diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2025-06-01 01:44:16 +0300 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2025-06-01 01:44:16 +0300 |
commit | 00c010e130e58301db2ea0cec1eadc931e1cb8cf (patch) | |
tree | 885eca54cb733ca2b91fc563f09a23f8c0123fe1 /Documentation/core-api | |
parent | b42966552bb8d3027b66782fc1b53ce570e4d356 (diff) | |
parent | c544a952ba61b1a025455098033c17e0573ab085 (diff) | |
download | linux-00c010e130e58301db2ea0cec1eadc931e1cb8cf.tar.xz |
Merge tag 'mm-stable-2025-05-31-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- "Add folio_mk_pte()" from Matthew Wilcox simplifies the act of
creating a pte which addresses the first page in a folio and reduces
the amount of plumbing which architecture must implement to provide
this.
- "Misc folio patches for 6.16" from Matthew Wilcox is a shower of
largely unrelated folio infrastructure changes which clean things up
and better prepare us for future work.
- "memory,x86,acpi: hotplug memory alignment advisement" from Gregory
Price adds early-init code to prevent x86 from leaving physical
memory unused when physical address regions are not aligned to memory
block size.
- "mm/compaction: allow more aggressive proactive compaction" from
Michal Clapinski provides some tuning of the (sadly, hard-coded (more
sadly, not auto-tuned)) thresholds for our invokation of proactive
compaction. In a simple test case, the reduction of a guest VM's
memory consumption was dramatic.
- "Minor cleanups and improvements to swap freeing code" from Kemeng
Shi provides some code cleaups and a small efficiency improvement to
this part of our swap handling code.
- "ptrace: introduce PTRACE_SET_SYSCALL_INFO API" from Dmitry Levin
adds the ability for a ptracer to modify syscalls arguments. At this
time we can alter only "system call information that are used by
strace system call tampering, namely, syscall number, syscall
arguments, and syscall return value.
This series should have been incorporated into mm.git's "non-MM"
branch, but I goofed.
- "fs/proc: extend the PAGEMAP_SCAN ioctl to report guard regions" from
Andrei Vagin extends the info returned by the PAGEMAP_SCAN ioctl
against /proc/pid/pagemap. This permits CRIU to more efficiently get
at the info about guard regions.
- "Fix parameter passed to page_mapcount_is_type()" from Gavin Shan
implements that fix. No runtime effect is expected because
validate_page_before_insert() happens to fix up this error.
- "kernel/events/uprobes: uprobe_write_opcode() rewrite" from David
Hildenbrand basically brings uprobe text poking into the current
decade. Remove a bunch of hand-rolled implementation in favor of
using more current facilities.
- "mm/ptdump: Drop assumption that pxd_val() is u64" from Anshuman
Khandual provides enhancements and generalizations to the pte dumping
code. This might be needed when 128-bit Page Table Descriptors are
enabled for ARM.
- "Always call constructor for kernel page tables" from Kevin Brodsky
ensures that the ctor/dtor is always called for kernel pgtables, as
it already is for user pgtables.
This permits the addition of more functionality such as "insert hooks
to protect page tables". This change does result in various
architectures performing unnecesary work, but this is fixed up where
it is anticipated to occur.
- "Rust support for mm_struct, vm_area_struct, and mmap" from Alice
Ryhl adds plumbing to permit Rust access to core MM structures.
- "fix incorrectly disallowed anonymous VMA merges" from Lorenzo
Stoakes takes advantage of some VMA merging opportunities which we've
been missing for 15 years.
- "mm/madvise: batch tlb flushes for MADV_DONTNEED and MADV_FREE" from
SeongJae Park optimizes process_madvise()'s TLB flushing.
Instead of flushing each address range in the provided iovec, we
batch the flushing across all the iovec entries. The syscall's cost
was approximately halved with a microbenchmark which was designed to
load this particular operation.
- "Track node vacancy to reduce worst case allocation counts" from
Sidhartha Kumar makes the maple tree smarter about its node
preallocation.
stress-ng mmap performance increased by single-digit percentages and
the amount of unnecessarily preallocated memory was dramaticelly
reduced.
- "mm/gup: Minor fix, cleanup and improvements" from Baoquan He removes
a few unnecessary things which Baoquan noted when reading the code.
- ""Enhance sysfs handling for memory hotplug in weighted interleave"
from Rakie Kim "enhances the weighted interleave policy in the memory
management subsystem by improving sysfs handling, fixing memory
leaks, and introducing dynamic sysfs updates for memory hotplug
support". Fixes things on error paths which we are unlikely to hit.
- "mm/damon: auto-tune DAMOS for NUMA setups including tiered memory"
from SeongJae Park introduces new DAMOS quota goal metrics which
eliminate the manual tuning which is required when utilizing DAMON
for memory tiering.
- "mm/vmalloc.c: code cleanup and improvements" from Baoquan He
provides cleanups and small efficiency improvements which Baoquan
found via code inspection.
- "vmscan: enforce mems_effective during demotion" from Gregory Price
changes reclaim to respect cpuset.mems_effective during demotion when
possible. because presently, reclaim explicitly ignores
cpuset.mems_effective when demoting, which may cause the cpuset
settings to violated.
This is useful for isolating workloads on a multi-tenant system from
certain classes of memory more consistently.
