter->rx_buffer_len, - DMA_FROM_DEVICE); - buffer_info->dma = 0; - - adapter->alloc_rx_buff_failed++; - break; /* while !buffer_info->skb */ - } - rx_desc = E1000_RX_DESC(*rx_ring, i); - rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); - - if (unlikely(++i == rx_ring->count)) - i = 0; - buffer_info = &rx_ring->buffer_info[i]; - } - - if (likely(rx_ring->next_to_use != i)) { - rx_ring->next_to_use = i; - if (unlikely(i-- == 0)) - i = (rx_ring->count - 1); - - /* Force memory writes to complete before letting h/w - * know there are new descriptors to fetch. (Only - * applicable for weak-ordered memory model archs, - * such as IA-64). */ - wmb(); - writel(i, hw->hw_addr + rx_ring->rdt); - } -} - -/** - * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. - * @adapter: - **/ - -static void e1000_smartspeed(struct e1000_adapter *adapter) -{ - struct e1000_hw *hw = &adapter->hw; - u16 phy_status; - u16 phy_ctrl; - - if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || - !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) - return; - - if (adapter->smartspeed == 0) { - /* If Master/Slave config fault is asserted twice, - * we assume back-to-back */ - e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); - if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; - e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); - if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; - e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); - if (phy_ctrl & CR_1000T_MS_ENABLE) { - phy_ctrl &= ~CR_1000T_MS_ENABLE; - e1000_write_phy_reg(hw, PHY_1000T_CTRL, - phy_ctrl); - adapter->smartspeed++; - if (!e1000_phy_setup_autoneg(hw) && - !e1000_read_phy_reg(hw, PHY_CTRL, - &phy_ctrl)) { - phy_ctrl |= (MII_CR_AUTO_NEG_EN | - MII_CR_RESTART_AUTO_NEG); - e1000_write_phy_reg(hw, PHY_CTRL, - phy_ctrl); - } - } - return; - } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { - /* If still no link, perhaps using 2/3 pair cable */ - e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); - phy_ctrl |= CR_1000T_MS_ENABLE; - e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); - if (!e1000_phy_setup_autoneg(hw) && - !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { - phy_ctrl |= (MII_CR_AUTO_NEG_EN | - MII_CR_RESTART_AUTO_NEG); - e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); - } - } - /* Restart process after E1000_SMARTSPEED_MAX iterations */ - if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) - adapter->smartspeed = 0; -} - -/** - * e1000_ioctl - - * @netdev: - * @ifreq: - * @cmd: - **/ - -static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) -{ - switch (cmd) { - case SIOCGMIIPHY: - case SIOCGMIIREG: - case SIOCSMIIREG: - return e1000_mii_ioctl(netdev, ifr, cmd); - default: - return -EOPNOTSUPP; - } -} - -/** - * e1000_mii_ioctl - - * @netdev: - * @ifreq: - * @cmd: - **/ - -static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, - int cmd) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - struct mii_ioctl_data *data = if_mii(ifr); - int retval; - u16 mii_reg; - unsigned long flags; - - if (hw->media_type != e1000_media_type_copper) - return -EOPNOTSUPP; - - switch (cmd) { - case SIOCGMIIPHY: - data->phy_id = hw->phy_addr; - break; - case SIOCGMIIREG: - spin_lock_irqsave(&adapter->stats_lock, flags); - if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, - &data->val_out)) { - spin_unlock_irqrestore(&adapter->stats_lock, flags); - return -EIO; - } - spin_unlock_irqrestore(&adapter->stats_lock, flags); - break; - case SIOCSMIIREG: - if (data->reg_num & ~(0x1F)) - return -EFAULT; - mii_reg = data->val_in; - spin_lock_irqsave(&adapter->stats_lock, flags); - if (e1000_write_phy_reg(hw, data->reg_num, - mii_reg)) { - spin_unlock_irqrestore(&adapter->stats_lock, flags); - return -EIO; - } - spin_unlock_irqrestore(&adapter->stats_lock, flags); - if (hw->media_type == e1000_media_type_copper) { - switch (data->reg_num) { - case PHY_CTRL: - if (mii_reg & MII_CR_POWER_DOWN) - break; - if (mii_reg & MII_CR_AUTO_NEG_EN) { - hw->autoneg = 1; - hw->autoneg_advertised = 0x2F; - } else { - u32 speed; - if (mii_reg & 0x40) - speed = SPEED_1000; - else if (mii_reg & 0x2000) - speed = SPEED_100; - else - speed = SPEED_10; - retval = e1000_set_spd_dplx( - adapter, speed, - ((mii_reg & 0x100) - ? DUPLEX_FULL : - DUPLEX_HALF)); - if (retval) - return retval; - } - if (netif_running(adapter->netdev)) - e1000_reinit_locked(adapter); - else - e1000_reset(adapter); - break; - case M88E1000_PHY_SPEC_CTRL: - case M88E1000_EXT_PHY_SPEC_CTRL: - if (e1000_phy_reset(hw)) - return -EIO; - break; - } - } else { - switch (data->reg_num) { - case PHY_CTRL: - if (mii_reg & MII_CR_POWER_DOWN) - break; - if (netif_running(adapter->netdev)) - e1000_reinit_locked(adapter); - else - e1000_reset(adapter); - break; - } - } - break; - default: - return -EOPNOTSUPP; - } - return E1000_SUCCESS; -} - -void e1000_pci_set_mwi(struct e1000_hw *hw) -{ - struct e1000_adapter *adapter = hw->back; - int ret_val = pci_set_mwi(adapter->pdev); - - if (ret_val) - e_err(probe, "Error