summaryrefslogtreecommitdiff
path: root/Documentation/trace/rv/deterministic_automata.rst
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2022-08-05 19:41:12 +0300
committerLinus Torvalds <torvalds@linux-foundation.org>2022-08-05 19:41:12 +0300
commit965a9d75e3d250088a269e0c903e86fe775b48c6 (patch)
treec274334291740246c3437cf1526d9fc5bfb6d4e8 /Documentation/trace/rv/deterministic_automata.rst
parent29b1d469f3f6842ee4115f0b21f018fc44176468 (diff)
parentf1a15b977ff864513133ecb611eb28603d32c1b4 (diff)
downloadlinux-965a9d75e3d250088a269e0c903e86fe775b48c6.tar.xz
Merge tag 'trace-v6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt: - Runtime verification infrastructure This is the biggest change here. It introduces the runtime verification that is necessary for running Linux on safety critical systems. It allows for deterministic automata models to be inserted into the kernel that will attach to tracepoints, where the information on these tracepoints will move the model from state to state. If a state is encountered that does not belong to the model, it will then activate a given reactor, that could just inform the user or even panic the kernel (for which safety critical systems will detect and can recover from). - Two monitor models are also added: Wakeup In Preemptive (WIP - not to be confused with "work in progress"), and Wakeup While Not Running (WWNR). - Added __vstring() helper to the TRACE_EVENT() macro to replace several vsnprintf() usages that were all doing it wrong. - eprobes now can have their event autogenerated when the event name is left off. - The rest is various cleanups and fixes. * tag 'trace-v6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (50 commits) rv: Unlock on error path in rv_unregister_reactor() tracing: Use alignof__(struct {type b;}) instead of offsetof() tracing/eprobe: Show syntax error logs in error_log file scripts/tracing: Fix typo 'the the' in comment tracepoints: It is CONFIG_TRACEPOINTS not CONFIG_TRACEPOINT tracing: Use free_trace_buffer() in allocate_trace_buffers() tracing: Use a struct alignof to determine trace event field alignment rv/reactor: Add the panic reactor rv/reactor: Add the printk reactor rv/monitor: Add the wwnr monitor rv/monitor: Add the wip monitor rv/monitor: Add the wip monitor skeleton created by dot2k Documentation/rv: Add deterministic automata instrumentation documentation Documentation/rv: Add deterministic automata monitor synthesis documentation tools/rv: Add dot2k Documentation/rv: Add deterministic automaton documentation tools/rv: Add dot2c Documentation/rv: Add a basic documentation rv/include: Add instrumentation helper functions rv/include: Add deterministic automata monitor definition via C macros ...
Diffstat (limited to 'Documentation/trace/rv/deterministic_automata.rst')
-rw-r--r--Documentation/trace/rv/deterministic_automata.rst184
1 files changed, 184 insertions, 0 deletions
diff --git a/Documentation/trace/rv/deterministic_automata.rst b/Documentation/trace/rv/deterministic_automata.rst
new file mode 100644
index 000000000000..d0638f95a455
--- /dev/null
+++ b/Documentation/trace/rv/deterministic_automata.rst
@@ -0,0 +1,184 @@
+Deterministic Automata
+======================
+
+Formally, a deterministic automaton, denoted by G, is defined as a quintuple:
+
+ *G* = { *X*, *E*, *f*, x\ :subscript:`0`, X\ :subscript:`m` }
+
+where:
+
+- *X* is the set of states;
+- *E* is the finite set of events;
+- x\ :subscript:`0` is the initial state;
+- X\ :subscript:`m` (subset of *X*) is the set of marked (or final) states.
+- *f* : *X* x *E* -> *X* $ is the transition function. It defines the state
+ transition in the occurrence of an event from *E* in the state *X*. In the
+ special case of deterministic automata, the occurrence of the event in *E*
+ in a state in *X* has a deterministic next state from *X*.
+
+For example, a given automaton named 'wip' (wakeup in preemptive) can
+be defined as:
+
+- *X* = { ``preemptive``, ``non_preemptive``}
+- *E* = { ``preempt_enable``, ``preempt_disable``, ``sched_waking``}
+- x\ :subscript:`0` = ``preemptive``
+- X\ :subscript:`m` = {``preemptive``}
+- *f* =
+ - *f*\ (``preemptive``, ``preempt_disable``) = ``non_preemptive``
+ - *f*\ (``non_preemptive``, ``sched_waking``) = ``non_preemptive``
+ - *f*\ (``non_preemptive``, ``preempt_enable``) = ``preemptive``
+
+One of the benefits of this formal definition is that it can be presented
+in multiple formats. For example, using a *graphical representation*, using
+vertices (nodes) and edges, which is very intuitive for *operating system*
+practitioners, without any loss.
