diff options
author | SrujanaChalla <schalla@marvell.com> | 2020-03-13 14:47:07 +0300 |
---|---|---|
committer | Herbert Xu <herbert@gondor.apana.org.au> | 2020-03-20 06:36:52 +0300 |
commit | 10b4f09491bfeb0b298cb2f49df585510ee6189a (patch) | |
tree | 9b11e02fe5f9553fecd93939b09784f17e52f047 /drivers/crypto | |
parent | d9110b0b01ff1cd02751cd5c2c94e938a8906083 (diff) | |
download | linux-10b4f09491bfeb0b298cb2f49df585510ee6189a.tar.xz |
crypto: marvell - add the Virtual Function driver for CPT
Add support for the cryptographic accelerator unit virtual functions on
OcteonTX 83XX SoC.
Co-developed-by: Lukasz Bartosik <lbartosik@marvell.com>
Signed-off-by: Lukasz Bartosik <lbartosik@marvell.com>
Signed-off-by: SrujanaChalla <schalla@marvell.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Diffstat (limited to 'drivers/crypto')
-rw-r--r-- | drivers/crypto/marvell/octeontx/Makefile | 4 | ||||
-rw-r--r-- | drivers/crypto/marvell/octeontx/otx_cpt_hw_types.h | 577 | ||||
-rw-r--r-- | drivers/crypto/marvell/octeontx/otx_cptvf.h | 104 | ||||
-rw-r--r-- | drivers/crypto/marvell/octeontx/otx_cptvf_algs.c | 1744 | ||||
-rw-r--r-- | drivers/crypto/marvell/octeontx/otx_cptvf_algs.h | 188 | ||||
-rw-r--r-- | drivers/crypto/marvell/octeontx/otx_cptvf_main.c | 985 | ||||
-rw-r--r-- | drivers/crypto/marvell/octeontx/otx_cptvf_mbox.c | 247 | ||||
-rw-r--r-- | drivers/crypto/marvell/octeontx/otx_cptvf_reqmgr.c | 612 | ||||
-rw-r--r-- | drivers/crypto/marvell/octeontx/otx_cptvf_reqmgr.h | 227 |
9 files changed, 4686 insertions, 2 deletions
diff --git a/drivers/crypto/marvell/octeontx/Makefile b/drivers/crypto/marvell/octeontx/Makefile index 627d00eb9b3b..5e956fe1a85b 100644 --- a/drivers/crypto/marvell/octeontx/Makefile +++ b/drivers/crypto/marvell/octeontx/Makefile @@ -1,4 +1,6 @@ # SPDX-License-Identifier: GPL-2.0 -obj-$(CONFIG_CRYPTO_DEV_OCTEONTX_CPT) += octeontx-cpt.o +obj-$(CONFIG_CRYPTO_DEV_OCTEONTX_CPT) += octeontx-cpt.o octeontx-cptvf.o octeontx-cpt-objs := otx_cptpf_main.o otx_cptpf_mbox.o otx_cptpf_ucode.o +octeontx-cptvf-objs := otx_cptvf_main.o otx_cptvf_mbox.o otx_cptvf_reqmgr.o \ + otx_cptvf_algs.o diff --git a/drivers/crypto/marvell/octeontx/otx_cpt_hw_types.h b/drivers/crypto/marvell/octeontx/otx_cpt_hw_types.h index bec483fbfefd..b8bdb9f134f3 100644 --- a/drivers/crypto/marvell/octeontx/otx_cpt_hw_types.h +++ b/drivers/crypto/marvell/octeontx/otx_cpt_hw_types.h @@ -15,11 +15,19 @@ /* Device IDs */ #define OTX_CPT_PCI_PF_DEVICE_ID 0xa040 +#define OTX_CPT_PCI_VF_DEVICE_ID 0xa041 #define OTX_CPT_PCI_PF_SUBSYS_ID 0xa340 +#define OTX_CPT_PCI_VF_SUBSYS_ID 0xa341 /* Configuration and status registers are in BAR0 on OcteonTX platform */ #define OTX_CPT_PF_PCI_CFG_BAR 0 +#define OTX_CPT_VF_PCI_CFG_BAR 0 + +#define OTX_CPT_BAR_E_CPTX_VFX_BAR0_OFFSET(a, b) \ + (0x000020000000ll + 0x1000000000ll * (a) + 0x100000ll * (b)) +#define OTX_CPT_BAR_E_CPTX_VFX_BAR0_SIZE 0x400000 + /* Mailbox interrupts offset */ #define OTX_CPT_PF_MBOX_INT 3 #define OTX_CPT_PF_INT_VEC_E_MBOXX(x, a) ((x) + (a)) @@ -28,6 +36,19 @@ /* Maximum supported microcode groups */ #define OTX_CPT_MAX_ENGINE_GROUPS 8 +/* CPT instruction size in bytes */ +#define OTX_CPT_INST_SIZE 64 +/* CPT queue next chunk pointer size in bytes */ +#define OTX_CPT_NEXT_CHUNK_PTR_SIZE 8 + +/* OcteonTX CPT VF MSIX vectors and their offsets */ +#define OTX_CPT_VF_MSIX_VECTORS 2 +#define OTX_CPT_VF_INTR_MBOX_MASK BIT(0) +#define OTX_CPT_VF_INTR_DOVF_MASK BIT(1) +#define OTX_CPT_VF_INTR_IRDE_MASK BIT(2) +#define OTX_CPT_VF_INTR_NWRP_MASK BIT(3) +#define OTX_CPT_VF_INTR_SERR_MASK BIT(4) + /* OcteonTX CPT PF registers */ #define OTX_CPT_PF_CONSTANTS (0x0ll) #define OTX_CPT_PF_RESET (0x100ll) @@ -78,6 +99,190 @@ #define OTX_CPT_PF_VFX_MBOXX(b, c) (0x8001000ll | (u64)(b) << 20 | \ (u64)(c) << 8) +/* OcteonTX CPT VF registers */ +#define OTX_CPT_VQX_CTL(b) (0x100ll | (u64)(b) << 20) +#define OTX_CPT_VQX_SADDR(b) (0x200ll | (u64)(b) << 20) +#define OTX_CPT_VQX_DONE_WAIT(b) (0x400ll | (u64)(b) << 20) +#define OTX_CPT_VQX_INPROG(b) (0x410ll | (u64)(b) << 20) +#define OTX_CPT_VQX_DONE(b) (0x420ll | (u64)(b) << 20) +#define OTX_CPT_VQX_DONE_ACK(b) (0x440ll | (u64)(b) << 20) +#define OTX_CPT_VQX_DONE_INT_W1S(b) (0x460ll | (u64)(b) << 20) +#define OTX_CPT_VQX_DONE_INT_W1C(b) (0x468ll | (u64)(b) << 20) +#define OTX_CPT_VQX_DONE_ENA_W1S(b) (0x470ll | (u64)(b) << 20) +#define OTX_CPT_VQX_DONE_ENA_W1C(b) (0x478ll | (u64)(b) << 20) +#define OTX_CPT_VQX_MISC_INT(b) (0x500ll | (u64)(b) << 20) +#define OTX_CPT_VQX_MISC_INT_W1S(b) (0x508ll | (u64)(b) << 20) +#define OTX_CPT_VQX_MISC_ENA_W1S(b) (0x510ll | (u64)(b) << 20) +#define OTX_CPT_VQX_MISC_ENA_W1C(b) (0x518ll | (u64)(b) << 20) +#define OTX_CPT_VQX_DOORBELL(b) (0x600ll | (u64)(b) << 20) +#define OTX_CPT_VFX_PF_MBOXX(b, c) (0x1000ll | ((b) << 20) | ((c) << 3)) + +/* + * Enumeration otx_cpt_ucode_error_code_e + * + * Enumerates ucode errors + */ +enum otx_cpt_ucode_error_code_e { + CPT_NO_UCODE_ERROR = 0x00, + ERR_OPCODE_UNSUPPORTED = 0x01, + + /* Scatter gather */ + ERR_SCATTER_GATHER_WRITE_LENGTH = 0x02, + ERR_SCATTER_GATHER_LIST = 0x03, + ERR_SCATTER_GATHER_NOT_SUPPORTED = 0x04, + +}; + +/* + * Enumeration otx_cpt_comp_e + * + * CPT OcteonTX Completion Enumeration + * Enumerates the values of CPT_RES_S[COMPCODE]. + */ +enum otx_cpt_comp_e { + CPT_COMP_E_NOTDONE = 0x00, + CPT_COMP_E_GOOD = 0x01, + CPT_COMP_E_FAULT = 0x02, + CPT_COMP_E_SWERR = 0x03, + CPT_COMP_E_HWERR = 0x04, + CPT_COMP_E_LAST_ENTRY = 0x05 +}; + +/* + * Enumeration otx_cpt_vf_int_vec_e + * + * CPT OcteonTX VF MSI-X Vector Enumeration + * Enumerates the MSI-X interrupt vectors. + */ +enum otx_cpt_vf_int_vec_e { + CPT_VF_INT_VEC_E_MISC = 0x00, + CPT_VF_INT_VEC_E_DONE = 0x01 +}; + +/* + * Structure cpt_inst_s + * + * CPT Instruction Structure + * This structure specifies the instruction layout. Instructions are + * stored in memory as little-endian unless CPT()_PF_Q()_CTL[INST_BE] is set. + * cpt_inst_s_s + * Word 0 + * doneint:1 Done interrupt. + * 0 = No interrupts related to this instruction. + * 1 = When the instruction completes, CPT()_VQ()_DONE[DONE] will be + * incremented,and based on the rules described there an interrupt may + * occur. + * Word 1 + * res_addr [127: 64] Result IOVA. + * If nonzero, specifies where to write CPT_RES_S. + * If zero, no result structure will be written. + * Address must be 16-byte aligned. + * Bits <63:49> are ignored by hardware; software should use a + * sign-extended bit <48> for forward compatibility. + * Word 2 + * grp:10 [171:162] If [WQ_PTR] is nonzero, the SSO guest-group to use when + * CPT submits work SSO. + * For the SSO to not discard the add-work request, FPA_PF_MAP() must map + * [GRP] and CPT()_PF_Q()_GMCTL[GMID] as valid. + * tt:2 [161:160] If [WQ_PTR] is nonzero, the SSO tag type to use when CPT + * submits work to SSO + * tag:32 [159:128] If [WQ_PTR] is nonzero, the SSO tag to use when CPT + * submits work to SSO. + * Word 3 + * wq_ptr [255:192] If [WQ_PTR] is nonzero, it is a pointer to a + * work-queue entry that CPT submits work to SSO after all context, + * output data, and result write operations are visible to other + * CNXXXX units and the cores. Bits <2:0> must be zero. + * Bits <63:49> are ignored by hardware; software should + * use a sign-extended bit <48> for forward compatibility. + * Internal: + * Bits <63:49>, <2:0> are ignored by hardware, treated as always 0x0. + * Word 4 + * ei0; [319:256] Engine instruction word 0. Passed to the AE/SE. + * Word 5 + * ei1; [383:320] Engine instruction word 1. Passed to the AE/SE. + * Word 6 + * ei2; [447:384] Engine instruction word 1. Passed to the AE/SE. + * Word 7 + * ei3; [511:448] Engine instruction word 1. Passed to the AE/SE. + * + */ +union otx_cpt_inst_s { + u64 u[8]; + + struct { +#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */ + u64 reserved_17_63:47; + u64 doneint:1; + u64 reserved_0_15:16; +#else /* Word 0 - Little Endian */ + u64 reserved_0_15:16; + u64 doneint:1; + u64 reserved_17_63:47; +#endif /* Word 0 - End */ + u64 res_addr; +#if defined(__BIG_ENDIAN_BITFIELD) /* Word 2 - Big Endian */ + u64 reserved_172_191:20; + u64 grp:10; + u64 tt:2; + u64 tag:32; +#else /* Word 2 - Little Endian */ + u64 tag:32; + u64 tt:2; + u64 grp:10; + u64 reserved_172_191:20; +#endif /* Word 2 - End */ + u64 wq_ptr; + u64 ei0; + u64 ei1; + u64 ei2; + u64 ei3; + } s; +}; + +/* + * Structure cpt_res_s + * + * CPT Result Structure + * The CPT coprocessor writes the result structure after it completes a + * CPT_INST_S instruction. The result structure is exactly 16 bytes, and + * each instruction completion produces exactly one result structure. + * + * This structure is stored in memory as little-endian unless + * CPT()_PF_Q()_CTL[INST_BE] is set. + * cpt_res_s_s + * Word 0 + * doneint:1 [16:16] Done interrupt. This bit is copied from the + * corresponding instruction's CPT_INST_S[DONEINT]. + * compcode:8 [7:0] Indicates completion/error status of the CPT coprocessor + * for the associated instruction, as enumerated by CPT_COMP_E. + * Core software may write the memory location containing [COMPCODE] to + * 0x0 before ringing the doorbell, and then poll for completion by + * checking for a nonzero value. + * Once the core observes a nonzero [COMPCODE] value in this case,the CPT + * coprocessor will have also completed L2/DRAM write operations. + * Word 1 + * reserved + * + */ +union otx_cpt_res_s { + u64 u[2]; + struct { +#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */ + u64 reserved_17_63:47; + u64 doneint:1; + u64 reserved_8_15:8; + u64 compcode:8; +#else /* Word 0 - Little Endian */ + u64 compcode:8; + u64 reserved_8_15:8; + u64 doneint:1; + u64 reserved_17_63:47; +#endif /* Word 0 - End */ + u64 reserved_64_127; + } s; +}; + /* * Register (NCB) otx_cpt#_pf_bist_status * @@ -246,4 +451,374 @@ union otx_cptx_pf_qx_ctl { #endif /* Word 0 - End */ } s; }; -#endif /* __OTX_CPT_HW_TYPES_H */ + +/* + * Register (NCB) otx_cpt#_vq#_saddr + * + * CPT Queue Starting Buffer Address Registers + * These registers set the instruction buffer starting address. + * otx_cptx_vqx_saddr_s + * Word0 + * reserved_49_63:15 [63:49] Reserved. + * ptr:43 [48:6](R/W/H) Instruction buffer IOVA <48:6> (64-byte aligned). + * When written, it is the initial buffer starting address; when read, + * it is the next read pointer to be requested from L2C. The PTR field + * is overwritten with the next pointer each time that the command buffer + * segment is exhausted. New commands will then be read from the newly + * specified command buffer pointer. + * reserved_0_5:6 [5:0] Reserved. + * + */ +union otx_cptx_vqx_saddr { + u64 u; + struct otx_cptx_vqx_saddr_s { +#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */ + u64 reserved_49_63:15; + u64 ptr:43; + u64 reserved_0_5:6; +#else /* Word 0 - Little Endian */ + u64 reserved_0_5:6; + u64 ptr:43; + u64 reserved_49_63:15; +#endif /* Word 0 - End */ + } s; +}; + +/* + * Register (NCB) otx_cpt#_vq#_misc_ena_w1s + * + * CPT Queue Misc Interrupt Enable Set Register + * This register sets interrupt enable bits. + * otx_cptx_vqx_misc_ena_w1s_s + * Word0 + * reserved_5_63:59 [63:5] Reserved. + * swerr:1 [4:4](R/W1S/H) Reads or sets enable for + * CPT(0..1)_VQ(0..63)_MISC_INT[SWERR]. + * nwrp:1 [3:3](R/W1S/H) Reads or sets enable for + * CPT(0..1)_VQ(0..63)_MISC_INT[NWRP]. + * irde:1 [2:2](R/W1S/H) Reads or sets enable for + * CPT(0..1)_VQ(0..63)_MISC_INT[IRDE]. + * dovf:1 [1:1](R/W1S/H) Reads or sets enable for + * CPT(0..1)_VQ(0..63)_MISC_INT[DOVF]. + * mbox:1 [0:0](R/W1S/H) Reads or sets enable for + * CPT(0..1)_VQ(0..63)_MISC_INT[MBOX]. + * + */ +union otx_cptx_vqx_misc_ena_w1s { + u64 u; + struct otx_cptx_vqx_misc_ena_w1s_s { +#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */ + u64 reserved_5_63:59; + u64 swerr:1; + u64 nwrp:1; + u64 irde:1; + u64 dovf:1; + u64 mbox:1; +#else /* Word 0 - Little Endian */ + u64 mbox:1; + u64 dovf:1; + u64 irde:1; + u64 nwrp:1; + u64 swerr:1; + u64 reserved_5_63:59; +#endif /* Word 0 - End */ + } s; +}; + +/* + * Register (NCB) otx_cpt#_vq#_doorbell + * + * CPT Queue Doorbell Registers + * Doorbells for the CPT instruction queues. + * otx_cptx_vqx_doorbell_s + * Word0 + * reserved_20_63:44 [63:20] Reserved. + * dbell_cnt:20 [19:0](R/W/H) Number of instruction queue 64-bit words to add + * to the CPT instruction doorbell count. Readback value is the the + * current number of pending doorbell requests. If counter overflows + * CPT()_VQ()_MISC_INT[DBELL_DOVF] is set. To reset the count back to + * zero, write one to clear CPT()_VQ()_MISC_INT_ENA_W1C[DBELL_DOVF], + * then write a value of 2^20 minus the read [DBELL_CNT], then write one + * to CPT()_VQ()_MISC_INT_W1C[DBELL_DOVF] and + * CPT()_VQ()_MISC_INT_ENA_W1S[DBELL_DOVF]. Must be a multiple of 8. + * All CPT instructions are 8 words and require a doorbell count of + * multiple of 8. + */ +union otx_cptx_vqx_doorbell { + u64 u; + struct otx_cptx_vqx_doorbell_s { +#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */ + u64 reserved_20_63:44; + u64 dbell_cnt:20; +#else /* Word 0 - Little Endian */ + u64 dbell_cnt:20; + u64 reserved_20_63:44; +#endif /* Word 0 - End */ + } s; +}; + +/* + * Register (NCB) otx_cpt#_vq#_inprog + * + * CPT Queue In Progress Count Registers + * These registers contain the per-queue instruction in flight registers. + * otx_cptx_vqx_inprog_s + * Word0 + * reserved_8_63:56 [63:8] Reserved. + * inflight:8 [7:0](RO/H) Inflight count. Counts the number of instructions + * for the VF for which CPT is fetching, executing or responding to + * instructions. However this does not include any interrupts that are + * awaiting software handling (CPT()_VQ()_DONE[DONE] != 0x0). + * A queue may not be reconfigured until: + * 1. CPT()_VQ()_CTL[ENA] is cleared by software. + * 2. [INFLIGHT] is polled until equals to zero. + */ +union otx_cptx_vqx_inprog { + u64 u; + struct otx_cptx_vqx_inprog_s { +#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */ + u64 reserved_8_63:56; + u64 inflight:8; +#else /* Word 0 - Little Endian */ + u64 inflight:8; + u64 reserved_8_63:56; +#endif /* Word 0 - End */ + } s; +}; + +/* + * Register (NCB) otx_cpt#_vq#_misc_int + * + * CPT Queue Misc Interrupt Register + * These registers contain the per-queue miscellaneous interrupts. + * otx_cptx_vqx_misc_int_s + * Word 0 + * reserved_5_63:59 [63:5] Reserved. + * swerr:1 [4:4](R/W1C/H) Software error from engines. + * nwrp:1 [3:3](R/W1C/H) NCB result write response error. + * irde:1 [2:2](R/W1C/H) Instruction NCB read response error. + * dovf:1 [1:1](R/W1C/H) Doorbell overflow. + * mbox:1 [0:0](R/W1C/H) PF to VF mailbox interrupt. Set when + * CPT()_VF()_PF_MBOX(0) is written. + * + */ +union otx_cptx_vqx_misc_int { + u64 u; + struct otx_cptx_vqx_misc_int_s { +#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */ + u64 reserved_5_63:59; + u64 swerr:1; + u64 nwrp:1; + u64 irde:1; + u64 dovf:1; + u64 mbox:1; +#else /* Word 0 - Little Endian */ + u64 mbox:1; + u64 dovf:1; + u64 irde:1; + u64 nwrp:1; + u64 swerr:1; + u64 reserved_5_63:59; +#endif /* Word 0 - End */ + } s; +}; + +/* + * Register (NCB) otx_cpt#_vq#_done_ack + * + * CPT Queue Done Count Ack Registers + * This register is written by software to acknowledge interrupts. + * otx_cptx_vqx_done_ack_s + * Word0 + * reserved_20_63:44 [63:20] Reserved. + * done_ack:20 [19:0](R/W/H) Number of decrements to CPT()_VQ()_DONE[DONE]. + * Reads CPT()_VQ()_DONE[DONE]. Written by software to acknowledge + * interrupts. If CPT()_VQ()_DONE[DONE] is still nonzero the interrupt + * will be re-sent if the conditions described in CPT()_VQ()_DONE[DONE] + * are satisfied. + * + */ +union otx_cptx_vqx_done_ack { + u64 u; + struct otx_cptx_vqx_done_ack_s { +#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */ + u64 reserved_20_63:44; + u64 done_ack:20; +#else /* Word 0 - Little Endian */ + u64 done_ack:20; + u64 reserved_20_63:44; +#endif /* Word 0 - End */ + } s; +}; + +/* + * Register (NCB) otx_cpt#_vq#_done + * + * CPT Queue Done Count Registers + * These registers contain the per-queue instruction done count. + * cptx_vqx_done_s + * Word0 + * reserved_20_63:44 [63:20] Reserved. + * done:20 [19:0](R/W/H) Done count. When CPT_INST_S[DONEINT] set and that + * instruction completes, CPT()_VQ()_DONE[DONE] is