in setting MWI\n"); -} - -void e1000_pci_clear_mwi(struct e1000_hw *hw) -{ - struct e1000_adapter *adapter = hw->back; - - pci_clear_mwi(adapter->pdev); -} - -int e1000_pcix_get_mmrbc(struct e1000_hw *hw) -{ - struct e1000_adapter *adapter = hw->back; - return pcix_get_mmrbc(adapter->pdev); -} - -void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) -{ - struct e1000_adapter *adapter = hw->back; - pcix_set_mmrbc(adapter->pdev, mmrbc); -} - -void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) -{ - outl(value, port); -} - -static bool e1000_vlan_used(struct e1000_adapter *adapter) -{ - u16 vid; - - for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) - return true; - return false; -} - -static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, - bool filter_on) -{ - struct e1000_hw *hw = &adapter->hw; - u32 rctl; - - if (!test_bit(__E1000_DOWN, &adapter->flags)) - e1000_irq_disable(adapter); - - if (filter_on) { - /* enable VLAN receive filtering */ - rctl = er32(RCTL); - rctl &= ~E1000_RCTL_CFIEN; - if (!(adapter->netdev->flags & IFF_PROMISC)) - rctl |= E1000_RCTL_VFE; - ew32(RCTL, rctl); - e1000_update_mng_vlan(adapter); - } else { - /* disable VLAN receive filtering */ - rctl = er32(RCTL); - rctl &= ~E1000_RCTL_VFE; - ew32(RCTL, rctl); - } - - if (!test_bit(__E1000_DOWN, &adapter->flags)) - e1000_irq_enable(adapter); -} - -static void e1000_vlan_mode(struct net_device *netdev, u32 features) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u32 ctrl; - - if (!test_bit(__E1000_DOWN, &adapter->flags)) - e1000_irq_disable(adapter); - - ctrl = er32(CTRL); - if (features & NETIF_F_HW_VLAN_RX) { - /* enable VLAN tag insert/strip */ - ctrl |= E1000_CTRL_VME; - } else { - /* disable VLAN tag insert/strip */ - ctrl &= ~E1000_CTRL_VME; - } - ew32(CTRL, ctrl); - - if (!test_bit(__E1000_DOWN, &adapter->flags)) - e1000_irq_enable(adapter); -} - -static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u32 vfta, index; - - if ((hw->mng_cookie.status & - E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && - (vid == adapter->mng_vlan_id)) - return; - - if (!e1000_vlan_used(adapter)) - e1000_vlan_filter_on_off(adapter, true); - - /* add VID to filter table */ - index = (vid >> 5) & 0x7F; - vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); - vfta |= (1 << (vid & 0x1F)); - e1000_write_vfta(hw, index, vfta); - - set_bit(vid, adapter->active_vlans); -} - -static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u32 vfta, index; - - if (!test_bit(__E1000_DOWN, &adapter->flags)) - e1000_irq_disable(adapter); - if (!test_bit(__E1000_DOWN, &adapter->flags)) - e1000_irq_enable(adapter); - - /* remove VID from filter table */ - index = (vid >> 5) & 0x7F; - vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); - vfta &= ~(1 << (vid & 0x1F)); - e1000_write_vfta(hw, index, vfta); - - clear_bit(vid, adapter->active_vlans); - - if (!e1000_vlan_used(adapter)) - e1000_vlan_filter_on_off(adapter, false); -} - -static void e1000_restore_vlan(struct e1000_adapter *adapter) -{ - u16 vid; - - if (!e1000_vlan_used(adapter)) - return; - - e1000_vlan_filter_on_off(adapter, true); - for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) - e1000_vlan_rx_add_vid(adapter->netdev, vid); -} - -int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) -{ - struct e1000_hw *hw = &adapter->hw; - - hw->autoneg = 0; - - /* Make sure dplx is at most 1 bit and lsb of speed is not set - * for the switch() below to work */ - if ((spd & 1) || (dplx & ~1)) - goto err_inval; - - /* Fiber NICs only allow 1000 gbps Full duplex */ - if ((hw->media_type == e1000_media_type_fiber) && - spd != SPEED_1000 && - dplx != DUPLEX_FULL) - goto err_inval; - - switch (spd + dplx) { - case SPEED_10 + DUPLEX_HALF: - hw->forced_speed_duplex = e1000_10_half; - break; - case SPEED_10 + DUPLEX_FULL: - hw->forced_speed_duplex = e1000_10_full; - break; - case SPEED_100 + DUPLEX_HALF: - hw->forced_speed_duplex = e1000_100_half; - break; - case SPEED_100 + DUPLEX_FULL: - hw->forced_speed_duplex = e1000_100_full; - break; - case SPEED_1000 + DUPLEX_FULL: - hw->autoneg = 1; - hw->autoneg_advertised = ADVERTISE_1000_FULL; - break; - case SPEED_1000 + DUPLEX_HALF: /* not supported */ - default: - goto err_inval; - } - return 0; - -err_inval: - e_err(probe, "Unsupported Speed/Duplex configuration\n"); - return -EINVAL; -} - -static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) -{ - struct net_device *netdev = pci_get_drvdata(pdev); - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u32 ctrl, ctrl_ext, rctl, status; - u32 wufc = adapter->wol; -#ifdef CONFIG_PM - int retval = 0; -#endif - - netif_device_detach(netdev); - - if (netif_running(netdev)) { - WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); - e1000_down(adapter); - } - -#ifdef CONFIG_PM - retval = pci_save_state(pdev); - if (retval) - return retval; -#endif - - status = er32(STATUS); - if (status & E1000_STATUS_LU) - wufc &= ~E1000_WUFC_LNKC; - - if (wufc) { - e1000_setup_rctl(adapter); - e1000_set_rx_mode(netdev); - - /* turn