+
+The previous 'wip' automaton can also be represented as::
+
+ preempt_enable
+ +---------------------------------+
+ v |
+ #============# preempt_disable +------------------+
+ --> H preemptive H -----------------> | non_preemptive |
+ #============# +------------------+
+ ^ |
+ | sched_waking |
+ +--------------+
+
+Deterministic Automaton in C
+----------------------------
+
+In the paper "Efficient formal verification for the Linux kernel",
+the authors present a simple way to represent an automaton in C that can
+be used as regular code in the Linux kernel.
+
+For example, the 'wip' automata can be presented as (augmented with comments)::
+
+ /* enum representation of X (set of states) to be used as index */
+ enum states {
+ preemptive = 0,
+ non_preemptive,
+ state_max
+ };
+
+ #define INVALID_STATE state_max
+
+ /* enum representation of E (set of events) to be used as index */
+ enum events {
+ preempt_disable = 0,
+ preempt_enable,
+ sched_waking,
+ event_max
+ };
+
+ struct automaton {
+ char *state_names[state_max]; // X: the set of states
+ char *event_names[event_max]; // E: the finite set of events
+ unsigned char function[state_max][event_max]; // f: transition function
+ unsigned char initial_state; // x_0: the initial state
+ bool final_states[state_max]; // X_m: the set of marked states
+ };
+
+ struct automaton aut = {
+ .state_names = {
+ "preemptive",
+ "non_preemptive"
+ },
+ .event_names = {
+ "preempt_disable",
+ "preempt_enable",
+ "sched_waking"
+ },
+ .function = {
+ { non_preemptive, INVALID_STATE, INVALID_STATE },
+ { INVALID_STATE, preemptive, non_preemptive },
+ },
+ .initial_state = preemptive,
+ .final_states = { 1, 0 },
+ };
+
+The *transition function* is represented as a matrix of states (lines) and
+events (columns), and so the function *f* : *X* x *E* -> *X* can be solved
+in O(1). For example::
+
+ next_state = automaton_wip.function[curr_state][event];
+
+Graphviz .dot format
+--------------------
+
+The Graphviz open-source tool can produce the graphical representation
+of an automaton using the (textual) DOT language as the source code.
+The DOT format is widely used and can be converted to many other formats.
+
+For example, this is the 'wip' model in DOT::
+
+ digraph state_automaton {
+ {node [shape = circle] "non_preemptive"};
+ {node [shape = plaintext, style=invis, label=""] "__init_preemptive"};
+ {node [shape = doublecircle] "preemptive"};
+ {node [shape = circle] "preemptive"};
+ "__init_preemptive" -> "preemptive";
+ "non_preemptive" [label = "non_preemptive"];
+ "non_preemptive" -> "non_preemptive" [ label = "sched_waking" ];
+ "non_preemptive" -> "preemptive" [ label = "preempt_enable" ];
+ "preemptive" [label = "preemptive"];
+ "preemptive" -> "non_preemptive" [ label = "preempt_disable" ];
+ { rank = min ;
+ "__init_preemptive";
+ "preemptive";
+ }
+ }
+
+This DOT format can be transformed into a bitmap or vectorial image
+using the dot utility, or into an ASCII art using graph-easy. For
+instance::
+
+ $ dot -Tsvg -o wip.svg wip.dot
+ $ graph-easy wip.dot > wip.txt
+
+dot2c
+-----
+
+dot2c is a utility that can parse a .dot file containing an automaton as
+in the example above and automatically convert it to the C representation
+presented in [3].
+
+For example, having the previous 'wip' model into a file named 'wip.dot',
+the following command will transform the .dot file into the C
+representation (previously shown) in the 'wip.h' file::
+
+ $ dot2c wip.dot > wip.h
+
+The 'wip.h' content is the code sample in section 'Deterministic Automaton
+in C'.
+
+Remarks
+-------
+
+The automata formalism allows modeling discrete event systems (DES) in
+multiple formats, suitable for different applications/users.
+
+For example, the formal description using set theory is better suitable
+for automata operations, while the graphical format for human interpretation;
+and computer languages for machine execution.
+
+References
+----------
+
+Many textbooks cover automata formalism. For a brief introduction see::
+
+ O'Regan, Gerard. Concise guide to software engineering. Springer,
+ Cham, 2017.
+
+For a detailed description, including operations, and application on Discrete
+Event Systems (DES), see::
+
+ Cassandras, Christos G., and Stephane Lafortune, eds. Introduction to discrete
+ event systems. Boston, MA: Springer US, 2008.
+
+For the C representation in kernel, see::
+
+ De Oliveira, Daniel Bristot; Cucinotta, Tommaso; De Oliveira, Romulo
+ Silva. Efficient formal verification for the Linux kernel. In:
+ International Conference on Software Engineering and Formal Methods.
+ Springer, Cham, 2019. p. 315-332.