incremented when the + * instruction finishes. Write to this field are for diagnostic use only; + * instead software writes CPT()_VQ()_DONE_ACK with the number of + * decrements for this field. + * Interrupts are sent as follows: + * * When CPT()_VQ()_DONE[DONE] = 0, then no results are pending, the + * interrupt coalescing timer is held to zero, and an interrupt is not + * sent. + * * When CPT()_VQ()_DONE[DONE] != 0, then the interrupt coalescing timer + * counts. If the counter is >= CPT()_VQ()_DONE_WAIT[TIME_WAIT]*1024, or + * CPT()_VQ()_DONE[DONE] >= CPT()_VQ()_DONE_WAIT[NUM_WAIT], i.e. enough + * time has passed or enough results have arrived, then the interrupt is + * sent. + * * When CPT()_VQ()_DONE_ACK is written (or CPT()_VQ()_DONE is written + * but this is not typical), the interrupt coalescing timer restarts. + * Note after decrementing this interrupt equation is recomputed, + * for example if CPT()_VQ()_DONE[DONE] >= CPT()_VQ()_DONE_WAIT[NUM_WAIT] + * and because the timer is zero, the interrupt will be resent immediately. + * (This covers the race case between software acknowledging an interrupt + * and a result returning.) + * * When CPT()_VQ()_DONE_ENA_W1S[DONE] = 0, interrupts are not sent, + * but the counting described above still occurs. + * Since CPT instructions complete out-of-order, if software is using + * completion interrupts the suggested scheme is to request a DONEINT on + * each request, and when an interrupt arrives perform a "greedy" scan for + * completions; even if a later command is acknowledged first this will + * not result in missing a completion. + * Software is responsible for making sure [DONE] does not overflow; + * for example by insuring there are not more than 2^20-1 instructions in + * flight that may request interrupts. + * + */ +union otx_cptx_vqx_done { + u64 u; + struct otx_cptx_vqx_done_s { +#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */ + u64 reserved_20_63:44; + u64 done:20; +#else /* Word 0 - Little Endian */ + u64 done:20; + u64 reserved_20_63:44; +#endif /* Word 0 - End */ + } s; +}; + +/* + * Register (NCB) otx_cpt#_vq#_done_wait + * + * CPT Queue Done Interrupt Coalescing Wait Registers + * Specifies the per queue interrupt coalescing settings. + * cptx_vqx_done_wait_s + * Word0 + * reserved_48_63:16 [63:48] Reserved. + * time_wait:16; [47:32](R/W) Time hold-off. When CPT()_VQ()_DONE[DONE] = 0 + * or CPT()_VQ()_DONE_ACK is written a timer is cleared. When the timer + * reaches [TIME_WAIT]*1024 then interrupt coalescing ends. + * see CPT()_VQ()_DONE[DONE]. If 0x0, time coalescing is disabled. + * reserved_20_31:12 [31:20] Reserved. + * num_wait:20 [19:0](R/W) Number of messages hold-off. + * When CPT()_VQ()_DONE[DONE] >= [NUM_WAIT] then interrupt coalescing ends + * see CPT()_VQ()_DONE[DONE]. If 0x0, same behavior as 0x1. + * + */ +union otx_cptx_vqx_done_wait { + u64 u; + struct otx_cptx_vqx_done_wait_s { +#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */ + u64 reserved_48_63:16; + u64 time_wait:16; + u64 reserved_20_31:12; + u64 num_wait:20; +#else /* Word 0 - Little Endian */ + u64 num_wait:20; + u64 reserved_20_31:12; + u64 time_wait:16; + u64 reserved_48_63:16; +#endif /* Word 0 - End */ + } s; +}; + +/* + * Register (NCB) otx_cpt#_vq#_done_ena_w1s + * + * CPT Queue Done Interrupt Enable Set Registers + * Write 1 to these registers will enable the DONEINT interrupt for the queue. + * cptx_vqx_done_ena_w1s_s + * Word0 + * reserved_1_63:63 [63:1] Reserved. + * done:1 [0:0](R/W1S/H) Write 1 will enable DONEINT for this queue. + * Write 0 has no effect. Read will return the enable bit. + */ +union otx_cptx_vqx_done_ena_w1s { + u64 u; + struct otx_cptx_vqx_done_ena_w1s_s { +#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */ + u64 reserved_1_63:63; + u64 done:1; +#else /* Word 0 - Little Endian */ + u64 done:1; + u64 reserved_1_63:63; +#endif /* Word 0 - End */ + } s; +}; + +/* + * Register (NCB) otx_cpt#_vq#_ctl + * + * CPT VF Queue Control Registers + * This register configures queues. This register should be changed (other than + * clearing [ENA]) only when quiescent (see CPT()_VQ()_INPROG[INFLIGHT]). + * cptx_vqx_ctl_s + * Word0 + * reserved_1_63:63 [63:1] Reserved. + * ena:1 [0:0](R/W/H) Enables the logical instruction queue. + * See also CPT()_PF_Q()_CTL[CONT_ERR] and CPT()_VQ()_INPROG[INFLIGHT]. + * 1 = Queue is enabled. + * 0 = Queue is disabled. + */ +union otx_cptx_vqx_ctl { + u64 u; + struct otx_cptx_vqx_ctl_s { +#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */ + u64 reserved_1_63:63; + u64 ena:1; +#else /* Word 0 - Little Endian */ + u64 ena:1; + u64 reserved_1_63:63; +#endif /* Word 0 - End */ + } s; +}; + +/* + * Error Address/Error Codes + * + * In the event of a severe error, microcode writes an 8-byte Error Code + * value (ECODE) to host memory at the Rptr address specified by the host + * system (in the 64-byte request). + * + * Word0 + * [63:56](R) 8-bit completion code + * [55:48](R) Number of the core that reported the severe error + * [47:0] Lower 6 bytes of M-Inst word2. Used to assist in uniquely + * identifying which specific instruction caused the error. This assumes + * that each instruction has a unique result location (RPTR), at least + * for a given period of time. + */ +union otx_cpt_error_code { + u64 u; + struct otx_cpt_error_code_s { +#if defined(__BIG_ENDIAN_BITFIELD) /* Word 0 - Big Endian */ + uint64_t ccode:8; + uint64_t coreid:8; + uint64_t rptr6:48; +#else /* Word 0 - Little Endian */ + uint64_t rptr6:48; + uint64_t coreid:8; + uint64_t ccode:8; +#endif /* Word 0 - End */ + } s; +}; + +#endif /*__OTX_CPT_HW_TYPES_H */ diff --git a/drivers/crypto/marvell/octeontx/otx_cptvf.h b/drivers/crypto/marvell/octeontx/otx_cptvf.h new file mode 100644 index 000000000000..dd02f21659af --- /dev/null +++ b/drivers/crypto/marvell/octeontx/otx_cptvf.h @@ -0,0 +1,104 @@ +/* SPDX-License-Identifier: GPL-2.0 + * Marvell OcteonTX CPT driver + * + * Copyright (C) 2019 Marvell International Ltd. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +#ifndef __OTX_CPTVF_H +#define __OTX_CPTVF_H + +#include <linux/list.h> +#include <linux/interrupt.h> +#include <linux/device.h> +#include "otx_cpt_common.h" +#include "otx_cptvf_reqmgr.h" + +/* Flags to indicate the features supported */ +#define OTX_CPT_FLAG_DEVICE_READY BIT(1) +#define otx_cpt_device_ready(cpt) ((cpt)->flags & OTX_CPT_FLAG_DEVICE_READY) +/* Default command queue length */ +#define OTX_CPT_CMD_QLEN (4*2046) +#define OTX_CPT_CMD_QCHUNK_SIZE 1023 +#define OTX_CPT_NUM_QS_PER_VF 1 + +struct otx_cpt_cmd_chunk { + u8 *head; + dma_addr_t dma_addr; + u32 size; /* Chunk size, max OTX_CPT_INST_CHUNK_MAX_SIZE */ + struct list_head nextchunk; +}; + +struct otx_cpt_cmd_queue { + u32 idx; /* Command queue host write idx */ + u32 num_chunks; /* Number of command chunks */ + struct otx_cpt_cmd_chunk *qhead;/* + * Command queue head, instructions + * are inserted here + */ + struct otx_cpt_cmd_chunk *base; + struct list_head chead; +}; + +struct otx_cpt_cmd_qinfo { + u32 qchunksize; /* Command queue chunk size */ + struct otx_cpt_cmd_queue queue[OTX_CPT_NUM_QS_PER_VF]; +}; + +struct otx_cpt_pending_qinfo { + u32 num_queues; /* Number of queues supported */ + struct otx_cpt_pending_queue queue[OTX_CPT_NUM_QS_PER_VF]; +}; + +#define for_each_pending_queue(qinfo, q, i) \ + for (i = 0, q = &qinfo->queue[i]; i < qinfo->num_queues; i++, \ + q = &qinfo->queue[i]) + +struct otx_cptvf_wqe { + struct tasklet_struct twork; + struct otx_cptvf *cptvf; +}; + +struct otx_cptvf_wqe_info { + struct otx_cptvf_wqe vq_wqe[OTX_CPT_NUM_QS_PER_VF]; +}; + +struct otx_cptvf { + u16 flags; /* Flags to hold device status bits */ + u8 vfid; /* Device Index 0...OTX_CPT_MAX_VF_NUM */ + u8 num_vfs; /* Number of enabled VFs */ + u8 vftype; /* VF type of SE_TYPE(2) or AE_TYPE(1) */ + u8 vfgrp; /* VF group (0 - 8) */ + u8 node; /* Operating node: Bits (46:44) in BAR0 address */ + u8 priority; /* + * VF priority ring: 1-High proirity round + * robin ring;0-Low priority round robin ring; + */ + struct pci_dev *pdev; /* Pci device handle */ + void __iomem *reg_base; /* Register start address */ + void *wqe_info; /* BH worker info */ + /* MSI-X */ + cpumask_var_t affinity_mask[OTX_CPT_VF_MSIX_VECTORS]; + /* Command and Pending queues */ + u32 qsize; + u32 num_queues; + struct otx_cpt_cmd_qinfo cqinfo; /* Command queue information */ + struct otx_cpt_pending_qinfo pqinfo; /* Pending queue information */ + /* VF-PF mailbox communication */ + bool pf_acked; + bool pf_nacked; +}; + +int otx_cptvf_send_vf_up(struct otx_cptvf *cptvf); +int otx_cptvf_send_vf_down(struct otx_cptvf *cptvf); +int otx_cptvf_send_vf_to_grp_msg(struct otx_cptvf *cptvf, int group); +int otx_cptvf_send_vf_priority_msg(struct otx_cptvf *cptvf); +int otx_cptvf_send_vq_size_msg(struct otx_cptvf *cptvf); +int otx_cptvf_check_pf_ready(struct otx_cptvf *cptvf); +void otx_cptvf_handle_mbox_intr(struct otx_cptvf *cptvf); +void otx_cptvf_write_vq_doorbell(struct otx_cptvf *cptvf, u32 val); + +#endif /* __OTX_CPTVF_H */ diff --git a/drivers/crypto/marvell/octeontx/otx_cptvf_algs.c b/drivers/crypto/marvell/octeontx/otx_cptvf_algs.c new file mode 100644 index 000000000000..946fb62949b2 --- /dev/null +++ b/drivers/crypto/marvell/octeontx/otx_cptvf_algs.c @@ -0,0 +1,1744 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Marvell OcteonTX CPT driver + * + * Copyright (C) 2019 Marvell International Ltd. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +#include <crypto/aes.h> +#include <crypto/authenc.h> +#include <crypto/cryptd.h> +#include <crypto/des.h> +#include <crypto/internal/aead.h> +#include <crypto/sha.h> +#include <crypto/xts.h> +#include <crypto/scatterwalk.h> +#include <linux/rtnetlink.h> +#include <linux/sort.h> +#include <linux/module.h> +#include "otx_cptvf.h" +#include "otx_cptvf_algs.h" +#include "otx_cptvf_reqmgr.h" + +#define CPT_MAX_VF_NUM 64 +/* Size of salt in AES GCM mode */ +#define AES_GCM_SALT_SIZE 4 +/* Size of IV in AES GCM mode */ +#define AES_GCM_IV_SIZE 8 +/* Size of ICV (Integrity Check Value) in AES GCM mode */ +#define AES_GCM_ICV_SIZE 16 +/* Offset of IV in AES GCM mode */ +#define AES_GCM_IV_OFFSET 8 +#define CONTROL_WORD_LEN 8 +#define KEY2_OFFSET 48 +#define DMA_MODE_FLAG(dma_mode) \ + (((dma_mode) == OTX_CPT_DMA_GATHER_SCATTER) ? (1 << 7) : 0) + +/* Truncated SHA digest size */ +#define SHA1_TRUNC_DIGEST_SIZE 12 +#define SHA256_TRUNC_DIGEST_SIZE 16 +#define SHA384_TRUNC_DIGEST_SIZE 24 +#define SHA512_TRUNC_DIGEST_SIZE 32 + +static DEFINE_MUTEX(mutex); +static int is_crypto_registered; + +struct cpt_device_desc { + enum otx_cptpf_type pf_type; + struct pci_dev *dev; + int num_queues; +}; + +struct cpt_device_table { + atomic_t count; + struct cpt_device_desc desc[CPT_MAX_VF_NUM]; +}; + +static struct cpt_device_table se_devices = { + .count = ATOMIC_INIT(0) +}; + +static struct cpt_device_table ae_devices = { + .count = ATOMIC_INIT(0) +}; + +static inline int get_se_device(struct pci_dev **pdev, int *cpu_num) +{ + int count, ret = 0; + + count = atomic_read(&se_devices.count); + if (count < 1) + return -ENODEV; + + *cpu_num = get_cpu(); + + if (se_devices.desc[0].pf_type == OTX_CPT_SE) { + /* + * On OcteonTX platform there is one CPT instruction queue bound + * to each VF. We get maximum performance if one CPT queue + * is available for each cpu otherwise CPT queues need to be + * shared between cpus. + */ + if (*cpu_num >= count) + *cpu_num %= count; + *pdev = se_devices.desc[*cpu_num].dev; + } else { + pr_err("Unknown PF type %d\n", se_devices.desc[0].pf_type); + ret = -EINVAL; + } + put_cpu(); + + return ret; +} + +static inline int validate_hmac_cipher_null(struct otx_cpt_req_info *cpt_req) +{ + struct otx_cpt_req_ctx *rctx; + struct aead_request *req; + struct crypto_aead *tfm; + + req = container_of(cpt_req->areq, struct aead_request, base); + tfm = crypto_aead_reqtfm(req); + rctx = aead_request_ctx(req); + if (memcmp(rctx->fctx.hmac.s.hmac_calc, + rctx->fctx.hmac.s.hmac_recv, + crypto_aead_authsize(tfm)) != 0) + return -EBADMSG; + + return 0; +} + +static void otx_cpt_aead_callback(int status, void *arg1, void *arg2) +{ + struct otx_cpt_info_buffer *cpt_info = arg2; + struct crypto_async_request *areq = arg1; + struct otx_cpt_req_info *cpt_req; + struct pci_dev *pdev; + + cpt_req = cpt_info->req; + if (!status) { + /* + * When selected cipher is NULL we need to manually + * verify whether calculated hmac value matches + * received hmac value + */ + if (cpt_req->req_type == OTX_CPT_AEAD_ENC_DEC_NULL_REQ && + !cpt_req->is_enc) + status = validate_hmac_cipher_null(cpt_req); + } + if (cpt_info) { + pdev = cpt_info->pdev; + do_request_cleanup(pdev, cpt_info); + } + if (areq) + areq->complete(areq, status); +} + +static void output_iv_copyback(struct crypto_async_request *areq) +{ + struct otx_cpt_req_info *req_info; + struct skcipher_request *sreq; + struct crypto_skcipher *stfm; + struct otx_cpt_req_ctx *rctx; + struct otx_cpt_enc_ctx *ctx; + u32 start, ivsize; + + sreq = container_of(areq, struct skcipher_request, base); + stfm = crypto_skcipher_reqtfm(sreq); + ctx = crypto_skcipher_ctx(stfm); + if (ctx->cipher_type == OTX_CPT_AES_CBC || + ctx->cipher_type == OTX_CPT_DES3_CBC) { + rctx = skcipher_request_ctx(sreq); + req_info = &rctx->cpt_req; + ivsize = crypto_skcipher_ivsize(stfm); + start = sreq->cryptlen - ivsize; + + if (req_info->is_enc) { + scatterwalk_map_and_copy(sreq->iv, sreq->dst, start, + ivsize, 0); + } else { + if (sreq->src != sreq->dst) { + scatterwalk_map_and_copy(sreq->iv, sreq->src, + start, ivsize, 0); + } else { + memcpy(sreq->iv, req_info->iv_out, ivsize); + kfree(req_info->iv_out); + } + } + } +} + +static void otx_cpt_skcipher_callback(int status, void *arg1, void *arg2) +{ + struct otx_cpt_info_buffer *cpt_info = arg2; + struct crypto_async_request *areq = arg1; + struct pci_dev *pdev; + + if (areq) { + if (!status) + output_iv_copyback(areq); + if (cpt_info) { + pdev = cpt_info->pdev; + do_request_cleanup(pdev, cpt_info); + } + areq->complete(areq, status); + } +} + +static inline void update_input_data(struct otx_cpt_req_info *req_info, + struct scatterlist *inp_sg, + u32 nbytes, u32 *argcnt) +{ + req_info->req.dlen += nbytes; + + while (nbytes) { + u32 len = min(nbytes, inp_sg->length); + u8 *ptr = sg_virt(inp_sg); + + req_info->in[*argcnt].vptr = (void *)ptr; + req_info->in[*argcnt].size = len; + nbytes -= len; + ++(*argcnt); + inp_sg = sg_next(inp_sg); + } +} + +static inline void update_output_data(struct otx_cpt_req_info *req_info, + struct scatterlist *outp_sg, + u32 offset, u32 nbytes, u32 *argcnt) +{ + req_info->rlen += nbytes; + + while (nbytes) { + u32 len = min(nbytes, outp_sg->length - offset); + u8 *ptr = sg_virt(outp_sg); + + req_info->out[*argcnt].vptr = (void *) (ptr + offset); + req_info->out[*argcnt].size = len; + nbytes -= len; + ++(*argcnt); + offset = 0; + outp_sg = sg_next(outp_sg); + } +} + +static inline u32 create_ctx_hdr(struct skcipher_request *req, u32 enc, + u32 *argcnt) +{ + struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req); + struct otx_cpt_req_ctx *rctx = skcipher_request_ctx(req); + struct otx_cpt_req_info *req_info = &rctx->cpt_req; + struct crypto_tfm *tfm = crypto_skcipher_tfm(stfm); + struct otx_cpt_enc_ctx *ctx = crypto_tfm_ctx(tfm); + struct otx_cpt_fc_ctx *fctx = &rctx->fctx; + int ivsize = crypto_skcipher_ivsize(stfm); + u32 start = req->cryptlen - ivsize; + u64 *ctrl_flags = NULL; + gfp_t flags; + + flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? + GFP_KERNEL : GFP_ATOMIC; + req_info->ctrl.s.dma_mode = OTX_CPT_DMA_GATHER_SCATTER; + req_info->ctrl.s.se_req = OTX_CPT_SE_CORE_REQ; + + req_info->req.opcode.s.major = OTX_CPT_MAJOR_OP_FC | + DMA_MODE_FLAG(OTX_CPT_DMA_GATHER_SCATTER); + if (enc) { + req_info->req.opcode.s.minor = 2; + } else { + req_info->req.opcode.s.minor = 3; + if ((ctx->cipher_type == OTX_CPT_AES_CBC || + ctx->cipher_type == OTX_CPT_DES3_CBC) && + req->src == req->dst) { + req_info->iv_out = kmalloc(ivsize, flags); + if (!req_info->iv_out) + return -ENOMEM; + + scatterwalk_map_and_copy(req_info->iv_out, req->src, + start, ivsize, 0); + } + } + /* Encryption data length */ + req_info->req.param1 = req->cryptlen; + /* Authentication data length */ + req_info->req.param2 = 0; + + fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type; + fctx->enc.enc_ctrl.e.aes_key = ctx->key_type; + fctx->enc.enc_ctrl.e.iv_source = OTX_CPT_FROM_CPTR; + + if (ctx->cipher_type == OTX_CPT_AES_XTS) + memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len * 2); + else + memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len); + + memcpy(fctx->enc.encr_iv, req->iv, crypto_skcipher_ivsize(stfm)); + + ctrl_flags = (u64 *)&fctx->enc.enc_ctrl.flags; + *ctrl_flags = cpu_to_be64(*ctrl_flags); + + /* + * Storing Packet Data Information in offset + * Control Word First 8 bytes + */ + req_info->in[*argcnt].vptr = (u8 *)&rctx->ctrl_word; + req_info->in[*argcnt].size = CONTROL_WORD_LEN; + req_info->req.dlen += CONTROL_WORD_LEN; + ++(*argcnt); + + req_info->in[*argcnt].vptr = (u8 *)fctx; + req_info->in[*argcnt].size = sizeof(struct otx_cpt_fc_ctx); + req_info->req.dlen += sizeof(struct otx_cpt_fc_ctx); + + ++(*argcnt); + + return 0; +} + +static inline u32 create_input_list(struct skcipher_request *req, u32 enc, + u32 enc_iv_len) +{ + struct otx_cpt_req_ctx *rctx = skcipher_request_ctx(req); + struct otx_cpt_req_info *req_info = &rctx->cpt_req; + u32 argcnt = 0; + int ret; + + ret = create_ctx_hdr(req, enc, &argcnt); + if (ret) + return ret; + + update_input_data(req_info, req->src, req->cryptlen, &argcnt); + req_info->incnt = argcnt; + + return 0; +} + +static inline void create_output_list(struct skcipher_request *req, + u32 enc_iv_len) +{ + struct otx_cpt_req_ctx *rctx = skcipher_request_ctx(req); + struct otx_cpt_req_info *req_info = &rctx->cpt_req; + u32 argcnt = 0; + + /* + * OUTPUT Buffer Processing + * AES encryption/decryption output would be + * received in the following format + * + * ------IV--------|------ENCRYPTED/DECRYPTED DATA-----| + * [ 16 Bytes/ [ Request Enc/Dec/ DATA Len AES CBC ] + */ + update_output_data(req_info, req->dst, 0, req->cryptlen, &argcnt); + req_info->outcnt = argcnt; +} + +static inline int cpt_enc_dec(struct skcipher_request *req, u32 enc) +{ + struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req); + struct otx_cpt_req_ctx *rctx = skcipher_request_ctx(req); + struct otx_cpt_req_info *req_info = &rctx->cpt_req; + u32 enc_iv_len = crypto_skcipher_ivsize(stfm); + struct pci_dev *pdev; + int status, cpu_num; + + /* Validate that request doesn't exceed maximum CPT supported size */ + if (req->cryptlen > OTX_CPT_MAX_REQ_SIZE) + return -E2BIG; + + /* Clear control words */ + rctx->ctrl_word.flags = 0; + rctx->fctx.enc.enc_ctrl.flags = 0; + + status = create_input_list(req, enc, enc_iv_len); + if (status) + return status; + create_output_list(req, enc_iv_len); + + status = get_se_device(&pdev, &cpu_num); + if (status) + return status; + + req_info->callback = (void *)otx_cpt_skcipher_callback; + req_info->areq = &req->base; + req_info->req_type = OTX_CPT_ENC_DEC_REQ; + req_info->is_enc = enc; + req_info->is_trunc_hmac = false; + req_info->ctrl.s.grp = 0; + + /* + * We perform an asynchronous send and once + * the request is completed the driver would + * intimate through registered call back functions + */ + status = otx_cpt_do_request(pdev, req_info, cpu_num); + + return status; +} + +static int otx_cpt_skcipher_encrypt(struct skcipher_request *req) +{ + return cpt_enc_dec(req, true); +} + +static int otx_cpt_skcipher_decrypt(struct skcipher_request *req) +{ + return cpt_enc_dec(req, false); +} + +static int otx_cpt_skcipher_xts_setkey(struct crypto_skcipher *tfm, + const u8 *key, u32 keylen) +{ + struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm); + const u8 *key2 = key + (keylen / 2); + const u8 *key1 = key; + int ret; + + ret = xts_check_key(crypto_skcipher_tfm(tfm), key, keylen); + if (ret) + return ret; + ctx->key_len = keylen; + memcpy(ctx->enc_key, key1, keylen / 2); + memcpy(ctx->enc_key + KEY2_OFFSET, key2, keylen / 2); + ctx->cipher_type = OTX_CPT_AES_XTS; + switch (ctx->key_len) { + case 2 * AES_KEYSIZE_128: + ctx->key_type = OTX_CPT_AES_128_BIT; + break; + case 2 * AES_KEYSIZE_256: + ctx->key_type = OTX_CPT_AES_256_BIT; + break; + default: + return -EINVAL; + } + + return 0; +} + +static int cpt_des_setkey(struct crypto_skcipher *tfm, const u8 *key, + u32 keylen, u8 cipher_type) +{ + struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm); + + if (keylen != DES3_EDE_KEY_SIZE) + return -EINVAL; + + ctx->key_len = keylen; + ctx->cipher_type = cipher_type; + + memcpy(ctx->enc_key, key, keylen); + + return 0; +} + +static int cpt_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, + u32 keylen, u8 cipher_type) +{ + struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm); + + switch (keylen) { + case AES_KEYSIZE_128: + ctx->key_type = OTX_CPT_AES_128_BIT; + break; + case AES_KEYSIZE_192: + ctx->key_type = OTX_CPT_AES_192_BIT; + break; + case AES_KEYSIZE_256: + ctx->key_type = OTX_CPT_AES_256_BIT; + break; + default: + return -EINVAL; + } + ctx->key_len = keylen; + ctx->cipher_type = cipher_type; + + memcpy(ctx->enc_key, key, keylen); + + return 0; +} + +static int otx_cpt_skcipher_cbc_aes_setkey(struct crypto_skcipher *tfm, + const u8 *key, u32 keylen) +{ + return cpt_aes_setkey(tfm, key, keylen, OTX_CPT_AES_CBC); +} + +static int otx_cpt_skcipher_ecb_aes_setkey(struct crypto_skcipher *tfm, + const u8 *key, u32 keylen) +{ + return cpt_aes_setkey(tfm, key, keylen, OTX_CPT_AES_ECB); +} + +static int otx_cpt_skcipher_cfb_aes_setkey(struct crypto_skcipher *tfm, + const u8 *key, u32 keylen) +{ + return cpt_aes_setkey(tfm, key, keylen, OTX_CPT_AES_CFB); +} + +static int otx_cpt_skcipher_cbc_des3_setkey(struct crypto_skcipher *tfm, + const u8 *key, u32 keylen) +{ + return cpt_des_setkey(tfm, key, keylen, OTX_CPT_DES3_CBC); +} + +static int otx_cpt_skcipher_ecb_des3_setkey(struct crypto_skcipher *tfm, + const u8 *key, u32 keylen) +{ + return cpt_des_setkey(tfm, key, keylen, OTX_CPT_DES3_ECB); +} + +static int otx_cpt_enc_dec_init(struct crypto_skcipher *tfm) +{ + struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm); + + memset(ctx, 0, sizeof(*ctx)); + /* + * Additional memory for skcipher_request is + * allocated since the cryptd daemon uses + * this memory for request_ctx information + */ + crypto_skcipher_set_reqsize(tfm, sizeof(struct otx_cpt_req_ctx) + + sizeof(struct skcipher_request)); + + return 0; +} + +static int cpt_aead_init(struct crypto_aead *tfm, u8 cipher_type, u8 mac_type) +{ + struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(tfm); + + ctx->cipher_type = cipher_type; + ctx->mac_type = mac_type; + + /* + * When selected cipher is NULL we use HMAC opcode instead of + * FLEXICRYPTO opcode therefore we don't need to use HASH algorithms + * for calculating ipad and opad + */ + if (ctx->cipher_type != OTX_CPT_CIPHER_NULL) { + switch (ctx->mac_type) { + case OTX_CPT_SHA1: + ctx->hashalg = crypto_alloc_shash("sha1", 0, + CRYPTO_ALG_ASYNC); + if (IS_ERR(ctx->hashalg)) + return PTR_ERR(ctx->hashalg); + break; + + case OTX_CPT_SHA256: + ctx->hashalg = crypto_alloc_shash("sha256", 0, + CRYPTO_ALG_ASYNC); + if (IS_ERR(ctx->hashalg)) + return PTR_ERR(ctx->hashalg); + break; + + case OTX_CPT_SHA384: + ctx->hashalg = crypto_alloc_shash("sha384", 0, + CRYPTO_ALG_ASYNC); + if (IS_ERR(ctx->hashalg)) + return PTR_ERR(ctx->hashalg); + break; + + case OTX_CPT_SHA512: + ctx->hashalg = crypto_alloc_shash("sha512", 0, + CRYPTO_ALG_ASYNC); + if (IS_ERR(ctx->hashalg)) + return PTR_ERR(ctx->hashalg); + break; + } + } + + crypto_aead_set_reqsize(tfm, sizeof(struct otx_cpt_req_ctx)); + + return 0; +} + +static int otx_cpt_aead_cbc_aes_sha1_init(struct crypto_aead *tfm) +{ + return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA1); +} + +static int otx_cpt_aead_cbc_aes_sha256_init(struct crypto_aead *tfm) +{ + return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA256); +} + +static int otx_cpt_aead_cbc_aes_sha384_init(struct crypto_aead *tfm) +{ + return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA384); +} + +static int otx_cpt_aead_cbc_aes_sha512_init(struct crypto_aead *tfm) +{ + return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA512); +} + +static int otx_cpt_aead_ecb_null_sha1_init(struct crypto_aead *tfm) +{ + return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA1); +} + +static int otx_cpt_aead_ecb_null_sha256_init(struct crypto_aead *tfm) +{ + return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA256); +} + +static int otx_cpt_aead_ecb_null_sha384_init(struct crypto_aead *tfm) +{ + return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA384); +} + +static int otx_cpt_aead_ecb_null_sha512_init(struct crypto_aead *tfm) +{ + return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA512); +} + +static int otx_cpt_aead_gcm_aes_init(struct crypto_aead *tfm) +{ + return cpt_aead_init(tfm, OTX_CPT_AES_GCM, OTX_CPT_MAC_NULL); +} + +static void otx_cpt_aead_exit(struct crypto_aead *tfm) +{ + struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(tfm); + + kfree(ctx->ipad); + kfree(ctx->opad); + if (ctx->hashalg) + crypto_free_shash(ctx->hashalg); + kfree(ctx->sdesc); +} + +/* + * This is the Integrity Check Value validation (aka the authentication tag + * length) + */ +static int otx_cpt_aead_set_authsize(struct crypto_aead *tfm, + unsigned int authsize) +{ + struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(tfm); + + switch (ctx->mac_type) { + case OTX_CPT_SHA1: + if (authsize != SHA1_DIGEST_SIZE && + authsize != SHA1_TRUNC_DIGEST_SIZE) + return -EINVAL; + + if (authsize == SHA1_TRUNC_DIGEST_SIZE) + ctx->is_trunc_hmac = true; + break; + + case OTX_CPT_SHA256: + if (authsize != SHA256_DIGEST_SIZE && + authsize != SHA256_TRUNC_DIGEST_SIZE) + return -EINVAL; + + if (authsize == SHA256_TRUNC_DIGEST_SIZE) + ctx->is_trunc_hmac = true; + break; + + case OTX_CPT_SHA384: + if (authsize != SHA384_DIGEST_SIZE && + authsize != SHA384_TRUNC_DIGEST_SIZE) + return -EINVAL; + + if (authsize == SHA384_TRUNC_DIGEST_SIZE) + ctx->is_trunc_hmac = true; + break; + + case OTX_CPT_SHA512: + if (authsize != SHA512_DIGEST_SIZE && + authsize != SHA512_TRUNC_DIGEST_SIZE) + return -EINVAL; + + if (authsize == SHA512_TRUNC_DIGEST_SIZE) + ctx->is_trunc_hmac = true; + break; + + case OTX_CPT_MAC_NULL: + if (ctx->cipher_type == OTX_CPT_AES_GCM) { + if (authsize != AES_GCM_ICV_SIZE) + return -EINVAL; + } else + return -EINVAL; + break; + + default: + return -EINVAL; + } + + tfm->authsize = authsize; + return 0; +} + +static struct otx_cpt_sdesc *alloc_sdesc(struct crypto_shash *alg) +{ + struct otx_cpt_sdesc *sdesc; + int size; + + size = sizeof(struct shash_desc) + crypto_shash_descsize(alg); + sdesc = kmalloc(size, GFP_KERNEL); + if (!sdesc) + return NULL; + + sdesc->shash.tfm = alg; + + return sdesc; +} + +static inline void swap_data32(void *buf, u32 len) +{ + u32 *store = (u32 *) buf; + int i = 0; + + for (i = 0 ; i < len/sizeof(u32); i++, store++) + *store = cpu_to_be32(*store); +} + +static inline void swap_data64(void *buf, u32 len) +{ + u64 *store = (u64 *) buf; + int i = 0; + + for (i = 0 ; i < len/sizeof(u64); i++, store++) + *store = cpu_to_be64(*store); +} + +static int copy_pad(u8 mac_type, u8 *out_pad, u8 *in_pad) +{ + struct sha512_state *sha512; + struct sha256_state *sha256; + struct sha1_state *sha1; + + switch (mac_type) { + case OTX_CPT_SHA1: + sha1 = (struct sha1_state *) in_pad; + swap_data32(sha1->state, SHA1_DIGEST_SIZE); + memcpy(out_pad, &sha1->state, SHA1_DIGEST_SIZE); + break; + + case OTX_CPT_SHA256: + sha256 = (struct sha256_state *) in_pad; + swap_data32(sha256->state, SHA256_DIGEST_SIZE); + memcpy(out_pad, &sha256->state, SHA256_DIGEST_SIZE); + break; + + case OTX_CPT_SHA384: + case OTX_CPT_SHA512: + sha512 = (struct sha512_state *) in_pad; + swap_data64(sha512->state, SHA512_DIGEST_SIZE); + memcpy(out_pad, &sha512->state, SHA512_DIGEST_SIZE); + break; + + default: + return -EINVAL; + } + + return 0; +} + +static int aead_hmac_init(struct crypto_aead *cipher) +{ + struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(cipher); + int state_size = crypto_shash_statesize(ctx->hashalg); + int ds = crypto_shash_digestsize(ctx->hashalg); + int bs = crypto_shash_blocksize(ctx->hashalg); + int authkeylen = ctx->auth_key_len; + u8 *ipad = NULL, *opad = NULL; + int ret = 0, icount = 0; + + ctx->sdesc = alloc_sdesc(ctx->hashalg); + if (!ctx->sdesc) + return -ENOMEM; + + ctx->ipad = kzalloc(bs, GFP_KERNEL); + if (!ctx->ipad) { + ret = -ENOMEM; + goto calc_fail; + } + + ctx->opad = kzalloc(bs, GFP_KERNEL); + if (!ctx->opad) { + ret = -ENOMEM; + goto calc_fail; + } + + ipad = kzalloc(state_size, GFP_KERNEL); + if (!ipad) { + ret = -ENOMEM; + goto calc_fail; + } + + opad = kzalloc(state_size, GFP_KERNEL); + if (!opad) { + ret = -ENOMEM; + goto calc_fail; + } + + if (authkeylen > bs) { + ret = crypto_shash_digest(&ctx->sdesc->shash, ctx->key, + authkeylen, ipad); + if (ret) + goto calc_fail; + + authkeylen = ds; + } else { + memcpy(ipad, ctx->key, authkeylen); + } + + memset(ipad + authkeylen, 0, bs - authkeylen); + memcpy(opad, ipad, bs); + + for (icount = 0; icount < bs; icount++) { + ipad[icount] ^= 0x36; + opad[icount] ^= 0x5c; + } + + /* + * Partial Hash calculated from the software + * algorithm is retrieved for IPAD & OPAD + */ + + /* IPAD Calculation */ + crypto_shash_init(&ctx->sdesc->shash); + crypto_shash_update(&ctx->sdesc->shash, ipad, bs); + crypto_shash_export(&ctx->sdesc->shash, ipad); + ret = copy_pad(ctx->mac_type, ctx->ipad, ipad); + if (ret) + goto calc_fail; + + /* OPAD Calculation */ + crypto_shash_init(&ctx->sdesc->shash); + crypto_shash_update(&ctx->sdesc->shash, opad, bs); + crypto_shash_export(&ctx->sdesc->shash, opad); + ret = copy_pad(ctx->mac_type, ctx->opad, opad); + if (ret) + goto calc_fail; + + kfree(ipad); + kfree(opad); + + return 0; + +calc_fail: + kfree(ctx->ipad); + ctx->ipad = NULL; + kfree(ctx->opad); + ctx->opad = NULL; + kfree(ipad); + kfree(opad); + kfree(ctx->sdesc); + ctx->sdesc = NULL; + + return ret; +} + +static int otx_cpt_aead_cbc_aes_sha_setkey(struct crypto_aead *cipher, + const unsigned char *key, + unsigned int keylen) +{ + struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(cipher); + struct crypto_authenc_key_param *param; + int enckeylen = 0, authkeylen = 0; + struct rtattr *rta = (void *)key; + int status = -EINVAL; + + if (!RTA_OK(rta, keylen)) + goto badkey; + + if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) + goto badkey; + + if (RTA_PAYLOAD(rta) < sizeof(*param)) + goto badkey; + + param = RTA_DATA(rta); + enckeylen = be32_to_cpu(param->enckeylen); + key += RTA_ALIGN(rta->rta_len); + keylen -= RTA_ALIGN(rta->rta_len); + if (keylen < enckeylen) + goto badkey; + + if (keylen > OTX_CPT_MAX_KEY_SIZE) + goto badkey; + + authkeylen = keylen - enckeylen; + memcpy(ctx->key, key, keylen); + + switch (enckeylen) { + case AES_KEYSIZE_128: + ctx->key_type = OTX_CPT_AES_128_BIT; + break; + case AES_KEYSIZE_192: + ctx->key_type = OTX_CPT_AES_192_BIT; + break; + case AES_KEYSIZE_256: + ctx->key_type = OTX_CPT_AES_256_BIT; + break; + default: + /* Invalid key length */ + goto badkey; + } + + ctx->enc_key_len = enckeylen; + ctx->auth_key_len = authkeylen; + + status = aead_hmac_init(cipher); + if (status) + goto badkey; + + return 0; +badkey: + return status; +} + +static int otx_cpt_aead_ecb_null_sha_setkey(struct crypto_aead *cipher, + const unsigned char *key, + unsigned int keylen) +{ + struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(cipher); + struct crypto_authenc_key_param *param; + struct rtattr *rta = (void *)key; + int enckeylen = 0; + + if (!RTA_OK(rta, keylen)) + goto badkey; + + if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) + goto badkey; + + if (RTA_PAYLOAD(rta) < sizeof(*param)) + goto badkey; + + param = RTA_DATA(rta); + enckeylen = be32_to_cpu(param->enckeylen); + key += RTA_ALIGN(rta->rta_len); + keylen -= RTA_ALIGN(rta->rta_len); + if (enckeylen != 0) + goto badkey; + + if (keylen > OTX_CPT_MAX_KEY_SIZE) + goto badkey; + + memcpy(ctx->key, key, keylen); + ctx->enc_key_len = enckeylen; + ctx->auth_key_len = keylen; + return 0; +badkey: + return -EINVAL; +} + +static int otx_cpt_aead_gcm_aes_setkey(struct crypto_aead *cipher, + const unsigned char *key, + unsigned int keylen) +{ + struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(cipher); + + /* + * For