on all-multi mode if wake on multicast is enabled */ - if (wufc & E1000_WUFC_MC) { - rctl = er32(RCTL); - rctl |= E1000_RCTL_MPE; - ew32(RCTL, rctl); - } - - if (hw->mac_type >= e1000_82540) { - ctrl = er32(CTRL); - /* advertise wake from D3Cold */ - #define E1000_CTRL_ADVD3WUC 0x00100000 - /* phy power management enable */ - #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 - ctrl |= E1000_CTRL_ADVD3WUC | - E1000_CTRL_EN_PHY_PWR_MGMT; - ew32(CTRL, ctrl); - } - - if (hw->media_type == e1000_media_type_fiber || - hw->media_type == e1000_media_type_internal_serdes) { - /* keep the laser running in D3 */ - ctrl_ext = er32(CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; - ew32(CTRL_EXT, ctrl_ext); - } - - ew32(WUC, E1000_WUC_PME_EN); - ew32(WUFC, wufc); - } else { - ew32(WUC, 0); - ew32(WUFC, 0); - } - - e1000_release_manageability(adapter); - - *enable_wake = !!wufc; - - /* make sure adapter isn't asleep if manageability is enabled */ - if (adapter->en_mng_pt) - *enable_wake = true; - - if (netif_running(netdev)) - e1000_free_irq(adapter); - - pci_disable_device(pdev); - - return 0; -} - -#ifdef CONFIG_PM -static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) -{ - int retval; - bool wake; - - retval = __e1000_shutdown(pdev, &wake); - if (retval) - return retval; - - if (wake) { - pci_prepare_to_sleep(pdev); - } else { - pci_wake_from_d3(pdev, false); - pci_set_power_state(pdev, PCI_D3hot); - } - - return 0; -} - -static int e1000_resume(struct pci_dev *pdev) -{ - struct net_device *netdev = pci_get_drvdata(pdev); - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - u32 err; - - pci_set_power_state(pdev, PCI_D0); - pci_restore_state(pdev); - pci_save_state(pdev); - - if (adapter->need_ioport) - err = pci_enable_device(pdev); - else - err = pci_enable_device_mem(pdev); - if (err) { - pr_err("Cannot enable PCI device from suspend\n"); - return err; - } - pci_set_master(pdev); - - pci_enable_wake(pdev, PCI_D3hot, 0); - pci_enable_wake(pdev, PCI_D3cold, 0); - - if (netif_running(netdev)) { - err = e1000_request_irq(adapter); - if (err) - return err; - } - - e1000_power_up_phy(adapter); - e1000_reset(adapter); - ew32(WUS, ~0); - - e1000_init_manageability(adapter); - - if (netif_running(netdev)) - e1000_up(adapter); - - netif_device_attach(netdev); - - return 0; -} -#endif - -static void e1000_shutdown(struct pci_dev *pdev) -{ - bool wake; - - __e1000_shutdown(pdev, &wake); - - if (system_state == SYSTEM_POWER_OFF) { - pci_wake_from_d3(pdev, wake); - pci_set_power_state(pdev, PCI_D3hot); - } -} - -#ifdef CONFIG_NET_POLL_CONTROLLER -/* - * Polling 'interrupt' - used by things like netconsole to send skbs - * without having to re-enable interrupts. It's not called while - * the interrupt routine is executing. - */ -static void e1000_netpoll(struct net_device *netdev) -{ - struct e1000_adapter *adapter = netdev_priv(netdev); - - disable_irq(adapter->pdev->irq); - e1000_intr(adapter->pdev->irq, netdev); - enable_irq(adapter->pdev->irq); -} -#endif - -/** - * e1000_io_error_detected - called when PCI error is detected - * @pdev: Pointer to PCI device - * @state: The current pci connection state - * - * This function is called after a PCI bus error affecting - * this device has been detected. - */ -static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, - pci_channel_state_t state) -{ - struct net_device *netdev = pci_get_drvdata(pdev); - struct e1000_adapter *adapter = netdev_priv(netdev); - - netif_device_detach(netdev); - - if (state == pci_channel_io_perm_failure) - return PCI_ERS_RESULT_DISCONNECT; - - if (netif_running(netdev)) - e1000_down(adapter); - pci_disable_device(pdev); - - /* Request a slot slot reset. */ - return PCI_ERS_RESULT_NEED_RESET; -} - -/** - * e1000_io_slot_reset - called after the pci bus has been reset. - * @pdev: Pointer to PCI device - * - * Restart the card from scratch, as if from a cold-boot. Implementation - * resembles the first-half of the e1000_resume routine. - */ -static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) -{ - struct net_device *netdev = pci_get_drvdata(pdev); - struct e1000_adapter *adapter = netdev_priv(netdev); - struct e1000_hw *hw = &adapter->hw; - int err; - - if (adapter->need_ioport) - err = pci_enable_device(pdev); - else - err = pci_enable_device_mem(pdev); - if (err) { - pr_err("Cannot re-enable PCI device after reset.\n"); - return PCI_ERS_RESULT_DISCONNECT; - } - pci_set_master(pdev); - - pci_enable_wake(pdev, PCI_D3hot, 0); - pci_enable_wake(pdev, PCI_D3cold, 0); - - e1000_reset(adapter); - ew32(WUS, ~0); - - return PCI_ERS_RESULT_RECOVERED; -} - -/** - * e1000_io_resume - called when traffic can start flowing again. - * @pdev: Pointer to PCI device - * - * This callback is called when the error recovery driver tells us that - * its OK to resume normal operation. Implementation resembles the - * second-half of the e1000_resume routine. - */ -static void e1000_io_resume(struct pci_dev *pdev) -{ - struct net_device *netdev = pci_get_drvdata(pdev); - struct e1000_adapter *adapter = netdev_priv(netdev); - - e1000_init_manageability(adapter); - - if (netif_running(netdev)) { - if (e1000_up(adapter)) { - pr_info("can't bring device back up after reset\n"); - return; - } - } - - netif_device_attach(netdev); -} - -/* e1000_main.c */ diff --git a/drivers/net/e1000/e1000_osdep.h b/drivers/net/e1000/e1000_osdep.h deleted file mode 100644 index 33e7c45a4fe4..000000000000 --- a/drivers/net/e1000/e1000_osdep.h +++ /dev/null @@ -1,109 +0,0 @@ -/******************************************************************************* - - Intel PRO/1000 Linux driver - Copyright(c) 1999 - 2006 Intel Corporation. - - This program is free software; you can redistribute it and/or modify it - under the terms and conditions of the GNU General Public License, - version 2, as published by the Free Software Foundation. - - This program is distributed in the hope it will be useful, but WITHOUT - ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - more details. - - You should have received a copy of the GNU General Public License along with - this program; if not, write to the Free Software Foundation, Inc., - 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - - The full GNU General Public License is included in this distribution in - the file called "COPYING". - - Contact Information: - Linux NICS <linux.nics@intel.com> - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - - -/* glue for the OS independent part of e1000 - * includes register access macros - */ - -#ifndef _E1000_OSDEP_H_ -#define _E1000_OSDEP_H_ - -#include <asm/io.h> - -#define CONFIG_RAM_BASE 0x60000 -#define GBE_CONFIG_OFFSET 0x0 - -#define GBE_CONFIG_RAM_BASE \ - ((unsigned int)(CONFIG_RAM_BASE + GBE_CONFIG_OFFSET)) - -#define GBE_CONFIG_BASE_VIRT \ - ((void __iomem *)phys_to_virt(GBE_CONFIG_RAM_BASE)) - -#define GBE_CONFIG_FLASH_WRITE(base, offset, count, data) \ - (iowrite16_rep(base + offset, data, count)) - -#define GBE_CONFIG_FLASH_READ(base, offset, count, data) \ - (ioread16_rep(base + (offset << 1), data, count)) - -#define er32(reg) \ - (readl(hw->hw_addr + ((hw->mac_type >= e1000_82543) \ - ? E1000_##reg : E1000_82542_##reg))) - -#define ew32(reg, value) \ - (writel((value), (hw->hw_addr + ((hw->mac_type >= e1000_82543) \ - ? E1000_##reg : E1000_82542_##reg)))) - -#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) ( \ - writel((value), ((a)->hw_addr + \ - (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ - ((offset) << 2)))) - -#define E1000_READ_REG_ARRAY(a, reg, offset) ( \ - readl((a)->hw_addr + \ - (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ - ((offset) << 2))) - -#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY -#define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY - -#define E1000_WRITE_REG_ARRAY_WORD(a, reg, offset, value) ( \ - writew((value), ((a)->hw_addr + \ - (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ - ((offset) << 1)))) - -#define E1000_READ_REG_ARRAY_WORD(a, reg, offset) ( \ - readw((a)->hw_addr + \ - (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ - ((offset) << 1))) - -#define E1000_WRITE_REG_ARRAY_BYTE(a, reg, offset, value) ( \ - writeb((value), ((a)->hw_addr + \ - (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ - (offset)))) - -#define E1000_READ_REG_ARRAY_BYTE(a, reg, offset) ( \ - readb((a)->hw_addr + \ - (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ - (offset))) - -#define E1000_WRITE_FLUSH() er32(STATUS) - -#define E1000_WRITE_ICH_FLASH_REG(a, reg, value) ( \ - writel((value), ((a)->flash_address + reg))) - -#define E1000_READ_ICH_FLASH_REG(a, reg) ( \ - readl((a)->flash_address + reg)) - -#define E1000_WRITE_ICH_FLASH_REG16(a, reg, value) ( \ - writew((value), ((a)->flash_address + reg))) - -#define E1000_READ_ICH_FLASH_REG16(a, reg) ( \ - readw((a)->flash_address + reg)) - -#endif /* _E1000_OSDEP_H_ */ diff --git a/drivers/net/e1000/e1000_param.c b/drivers/net/e1000/e1000_param.c deleted file mode 100644 index 1301eba8b57a..000000000000 --- a/drivers/net/e1000/e1000_param.c +++ /dev/null @@ -1,755 +0,0 @@ -/******************************************************************************* - - Intel PRO/1000 Linux driver - Copyright(c) 1999 - 2006 Intel Corporation. - - This program is free software; you can redistribute it and/or modify it - under the terms and conditions of the GNU General Public License, - version 2, as published by the Free Software Foundation. - - This program is distributed in the hope it will be useful, but WITHOUT - ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - more details. - - You should have received a copy of the GNU General Public License along with - this program; if not, write to the Free Software Foundation, Inc., - 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. - - The full GNU General Public License is included in this distribution in - the file called "COPYING". - - Contact Information: - Linux NICS <linux.nics@intel.com> - e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> - Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 - -*******************************************************************************/ - -#include "e1000.h" - -/* This is the only thing that needs to be changed to adjust the - * maximum number of ports that the driver can manage. - */ - -#define E1000_MAX_NIC 32 - -#define OPTION_UNSET -1 -#define OPTION_DISABLED 0 -#define OPTION_ENABLED 1 - -/* All parameters are treated the same, as an integer array of values. - * This macro just reduces the need to repeat the same declaration code - * over and over (plus this helps to avoid typo bugs). - */ - -#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET } -#define E1000_PARAM(X, desc) \ - static int __devinitdata X[E1000_MAX_NIC+1] = E1000_PARAM_INIT; \ - static unsigned int num_##X; \ - module_param_array_named(X, X, int, &num_##X, 0); \ - MODULE_PARM_DESC(X, desc); - -/* Transmit Descriptor Count - * - * Valid Range: 80-256 for 82542 and 82543 gigabit ethernet controllers - * Valid Range: 80-4096 for 82544 and newer - * - * Default Value: 256 - */ -E1000_PARAM(TxDescriptors, "Number of transmit descriptors"); - -/* Receive Descriptor Count - * - * Valid Range: 80-256 for 82542 and 82543 gigabit ethernet controllers - * Valid Range: 80-4096 for 82544 and newer - * - * Default Value: 256 - */ -E1000_PARAM(RxDescriptors, "Number of receive descriptors"); - -/* User Specified Speed Override - * - * Valid Range: 0, 10, 100, 1000 - * - 0 - auto-negotiate at all supported speeds - * - 10 - only link at 10 Mbps - * - 100 - only link at 100 Mbps - * - 1000 - only link at 1000 Mbps - * - * Default Value: 0 - */ -E1000_PARAM(Speed, "Speed setting"); - -/* User Specified Duplex Override - * - * Valid Range: 0-2 - * - 0 - auto-negotiate for duplex - * - 1 - only link at half duplex - * - 2 - only link at full duplex - * - * Default Value: 0 - */ -E1000_PARAM(Duplex, "Duplex setting"); - -/* Auto-negotiation Advertisement Override - * - * Valid Range: 0x01-0x0F, 0x20-0x2F (copper); 0x20 (fiber) - * - * The AutoNeg value is a bit mask describing which speed and duplex - * combinations should be advertised during auto-negotiation. - * The supported speed and duplex modes are listed below - * - * Bit 7 6 5 4 3 2 1 0 - * Speed (Mbps) N/A N/A 1000 N/A 100 100 10 10 - * Duplex Full Full Half Full Half - * - * Default Value: 0x2F (copper); 0x20 (fiber) - */ -E1000_PARAM(AutoNeg, "Advertised auto-negotiation setting"); -#define AUTONEG_ADV_DEFAULT 0x2F -#define AUTONEG_ADV_MASK 0x2F - -/* User Specified Flow Control Override - * - * Valid Range: 0-3 - * - 0 - No Flow Control - * - 1 - Rx only, respond to PAUSE frames but do not generate them - * - 2 - Tx only, generate PAUSE frames but ignore them on receive - * - 3 - Full Flow Control Support - * - * Default Value: Read flow control settings from the EEPROM - */ -E1000_PARAM(FlowControl, "Flow Control setting"); -#define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL - -/* XsumRX - Receive Checksum Offload Enable/Disable - * - * Valid Range: 0, 1 - * - 0 - disables all checksum offload - * - 1 - enables receive IP/TCP/UDP checksum offload - * on 82543 and newer -based NICs - * - * Default Value: 1 - */ -E1000_PARAM(XsumRX, "Disable or enable Receive Checksum offload"); - -/* Transmit Interrupt Delay in units of 1.024 microseconds - * Tx interrupt delay needs to typically be set to something non zero - * - * Valid Range: 0-65535 - */ -E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay"); -#define DEFAULT_TIDV 8 -#define MAX_TXDELAY 0xFFFF -#define MIN_TXDELAY 0 - -/* Transmit Absolute Interrupt Delay in units of 1.024 microseconds - * - * Valid Range: 0-65535 - */ -E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay"); -#define DEFAULT_TADV 32 -#define MAX_TXABSDELAY 0xFFFF -#define MIN_TXABSDELAY 0 - -/* Receive Interrupt Delay in units of 1.024 microseconds - * hardware will likely hang if you set this to anything but zero. - * - * Valid Range: 0-65535 - */ -E1000_PARAM(RxIntDelay, "Receive Interrupt Delay"); -#define DEFAULT_RDTR 0 -#define MAX_RXDELAY 0xFFFF -#define MIN_RXDELAY 0 - -/* Receive Absolute Interrupt Delay in units of 1.024 microseconds - * - * Valid Range: 0-65535 - */ -E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay"); -#define DEFAULT_RADV 8 -#define MAX_RXABSDELAY 0xFFFF -#define MIN_RXABSDELAY 0 - -/* Interrupt Throttle Rate (interrupts/sec) - * - * Valid Range: 100-100000 (0=off, 1=dynamic, 3=dynamic conservative) - */ -E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate"); -#define DEFAULT_ITR 3 -#define MAX_ITR 100000 -#define MIN_ITR 100 - -/* Enable Smart Power Down of the PHY - * - * Valid Range: 0, 1 - * - * Default Value: 0 (disabled) - */ -E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down"); - -struct e1000_option { - enum { enable_option, range_option, list_option } type; - const char *name; - const char *err; - int def; - union { - struct { /* range_option info */ - int min; - int max; - } r; - struct { /* list_option info */ - int nr; - const struct e1000_opt_list { int i; char *str; } *p; - } l; - } arg; -}; - -static