aes gcm we expect to get encryption key (16, 24, 32 bytes) + * and salt (4 bytes) + */ + switch (keylen) { + case AES_KEYSIZE_128 + AES_GCM_SALT_SIZE: + ctx->key_type = OTX_CPT_AES_128_BIT; + ctx->enc_key_len = AES_KEYSIZE_128; + break; + case AES_KEYSIZE_192 + AES_GCM_SALT_SIZE: + ctx->key_type = OTX_CPT_AES_192_BIT; + ctx->enc_key_len = AES_KEYSIZE_192; + break; + case AES_KEYSIZE_256 + AES_GCM_SALT_SIZE: + ctx->key_type = OTX_CPT_AES_256_BIT; + ctx->enc_key_len = AES_KEYSIZE_256; + break; + default: + /* Invalid key and salt length */ + return -EINVAL; + } + + /* Store encryption key and salt */ + memcpy(ctx->key, key, keylen); + + return 0; +} + +static inline u32 create_aead_ctx_hdr(struct aead_request *req, u32 enc, + u32 *argcnt) +{ + struct otx_cpt_req_ctx *rctx = aead_request_ctx(req); + struct crypto_aead *tfm = crypto_aead_reqtfm(req); + struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(tfm); + struct otx_cpt_req_info *req_info = &rctx->cpt_req; + struct otx_cpt_fc_ctx *fctx = &rctx->fctx; + int mac_len = crypto_aead_authsize(tfm); + int ds; + + rctx->ctrl_word.e.enc_data_offset = req->assoclen; + + switch (ctx->cipher_type) { + case OTX_CPT_AES_CBC: + fctx->enc.enc_ctrl.e.iv_source = OTX_CPT_FROM_CPTR; + /* Copy encryption key to context */ + memcpy(fctx->enc.encr_key, ctx->key + ctx->auth_key_len, + ctx->enc_key_len); + /* Copy IV to context */ + memcpy(fctx->enc.encr_iv, req->iv, crypto_aead_ivsize(tfm)); + + ds = crypto_shash_digestsize(ctx->hashalg); + if (ctx->mac_type == OTX_CPT_SHA384) + ds = SHA512_DIGEST_SIZE; + if (ctx->ipad) + memcpy(fctx->hmac.e.ipad, ctx->ipad, ds); + if (ctx->opad) + memcpy(fctx->hmac.e.opad, ctx->opad, ds); + break; + + case OTX_CPT_AES_GCM: + fctx->enc.enc_ctrl.e.iv_source = OTX_CPT_FROM_DPTR; + /* Copy encryption key to context */ + memcpy(fctx->enc.encr_key, ctx->key, ctx->enc_key_len); + /* Copy salt to context */ + memcpy(fctx->enc.encr_iv, ctx->key + ctx->enc_key_len, + AES_GCM_SALT_SIZE); + + rctx->ctrl_word.e.iv_offset = req->assoclen - AES_GCM_IV_OFFSET; + break; + + default: + /* Unknown cipher type */ + return -EINVAL; + } + rctx->ctrl_word.flags = cpu_to_be64(rctx->ctrl_word.flags); + + req_info->ctrl.s.dma_mode = OTX_CPT_DMA_GATHER_SCATTER; + req_info->ctrl.s.se_req = OTX_CPT_SE_CORE_REQ; + req_info->req.opcode.s.major = OTX_CPT_MAJOR_OP_FC | + DMA_MODE_FLAG(OTX_CPT_DMA_GATHER_SCATTER); + if (enc) { + req_info->req.opcode.s.minor = 2; + req_info->req.param1 = req->cryptlen; + req_info->req.param2 = req->cryptlen + req->assoclen; + } else { + req_info->req.opcode.s.minor = 3; + req_info->req.param1 = req->cryptlen - mac_len; + req_info->req.param2 = req->cryptlen + req->assoclen - mac_len; + } + + fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type; + fctx->enc.enc_ctrl.e.aes_key = ctx->key_type; + fctx->enc.enc_ctrl.e.mac_type = ctx->mac_type; + fctx->enc.enc_ctrl.e.mac_len = mac_len; + fctx->enc.enc_ctrl.flags = cpu_to_be64(fctx->enc.enc_ctrl.flags); + + /* + * Storing Packet Data Information in offset + * Control Word First 8 bytes + */ + req_info->in[*argcnt].vptr = (u8 *)&rctx->ctrl_word; + req_info->in[*argcnt].size = CONTROL_WORD_LEN; + req_info->req.dlen += CONTROL_WORD_LEN; + ++(*argcnt); + + req_info->in[*argcnt].vptr = (u8 *)fctx; + req_info->in[*argcnt].size = sizeof(struct otx_cpt_fc_ctx); + req_info->req.dlen += sizeof(struct otx_cpt_fc_ctx); + ++(*argcnt); + + return 0; +} + +static inline u32 create_hmac_ctx_hdr(struct aead_request *req, u32 *argcnt, + u32 enc) +{ + struct otx_cpt_req_ctx *rctx = aead_request_ctx(req); + struct crypto_aead *tfm = crypto_aead_reqtfm(req); + struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(tfm); + struct otx_cpt_req_info *req_info = &rctx->cpt_req; + + req_info->ctrl.s.dma_mode = OTX_CPT_DMA_GATHER_SCATTER; + req_info->ctrl.s.se_req = OTX_CPT_SE_CORE_REQ; + req_info->req.opcode.s.major = OTX_CPT_MAJOR_OP_HMAC | + DMA_MODE_FLAG(OTX_CPT_DMA_GATHER_SCATTER); + req_info->is_trunc_hmac = ctx->is_trunc_hmac; + + req_info->req.opcode.s.minor = 0; + req_info->req.param1 = ctx->auth_key_len; + req_info->req.param2 = ctx->mac_type << 8; + + /* Add authentication key */ + req_info->in[*argcnt].vptr = ctx->key; + req_info->in[*argcnt].size = round_up(ctx->auth_key_len, 8); + req_info->req.dlen += round_up(ctx->auth_key_len, 8); + ++(*argcnt); + + return 0; +} + +static inline u32 create_aead_input_list(struct aead_request *req, u32 enc) +{ + struct otx_cpt_req_ctx *rctx = aead_request_ctx(req); + struct otx_cpt_req_info *req_info = &rctx->cpt_req; + u32 inputlen = req->cryptlen + req->assoclen; + u32 status, argcnt = 0; + + status = create_aead_ctx_hdr(req, enc, &argcnt); + if (status) + return status; + update_input_data(req_info, req->src, inputlen, &argcnt); + req_info->incnt = argcnt; + + return 0; +} + +static inline u32 create_aead_output_list(struct aead_request *req, u32 enc, + u32 mac_len) +{ + struct otx_cpt_req_ctx *rctx = aead_request_ctx(req); + struct otx_cpt_req_info *req_info = &rctx->cpt_req; + u32 argcnt = 0, outputlen = 0; + + if (enc) + outputlen = req->cryptlen + req->assoclen + mac_len; + else + outputlen = req->cryptlen + req->assoclen - mac_len; + + update_output_data(req_info, req->dst, 0, outputlen, &argcnt); + req_info->outcnt = argcnt; + + return 0; +} + +static inline u32 create_aead_null_input_list(struct aead_request *req, + u32 enc, u32 mac_len) +{ + struct otx_cpt_req_ctx *rctx = aead_request_ctx(req); + struct otx_cpt_req_info *req_info = &rctx->cpt_req; + u32 inputlen, argcnt = 0; + + if (enc) + inputlen = req->cryptlen + req->assoclen; + else + inputlen = req->cryptlen + req->assoclen - mac_len; + + create_hmac_ctx_hdr(req, &argcnt, enc); + update_input_data(req_info, req->src, inputlen, &argcnt); + req_info->incnt = argcnt; + + return 0; +} + +static inline u32 create_aead_null_output_list(struct aead_request *req, + u32 enc, u32 mac_len) +{ + struct otx_cpt_req_ctx *rctx = aead_request_ctx(req); + struct otx_cpt_req_info *req_info = &rctx->cpt_req; + struct scatterlist *dst; + u8 *ptr = NULL; + int argcnt = 0, status, offset; + u32 inputlen; + + if (enc) + inputlen = req->cryptlen + req->assoclen; + else + inputlen = req->cryptlen + req->assoclen - mac_len; + + /* + * If source and destination are different + * then copy payload to destination + */ + if (req->src != req->dst) { + + ptr = kmalloc(inputlen, (req_info->areq->flags & + CRYPTO_TFM_REQ_MAY_SLEEP) ? + GFP_KERNEL : GFP_ATOMIC); + if (!ptr) { + status = -ENOMEM; + goto error; + } + + status = sg_copy_to_buffer(req->src, sg_nents(req->src), ptr, + inputlen); + if (status != inputlen) { + status = -EINVAL; + goto error; + } + status = sg_copy_from_buffer(req->dst, sg_nents(req->dst), ptr, + inputlen); + if (status != inputlen) { + status = -EINVAL; + goto error; + } + kfree(ptr); + } + + if (enc) { + /* + * In an encryption scenario hmac needs + * to be appended after payload + */ + dst = req->dst; + offset = inputlen; + while (offset >= dst->length) { + offset -= dst->length; + dst = sg_next(dst); + if (!dst) { + status = -ENOENT; + goto error; + } + } + + update_output_data(req_info, dst, offset, mac_len, &argcnt); + } else { + /* + * In a decryption scenario calculated hmac for received + * payload needs to be compare with hmac received + */ + status = sg_copy_buffer(req->src, sg_nents(req->src), + rctx->fctx.hmac.s.hmac_recv, mac_len, + inputlen, true); + if (status != mac_len) { + status = -EINVAL; + goto error; + } + + req_info->out[argcnt].vptr = rctx->fctx.hmac.s.hmac_calc; + req_info->out[argcnt].size = mac_len; + argcnt++; + } + + req_info->outcnt = argcnt; + return 0; +error: + kfree(ptr); + return status; +} + +static u32 cpt_aead_enc_dec(struct aead_request *req, u8 reg_type, u8 enc) +{ + struct otx_cpt_req_ctx *rctx = aead_request_ctx(req); + struct otx_cpt_req_info *req_info = &rctx->cpt_req; + struct crypto_aead *tfm = crypto_aead_reqtfm(req); + struct pci_dev *pdev; + u32 status, cpu_num; + + /* Clear control words */ + rctx->ctrl_word.flags = 0; + rctx->fctx.enc.enc_ctrl.flags = 0; + + req_info->callback = otx_cpt_aead_callback; + req_info->areq = &req->base; + req_info->req_type = reg_type; + req_info->is_enc = enc; + req_info->is_trunc_hmac = false; + + switch (reg_type) { + case OTX_CPT_AEAD_ENC_DEC_REQ: + status = create_aead_input_list(req, enc); + if (status) + return status; + status = create_aead_output_list(req, enc, + crypto_aead_authsize(tfm)); + if (status) + return status; + break; + + case OTX_CPT_AEAD_ENC_DEC_NULL_REQ: + status = create_aead_null_input_list(req, enc, + crypto_aead_authsize(tfm)); + if (status) + return status; + status = create_aead_null_output_list(req, enc, + crypto_aead_authsize(tfm)); + if (status) + return status; + break; + + default: + return -EINVAL; + } + + /* Validate that request doesn't exceed maximum CPT supported size */ + if (req_info->req.param1 > OTX_CPT_MAX_REQ_SIZE || + req_info->req.param2 > OTX_CPT_MAX_REQ_SIZE) + return -E2BIG; + + status = get_se_device(&pdev, &cpu_num); + if (status) + return status; + + req_info->ctrl.s.grp = 0; + + status = otx_cpt_do_request(pdev, req_info, cpu_num); + /* + * We perform an asynchronous send and once + * the request is completed the driver would + * intimate through registered call back functions + */ + return status; +} + +static int otx_cpt_aead_encrypt(struct aead_request *req) +{ + return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_REQ, true); +} + +static int otx_cpt_aead_decrypt(struct aead_request *req) +{ + return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_REQ, false); +} + +static int otx_cpt_aead_null_encrypt(struct aead_request *req) +{ + return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_NULL_REQ, true); +} + +static int otx_cpt_aead_null_decrypt(struct aead_request *req) +{ + return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_NULL_REQ, false); +} + +static struct skcipher_alg otx_cpt_skciphers[] = { { + .base.cra_name = "xts(aes)", + .base.cra_driver_name = "cpt_xts_aes", + .base.cra_flags = CRYPTO_ALG_ASYNC, + .base.cra_blocksize = AES_BLOCK_SIZE, + .base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx), + .base.cra_alignmask = 7, + .base.cra_priority = 4001, + .base.cra_module = THIS_MODULE, + + .init = otx_cpt_enc_dec_init, + .ivsize = AES_BLOCK_SIZE, + .min_keysize = 2 * AES_MIN_KEY_SIZE, + .max_keysize = 2 * AES_MAX_KEY_SIZE, + .setkey = otx_cpt_skcipher_xts_setkey, + .encrypt = otx_cpt_skcipher_encrypt, + .decrypt = otx_cpt_skcipher_decrypt, +}, { + .base.cra_name = "cbc(aes)", + .base.cra_driver_name = "cpt_cbc_aes", + .base.cra_flags = CRYPTO_ALG_ASYNC, + .base.cra_blocksize = AES_BLOCK_SIZE, + .base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx), + .base.cra_alignmask = 7, + .base.cra_priority = 4001, + .base.cra_module = THIS_MODULE, + + .init = otx_cpt_enc_dec_init, + .ivsize = AES_BLOCK_SIZE, + .min_keysize = AES_MIN_KEY_SIZE, + .max_keysize = AES_MAX_KEY_SIZE, + .setkey = otx_cpt_skcipher_cbc_aes_setkey, + .encrypt = otx_cpt_skcipher_encrypt, + .decrypt = otx_cpt_skcipher_decrypt, +}, { + .base.cra_name = "ecb(aes)", + .base.cra_driver_name = "cpt_ecb_aes", + .base.cra_flags = CRYPTO_ALG_ASYNC, + .base.cra_blocksize = AES_BLOCK_SIZE, + .base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx), + .base.cra_alignmask = 7, + .base.cra_priority = 4001, + .base.cra_module = THIS_MODULE, + + .init = otx_cpt_enc_dec_init, + .ivsize = 0, + .min_keysize = AES_MIN_KEY_SIZE, + .max_keysize = AES_MAX_KEY_SIZE, + .setkey = otx_cpt_skcipher_ecb_aes_setkey, + .encrypt = otx_cpt_skcipher_encrypt, + .decrypt = otx_cpt_skcipher_decrypt, +}, { + .base.cra_name = "cfb(aes)", + .base.cra_driver_name = "cpt_cfb_aes", + .base.cra_flags = CRYPTO_ALG_ASYNC, + .base.cra_blocksize = AES_BLOCK_SIZE, + .base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx), + .base.cra_alignmask = 7, + .base.cra_priority = 4001, + .base.cra_module = THIS_MODULE, + + .init = otx_cpt_enc_dec_init, + .ivsize = AES_BLOCK_SIZE, + .min_keysize = AES_MIN_KEY_SIZE, + .max_keysize = AES_MAX_KEY_SIZE, + .setkey = otx_cpt_skcipher_cfb_aes_setkey, + .encrypt = otx_cpt_skcipher_encrypt, + .decrypt = otx_cpt_skcipher_decrypt, +}, { + .base.cra_name = "cbc(des3_ede)", + .base.cra_driver_name = "cpt_cbc_des3_ede", + .base.cra_flags = CRYPTO_ALG_ASYNC, + .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, + .base.cra_ctxsize = sizeof(struct otx_cpt_des3_ctx), + .base.cra_alignmask = 7, + .base.cra_priority = 4001, + .base.cra_module = THIS_MODULE, + + .init = otx_cpt_enc_dec_init, + .min_keysize = DES3_EDE_KEY_SIZE, + .max_keysize = DES3_EDE_KEY_SIZE, + .ivsize = DES_BLOCK_SIZE, + .setkey = otx_cpt_skcipher_cbc_des3_setkey, + .encrypt = otx_cpt_skcipher_encrypt, + .decrypt = otx_cpt_skcipher_decrypt, +}, { + .base.cra_name = "ecb(des3_ede)", + .base.cra_driver_name = "cpt_ecb_des3_ede", + .base.cra_flags = CRYPTO_ALG_ASYNC, + .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, + .base.cra_ctxsize = sizeof(struct otx_cpt_des3_ctx), + .base.cra_alignmask = 7, + .base.cra_priority = 4001, + .base.cra_module = THIS_MODULE, + + .init = otx_cpt_enc_dec_init, + .min_keysize = DES3_EDE_KEY_SIZE, + .max_keysize = DES3_EDE_KEY_SIZE, + .ivsize = 0, + .setkey = otx_cpt_skcipher_ecb_des3_setkey, + .encrypt = otx_cpt_skcipher_encrypt, + .decrypt = otx_cpt_skcipher_decrypt, +} }; + +static struct aead_alg otx_cpt_aeads[] = { { + .base = { + .cra_name = "authenc(hmac(sha1),cbc(aes))", + .cra_driver_name = "cpt_hmac_sha1_cbc_aes", + .cra_blocksize = AES_BLOCK_SIZE, + .cra_flags = CRYPTO_ALG_ASYNC, + .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx), + .cra_priority = 4001, + .cra_alignmask = 0, + .cra_module = THIS_MODULE, + }, + .init = otx_cpt_aead_cbc_aes_sha1_init, + .exit = otx_cpt_aead_exit, + .setkey = otx_cpt_aead_cbc_aes_sha_setkey, + .setauthsize = otx_cpt_aead_set_authsize, + .encrypt = otx_cpt_aead_encrypt, + .decrypt = otx_cpt_aead_decrypt, + .ivsize = AES_BLOCK_SIZE, + .maxauthsize = SHA1_DIGEST_SIZE, +}, { + .base = { + .cra_name = "authenc(hmac(sha256),cbc(aes))", + .cra_driver_name = "cpt_hmac_sha256_cbc_aes", + .cra_blocksize = AES_BLOCK_SIZE, + .cra_flags = CRYPTO_ALG_ASYNC, + .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx), + .cra_priority = 4001, + .cra_alignmask = 0, + .cra_module = THIS_MODULE, + }, + .init = otx_cpt_aead_cbc_aes_sha256_init, + .exit = otx_cpt_aead_exit, + .setkey = otx_cpt_aead_cbc_aes_sha_setkey, + .setauthsize = otx_cpt_aead_set_authsize, + .encrypt = otx_cpt_aead_encrypt, + .decrypt = otx_cpt_aead_decrypt, + .ivsize = AES_BLOCK_SIZE, + .maxauthsize = SHA256_DIGEST_SIZE, +}, { + .base = { + .cra_name = "authenc(hmac(sha384),cbc(aes))", + .cra_driver_name = "cpt_hmac_sha384_cbc_aes", + .cra_blocksize = AES_BLOCK_SIZE, + .cra_flags = CRYPTO_ALG_ASYNC, + .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx), + .cra_priority = 4001, + .cra_alignmask = 0, + .cra_module = THIS_MODULE, + }, + .init = otx_cpt_aead_cbc_aes_sha384_init, + .exit = otx_cpt_aead_exit, + .setkey = otx_cpt_aead_cbc_aes_sha_setkey, + .setauthsize = otx_cpt_aead_set_authsize, + .encrypt = otx_cpt_aead_encrypt, + .decrypt = otx_cpt_aead_decrypt, + .ivsize = AES_BLOCK_SIZE, + .maxauthsize = SHA384_DIGEST_SIZE, +}, { + .base = { + .cra_name = "authenc(hmac(sha512),cbc(aes))", + .cra_driver_name = "cpt_hmac_sha512_cbc_aes", + .cra_blocksize = AES_BLOCK_SIZE, + .cra_flags = CRYPTO_ALG_ASYNC, + .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx), + .cra_priority = 4001, + .cra_alignmask = 0, + .cra_module = THIS_MODULE, + }, + .init = otx_cpt_aead_cbc_aes_sha512_init, + .exit = otx_cpt_aead_exit, + .setkey = otx_cpt_aead_cbc_aes_sha_setkey, + .setauthsize = otx_cpt_aead_set_authsize, + .encrypt = otx_cpt_aead_encrypt, + .decrypt = otx_cpt_aead_decrypt, + .ivsize = AES_BLOCK_SIZE, + .maxauthsize = SHA512_DIGEST_SIZE, +}, { + .base = { + .cra_name = "authenc(hmac(sha1),ecb(cipher_null))", + .cra_driver_name = "cpt_hmac_sha1_ecb_null", + .cra_blocksize = 1, + .cra_flags = CRYPTO_ALG_ASYNC, + .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx), + .cra_priority = 4001, + .cra_alignmask = 0, + .cra_module = THIS_MODULE, + }, + .init = otx_cpt_aead_ecb_null_sha1_init, + .exit = otx_cpt_aead_exit, + .setkey = otx_cpt_aead_ecb_null_sha_setkey, + .setauthsize = otx_cpt_aead_set_authsize, + .encrypt = otx_cpt_aead_null_encrypt, + .decrypt = otx_cpt_aead_null_decrypt, + .ivsize = 0, + .maxauthsize = SHA1_DIGEST_SIZE, +}, { + .base = { + .cra_name = "authenc(hmac(sha256),ecb(cipher_null))", + .cra_driver_name = "cpt_hmac_sha256_ecb_null", + .cra_blocksize = 1, + .cra_flags = CRYPTO_ALG_ASYNC, + .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx), + .cra_priority = 4001, + .cra_alignmask = 0, + .cra_module = THIS_MODULE, + }, + .init = otx_cpt_aead_ecb_null_sha256_init, + .exit = otx_cpt_aead_exit, + .setkey = otx_cpt_aead_ecb_null_sha_setkey, + .setauthsize = otx_cpt_aead_set_authsize, + .encrypt = otx_cpt_aead_null_encrypt, + .decrypt = otx_cpt_aead_null_decrypt, + .ivsize = 0, + .maxauthsize = SHA256_DIGEST_SIZE, +}, { + .base = { + .cra_name = "authenc(hmac(sha384),ecb(cipher_null))", + .cra_driver_name = "cpt_hmac_sha384_ecb_null", + .cra_blocksize = 1, + .cra_flags = CRYPTO_ALG_ASYNC, + .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx), + .cra_priority = 4001, + .cra_alignmask = 0, + .cra_module = THIS_MODULE, + }, + .init = otx_cpt_aead_ecb_null_sha384_init, + .exit = otx_cpt_aead_exit, + .setkey = otx_cpt_aead_ecb_null_sha_setkey, + .setauthsize = otx_cpt_aead_set_authsize, + .encrypt = otx_cpt_aead_null_encrypt, + .decrypt = otx_cpt_aead_null_decrypt, + .ivsize = 0, + .maxauthsize = SHA384_DIGEST_SIZE, +}, { + .base = { + .cra_name = "authenc(hmac(sha512),ecb(cipher_null))", + .cra_driver_name = "cpt_hmac_sha512_ecb_null", + .cra_blocksize = 1, + .cra_flags = CRYPTO_ALG_ASYNC, + .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx), + .cra_priority = 4001, + .cra_alignmask = 0, + .cra_module = THIS_MODULE, + }, + .init = otx_cpt_aead_ecb_null_sha512_init, + .exit = otx_cpt_aead_exit, + .setkey = otx_cpt_aead_ecb_null_sha_setkey, + .setauthsize = otx_cpt_aead_set_authsize, + .encrypt = otx_cpt_aead_null_encrypt, + .decrypt = otx_cpt_aead_null_decrypt, + .ivsize = 0, + .maxauthsize = SHA512_DIGEST_SIZE, +}, { + .base = { + .cra_name = "rfc4106(gcm(aes))", + .cra_driver_name = "cpt_rfc4106_gcm_aes", + .cra_blocksize = 1, + .cra_flags = CRYPTO_ALG_ASYNC, + .cra_ctxsize = sizeof(struct otx_cpt_aead_ctx), + .cra_priority = 4001, + .cra_alignmask = 0, + .cra_module = THIS_MODULE, + }, + .init = otx_cpt_aead_gcm_aes_init, + .exit = otx_cpt_aead_exit, + .setkey = otx_cpt_aead_gcm_aes_setkey, + .setauthsize = otx_cpt_aead_set_authsize, + .encrypt = otx_cpt_aead_encrypt, + .decrypt = otx_cpt_aead_decrypt, + .ivsize = AES_GCM_IV_SIZE, + .maxauthsize = AES_GCM_ICV_SIZE, +} }; + +static inline int is_any_alg_used(void) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(otx_cpt_skciphers); i++) + if (refcount_read(&otx_cpt_skciphers[i].base.cra_refcnt) != 1) + return true; + for (i = 0; i < ARRAY_SIZE(otx_cpt_aeads); i++) + if (refcount_read(&otx_cpt_aeads[i].base.cra_refcnt) != 1) + return true; + return false; +} + +static inline int cpt_register_algs(void) +{ + int i, err = 0; + + if (!IS_ENABLED(CONFIG_DM_CRYPT)) { + for (i = 0; i < ARRAY_SIZE(otx_cpt_skciphers); i++) + otx_cpt_skciphers[i].base.cra_flags &= ~CRYPTO_ALG_DEAD; + + err = crypto_register_skciphers(otx_cpt_skciphers, + ARRAY_SIZE(otx_cpt_skciphers)); + if (err) + return err; + } + + for (i = 0; i < ARRAY_SIZE(otx_cpt_aeads); i++) + otx_cpt_aeads[i].base.cra_flags &= ~CRYPTO_ALG_DEAD; + + err = crypto_register_aeads(otx_cpt_aeads, ARRAY_SIZE(otx_cpt_aeads)); + if (err) { + crypto_unregister_skciphers(otx_cpt_skciphers, + ARRAY_SIZE(otx_cpt_skciphers)); + return err; + } + + return 0; +} + +static inline void cpt_unregister_algs(void) +{ + crypto_unregister_skciphers(otx_cpt_skciphers, + ARRAY_SIZE(otx_cpt_skciphers)); + crypto_unregister_aeads(otx_cpt_aeads, ARRAY_SIZE(otx_cpt_aeads)); +} + +static int compare_func(const void *lptr, const void *rptr) +{ + struct cpt_device_desc *ldesc = (struct cpt_device_desc *) lptr; + struct cpt_device_desc *rdesc = (struct cpt_device_desc *) rptr; + + if (ldesc->dev->devfn < rdesc->dev->devfn) + return -1; + if (ldesc->dev->devfn > rdesc->dev->devfn) + return 1; + return 0; +} + +static void swap_func(void *lptr, void *rptr, int size) +{ + struct cpt_device_desc *ldesc = (struct cpt_device_desc *) lptr; + struct cpt_device_desc *rdesc = (struct cpt_device_desc *) rptr; + struct cpt_device_desc desc; + + desc = *ldesc; + *ldesc = *rdesc; + *rdesc = desc; +} + +int otx_cpt_crypto_init(struct pci_dev *pdev, struct module *mod, + enum otx_cptpf_type pf_type, + enum otx_cptvf_type engine_type, + int num_queues, int num_devices) +{ + int ret = 0; + int count; + + mutex_lock(&mutex); + switch (engine_type) { + case OTX_CPT_SE_TYPES: + count = atomic_read(&se_devices.count); + if (count >= CPT_MAX_VF_NUM) { + dev_err(&pdev->dev, "No space to add a new device"); + ret = -ENOSPC; + goto err; + } + se_devices.desc[count].pf_type = pf_type; + se_devices.desc[count].num_queues = num_queues; + se_devices.desc[count++].dev = pdev; + atomic_inc(&se_devices.count); + + if (atomic_read(&se_devices.count) == num_devices && + is_crypto_registered == false) { + if (cpt_register_algs()) { + dev_err(&pdev->dev, + "Error in registering crypto algorithms\n"); + ret = -EINVAL; + goto err; + } + try_module_get(mod); + is_crypto_registered = true; + } + sort(se_devices.desc, count, sizeof(struct cpt_device_desc), + compare_func, swap_func); + break; + + case OTX_CPT_AE_TYPES: + count = atomic_read(&ae_devices.count); + if (count >= CPT_MAX_VF_NUM) { + dev_err(&pdev->dev, "No space to a add new device"); + ret = -ENOSPC; + goto err; + } + ae_devices.desc[count].pf_type = pf_type; + ae_devices.desc[count].num_queues = num_queues; + ae_devices.desc[count++].dev = pdev; + atomic_inc(&ae_devices.count); + sort(ae_devices.desc, count, sizeof(struct cpt_device_desc), + compare_func, swap_func); + break; + + default: + dev_err(&pdev->dev, "Unknown VF type %d\n", engine_type); + ret = BAD_OTX_CPTVF_TYPE; + } +err: + mutex_unlock(&mutex); + return ret; +} + +void otx_cpt_crypto_exit(struct pci_dev *pdev, struct module *mod, + enum otx_cptvf_type engine_type) +{ + struct cpt_device_table *dev_tbl; + bool dev_found = false; + int i, j, count; + + mutex_lock(&mutex); + + dev_tbl = (engine_type == OTX_CPT_AE_TYPES) ? &ae_devices : &se_devices; + count = atomic_read(&dev_tbl->count); + for (i = 0; i < count; i++) + if (pdev == dev_tbl->desc[i].dev) { + for (j = i; j < count-1; j++) + dev_tbl->desc[j] = dev_tbl->desc[j+1]; + dev_found = true; + break; + } + + if (!dev_found) { + dev_err(&pdev->dev, "%s device not found", __func__); + goto exit; + } + + if (engine_type != OTX_CPT_AE_TYPES) { + if (atomic_dec_and_test(&se_devices.count) && + !is_any_alg_used()) { + cpt_unregister_algs(); + module_put(mod); + is_crypto_registered = false; + } + } else + atomic_dec(&ae_devices.count); +exit: + mutex_unlock(&mutex); +} diff --git a/drivers/crypto/marvell/octeontx/otx_cptvf_algs.h b/drivers/crypto/marvell/octeontx/otx_cptvf_algs.h new file mode 100644 index 000000000000..67cc0025f5d5 --- /dev/null +++ b/drivers/crypto/marvell/octeontx/otx_cptvf_algs.h @@ -0,0 +1,188 @@ +/* SPDX-License-Identifier: GPL-2.0 + * Marvell OcteonTX CPT driver + * + * Copyright (C) 2019 Marvell International Ltd. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +#ifndef __OTX_CPT_ALGS_H +#define __OTX_CPT_ALGS_H + +#include <crypto/hash.h> +#include "otx_cpt_common.h" + +#define OTX_CPT_MAX_ENC_KEY_SIZE 32 +#define OTX_CPT_MAX_HASH_KEY_SIZE 64 +#define OTX_CPT_MAX_KEY_SIZE (OTX_CPT_MAX_ENC_KEY_SIZE + \ + OTX_CPT_MAX_HASH_KEY_SIZE) +enum otx_cpt_request_type { + OTX_CPT_ENC_DEC_REQ = 0x1, + OTX_CPT_AEAD_ENC_DEC_REQ = 0x2, + OTX_CPT_AEAD_ENC_DEC_NULL_REQ = 0x3, + OTX_CPT_PASSTHROUGH_REQ = 0x4 +}; + +enum otx_cpt_major_opcodes { + OTX_CPT_MAJOR_OP_MISC = 0x01, + OTX_CPT_MAJOR_OP_FC = 0x33, + OTX_CPT_MAJOR_OP_HMAC = 0x35, +}; + +enum otx_cpt_req_type { + OTX_CPT_AE_CORE_REQ, + OTX_CPT_SE_CORE_REQ +}; + +enum otx_cpt_cipher_type { + OTX_CPT_CIPHER_NULL = 0x0, + OTX_CPT_DES3_CBC = 0x1, + OTX_CPT_DES3_ECB = 0x2, + OTX_CPT_AES_CBC = 0x3, + OTX_CPT_AES_ECB = 0x4, + OTX_CPT_AES_CFB = 0x5, + OTX_CPT_AES_CTR = 0x6, + OTX_CPT_AES_GCM = 0x7, + OTX_CPT_AES_XTS = 0x8 +}; + +enum otx_cpt_mac_type { + OTX_CPT_MAC_NULL = 0x0, + OTX_CPT_MD5 = 0x1, + OTX_CPT_SHA1 = 0x2, + OTX_CPT_SHA224 = 0x3, + OTX_CPT_SHA256 = 0x4, + OTX_CPT_SHA384 = 0x5, + OTX_CPT_SHA512 = 0x6, + OTX_CPT_GMAC = 0x7 +}; + +enum otx_cpt_aes_key_len { + OTX_CPT_AES_128_BIT = 0x1, + OTX_CPT_AES_192_BIT = 0x2, + OTX_CPT_AES_256_BIT = 0x3 +}; + +union otx_cpt_encr_ctrl { + u64 flags; + struct { +#if defined(__BIG_ENDIAN_BITFIELD) + u64 enc_cipher:4; + u64 reserved1:1; + u64 aes_key:2; + u64 iv_source:1; + u64 mac_type:4; + u64 reserved2:3; + u64 auth_input_type:1; + u64 mac_len:8; + u64 reserved3:8; + u64 encr_offset:16; + u64 iv_offset:8; + u64 auth_offset:8; +#else + u64 auth_offset:8; + u64 iv_offset:8; + u64 encr_offset:16; + u64 reserved3:8; + u64 mac_len:8; + u64 auth_input_type:1; + u64 reserved2:3; + u64 mac_type:4; + u64 iv_source:1; + u64 aes_key:2; + u64 reserved1:1; + u64 enc_cipher:4; +#endif + } e; +}; + +struct otx_cpt_cipher { + const char *name; + u8 value; +}; + +struct otx_cpt_enc_context { + union otx_cpt_encr_ctrl enc_ctrl; + u8 encr_key[32]; + u8 encr_iv[16]; +}; + +union otx_cpt_fchmac_ctx { + struct { + u8 ipad[64]; + u8 opad[64]; + } e; + struct { + u8 hmac_calc[64]; /* HMAC calculated */ + u8 hmac_recv[64]; /* HMAC received */ + } s; +}; + +struct otx_cpt_fc_ctx { + struct otx_cpt_enc_context enc; + union otx_cpt_fchmac_ctx hmac; +}; + +struct otx_cpt_enc_ctx { + u32 key_len; + u8 enc_key[OTX_CPT_MAX_KEY_SIZE]; + u8 cipher_type; + u8 key_type; +}; + +struct otx_cpt_des3_ctx { + u32 key_len; + u8 des3_key[OTX_CPT_MAX_KEY_SIZE]; +}; + +union otx_cpt_offset_ctrl_word { + u64 flags; + struct { +#if defined(__BIG_ENDIAN_BITFIELD) + u64 reserved:32; + u64 enc_data_offset:16; + u64 iv_offset:8; + u64 auth_offset:8; +#else + u64 auth_offset:8; + u64 iv_offset:8; + u64 enc_data_offset:16; + u64 reserved:32; +#endif + } e; +}; + +struct otx_cpt_req_ctx { + struct otx_cpt_req_info cpt_req; + union otx_cpt_offset_ctrl_word ctrl_word; + struct otx_cpt_fc_ctx fctx; +}; + +struct otx_cpt_sdesc { + struct shash_desc shash; +}; + +struct otx_cpt_aead_ctx { + u8 key[OTX_CPT_MAX_KEY_SIZE]; + struct crypto_shash *hashalg; + struct otx_cpt_sdesc *sdesc; + u8 *ipad; + u8 *opad; + u32 enc_key_len; + u32 auth_key_len; + u8 cipher_type; + u8 mac_type; + u8 key_type; + u8 is_trunc_hmac; +}; +int otx_cpt_crypto_init(struct pci_dev *pdev, struct module *mod, + enum otx_cptpf_type pf_type, + enum otx_cptvf_type engine_type, + int num_queues, int num_devices); +void otx_cpt_crypto_exit(struct pci_dev *pdev, struct module *mod, + enum otx_cptvf_type engine_type); +void otx_cpt_callback(int status, void *arg, void *req); + +#endif /* __OTX_CPT_ALGS_H */ diff --git a/drivers/crypto/marvell/octeontx/otx_cptvf_main.c b/drivers/crypto/marvell/octeontx/otx_cptvf_main.c new file mode 100644 index 000000000000..a91860b5dc77 --- /dev/null +++ b/drivers/crypto/marvell/octeontx/otx_cptvf_main.c @@ -0,0 +1,985 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Marvell OcteonTX CPT driver + * + * Copyright (C) 2019 Marvell International Ltd. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +#include <linux/interrupt.h> +#include <linux/module.h> +#include "otx_cptvf.h" +#include "otx_cptvf_algs.h" +#include "otx_cptvf_reqmgr.h" + +#define DRV_NAME "octeontx-cptvf" +#define DRV_VERSION "1.0" + +static void vq_work_handler(unsigned long data) +{ + struct otx_cptvf_wqe_info *cwqe_info = + (struct otx_cptvf_wqe_info *) data; + + otx_cpt_post_process(&cwqe_info->vq_wqe[0]); +} + +static int init_worker_threads(struct otx_cptvf *cptvf) +{ + struct pci_dev *pdev = cptvf->pdev; + struct otx_cptvf_wqe_info *cwqe_info; + int i; + + cwqe_info = kzalloc(sizeof(*cwqe_info), GFP_KERNEL); + if (!cwqe_info) + return -ENOMEM; + + if (cptvf->num_queues) { + dev_dbg(&pdev->dev, "Creating VQ worker threads (%d)\n", + cptvf->num_queues); + } + + for (i = 0; i < cptvf->num_queues; i++) { + tasklet_init(&cwqe_info->vq_wqe[i].twork, vq_work_handler, + (u64)cwqe_info); + cwqe_info->vq_wqe[i].cptvf = cptvf; + } + cptvf->wqe_info = cwqe_info; + + return 0; +} + +static void cleanup_worker_threads(struct otx_cptvf *cptvf) +{ + struct pci_dev *pdev = cptvf->pdev; + struct otx_cptvf_wqe_info *cwqe_info; + int i; + + cwqe_info = (struct otx_cptvf_wqe_info *)cptvf->wqe_info; + if (!cwqe_info) + return; + + if (cptvf->num_queues) { + dev_dbg(&pdev->dev, "Cleaning VQ worker threads (%u)\n", + cptvf->num_queues); + } + + for (i = 0; i < cptvf->num_queues; i++) + tasklet_kill(&cwqe_info->vq_wqe[i].twork); + + kzfree(cwqe_info); + cptvf->wqe_info = NULL; +} + +static void free_pending_queues(struct otx_cpt_pending_qinfo *pqinfo) +{ + struct otx_cpt_pending_queue *queue; + int i; + + for_each_pending_queue(pqinfo, queue, i) { + if (!queue->head) + continue; + + /* free single queue */ + kzfree((queue->head)); + queue->front = 0; + queue->rear = 0; + queue->qlen = 0; + } + pqinfo->num_queues = 0; +} + +static int alloc_pending_queues(struct otx_cpt_pending_qinfo *pqinfo, u32 qlen, + u32 num_queues) +{ + struct otx_cpt_pending_queue *queue = NULL; + size_t size; + int ret; + u32 i; + + pqinfo->num_queues = num_queues; + size = (qlen * sizeof(struct otx_cpt_pending_entry)); + + for_each_pending_queue(pqinfo, queue, i) { + queue->head = kzalloc((size), GFP_KERNEL); + if (!queue->head) { + ret = -ENOMEM; + goto pending_qfail; + } + + queue->pending_count = 0; + queue->front = 0; + queue->rear = 0; + queue->qlen = qlen; + + /* init queue spin lock */ + spin_lock_init(&queue->lock); + } + return 0; + +pending_qfail: + free_pending_queues(pqinfo); + + return ret; +} + +static int init_pending_queues(struct otx_cptvf *cptvf, u32 qlen, + u32 num_queues) +{ + struct pci_dev *pdev = cptvf->pdev; + int ret; + + if (!num_queues) + return 0; + + ret = alloc_pending_queues(&cptvf->pqinfo, qlen, num_queues); + if (ret) { + dev_err(&pdev->dev, "Failed to setup pending queues (%u)\n", + num_queues); + return ret; + } + return 0; +} + +static void cleanup_pending_queues(struct otx_cptvf *cptvf) +{ + struct pci_dev *pdev = cptvf->pdev; + + if (!cptvf->num_queues) + return; + + dev_dbg(&pdev->dev, "Cleaning VQ pending queue (%u)\n", + cptvf->num_queues); + free_pending_queues(&cptvf->pqinfo); +} + +static void free_command_queues(struct otx_cptvf *cptvf, + struct otx_cpt_cmd_qinfo *cqinfo) +{ + struct otx_cpt_cmd_queue *queue = NULL; + struct otx_cpt_cmd_chunk *chunk = NULL; + struct pci_dev *pdev = cptvf->pdev; + int i; + + /* clean up for each queue */ + for (i = 0; i < cptvf->num_queues; i++) { + queue = &cqinfo->queue[i]; + + while (!list_empty(&cqinfo->queue[i].chead)) { + chunk = list_first_entry(&cqinfo->queue[i].chead, + struct otx_cpt_cmd_chunk, nextchunk); + + dma_free_coherent(&pdev->dev, chunk->size, + chunk->head, + chunk->dma_addr); + chunk->head = NULL; + chunk->dma_addr = 0; + list_del(&chunk->nextchunk); + kzfree(chunk); + } + queue->num_chunks = 0; + queue->idx = 0; + + } +} + +static int alloc_command_queues(struct otx_cptvf *cptvf, + struct otx_cpt_cmd_qinfo *cqinfo, + u32 qlen) +{ + struct otx_cpt_cmd_chunk *curr, *first, *last; + struct otx_cpt_cmd_queue *queue = NULL; + struct pci_dev *pdev = cptvf->pdev; + size_t q_size, c_size, rem_q_size; + u32 qcsize_bytes; + int i; + + + /* Qsize in dwords, needed for SADDR config, 1-next chunk pointer */ + cptvf->qsize = min(qlen, cqinfo->qchunksize) * + OTX_CPT_NEXT_CHUNK_PTR_SIZE + 1; + /* Qsize in bytes to create space for alignment */ + q_size = qlen * OTX_CPT_INST_SIZE; + + qcsize_bytes = cqinfo->qchunksize * OTX_CPT_INST_SIZE; + + /* per queue initialization */ + for (i = 0; i < cptvf->num_queues; i++) { + c_size = 0; + rem_q_size = q_size; + first = NULL; + last = NULL; + + queue = &cqinfo->queue[i]; + INIT_LIST_HEAD(&queue->chead); + do { + curr = kzalloc(sizeof(*curr), GFP_KERNEL); + if (!curr) + goto cmd_qfail; + + c_size = (rem_q_size > qcsize_bytes) ? qcsize_bytes : + rem_q_size; + curr->head = dma_alloc_coherent(&pdev->dev, + c_size + OTX_CPT_NEXT_CHUNK_PTR_SIZE, + &curr->dma_addr, GFP_KERNEL); + if (!curr->head) { + dev_err(&pdev->dev, + "Command Q (%d) chunk (%d) allocation failed\n", + i, queue->num_chunks); + goto free_curr; + } + curr->size = c_size; + + if (queue->num_chunks == 0) { + first = curr; + queue->base = first; + } + list_add_tail(&curr->nextchunk, + &cqinfo->queue[i].chead); + + queue->num_chunks++; + rem_q_size -= c_size; + if (last) + *((u64 *)(&last->head[last->size])) = + (u64)curr->dma_addr; + + last = curr; + } while (rem_q_size); + + /* + * Make the queue circular, tie back last chunk entry to head + */ + curr = first; + *((u64 *)(&last->head[last->size])) = (u64)curr->dma_addr; + queue->qhead = curr; + } + return 0; +free_curr: + kfree(curr); +cmd_qfail: + free_command_queues(cptvf, cqinfo); + return -ENOMEM; +} + +static int init_command_queues(struct otx_cptvf *cptvf, u32 qlen) +{ + struct pci_dev *pdev = cptvf->pdev; + int ret; + + /* setup command queues */ + ret = alloc_command_queues(cptvf, &cptvf->cqinfo, qlen); + if (ret) { + dev_err(&pdev->dev, "Failed to allocate command queues (%u)\n", + cptvf->num_queues); + return ret; + } + return ret; +} + +static void cleanup_command_queues(struct otx_cptvf *cptvf) +{ + struct pci_dev *pdev = cptvf->pdev; + + if (!cptvf->num_queues) + return; + + dev_dbg(&pdev->dev, "Cleaning VQ command queue (%u)\n", + cptvf->num_queues); + free_command_queues(cptvf, &cptvf->cqinfo); +} + +static void cptvf_sw_cleanup(struct otx_cptvf *cptvf) +{ + cleanup_worker_threads(cptvf); + cleanup_pending_queues(cptvf); + cleanup_command_queues(cptvf); +} + +static int cptvf_sw_init(struct otx_cptvf *cptvf, u32 qlen, u32 num_queues) +{ + struct pci_dev *pdev = cptvf->pdev; + u32 max_dev_queues = 0; + int ret; + + max_dev_queues = OTX_CPT_NUM_QS_PER_VF; + /* possible cpus */ + num_queues = min_t(u32, num_queues, max_dev_queues); + cptvf->num_queues = num_queues; + + ret = init_command_queues(cptvf, qlen); + if (ret) { + dev_err(&pdev->dev, "Failed to setup command queues (%u)\n", + num_queues); + return ret; + } + + ret = init_pending_queues(cptvf, qlen, num_queues); + if (ret) { + dev_err(&pdev->dev, "Failed to setup pending queues (%u)\n", + num_queues); + goto setup_pqfail; + } + + /* Create worker threads for BH processing */ + ret = init_worker_threads(cptvf); + if (ret) { + dev_err(&pdev->dev, "Failed to setup worker threads\n"); + goto init_work_fail; + } + return 0; + +init_work_fail: + cleanup_worker_threads(cptvf); + cleanup_pending_queues(cptvf); + +setup_pqfail: + cleanup_command_queues(cptvf); + + return ret; +} + +static void cptvf_free_irq_affinity(struct otx_cptvf *cptvf, int vec) +{ + irq_set_affinity_hint(pci_irq_vector(cptvf->pdev, vec), NULL); + free_cpumask_var(cptvf->affinity_mask[vec]); +} + +static void cptvf_write_vq_ctl(struct otx_cptvf *cptvf, bool val) +{ + union otx_cptx_vqx_ctl vqx_ctl; + + vqx_ctl.u = readq(cptvf->reg_base + OTX_CPT_VQX_CTL(0)); + vqx_ctl.s.ena = val; + writeq(vqx_ctl.u, cptvf->reg_base + OTX_CPT_VQX_CTL(0)); +} + +void otx_cptvf_write_vq_doorbell(struct otx_cptvf *cptvf, u32 val) +{ + union otx_cptx_vqx_doorbell vqx_dbell; + + vqx_dbell.u = readq(cptvf->reg_base + OTX_CPT_VQX_DOORBELL(0)); + vqx_dbell.s.dbell_cnt = val * 8; /* Num of Instructions * 8 words */ + writeq(vqx_dbell.u, cptvf->reg_base + OTX_CPT_VQX_DOORBELL(0)); +} + +static void cptvf_write_vq_inprog(struct otx_cptvf *cptvf, u8 val) +{ + union otx_cptx_vqx_inprog vqx_inprg; + + vqx_inprg.u = readq(cptvf->reg_base + OTX_CPT_VQX_INPROG(0)); + vqx_inprg.s.inflight = val; + writeq(vqx_inprg.u, cptvf->reg_base + OTX_CPT_VQX_INPROG(0)); +} + +static void cptvf_write_vq_done_numwait(struct otx_cptvf *cptvf, u32 val) +{ + union otx_cptx_vqx_done_wait vqx_dwait; + + vqx_dwait.u = readq(cptvf->reg_base + OTX_CPT_VQX_DONE_WAIT(0)); + vqx_dwait.s.num_wait = val; + writeq(vqx_dwait.u, cptvf->reg_base + OTX_CPT_VQX_DONE_WAIT(0)); +} + +static u32 cptvf_read_vq_done_numwait(struct otx_cptvf *cptvf) +{ + union otx_cptx_vqx_done_wait vqx_dwait; + + vqx_dwait.u = readq(cptvf->reg_base + OTX_CPT_VQX_DONE_WAIT(0)); + return vqx_dwait.s.num_wait; +} + +static void cptvf_write_vq_done_timewait(struct otx_cptvf *cptvf, u16 time) +{ + union otx_cptx_vqx_done_wait vqx_dwait; + + vqx_dwait.u = readq(cptvf->reg_base + OTX_CPT_VQX_DONE_WAIT(0)); + vqx_dwait.s.time_wait = time; + writeq(vqx_dwait.u, cptvf->reg_base + OTX_CPT_VQX_DONE_WAIT(0)); +} + + +static u16 cptvf_read_vq_done_timewait(struct otx_cptvf *cptvf) +{ + union otx_cptx_vqx_done_wait vqx_dwait; + + vqx_dwait.u = readq(cptvf->reg_base + OTX_CPT_VQX_DONE_WAIT(0)); + return vqx_dwait.s.time_wait; +} + +static void cptvf_enable_swerr_interrupts(struct otx_cptvf *cptvf) +{ + union otx_cptx_vqx_misc_ena_w1s vqx_misc_ena; + + vqx_misc_ena.u = readq(cptvf->reg_base + OTX_CPT_VQX_MISC_ENA_W1S(0)); + /* Enable SWERR interrupts for the requested VF */ + vqx_misc_ena.s.swerr = 1; + writeq(vqx_misc_ena.u, cptvf->reg_base + OTX_CPT_VQX_MISC_ENA_W1S(0)); +} + +static void cptvf_enable_mbox_interrupts(struct otx_cptvf *cptvf) +{ + union otx_cptx_vqx_misc_ena_w1s vqx_misc_ena; + + vqx_misc_ena.u = readq(cptvf->reg_base + OTX_CPT_VQX_MISC_ENA_W1S(0)); + /* Enable MBOX interrupt for the requested VF */ + vqx_misc_ena.s.mbox = 1; + writeq(vqx_misc_ena.u, cptvf->reg_base + OTX_CPT_VQX_MISC_ENA_W1S(0)); +} + +static void cptvf_enable_done_interrupts(struct otx_cptvf *cptvf) +{ + union otx_cptx_vqx_done_ena_w1s vqx_done_ena; + + vqx_done_ena.u = readq(cptvf->reg_base + OTX_CPT_VQX_DONE_ENA_W1S(0)); + /* Enable DONE interrupt for the requested VF */ + vqx_done_ena.s.done = 1; + writeq(vqx_done_ena.u, cptvf->reg_base + OTX_CPT_VQX_DONE_ENA_W1S(0)); +} + +static void cptvf_clear_dovf_intr(struct otx_cptvf *cptvf) +{ + union otx_cptx_vqx_misc_int vqx_misc_int; + + vqx_misc_int.u = readq(cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); + /* W1C for the VF */ + vqx_misc_int.s.dovf = 1; + writeq(vqx_misc_int.u, cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); +} + +static void cptvf_clear_irde_intr(struct otx_cptvf *cptvf) +{ + union otx_cptx_vqx_misc_int vqx_misc_int; + + vqx_misc_int.u = readq(cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); + /* W1C for the VF */ + vqx_misc_int.s.irde = 1; + writeq(vqx_misc_int.u, cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); +} + +static void cptvf_clear_nwrp_intr(struct otx_cptvf *cptvf) +{ + union otx_cptx_vqx_misc_int vqx_misc_int; + + vqx_misc_int.u = readq(cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); + /* W1C for the VF */ + vqx_misc_int.s.nwrp = 1; + writeq(vqx_misc_int.u, cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); +} + +static void cptvf_clear_mbox_intr(struct otx_cptvf *cptvf) +{ + union otx_cptx_vqx_misc_int vqx_misc_int; + + vqx_misc_int.u = readq(cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); + /* W1C for the VF */ + vqx_misc_int.s.mbox = 1; + writeq(vqx_misc_int.u, cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); +} + +static void cptvf_clear_swerr_intr(struct otx_cptvf *cptvf) +{ + union otx_cptx_vqx_misc_int vqx_misc_int; + + vqx_misc_int.u = readq(cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); + /* W1C for the VF */ + vqx_misc_int.s.swerr = 1; + writeq(vqx_misc_int.u, cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); +} + +static u64 cptvf_read_vf_misc_intr_status(struct otx_cptvf *cptvf) +{ + return readq(cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); +} + +static irqreturn_t cptvf_misc_intr_handler(int __always_unused irq, + void *arg) +{ + struct otx_cptvf *cptvf = arg; + struct pci_dev *pdev = cptvf->pdev; + u64 intr; + + intr = cptvf_read_vf_misc_intr_status(cptvf); + /* Check for MISC interrupt types */ + if (likely(intr & OTX_CPT_VF_INTR_MBOX_MASK)) { + dev_dbg(&pdev->dev, "Mailbox interrupt 0x%llx on CPT VF %d\n", + intr, cptvf->vfid); + otx_cptvf_handle_mbox_intr(cptvf); + cptvf_clear_mbox_intr(cptvf); + } else if (unlikely(intr & OTX_CPT_VF_INTR_DOVF_MASK)) { + cptvf_clear_dovf_intr(cptvf); + /* Clear doorbell count */ + otx_cptvf_write_vq_doorbell(cptvf, 0); + dev_err(&pdev->dev, + "Doorbell overflow error interrupt 0x%llx on CPT VF %d\n", + intr, cptvf->vfid); + } else if (unlikely(intr & OTX_CPT_VF_INTR_IRDE_MASK)) { + cptvf_clear_irde_intr(cptvf); + dev_err(&pdev->dev, + "Instruction NCB read error interrupt 0x%llx on CPT VF %d\n", + intr, cptvf->vfid); + } else if (unlikely(intr & OTX_CPT_VF_INTR_NWRP_MASK)) { + cptvf_clear_nwrp_intr(cptvf); + dev_err(&pdev->dev, + "NCB response write error interrupt 0x%llx on CPT VF %d\n", + intr, cptvf->vfid); + } else if (unlikely(intr & OTX_CPT_VF_INTR_SERR_MASK)) { + cptvf_clear_swerr_intr(cptvf); + dev_err(&pdev->dev, + "Software error interrupt 0x%llx on CPT VF %d\n", + intr, cptvf->vfid); + } else { + dev_err(&pdev->dev, "Unhandled interrupt in OTX_CPT VF %d\n", + cptvf->vfid); + } + + return IRQ_HANDLED; +} + +static inline struct otx_cptvf_wqe *get_cptvf_vq_wqe(struct otx_cptvf *cptvf, + int qno) +{ + struct otx_cptvf_wqe_info *nwqe_info; + + if (unlikely(qno >= cptvf->num_queues)) + return NULL; + nwqe_info = (struct otx_cptvf_wqe_info *)cptvf->wqe_info; + + return &nwqe_info->vq_wqe[qno]; +} + +static inline u32 cptvf_read_vq_done_count(struct otx_cptvf *cptvf) +{ + union otx_cptx_vqx_done vqx_done; + + vqx_done.u = readq(cptvf->reg_base + OTX_CPT_VQX_DONE(0)); + return vqx_done.s.done; +} + +static inline void cptvf_write_vq_done_ack(struct otx_cptvf *cptvf, + u32 ackcnt) +{ + union otx_cptx_vqx_done_ack vqx_dack_cnt; + + vqx_dack_cnt.u = readq(cptvf->reg_base + OTX_CPT_VQX_DONE_ACK(0)); + vqx_dack_cnt.s.done_ack = ackcnt; + writeq(vqx_dack_cnt.u, cptvf->reg_base + OTX_CPT_VQX_DONE_ACK(0)); +} + +static irqreturn_t cptvf_done_intr_handler(int __always_unused irq, + void *cptvf_dev) +{ + struct otx_cptvf *cptvf = (struct otx_cptvf *)cptvf_dev; + struct pci_dev *pdev = cptvf->pdev; + /* Read the number of completions */ + u32 intr = cptvf_read_vq_done_count(cptvf); + + if (intr) { + struct otx_cptvf_wqe *wqe; + + /* + * Acknowledge the number of scheduled completions for + * processing + */ + cptvf_write_vq_done_ack(cptvf, intr); + wqe = get_cptvf_vq_wqe(cptvf, 0); + if (unlikely(!wqe)) { + dev_err(&pdev->dev, "No work to schedule for VF (%d)", + cptvf->vfid); + return IRQ_NONE; + } + tasklet_hi_schedule(&wqe->twork); + } + + return IRQ_HANDLED; +} + +static void cptvf_set_irq_affinity(struct otx_cptvf *cptvf, int vec) +{ + struct pci_dev *pdev = cptvf->pdev; + int cpu; + + if (!zalloc_cpumask_var(&cptvf->affinity_mask[vec], + GFP_KERNEL)) { + dev_err(&pdev->dev, + "Allocation failed for affinity_mask for VF %d", + cptvf->vfid); + return; + } + + cpu = cptvf->vfid % num_online_cpus(); + cpumask_set_cpu(cpumask_local_spread(cpu, cptvf->node), + cptvf->affinity_mask[vec]); + irq_set_affinity_hint(pci_irq_vector(pdev, vec), + cptvf->affinity_mask[vec]); +} + +static void cptvf_write_vq_saddr(struct otx_cptvf *cptvf, u64 val) +{ + union otx_cptx_vqx_saddr vqx_saddr; + + vqx_saddr.u = val; + writeq(vqx_saddr.u, cptvf->reg_base + OTX_CPT_VQX_SADDR(0)); +} + +static void cptvf_device_init(struct otx_cptvf *cptvf) +{ + u64 base_addr = 0; + + /* Disable the VQ */ + cptvf_write_vq_ctl(cptvf, 0); + /* Reset the doorbell */ + otx_cptvf_write_vq_doorbell(cptvf, 0); + /* Clear inflight */ + cptvf_write_vq_inprog(cptvf, 0); + /* Write VQ SADDR */ + base_addr = (u64)(cptvf->cqinfo.queue[0].qhead->dma_addr); + cptvf_write_vq_saddr(cptvf, base_addr); + /* Configure timerhold / coalescence */ + cptvf_write_vq_done_timewait(cptvf, OTX_CPT_TIMER_HOLD); + cptvf_write_vq_done_numwait(cptvf, OTX_CPT_COUNT_HOLD); + /* Enable the VQ */ + cptvf_write_vq_ctl(cptvf, 1); + /* Flag the VF ready */ + cptvf->flags |= OTX_CPT_FLAG_DEVICE_READY; +} + +static ssize_t vf_type_show(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + struct otx_cptvf *cptvf = dev_get_drvdata(dev); + char *msg; + + switch (cptvf->vftype) { + case OTX_CPT_AE_TYPES: + msg = "AE"; + break; + + case OTX_CPT_SE_TYPES: + msg = "SE"; + break; + + default: + msg = "Invalid"; + } + + return scnprintf(buf, PAGE_SIZE, "%s\n", msg); +} + +static ssize_t vf_engine_group_show(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + struct otx_cptvf *cptvf = dev_get_drvdata(dev); + + return scnprintf(buf, PAGE_SIZE, "%d\n", cptvf->vfgrp); +} + +static ssize_t vf_engine_group_store(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + struct otx_cptvf *cptvf = dev_get_drvdata(dev); + int val, ret; + + ret = kstrtoint(buf, 10, &val); + if (ret) + return ret; + + if (val < 0) + return -EINVAL; + + if (val >= OTX_CPT_MAX_ENGINE_GROUPS) { + dev_err(dev, "Engine group >= than max available groups %d", + OTX_CPT_MAX_ENGINE_GROUPS); + return -EINVAL; + } + + ret = otx_cptvf_send_vf_to_grp_msg(cptvf, val); + if (ret) + return ret; + + return count; +} + +static ssize_t vf_coalesc_time_wait_show(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + struct otx_cptvf *cptvf = dev_get_drvdata(dev); + + return scnprintf(buf, PAGE_SIZE, "%d\n", + cptvf_read_vq_done_timewait(cptvf)); +} + +static ssize_t vf_coalesc_num_wait_show(struct device *dev, + struct device_attribute *attr, + char *buf) +{ + struct otx_cptvf *cptvf = dev_get_drvdata(dev); + + return scnprintf(buf, PAGE_SIZE, "%d\n", + cptvf_read_vq_done_numwait(cptvf)); +} + +static ssize_t vf_coalesc_time_wait_store(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + struct otx_cptvf *cptvf = dev_get_drvdata(dev); + long val; + int ret; + + ret = kstrtol(buf, 10, &val); + if (ret != 0) + return ret; + + if (val < OTX_CPT_COALESC_MIN_TIME_WAIT || + val > OTX_CPT_COALESC_MAX_TIME_WAIT) + return -EINVAL; + + cptvf_write_vq_done_timewait(cptvf, val); + return count; +} + +static ssize_t vf_coalesc_num_wait_store(struct device *dev, + struct device_attribute *attr, + const char *buf, size_t count) +{ + struct otx_cptvf *cptvf = dev_get_drvdata(dev); + long val; + int ret; + + ret = kstrtol(buf, 10, &val); + if (ret != 0) + return ret; + + if (val < OTX_CPT_COALESC_MIN_NUM_WAIT || + val > OTX_CPT_COALESC_MAX_NUM_WAIT) + return -EINVAL; + + cptvf_write_vq_done_numwait(cptvf, val); + return count; +} + +static DEVICE_ATTR_RO(vf_type); +static DEVICE_ATTR_RW(vf_engine_group); +static DEVICE_ATTR_RW(vf_coalesc_time_wait); +static DEVICE_ATTR_RW(vf_coalesc_num_wait); + +static struct attribute *otx_cptvf_attrs[] = { + &dev_attr_vf_type.attr, + &dev_attr_vf_engine_group.attr, + &dev_attr_vf_coalesc_time_wait.attr, + &dev_attr_vf_coalesc_num_wait.attr, + NULL +}; + +static const struct attribute_group otx_cptvf_sysfs_group = { + .attrs = otx_cptvf_attrs, +}; + +static int otx_cptvf_probe(struct pci_dev *pdev, + const struct pci_device_id *ent) +{ + struct device *dev = &pdev->dev; + struct otx_cptvf *cptvf; + int err; + + cptvf = devm_kzalloc(dev, sizeof(*cptvf), GFP_KERNEL); + if (!cptvf) + return -ENOMEM; + + pci_set_drvdata(pdev, cptvf); + cptvf->pdev = pdev; + + err = pci_enable_device(pdev); + if (err) { + dev_err(dev, "Failed to enable PCI device\n"); + goto clear_drvdata; + } + err = pci_request_regions(pdev, DRV_NAME); + if (err) { + dev_err(dev, "PCI request regions failed 0x%x\n", err); + goto disable_device; + } + err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48)); + if (err) { + dev_err(dev, "Unable to get usable DMA configuration\n"); + goto release_regions; + } + + err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48)); + if (err) { + dev_err(dev, "Unable to get 48-bit DMA for consistent allocations\n"); + goto release_regions; + } + + /* MAP PF's configuration registers */ + cptvf->reg_base = pci_iomap(pdev, OTX_CPT_VF_PCI_CFG_BAR, 0); + if (!cptvf->reg_base) { + dev_err(dev, "Cannot map config register space, aborting\n"); + err = -ENOMEM; + goto release_regions; + } + + cptvf->node = dev_to_node(&pdev->dev); + err = pci_alloc_irq_vectors(pdev, OTX_CPT_VF_MSIX_VECTORS, + OTX_CPT_VF_MSIX_VECTORS, PCI_IRQ_MSIX); + if (err < 0) { + dev_err(dev, "Request for #%d msix vectors failed\n", + OTX_CPT_VF_MSIX_VECTORS); + goto unmap_region; + } + + err = request_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC), + cptvf_misc_intr_handler, 0, "CPT VF misc intr", + cptvf); + if (err) { + dev_err(dev, "Failed to request misc irq"); + goto free_vectors; + } + + /* Enable mailbox interrupt */ + cptvf_enable_mbox_interrupts(cptvf); + cptvf_enable_swerr_interrupts(cptvf); + + /* Check cpt pf status, gets chip ID / device Id from PF if ready */ + err = otx_cptvf_check_pf_ready(cptvf); + if (err) + goto free_misc_irq; + + /* CPT VF software resources initialization */ + cptvf->cqinfo.qchunksize = OTX_CPT_CMD_QCHUNK_SIZE; + err = cptvf_sw_init(cptvf, OTX_CPT_CMD_QLEN, OTX_CPT_NUM_QS_PER_VF); + if (err) { + dev_err(dev, "cptvf_sw_init() failed"); + goto free_misc_irq; + } + /* Convey VQ LEN to PF */ + err = otx_cptvf_send_vq_size_msg(cptvf); + if (err) + goto sw_cleanup; + + /* CPT VF device initialization */ + cptvf_device_init(cptvf); + /* Send msg to PF to assign currnet Q to required group */ + err = otx_cptvf_send_vf_to_grp_msg(cptvf, cptvf->vfgrp); + if (err) + goto sw_cleanup; + + cptvf->priority = 1; + err = otx_cptvf_send_vf_priority_msg(cptvf); + if (err) + goto sw_cleanup; + + err = request_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_DONE), + cptvf_done_intr_handler, 0, "CPT VF done intr", + cptvf); + if (err) { + dev_err(dev, "Failed to request done irq\n"); + goto free_done_irq; + } + + /* Enable done interrupt */ + cptvf_enable_done_interrupts(cptvf); + + /* Set irq affinity masks */ + cptvf_set_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC); + cptvf_set_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE); + + err = otx_cptvf_send_vf_up(cptvf); + if (err) + goto free_irq_affinity; + + /* Initialize algorithms and set ops */ + err = otx_cpt_crypto_init(pdev, THIS_MODULE, + cptvf->vftype == OTX_CPT_SE_TYPES ? OTX_CPT_SE : OTX_CPT_AE, + cptvf->vftype, 1, cptvf->num_vfs); + if (err) { + dev_err(dev, "Failed to register crypto algs\n"); + goto free_irq_affinity; + } + + err = sysfs_create_group(&dev->kobj, &otx_cptvf_sysfs_group); + if (err) { + dev_err(dev, "Creating sysfs entries failed\n"); + goto crypto_exit; + } + + return 0; + +crypto_exit: + otx_cpt_crypto_exit(pdev, THIS_MODULE, cptvf->vftype); +free_irq_affinity: + cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE); + cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC); +free_done_irq: + free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_DONE), cptvf); +sw_cleanup: + cptvf_sw_cleanup(cptvf); +free_misc_irq: + free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC), cptvf); +free_vectors: + pci_free_irq_vectors(cptvf->pdev); +unmap_region: + pci_iounmap(pdev, cptvf->reg_base); +release_regions: + pci_release_regions(pdev); +disable_device: + pci_disable_device(pdev); +clear_drvdata: + pci_set_drvdata(pdev, NULL); + + return err; +} + +static void otx_cptvf_remove(struct pci_dev *pdev) +{ + struct otx_cptvf *cptvf = pci_get_drvdata(pdev); + + if (!cptvf) { + dev_err(&pdev->dev, "Invalid CPT-VF device\n"); + return; + } + + /* Convey DOWN to PF */ + if (otx_cptvf_send_vf_down(cptvf)) { + dev_err(&pdev->dev, "PF not responding to DOWN msg"); + } else { + sysfs_remove_group(&pdev->dev.kobj, &otx_cptvf_sysfs_group); + otx_cpt_crypto_exit(pdev, THIS_MODULE, cptvf->vftype); + cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE); + cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC); + free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_DONE), cptvf); + free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC), cptvf); + cptvf_sw_cleanup(cptvf); + pci_free_irq_vectors(cptvf->pdev); + pci_iounmap(pdev, cptvf->reg_base); + pci_release_regions(pdev); + pci_disable_device(pdev); + pci_set_drvdata(pdev, NULL); + } +} + +/* Supported devices */ +static const struct pci_device_id otx_cptvf_id_table[] = { + {PCI_VDEVICE(CAVIUM, OTX_CPT_PCI_VF_DEVICE_ID), 0}, + { 0, } /* end of table */ +}; + +static struct pci_driver otx_cptvf_pci_driver = { + .name = DRV_NAME, + .id_table = otx_cptvf_id_table, + .probe = otx_cptvf_probe, + .remove = otx_cptvf_remove, +}; + +module_pci_driver(otx_cptvf_pci_driver); + +MODULE_AUTHOR("Marvell International Ltd."); +MODULE_DESCRIPTION("Marvell OcteonTX CPT Virtual Function Driver"); +MODULE_LICENSE("GPL v2"); +MODULE_VERSION(DRV_VERSION); +MODULE_DEVICE_TABLE(pci, otx_cptvf_id_table); diff --git a/drivers/crypto/marvell/octeontx/otx_cptvf_mbox.c b/drivers/crypto/marvell/octeontx/otx_cptvf_mbox.c new file mode 100644 index 000000000000..5663787c7a62 --- /dev/null +++ b/drivers/crypto/marvell/octeontx/otx_cptvf_mbox.c @@ -0,0 +1,247 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Marvell OcteonTX CPT driver + * + * Copyright (C) 2019 Marvell International Ltd. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +#include <linux/delay.h> +#include "otx_cptvf.h" + +#define CPT_MBOX_MSG_TIMEOUT 2000 + +static char *get_mbox_opcode_str(int msg_opcode) +{ + char *str = "Unknown"; + + switch (msg_opcode) { + case OTX_CPT_MSG_VF_UP: + str = "UP"; + break; + + case OTX_CPT_MSG_VF_DOWN: + str = "DOWN"; + break; + + case OTX_CPT_MSG_READY: + str = "READY"; + break; + + case OTX_CPT_MSG_QLEN: + str = "QLEN"; + break; + + case OTX_CPT_MSG_QBIND_GRP: + str = "QBIND_GRP"; + break; + + case OTX_CPT_MSG_VQ_PRIORITY: + str = "VQ_PRIORITY"; + break; + + case OTX_CPT_MSG_PF_TYPE: + str = "PF_TYPE"; + break; + + case OTX_CPT_MSG_ACK: + str = "ACK"; + break; + + case OTX_CPT_MSG_NACK: + str = "NACK"; + break; + } + return str; +} + +static void dump_mbox_msg(struct otx_cpt_mbox *mbox_msg, int vf_id) +{ + char raw_data_str[OTX_CPT_MAX_MBOX_DATA_STR_SIZE]; + + hex_dump_to_buffer(mbox_msg, sizeof(struct otx_cpt_mbox), 16, 8, + raw_data_str, OTX_CPT_MAX_MBOX_DATA_STR_SIZE, false); + if (vf_id >= 0) + pr_debug("MBOX msg %s received from VF%d raw_data %s", + get_mbox_opcode_str(mbox_msg->msg), vf_id, + raw_data_str); + else + pr_debug("MBOX msg %s received from PF raw_data %s", + get_mbox_opcode_str(mbox_msg->msg), raw_data_str); +} + +static void cptvf_send_msg_to_pf(struct otx_cptvf *cptvf, + struct otx_cpt_mbox *mbx) +{ + /* Writing mbox(1) causes interrupt */ + writeq(mbx->msg, cptvf->reg_base + OTX_CPT_VFX_PF_MBOXX(0, 0)); + writeq(mbx->data, cptvf->reg_base + OTX_CPT_VFX_PF_MBOXX(0, 1)); +} + +/* Interrupt handler to handle mailbox messages from VFs */ +void otx_cptvf_handle_mbox_intr(struct otx_cptvf *cptvf) +{ + struct otx_cpt_mbox mbx = {}; + + /* + * MBOX[0] contains msg + * MBOX[1] contains data + */ + mbx.msg = readq(cptvf->reg_base + OTX_CPT_VFX_PF_MBOXX(0, 0)); + mbx.data = readq(cptvf->reg_base + OTX_CPT_VFX_PF_MBOXX(0, 1)); + + dump_mbox_msg(&mbx, -1); + + switch (mbx.msg) { + case OTX_CPT_MSG_VF_UP: + cptvf->pf_acked = true; + cptvf->num_vfs = mbx.data; + break; + case OTX_CPT_MSG_READY: + cptvf->pf_acked = true; + cptvf->vfid = mbx.data; + dev_dbg(&cptvf->pdev->dev, "Received VFID %d\n", cptvf->vfid); + break; + case OTX_CPT_MSG_QBIND_GRP: + cptvf->pf_acked = true; + cptvf->vftype = mbx.data; + dev_dbg(&cptvf->pdev->dev, "VF %d type %s group %d\n", + cptvf->vfid, + ((mbx.data == OTX_CPT_SE_TYPES) ? "SE" : "AE"), + cptvf->vfgrp); + break; + case OTX_CPT_MSG_ACK: + cptvf->pf_acked = true; + break; + case OTX_CPT_MSG_NACK: + cptvf->pf_nacked = true; + break; + default: + dev_err(&cptvf->pdev->dev, "Invalid msg from PF, msg 0x%llx\n", + mbx.msg); + break; + } +} + +static int cptvf_send_msg_to_pf_timeout(struct otx_cptvf *cptvf, + struct otx_cpt_mbox *mbx) +{ + int timeout = CPT_MBOX_MSG_TIMEOUT; + int sleep = 10; + + cptvf->pf_acked = false; + cptvf->pf_nacked = false; + cptvf_send_msg_to_pf(cptvf, mbx); + /* Wait for previous message to be acked, timeout 2sec */ + while (!cptvf->pf_acked) { + if (cptvf->pf_nacked) + return -EINVAL; + msleep(sleep); + if (cptvf->pf_acked) + break; + timeout -= sleep; + if (!timeout) { + dev_err(&cptvf->pdev->dev, + "PF didn't ack to mbox msg %llx from VF%u\n", + mbx->msg, cptvf->vfid); + return -EBUSY; + } + } + return 0; +} + +/* + * Checks if VF is able to comminicate with PF + * and also gets the CPT number this VF is associated to. + */ +int otx_cptvf_check_pf_ready(struct otx_cptvf *cptvf) +{ + struct otx_cpt_mbox mbx = {}; + int ret; + + mbx.msg = OTX_CPT_MSG_READY; + ret = cptvf_send_msg_to_pf_timeout(cptvf, &mbx); + + return ret; +} + +/* + * Communicate VQs size to PF to program CPT(0)_PF_Q(0-15)_CTL of the VF. + * Must be ACKed. + */ +int otx_cptvf_send_vq_size_msg(struct otx_cptvf *cptvf) +{ + struct otx_cpt_mbox mbx = {}; + int ret; + + mbx.msg = OTX_CPT_MSG_QLEN; + mbx.data = cptvf->qsize; + ret = cptvf_send_msg_to_pf_timeout(cptvf, &mbx); + + return ret; +} + +/* + * Communicate VF group required to PF and get the VQ binded to that group + */ +int otx_cptvf_send_vf_to_grp_msg(struct otx_cptvf *cptvf, int group) +{ + struct otx_cpt_mbox mbx = {}; + int ret; + + mbx.msg = OTX_CPT_MSG_QBIND_GRP; + /* Convey group of the VF */ + mbx.data = group; + ret = cptvf_send_msg_to_pf_timeout(cptvf, &mbx); + if (ret) + return ret; + cptvf->vfgrp = group; + + return 0; +} + +/* + * Communicate VF group required to PF and get the VQ binded to that group + */ +int otx_cptvf_send_vf_priority_msg(struct otx_cptvf *cptvf) +{ + struct otx_cpt_mbox mbx = {}; + int ret; + + mbx.msg = OTX_CPT_MSG_VQ_PRIORITY; + /* Convey group of the VF */ + mbx.data = cptvf->priority; + ret = cptvf_send_msg_to_pf_timeout(cptvf, &mbx); + + return ret; +} + +/* + * Communicate to PF that VF is UP and running + */ +int otx_cptvf_send_vf_up(struct otx_cptvf *cptvf) +{ + struct otx_cpt_mbox mbx = {}; + int ret; + + mbx.msg = OTX_CPT_MSG_VF_UP; + ret = cptvf_send_msg_to_pf_timeout(cptvf, &mbx); + + return ret; +} + +/* + * Communicate to PF that VF is DOWN and running + */ +int otx_cptvf_send_vf_down(struct otx_cptvf *cptvf) +{ + struct otx_cpt_mbox mbx = {}; + int ret; + + mbx.msg = OTX_CPT_MSG_VF_DOWN; + ret = cptvf_send_msg_to_pf_timeout(cptvf, &mbx); + + return ret; +} diff --git a/drivers/crypto/marvell/octeontx/otx_cptvf_reqmgr.c b/drivers/crypto/marvell/octeontx/otx_cptvf_reqmgr.c new file mode 100644 index 000000000000..df839b880354 --- /dev/null +++ b/drivers/crypto/marvell/octeontx/otx_cptvf_reqmgr.c @@ -0,0 +1,612 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Marvell OcteonTX CPT driver + * + * Copyright (C) 2019 Marvell International Ltd. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +#include "otx_cptvf.h" +#include "otx_cptvf_algs.h" + +/* Completion code size and initial value */ +#define COMPLETION_CODE_SIZE 8 +#define COMPLETION_CODE_INIT 0 + +/* SG list header size in bytes */ +#define SG_LIST_HDR_SIZE 8 + +/* Default timeout when waiting for free pending entry in us */ +#define CPT_PENTRY_TIMEOUT 1000 +#define CPT_PENTRY_STEP 50 + +/* Default threshold for stopping and resuming sender requests */ +#define CPT_IQ_STOP_MARGIN 128 +#define CPT_IQ_RESUME_MARGIN 512 + +#define CPT_DMA_ALIGN 128 + +void otx_cpt_dump_sg_list(struct pci_dev *pdev, struct otx_cpt_req_info *req) +{ + int i; + + pr_debug("Gather list size %d\n", req->incnt); + for (i = 0; i < req->incnt; i++) { + pr_debug("Buffer %d size %d, vptr 0x%p, dmaptr 0x%p\n", i, + req->in[i].size, req->in[i].vptr, + (void *) req->in[i].dma_addr); + pr_debug("Buffer hexdump (%d bytes)\n", + req->in[i].size); + print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, + req->in[i].vptr, req->in[i].size, false); + } + + pr_debug("Scatter list size %d\n", req->outcnt); + for (i = 0; i < req->outcnt; i++) { + pr_debug("Buffer %d size %d, vptr 0x%p, dmaptr 0x%p\n", i, + req->out[i].size, req->out[i].vptr, + (void *) req->out[i].dma_addr); + pr_debug("Buffer hexdump (%d bytes)\n", req->out[i].size); + print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, + req->out[i].vptr, req->out[i].size, false); + } +} + +static inline struct otx_cpt_pending_entry *get_free_pending_entry( + struct otx_cpt_pending_queue *q, + int qlen) +{ + struct otx_cpt_pending_entry *ent = NULL; + + ent = &q->head[q->rear]; + if (unlikely(ent->busy)) + return NULL; + + q->rear++; + if (unlikely(q->rear == qlen)) + q->rear = 0; + + return ent; +} + +static inline u32 modulo_inc(u32 index, u32 length, u32 inc) +{ + if (WARN_ON(inc > length)) + inc = length; + + index += inc; + if (unlikely(index >= length)) + index -= length; + + return index; +} + +static inline void free_pentry(struct otx_cpt_pending_entry *pentry) +{ + pentry->completion_addr = NULL; + pentry->info = NULL; + pentry->callback = NULL; + pentry->areq = NULL; + pentry->resume_sender = false; + pentry->busy = false; +} + +static inline int setup_sgio_components(struct pci_dev *pdev, + struct otx_cpt_buf_ptr *list, + int buf_count, u8 *buffer) +{ + struct otx_cpt_sglist_component *sg_ptr = NULL; + int ret = 0, i, j; + int components; + + if (unlikely(!list)) { + dev_err(&pdev->dev, "Input list pointer is NULL\n"); + return -EFAULT; + } + + for (i = 0; i < buf_count; i++) { + if (likely(list[i].vptr)) { + list[i].dma_addr = dma_map_single(&pdev->dev, + list[i].vptr, + list[i].size, + DMA_BIDIRECTIONAL); + if (unlikely(dma_mapping_error(&pdev->dev, + list[i].dma_addr))) { + dev_err(&pdev->dev, "Dma mapping failed\n"); + ret = -EIO; + goto sg_cleanup; + } + } + } + + components = buf_count / 4; + sg_ptr = (struct otx_cpt_sglist_component *)buffer; + for (i = 0; i < components; i++) { + sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size); + sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size); + sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size); + sg_ptr->u.s.len3 = cpu_to_be16(list[i * 4 + 3].size); + sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr); + sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr); + sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr); + sg_ptr->ptr3 = cpu_to_be64(list[i * 4 + 3].dma_addr); + sg_ptr++; + } + components = buf_count % 4; + + switch (components) { + case 3: + sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size); + sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr); + /* Fall through */ + case 2: + sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size); + sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr); + /* Fall through */ + case 1: + sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size); + sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr); + break; + default: + break; + } + return ret; + +sg_cleanup: + for (j = 0; j < i; j++) { + if (list[j].dma_addr) { + dma_unmap_single(&pdev->dev, list[i].dma_addr, + list[i].size, DMA_BIDIRECTIONAL); + } + + list[j].dma_addr = 0; + } + return ret; +} + +static inline int setup_sgio_list(struct pci_dev *pdev, + struct otx_cpt_info_buffer **pinfo, + struct otx_cpt_req_info *req, gfp_t gfp) +{ + u32 dlen, align_dlen, info_len, rlen; + struct otx_cpt_info_buffer *info; + u16 g_sz_bytes, s_sz_bytes; + int align = CPT_DMA_ALIGN; + u32 total_mem_len; + + if (unlikely(req->incnt > OTX_CPT_MAX_SG_IN_CNT || + req->outcnt > OTX_CPT_MAX_SG_OUT_CNT)) { + dev_err(&pdev->dev, "Error too many sg components\n"); + return -EINVAL; + } + + g_sz_bytes = ((req->incnt + 3) / 4) * + sizeof(struct otx_cpt_sglist_component); + s_sz_bytes = ((req->outcnt + 3) / 4) * + sizeof(struct otx_cpt_sglist_component); + + dlen = g_sz_bytes + s_sz_bytes + SG_LIST_HDR_SIZE; + align_dlen = ALIGN(dlen, align); + info_len = ALIGN(sizeof(*info), align); + rlen = ALIGN(sizeof(union otx_cpt_res_s), align); + total_mem_len = align_dlen + info_len + rlen + COMPLETION_CODE_SIZE; + + info = kzalloc(total_mem_len, gfp); + if (unlikely(!info)) { + dev_err(&pdev->dev, "Memory allocation failed\n"); + return -ENOMEM; + } + *pinfo = info; + info->dlen = dlen; + info->in_buffer = (u8 *)info + info_len; + + ((u16 *)info->in_buffer)[0] = req->outcnt; + ((u16 *)info->in_buffer)[1] = req->incnt; + ((u16 *)info->in_buffer)[2] = 0; + ((u16 *)info->in_buffer)[3] = 0; + *(u64 *)info->in_buffer = cpu_to_be64p((u64 *)info->in_buffer); + + /* Setup gather (input) components */ + if (setup_sgio_components(pdev, req->in, req->incnt, + &info->in_buffer[8])) { + dev_err(&pdev->dev, "Failed to setup gather list\n"); + return -EFAULT; + } + + if (setup_sgio_components(pdev, req->out, req->outcnt, + &info->in_buffer[8 + g_sz_bytes])) { + dev_err(&pdev->dev, "Failed to setup scatter list\n"); + return -EFAULT; + } + + info->dma_len = total_mem_len - info_len; + info->dptr_baddr = dma_map_single(&pdev->dev, (void *)info->in_buffer, + info->dma_len, DMA_BIDIRECTIONAL); + if (unlikely(dma_mapping_error(&pdev->dev, info->dptr_baddr))) { + dev_err(&pdev->dev, "DMA