int __devinit e1000_validate_option(unsigned int *value, - const struct e1000_option *opt, - struct e1000_adapter *adapter) -{ - if (*value == OPTION_UNSET) { - *value = opt->def; - return 0; - } - - switch (opt->type) { - case enable_option: - switch (*value) { - case OPTION_ENABLED: - e_dev_info("%s Enabled\n", opt->name); - return 0; - case OPTION_DISABLED: - e_dev_info("%s Disabled\n", opt->name); - return 0; - } - break; - case range_option: - if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) { - e_dev_info("%s set to %i\n", opt->name, *value); - return 0; - } - break; - case list_option: { - int i; - const struct e1000_opt_list *ent; - - for (i = 0; i < opt->arg.l.nr; i++) { - ent = &opt->arg.l.p[i]; - if (*value == ent->i) { - if (ent->str[0] != '\0') - e_dev_info("%s\n", ent->str); - return 0; - } - } - } - break; - default: - BUG(); - } - - e_dev_info("Invalid %s value specified (%i) %s\n", - opt->name, *value, opt->err); - *value = opt->def; - return -1; -} - -static void e1000_check_fiber_options(struct e1000_adapter *adapter); -static void e1000_check_copper_options(struct e1000_adapter *adapter); - -/** - * e1000_check_options - Range Checking for Command Line Parameters - * @adapter: board private structure - * - * This routine checks all command line parameters for valid user - * input. If an invalid value is given, or if no user specified - * value exists, a default value is used. The final value is stored - * in a variable in the adapter structure. - **/ - -void __devinit e1000_check_options(struct e1000_adapter *adapter) -{ - struct e1000_option opt; - int bd = adapter->bd_number; - - if (bd >= E1000_MAX_NIC) { - e_dev_warn("Warning: no configuration for board #%i " - "using defaults for all values\n", bd); - } - - { /* Transmit Descriptor Count */ - struct e1000_tx_ring *tx_ring = adapter->tx_ring; - int i; - e1000_mac_type mac_type = adapter->hw.mac_type; - - opt = (struct e1000_option) { - .type = range_option, - .name = "Transmit Descriptors", - .err = "using default of " - __MODULE_STRING(E1000_DEFAULT_TXD), - .def = E1000_DEFAULT_TXD, - .arg = { .r = { - .min = E1000_MIN_TXD, - .max = mac_type < e1000_82544 ? E1000_MAX_TXD : E1000_MAX_82544_TXD - }} - }; - - if (num_TxDescriptors > bd) { - tx_ring->count = TxDescriptors[bd]; - e1000_validate_option(&tx_ring->count, &opt, adapter); - tx_ring->count = ALIGN(tx_ring->count, - REQ_TX_DESCRIPTOR_MULTIPLE); - } else { - tx_ring->count = opt.def; - } - for (i = 0; i < adapter->num_tx_queues; i++) - tx_ring[i].count = tx_ring->count; - } - { /* Receive Descriptor Count */ - struct e1000_rx_ring *rx_ring = adapter->rx_ring; - int i; - e1000_mac_type mac_type = adapter->hw.mac_type; - - opt = (struct e1000_option) { - .type = range_option, - .name = "Receive Descriptors", - .err = "using default of " - __MODULE_STRING(E1000_DEFAULT_RXD), - .def = E1000_DEFAULT_RXD, - .arg = { .r = { - .min = E1000_MIN_RXD, - .max = mac_type < e1000_82544 ? E1000_MAX_RXD : E1000_MAX_82544_RXD - }} - }; - - if (num_RxDescriptors > bd) { - rx_ring->count = RxDescriptors[bd]; - e1000_validate_option(&rx_ring->count, &opt, adapter); - rx_ring->count = ALIGN(rx_ring->count, - REQ_RX_DESCRIPTOR_MULTIPLE); - } else { - rx_ring->count = opt.def; - } - for (i = 0; i < adapter->num_rx_queues; i++) - rx_ring[i].count = rx_ring->count; - } - { /* Checksum Offload Enable/Disable */ - opt = (struct e1000_option) { - .type = enable_option, - .name = "Checksum Offload", - .err = "defaulting to Enabled", - .def = OPTION_ENABLED - }; - - if (num_XsumRX > bd) { - unsigned int rx_csum = XsumRX[bd]; - e1000_validate_option(&rx_csum, &opt, adapter); - adapter->rx_csum = rx_csum; - } else { - adapter->rx_csum = opt.def; - } - } - { /* Flow Control */ - - static const struct e1000_opt_list fc_list[] = { - { E1000_FC_NONE, "Flow Control Disabled" }, - { E1000_FC_RX_PAUSE, "Flow Control Receive Only" }, - { E1000_FC_TX_PAUSE, "Flow Control Transmit Only" }, - { E1000_FC_FULL, "Flow Control Enabled" }, - { E1000_FC_DEFAULT, "Flow Control Hardware Default" } - }; - - opt = (struct e1000_option) { - .type = list_option, - .name = "Flow Control", - .err = "reading default settings from EEPROM", - .def = E1000_FC_DEFAULT, - .arg = { .l = { .nr = ARRAY_SIZE(fc_list), - .p = fc_list }} - }; - - if (num_FlowControl > bd) { - unsigned int fc = FlowControl[bd]; - e1000_validate_option(&fc, &opt, adapter); - adapter->hw.fc = adapter->hw.original_fc = fc; - } else { - adapter->hw.fc = adapter->hw.original_fc = opt.def; - } - } - { /* Transmit Interrupt Delay */ - opt = (struct e1000_option) { - .type = range_option, - .name = "Transmit Interrupt Delay", - .err = "using default of " __MODULE_STRING(DEFAULT_TIDV), - .def = DEFAULT_TIDV, - .arg = { .r = { .min = MIN_TXDELAY, - .max = MAX_TXDELAY }} - }; - - if (num_TxIntDelay > bd) { - adapter->tx_int_delay = TxIntDelay[bd]; - e1000_validate_option(&adapter->tx_int_delay, &opt, - adapter); - } else { - adapter->tx_int_delay = opt.def; - } - } - { /* Transmit Absolute Interrupt Delay */ - opt = (struct e1000_option) { - .type = range_option, - .name = "Transmit Absolute Interrupt Delay", - .err = "using default of " __MODULE_STRING(DEFAULT_TADV), - .def = DEFAULT_TADV, - .arg = { .r = { .min = MIN_TXABSDELAY, - .max = MAX_TXABSDELAY }} - }; - - if (num_TxAbsIntDelay > bd) { - adapter->tx_abs_int_delay = TxAbsIntDelay[bd]; - e1000_validate_option(&adapter->tx_abs_int_delay, &opt, - adapter); - } else { - adapter->tx_abs_int_delay = opt.def; - } - } - { /* Receive Interrupt Delay */ - opt = (struct e1000_option) { - .type = range_option, - .name = "Receive Interrupt Delay", - .err = "using default of " __MODULE_STRING(DEFAULT_RDTR), - .def = DEFAULT_RDTR, - .arg = { .r = { .min = MIN_RXDELAY, - .max = MAX_RXDELAY }} - }; - - if (num_RxIntDelay > bd) { - adapter->rx_int_delay = RxIntDelay[bd]; - e1000_validate_option(&adapter->rx_int_delay, &opt, - adapter); - } else { - adapter->rx_int_delay = opt.def; - } - } - { /* Receive Absolute Interrupt Delay */ - opt = (struct e1000_option) { - .type = range_option, - .name = "Receive Absolute Interrupt Delay", - .err = "using default of " __MODULE_STRING(DEFAULT_RADV), - .def = DEFAULT_RADV, - .arg = { .r = { .min = MIN_RXABSDELAY, - .max = MAX_RXABSDELAY }} - }; - - if (num_RxAbsIntDelay > bd) { - adapter->rx_abs_int_delay = RxAbsIntDelay[bd]; - e1000_validate_option(&adapter->rx_abs_int_delay, &opt, - adapter); - } else { - adapter->rx_abs_int_delay = opt.def; - } - } - { /* Interrupt Throttling Rate */ - opt = (struct e1000_option) { - .type = range_option, - .name = "Interrupt Throttling Rate (ints/sec)", - .err = "using default of " __MODULE_STRING(DEFAULT_ITR), - .def = DEFAULT_ITR, - .arg = { .r = { .min = MIN_ITR, - .max = MAX_ITR }} - }; - - if (num_InterruptThrottleRate > bd) { - adapter->itr = InterruptThrottleRate[bd]; - switch (adapter->itr) { - case 0: - e_dev_info("%s turned off\n", opt.name); - break; - case 1: - e_dev_info("%s set to dynamic mode\n", - opt.name); - adapter->itr_setting = adapter->itr; - adapter->itr = 20000; - break; - case 3: - e_dev_info("%s set to dynamic conservative " - "mode\n", opt.name); - adapter->itr_setting = adapter->itr; - adapter->itr = 20000; - break; - case 4: - e_dev_info("%s set to simplified " - "(2000-8000) ints mode\n", opt.name); - adapter->itr_setting = adapter->itr; - break; - default: - e1000_validate_option(&adapter->itr, &opt, - adapter); - /* save the setting, because the dynamic bits - * change itr. - * clear the lower two bits because they are - * used as control */ - adapter->itr_setting = adapter->itr & ~3; - break; - } - } else { - adapter->itr_setting = opt.def; - adapter->itr = 20000; - } - } - { /* Smart Power Down */ - opt = (struct e1000_option) { - .type = enable_option, - .name = "PHY Smart Power Down", - .err = "defaulting to Disabled", - .def = OPTION_DISABLED - }; - - if (num_SmartPowerDownEnable > bd) { - unsigned int spd = SmartPowerDownEnable[bd]; - e1000_validate_option(&spd, &opt, adapter); - adapter->smart_power_down = spd; - } else { - adapter->smart_power_down = opt.def; - } - } - - switch (adapter->hw.media_type) { - case e1000_media_type_fiber: - case e1000_media_type_internal_serdes: - e1000_check_fiber_options(adapter); - break; - case e1000_media_type_copper: - e1000_check_copper_options(adapter); - break; - default: - BUG(); - } -} - -/** - * e1000_check_fiber_options - Range Checking for Link Options, Fiber Version - * @adapter: board private structure - * - * Handles speed and duplex options on fiber adapters - **/ - -static void __devinit e1000_check_fiber_options(struct e1000_adapter *adapter) -{ - int bd = adapter->bd_number; - if (num_Speed > bd) { - e_dev_info("Speed not valid for fiber adapters, parameter " - "ignored\n"); - } - - if (num_Duplex > bd) { - e_dev_info("Duplex not valid for fiber adapters, parameter " - "ignored\n"); - } - - if ((num_AutoNeg > bd) && (AutoNeg[bd] != 0x20)) { - e_dev_info("AutoNeg other than 1000/Full is not valid for fiber" - "adapters, parameter ignored\n"); - } -} - -/** - * e1000_check_copper_options - Range Checking for Link Options, Copper Version - * @adapter: board private structure - * - * Handles speed and duplex options on copper adapters - **/ - -static void __devinit e1000_check_copper_options(struct e1000_adapter *adapter) -{ - struct e1000_option opt; - unsigned int speed, dplx, an; - int bd = adapter->bd_number; - - { /* Speed */ - static const struct e1000_opt_list speed_list[] = { - { 0, "" }, - { SPEED_10, "" }, - { SPEED_100, "" }, - { SPEED_1000, "" }}; - - opt = (struct e1000_option) { - .type = list_option, - .name = "Speed", - .err = "parameter ignored", - .def = 0, - .arg = { .l = { .nr = ARRAY_SIZE(speed_list), - .p = speed_list }} - }; - - if (num_Speed > bd) { - speed = Speed[bd]; - e1000_validate_option(&speed, &opt, adapter); - } else { - speed = opt.def; - } - } - { /* Duplex */ - static const struct e1000_opt_list dplx_list[] = { - { 0, "" }, - { HALF_DUPLEX, "" }, - { FULL_DUPLEX, "" }}; - - opt = (struct e1000_option) { - .type = list_option, - .name = "Duplex", - .err = "parameter ignored", - .def = 0, - .arg = { .l = { .nr = ARRAY_SIZE(dplx_list), - .p = dplx_list }} - }; - - if (num_Duplex > bd) { - dplx = Duplex[bd]; - e1000_validate_option(&dplx, &opt, adapter); - } else { - dplx = opt.def; - } - } - - if ((num_AutoNeg > bd) && (speed != 0 || dplx != 0)) { - e_dev_info("AutoNeg specified along with Speed or Duplex, " - "parameter ignored\n"); - adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT; - } else { /* Autoneg */ - static const struct e1000_opt_list an_list[] = - #define AA "AutoNeg advertising " - {{ 0x01, AA "10/HD" }, - { 0x02, AA "10/FD" }, - { 0x03, AA "10/FD, 10/HD" }, - { 0x04, AA "100/HD" }, - { 0x05, AA "100/HD, 10/HD" }, - { 0x06, AA "100/HD, 10/FD" }, - { 0x07, AA "100/HD, 10/FD, 10/HD" }, - { 0x08, AA "100/FD" }, - { 0x09, AA "100/FD, 10/HD" }, - { 0x0a, AA "100/FD, 10/FD" }, - { 0x0b, AA "100/FD, 10/FD, 10/HD" }, - { 0x0c, AA "100/FD, 100/HD" }, - { 0x0d, AA "100/FD, 100/HD, 10/HD" }, - { 0x0e, AA "100/FD, 100/HD, 10/FD" }, - { 0x0f, AA "100/FD, 100/HD, 10/FD, 10/HD" }, - { 0x20, AA "1000/FD" }, - { 0x21, AA "1000/FD, 10/HD" }, - { 0x22, AA "1000/FD, 10/FD" }, - { 0x23, AA "1000/FD, 10/FD, 10/HD" }, - { 0x24, AA "1000/FD, 100/HD" }, - { 0x25, AA "1000/FD, 100/HD, 10/HD" }, - { 0x26, AA "1000/FD, 100/HD, 10/FD" }, - { 0x27, AA "1000/FD, 100/HD, 10/FD, 10/HD" }, - { 0x28, AA "1000/FD, 100/FD" }, - { 0x29, AA "1000/FD, 100/FD, 10/HD" }, - { 0x2a, AA "1000/FD, 100/FD, 10/FD" }, - { 0x2b, AA "1000/FD, 100/FD, 10/FD, 10/HD" }, - { 0x2c, AA "1000/FD, 100/FD, 100/HD" }, - { 0x2d, AA "1000/FD, 100/FD, 100/HD, 10/HD" }, - { 0x2e, AA "1000/FD, 100/FD, 100/HD, 10/FD" }, - { 0x2f, AA "1000/FD, 100/FD, 100/HD, 10/FD, 10/HD" }}; - - opt = (struct e1000_option) { - .type = list_option, - .name = "AutoNeg", - .err = "parameter ignored", - .def = AUTONEG_ADV_DEFAULT, - .arg = { .l = { .nr = ARRAY_SIZE(an_list), - .p = an_list }} - }; - - if (num_AutoNeg > bd) { - an = AutoNeg[bd]; - e1000_validate_option(&an, &opt, adapter); - } else { - an = opt.def; - } - adapter->hw.autoneg_advertised = an; - } - - switch (speed + dplx) { - case 0: - adapter->hw.autoneg = adapter->fc_autoneg = 1; - if ((num_Speed > bd) && (speed != 0 || dplx != 0)) - e_dev_info("Speed and duplex autonegotiation " - "enabled\n"); - break; - case HALF_DUPLEX: - e_dev_info("Half Duplex specified without Speed\n"); - e_dev_info("Using Autonegotiation at Half Duplex only\n"); - adapter->hw.autoneg = adapter->fc_autoneg = 1; - adapter->hw.autoneg_advertised = ADVERTISE_10_HALF | - ADVERTISE_100_HALF; - break; - case FULL_DUPLEX: - e_dev_info("Full Duplex specified without Speed\n"); - e_dev_info("Using Autonegotiation at Full Duplex only\n"); - adapter->hw.autoneg = adapter->fc_autoneg = 1; - adapter->hw.autoneg_advertised = ADVERTISE_10_FULL | - ADVERTISE_100_FULL | - ADVERTISE_1000_FULL; - break; - case SPEED_10: - e_dev_info("10 Mbps Speed specified without Duplex\n"); - e_dev_info("Using Autonegotiation at 10 Mbps only\n"); - adapter->hw.autoneg = adapter->fc_autoneg = 1; - adapter->hw.autoneg_advertised = ADVERTISE_10_HALF | - ADVERTISE_10_FULL; - break; - case SPEED_10 + HALF_DUPLEX: - e_dev_info("Forcing to 10 Mbps Half Duplex\n"); - adapter->hw.autoneg = adapter->fc_autoneg = 0; - adapter->hw.forced_speed_duplex = e1000_10_half; - adapter->hw.autoneg_advertised = 0; - break; - case SPEED_10 + FULL_DUPLEX: - e_dev_info("Forcing to 10 Mbps Full Duplex\n"); - adapter->hw.autoneg = adapter->fc_autoneg = 0; - adapter->hw.forced_speed_duplex = e1000_10_full; - adapter->hw.autoneg_advertised = 0; - break; - case SPEED_100: - e_dev_info("100 Mbps Speed specified without Duplex\n"); - e_dev_info("Using Autonegotiation at 100 Mbps only\n"); - adapter->hw.autoneg = adapter->fc_autoneg = 1; - adapter->hw.autoneg_advertised = ADVERTISE_100_HALF | - ADVERTISE_100_FULL; - break; - case SPEED_100 + HALF_DUPLEX: - e_dev_info("Forcing to 100 Mbps Half Duplex\n"); - adapter->hw.autoneg = adapter->fc_autoneg = 0; - adapter->hw.forced_speed_duplex = e1000_100_half; - adapter->hw.autoneg_advertised = 0; - break; - case SPEED_100 + FULL_DUPLEX: - e_dev_info("Forcing to 100 Mbps Full Duplex\n"); - adapter->hw.autoneg = adapter->fc_autoneg = 0; - adapter->hw.forced_speed_duplex = e1000_100_full; - adapter->hw.autoneg_advertised = 0; - break; - case SPEED_1000: - e_dev_info("1000 Mbps Speed specified without Duplex\n"); - goto full_duplex_only; - case SPEED_1000 + HALF_DUPLEX: - e_dev_info("Half Duplex is not supported at 1000 Mbps\n"); - /* fall through */ - case SPEED_1000 + FULL_DUPLEX: -full_duplex_only: - e_dev_info("Using Autonegotiation at 1000 Mbps Full Duplex " - "only\n"); - adapter->hw.autoneg = adapter->fc_autoneg = 1; - adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL; - break; - default: - BUG(); - } - - /* Speed, AutoNeg and MDI/MDI-X must all play nice */ - if (e1000_validate_mdi_setting(&(adapter->hw)) < 0) { - e_dev_info("Speed, AutoNeg and MDI-X specs are incompatible. " - "Setting MDI-X to a compatible value.\n"); - } -} - |