Mapping failed for cpt req\n"); + return -EIO; + } + /* + * Get buffer for union otx_cpt_res_s response + * structure and its physical address + */ + info->completion_addr = (u64 *)(info->in_buffer + align_dlen); + info->comp_baddr = info->dptr_baddr + align_dlen; + + /* Create and initialize RPTR */ + info->out_buffer = (u8 *)info->completion_addr + rlen; + info->rptr_baddr = info->comp_baddr + rlen; + + *((u64 *) info->out_buffer) = ~((u64) COMPLETION_CODE_INIT); + + return 0; +} + + +static void cpt_fill_inst(union otx_cpt_inst_s *inst, + struct otx_cpt_info_buffer *info, + struct otx_cpt_iq_cmd *cmd) +{ + inst->u[0] = 0x0; + inst->s.doneint = true; + inst->s.res_addr = (u64)info->comp_baddr; + inst->u[2] = 0x0; + inst->s.wq_ptr = 0; + inst->s.ei0 = cmd->cmd.u64; + inst->s.ei1 = cmd->dptr; + inst->s.ei2 = cmd->rptr; + inst->s.ei3 = cmd->cptr.u64; +} + +/* + * On OcteonTX platform the parameter db_count is used as a count for ringing + * door bell. The valid values for db_count are: + * 0 - 1 CPT instruction will be enqueued however CPT will not be informed + * 1 - 1 CPT instruction will be enqueued and CPT will be informed + */ +static void cpt_send_cmd(union otx_cpt_inst_s *cptinst, struct otx_cptvf *cptvf) +{ + struct otx_cpt_cmd_qinfo *qinfo = &cptvf->cqinfo; + struct otx_cpt_cmd_queue *queue; + struct otx_cpt_cmd_chunk *curr; + u8 *ent; + + queue = &qinfo->queue[0]; + /* + * cpt_send_cmd is currently called only from critical section + * therefore no locking is required for accessing instruction queue + */ + ent = &queue->qhead->head[queue->idx * OTX_CPT_INST_SIZE]; + memcpy(ent, (void *) cptinst, OTX_CPT_INST_SIZE); + + if (++queue->idx >= queue->qhead->size / 64) { + curr = queue->qhead; + + if (list_is_last(&curr->nextchunk, &queue->chead)) + queue->qhead = queue->base; + else + queue->qhead = list_next_entry(queue->qhead, nextchunk); + queue->idx = 0; + } + /* make sure all memory stores are done before ringing doorbell */ + smp_wmb(); + otx_cptvf_write_vq_doorbell(cptvf, 1); +} + +static int process_request(struct pci_dev *pdev, struct otx_cpt_req_info *req, + struct otx_cpt_pending_queue *pqueue, + struct otx_cptvf *cptvf) +{ + struct otx_cptvf_request *cpt_req = &req->req; + struct otx_cpt_pending_entry *pentry = NULL; + union otx_cpt_ctrl_info *ctrl = &req->ctrl; + struct otx_cpt_info_buffer *info = NULL; + union otx_cpt_res_s *result = NULL; + struct otx_cpt_iq_cmd iq_cmd; + union otx_cpt_inst_s cptinst; + int retry, ret = 0; + u8 resume_sender; + gfp_t gfp; + + gfp = (req->areq->flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : + GFP_ATOMIC; + ret = setup_sgio_list(pdev, &info, req, gfp); + if (unlikely(ret)) { + dev_err(&pdev->dev, "Setting up SG list failed"); + goto request_cleanup; + } + cpt_req->dlen = info->dlen; + + result = (union otx_cpt_res_s *) info->completion_addr; + result->s.compcode = COMPLETION_CODE_INIT; + + spin_lock_bh(&pqueue->lock); + pentry = get_free_pending_entry(pqueue, pqueue->qlen); + retry = CPT_PENTRY_TIMEOUT / CPT_PENTRY_STEP; + while (unlikely(!pentry) && retry--) { + spin_unlock_bh(&pqueue->lock); + udelay(CPT_PENTRY_STEP); + spin_lock_bh(&pqueue->lock); + pentry = get_free_pending_entry(pqueue, pqueue->qlen); + } + + if (unlikely(!pentry)) { + ret = -ENOSPC; + spin_unlock_bh(&pqueue->lock); + goto request_cleanup; + } + + /* + * Check if we are close to filling in entire pending queue, + * if so then tell the sender to stop/sleep by returning -EBUSY + * We do it only for context which can sleep (GFP_KERNEL) + */ + if (gfp == GFP_KERNEL && + pqueue->pending_count > (pqueue->qlen - CPT_IQ_STOP_MARGIN)) { + pentry->resume_sender = true; + } else + pentry->resume_sender = false; + resume_sender = pentry->resume_sender; + pqueue->pending_count++; + + pentry->completion_addr = info->completion_addr; + pentry->info = info; + pentry->callback = req->callback; + pentry->areq = req->areq; + pentry->busy = true; + info->pentry = pentry; + info->time_in = jiffies; + info->req = req; + + /* Fill in the command */ + iq_cmd.cmd.u64 = 0; + iq_cmd.cmd.s.opcode = cpu_to_be16(cpt_req->opcode.flags); + iq_cmd.cmd.s.param1 = cpu_to_be16(cpt_req->param1); + iq_cmd.cmd.s.param2 = cpu_to_be16(cpt_req->param2); + iq_cmd.cmd.s.dlen = cpu_to_be16(cpt_req->dlen); + + /* 64-bit swap for microcode data reads, not needed for addresses*/ + iq_cmd.cmd.u64 = cpu_to_be64(iq_cmd.cmd.u64); + iq_cmd.dptr = info->dptr_baddr; + iq_cmd.rptr = info->rptr_baddr; + iq_cmd.cptr.u64 = 0; + iq_cmd.cptr.s.grp = ctrl->s.grp; + + /* Fill in the CPT_INST_S type command for HW interpretation */ + cpt_fill_inst(&cptinst, info, &iq_cmd); + + /* Print debug info if enabled */ + otx_cpt_dump_sg_list(pdev, req); + pr_debug("Cpt_inst_s hexdump (%d bytes)\n", OTX_CPT_INST_SIZE); + print_hex_dump_debug("", 0, 16, 1, &cptinst, OTX_CPT_INST_SIZE, false); + pr_debug("Dptr hexdump (%d bytes)\n", cpt_req->dlen); + print_hex_dump_debug("", 0, 16, 1, info->in_buffer, + cpt_req->dlen, false); + + /* Send CPT command */ + cpt_send_cmd(&cptinst, cptvf); + + /* + * We allocate and prepare pending queue entry in critical section + * together with submitting CPT instruction to CPT instruction queue + * to make sure that order of CPT requests is the same in both + * pending and instruction queues + */ + spin_unlock_bh(&pqueue->lock); + + ret = resume_sender ? -EBUSY : -EINPROGRESS; + return ret; + +request_cleanup: + do_request_cleanup(pdev, info); + return ret; +} + +int otx_cpt_do_request(struct pci_dev *pdev, struct otx_cpt_req_info *req, + int cpu_num) +{ + struct otx_cptvf *cptvf = pci_get_drvdata(pdev); + + if (!otx_cpt_device_ready(cptvf)) { + dev_err(&pdev->dev, "CPT Device is not ready"); + return -ENODEV; + } + + if ((cptvf->vftype == OTX_CPT_SE_TYPES) && (!req->ctrl.s.se_req)) { + dev_err(&pdev->dev, "CPTVF-%d of SE TYPE got AE request", + cptvf->vfid); + return -EINVAL; + } else if ((cptvf->vftype == OTX_CPT_AE_TYPES) && + (req->ctrl.s.se_req)) { + dev_err(&pdev->dev, "CPTVF-%d of AE TYPE got SE request", + cptvf->vfid); + return -EINVAL; + } + + return process_request(pdev, req, &cptvf->pqinfo.queue[0], cptvf); +} + +static int cpt_process_ccode(struct pci_dev *pdev, + union otx_cpt_res_s *cpt_status, + struct otx_cpt_info_buffer *cpt_info, + struct otx_cpt_req_info *req, u32 *res_code) +{ + u8 ccode = cpt_status->s.compcode; + union otx_cpt_error_code ecode; + + ecode.u = be64_to_cpu(*((u64 *) cpt_info->out_buffer)); + switch (ccode) { + case CPT_COMP_E_FAULT: + dev_err(&pdev->dev, + "Request failed with DMA fault\n"); + otx_cpt_dump_sg_list(pdev, req); + break; + + case CPT_COMP_E_SWERR: + dev_err(&pdev->dev, + "Request failed with software error code %d\n", + ecode.s.ccode); + otx_cpt_dump_sg_list(pdev, req); + break; + + case CPT_COMP_E_HWERR: + dev_err(&pdev->dev, + "Request failed with hardware error\n"); + otx_cpt_dump_sg_list(pdev, req); + break; + + case COMPLETION_CODE_INIT: + /* check for timeout */ + if (time_after_eq(jiffies, cpt_info->time_in + + OTX_CPT_COMMAND_TIMEOUT * HZ)) + dev_warn(&pdev->dev, "Request timed out 0x%p", req); + else if (cpt_info->extra_time < OTX_CPT_TIME_IN_RESET_COUNT) { + cpt_info->time_in = jiffies; + cpt_info->extra_time++; + } + return 1; + + case CPT_COMP_E_GOOD: + /* Check microcode completion code */ + if (ecode.s.ccode) { + /* + * If requested hmac is truncated and ucode returns + * s/g write length error then we report success + * because ucode writes as many bytes of calculated + * hmac as available in gather buffer and reports + * s/g write length error if number of bytes in gather + * buffer is less than full hmac size. + */ + if (req->is_trunc_hmac && + ecode.s.ccode == ERR_SCATTER_GATHER_WRITE_LENGTH) { + *res_code = 0; + break; + } + + dev_err(&pdev->dev, + "Request failed with software error code 0x%x\n", + ecode.s.ccode); + otx_cpt_dump_sg_list(pdev, req); + break; + } + + /* Request has been processed with success */ + *res_code = 0; + break; + + default: + dev_err(&pdev->dev, "Request returned invalid status\n"); + break; + } + + return 0; +} + +static inline void process_pending_queue(struct pci_dev *pdev, + struct otx_cpt_pending_queue *pqueue) +{ + void (*callback)(int status, void *arg1, void *arg2); + struct otx_cpt_pending_entry *resume_pentry = NULL; + struct otx_cpt_pending_entry *pentry = NULL; + struct otx_cpt_info_buffer *cpt_info = NULL; + union otx_cpt_res_s *cpt_status = NULL; + struct otx_cpt_req_info *req = NULL; + struct crypto_async_request *areq; + u32 res_code, resume_index; + + while (1) { + spin_lock_bh(&pqueue->lock); + pentry = &pqueue->head[pqueue->front]; + + if (WARN_ON(!pentry)) { + spin_unlock_bh(&pqueue->lock); + break; + } + + res_code = -EINVAL; + if (unlikely(!pentry->busy)) { + spin_unlock_bh(&pqueue->lock); + break; + } + + if (unlikely(!pentry->callback)) { + dev_err(&pdev->dev, "Callback NULL\n"); + goto process_pentry; + } + + cpt_info = pentry->info; + if (unlikely(!cpt_info)) { + dev_err(&pdev->dev, "Pending entry post arg NULL\n"); + goto process_pentry; + } + + req = cpt_info->req; + if (unlikely(!req)) { + dev_err(&pdev->dev, "Request NULL\n"); + goto process_pentry; + } + + cpt_status = (union otx_cpt_res_s *) pentry->completion_addr; + if (unlikely(!cpt_status)) { + dev_err(&pdev->dev, "Completion address NULL\n"); + goto process_pentry; + } + + if (cpt_process_ccode(pdev, cpt_status, cpt_info, req, + &res_code)) { + spin_unlock_bh(&pqueue->lock); + return; + } + cpt_info->pdev = pdev; + +process_pentry: + /* + * Check if we should inform sending side to resume + * We do it CPT_IQ_RESUME_MARGIN elements in advance before + * pending queue becomes empty + */ + resume_index = modulo_inc(pqueue->front, pqueue->qlen, + CPT_IQ_RESUME_MARGIN); + resume_pentry = &pqueue->head[resume_index]; + if (resume_pentry && + resume_pentry->resume_sender) { + resume_pentry->resume_sender = false; + callback = resume_pentry->callback; + areq = resume_pentry->areq; + + if (callback) { + spin_unlock_bh(&pqueue->lock); + + /* + * EINPROGRESS is an indication for sending + * side that it can resume sending requests + */ + callback(-EINPROGRESS, areq, cpt_info); + spin_lock_bh(&pqueue->lock); + } + } + + callback = pentry->callback; + areq = pentry->areq; + free_pentry(pentry); + + pqueue->pending_count--; + pqueue->front = modulo_inc(pqueue->front, pqueue->qlen, 1); + spin_unlock_bh(&pqueue->lock); + + /* + * Call callback after current pending entry has been + * processed, we don't do it if the callback pointer is + * invalid. + */ + if (callback) + callback(res_code, areq, cpt_info); + } +} + +void otx_cpt_post_process(struct otx_cptvf_wqe *wqe) +{ + process_pending_queue(wqe->cptvf->pdev, &wqe->cptvf->pqinfo.queue[0]); +} diff --git a/drivers/crypto/marvell/octeontx/otx_cptvf_reqmgr.h b/drivers/crypto/marvell/octeontx/otx_cptvf_reqmgr.h new file mode 100644 index 000000000000..a4c9ff730b13 --- /dev/null +++ b/drivers/crypto/marvell/octeontx/otx_cptvf_reqmgr.h @@ -0,0 +1,227 @@ +/* SPDX-License-Identifier: GPL-2.0 + * Marvell OcteonTX CPT driver + * + * Copyright (C) 2019 Marvell International Ltd. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +#ifndef __OTX_CPTVF_REQUEST_MANAGER_H +#define __OTX_CPTVF_REQUEST_MANAGER_H + +#include <linux/types.h> +#include <linux/crypto.h> +#include <linux/pci.h> +#include "otx_cpt_hw_types.h" + +/* + * Maximum total number of SG buffers is 100, we divide it equally + * between input and output + */ +#define OTX_CPT_MAX_SG_IN_CNT 50 +#define OTX_CPT_MAX_SG_OUT_CNT 50 + +/* DMA mode direct or SG */ +#define OTX_CPT_DMA_DIRECT_DIRECT 0 +#define OTX_CPT_DMA_GATHER_SCATTER 1 + +/* Context source CPTR or DPTR */ +#define OTX_CPT_FROM_CPTR 0 +#define OTX_CPT_FROM_DPTR 1 + +/* CPT instruction queue alignment */ +#define OTX_CPT_INST_Q_ALIGNMENT 128 +#define OTX_CPT_MAX_REQ_SIZE 65535 + +/* Default command timeout in seconds */ +#define OTX_CPT_COMMAND_TIMEOUT 4 +#define OTX_CPT_TIMER_HOLD 0x03F +#define OTX_CPT_COUNT_HOLD 32 +#define OTX_CPT_TIME_IN_RESET_COUNT 5 + +/* Minimum and maximum values for interrupt coalescing */ +#define OTX_CPT_COALESC_MIN_TIME_WAIT 0x0 +#define OTX_CPT_COALESC_MAX_TIME_WAIT ((1<<16)-1) +#define OTX_CPT_COALESC_MIN_NUM_WAIT 0x0 +#define OTX_CPT_COALESC_MAX_NUM_WAIT ((1<<20)-1) + +union otx_cpt_opcode_info { + u16 flags; + struct { + u8 major; + u8 minor; + } s; +}; + +struct otx_cptvf_request { + u32 param1; + u32 param2; + u16 dlen; + union otx_cpt_opcode_info opcode; +}; + +struct otx_cpt_buf_ptr { + u8 *vptr; + dma_addr_t dma_addr; + u16 size; +}; + +union otx_cpt_ctrl_info { + u32 flags; + struct { +#if defined(__BIG_ENDIAN_BITFIELD) + u32 reserved0:26; + u32 grp:3; /* Group bits */ + u32 dma_mode:2; /* DMA mode */ + u32 se_req:1; /* To SE core */ +#else + u32 se_req:1; /* To SE core */ + u32 dma_mode:2; /* DMA mode */ + u32 grp:3; /* Group bits */ + u32 reserved0:26; +#endif + } s; +}; + +/* + * CPT_INST_S software command definitions + * Words EI (0-3) + */ +union otx_cpt_iq_cmd_word0 { + u64 u64; + struct { + u16 opcode; + u16 param1; + u16 param2; + u16 dlen; + } s; +}; + +union otx_cpt_iq_cmd_word3 { + u64 u64; + struct { +#if defined(__BIG_ENDIAN_BITFIELD) + u64 grp:3; + u64 cptr:61; +#else + u64 cptr:61; + u64 grp:3; +#endif + } s; +}; + +struct otx_cpt_iq_cmd { + union otx_cpt_iq_cmd_word0 cmd; + u64 dptr; + u64 rptr; + union otx_cpt_iq_cmd_word3 cptr; +}; + +struct otx_cpt_sglist_component { + union { + u64 len; + struct { + u16 len0; + u16 len1; + u16 len2; + u16 len3; + } s; + } u; + u64 ptr0; + u64 ptr1; + u64 ptr2; + u64 ptr3; +}; + +struct otx_cpt_pending_entry { + u64 *completion_addr; /* Completion address */ + struct otx_cpt_info_buffer *info; + /* Kernel async request callback */ + void (*callback)(int status, void *arg1, void *arg2); + struct crypto_async_request *areq; /* Async request callback arg */ + u8 resume_sender; /* Notify sender to resume sending requests */ + u8 busy; /* Entry status (free/busy) */ +}; + +struct otx_cpt_pending_queue { + struct otx_cpt_pending_entry *head; /* Head of the queue */ + u32 front; /* Process work from here */ + u32 rear; /* Append new work here */ + u32 pending_count; /* Pending requests count */ + u32 qlen; /* Queue length */ + spinlock_t lock; /* Queue lock */ +}; + +struct otx_cpt_req_info { + /* Kernel async request callback */ + void (*callback)(int status, void *arg1, void *arg2); + struct crypto_async_request *areq; /* Async request callback arg */ + struct otx_cptvf_request req;/* Request information (core specific) */ + union otx_cpt_ctrl_info ctrl;/* User control information */ + struct otx_cpt_buf_ptr in[OTX_CPT_MAX_SG_IN_CNT]; + struct otx_cpt_buf_ptr out[OTX_CPT_MAX_SG_OUT_CNT]; + u8 *iv_out; /* IV to send back */ + u16 rlen; /* Output length */ + u8 incnt; /* Number of input buffers */ + u8 outcnt; /* Number of output buffers */ + u8 req_type; /* Type of request */ + u8 is_enc; /* Is a request an encryption request */ + u8 is_trunc_hmac;/* Is truncated hmac used */ +}; + +struct otx_cpt_info_buffer { + struct otx_cpt_pending_entry *pentry; + struct otx_cpt_req_info *req; + struct pci_dev *pdev; + u64 *completion_addr; + u8 *out_buffer; + u8 *in_buffer; + dma_addr_t dptr_baddr; + dma_addr_t rptr_baddr; + dma_addr_t comp_baddr; + unsigned long time_in; + u32 dlen; + u32 dma_len; + u8 extra_time; +}; + +static inline void do_request_cleanup(struct pci_dev *pdev, + struct otx_cpt_info_buffer *info) +{ + struct otx_cpt_req_info *req; + int i; + + if (info->dptr_baddr) + dma_unmap_single(&pdev->dev, info->dptr_baddr, + info->dma_len, DMA_BIDIRECTIONAL); + + if (info->req) { + req = info->req; + for (i = 0; i < req->outcnt; i++) { + if (req->out[i].dma_addr) + dma_unmap_single(&pdev->dev, + req->out[i].dma_addr, + req->out[i].size, + DMA_BIDIRECTIONAL); + } + + for (i = 0; i < req->incnt; i++) { + if (req->in[i].dma_addr) + dma_unmap_single(&pdev->dev, + req->in[i].dma_addr, + req->in[i].size, + DMA_BIDIRECTIONAL); + } + } + kzfree(info); +} + +struct otx_cptvf_wqe; +void otx_cpt_dump_sg_list(struct pci_dev *pdev, struct otx_cpt_req_info *req); +void otx_cpt_post_process(struct otx_cptvf_wqe *wqe); +int otx_cpt_do_request(struct pci_dev *pdev, struct otx_cpt_req_info *req, + int cpu_num); + +#endif /* __OTX_CPTVF_REQUEST_MANAGER_H */ |