- "Clean up split_huge_pmd_locked() and remove unnecessary folio
pointers" from Gavin Guo provides minor cleanups and efficiency gains
in in the huge page splitting and migrating code.
- "Use kmem_cache for memcg alloc" from Huan Yang creates a slab cache
for `struct mem_cgroup', yielding improved memory utilization.
- "add max arg to swappiness in memory.reclaim and lru_gen" from
Zhongkun He adds a new "max" argument to the "swappiness=" argument
for memory.reclaim MGLRU's lru_gen.
This directs proactive reclaim to reclaim from only anon folios
rather than file-backed folios.
- "kexec: introduce Kexec HandOver (KHO)" from Mike Rapoport is the
first step on the path to permitting the kernel to maintain existing
VMs while replacing the host kernel via file-based kexec. At this
time only memblock's reserve_mem is preserved.
- "mm: Introduce for_each_valid_pfn()" from David Woodhouse provides
and uses a smarter way of looping over a pfn range. By skipping
ranges of invalid pfns.
- "sched/numa: Skip VMA scanning on memory pinned to one NUMA node via
cpuset.mems" from Libo Chen removes a lot of pointless VMA scanning
when a task is pinned a single NUMA mode.
Dramatic performance benefits were seen in some real world cases.
- "JFS: Implement migrate_folio for jfs_metapage_aops" from Shivank
Garg addresses a warning which occurs during memory compaction when
using JFS.
- "move all VMA allocation, freeing and duplication logic to mm" from
Lorenzo Stoakes moves some VMA code from kernel/fork.c into the more
appropriate mm/vma.c.
- "mm, swap: clean up swap cache mapping helper" from Kairui Song
provides code consolidation and cleanups related to the folio_index()
function.
- "mm/gup: Cleanup memfd_pin_folios()" from Vishal Moola does that.
- "memcg: Fix test_memcg_min/low test failures" from Waiman Long
addresses some bogus failures which are being reported by the
test_memcontrol selftest.
- "eliminate mmap() retry merge, add .mmap_prepare hook" from Lorenzo
Stoakes commences the deprecation of file_operations.mmap() in favor
of the new file_operations.mmap_prepare().
The latter is more restrictive and prevents drivers from messing with
things in ways which, amongst other problems, may defeat VMA merging.
- "memcg: decouple memcg and objcg stocks"" from Shakeel Butt decouples
the per-cpu memcg charge cache from the objcg's one.
This is a step along the way to making memcg and objcg charging
NMI-safe, which is a BPF requirement.
- "mm/damon: minor fixups and improvements for code, tests, and
documents" from SeongJae Park is yet another batch of miscellaneous
DAMON changes. Fix and improve minor problems in code, tests and
documents.
- "memcg: make memcg stats irq safe" from Shakeel Butt converts memcg
stats to be irq safe. Another step along the way to making memcg
charging and stats updates NMI-safe, a BPF requirement.
- "Let unmap_hugepage_range() and several related functions take folio
instead of page" from Fan Ni provides folio conversions in the
hugetlb code.
* tag 'mm-stable-2025-05-31-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (285 commits)
mm: pcp: increase pcp->free_count threshold to trigger free_high
mm/hugetlb: convert use of struct page to folio in __unmap_hugepage_range()
mm/hugetlb: refactor __unmap_hugepage_range() to take folio instead of page
mm/hugetlb: refactor unmap_hugepage_range() to take folio instead of page
mm/hugetlb: pass folio instead of page to unmap_ref_private()
memcg: objcg stock trylock without irq disabling
memcg: no stock lock for cpu hot-unplug
memcg: make __mod_memcg_lruvec_state re-entrant safe against irqs
memcg: make count_memcg_events re-entrant safe against irqs
memcg: make mod_memcg_state re-entrant safe against irqs
memcg: move preempt disable to callers of memcg_rstat_updated
memcg: memcg_rstat_updated re-entrant safe against irqs
mm: khugepaged: decouple SHMEM and file folios' collapse
selftests/eventfd: correct test name and improve messages
alloc_tag: check mem_profiling_support in alloc_tag_init
Docs/damon: update titles and brief introductions to explain DAMOS
selftests/damon/_damon_sysfs: read tried regions directories in order
mm/damon/tests/core-kunit: add a test for damos_set_filters_default_reject()
mm/damon/paddr: remove unused variable, folio_list, in damon_pa_stat()
mm/damon/sysfs-schemes: fix wrong comment on damons_sysfs_quota_goal_metric_strs
...
Diffstat (limited to 'Documentation/core-api')
-rw-r--r-- | Documentation/core-api/index.rst | 1 | ||||
-rw-r--r-- | Documentation/core-api/kho/bindings/kho.yaml | 43 | ||||
-rw-r--r-- | Documentation/core-api/kho/bindings/memblock/memblock.yaml | 39 | ||||
-rw-r--r-- | Documentation/core-api/kho/bindings/memblock/reserve-mem.yaml | 40 | ||||
-rw-r--r-- | Documentation/core-api/kho/bindings/sub-fdt.yaml | 27 | ||||
-rw-r--r-- | Documentation/core-api/kho/concepts.rst | 74 | ||||
-rw-r--r-- | Documentation/core-api/kho/fdt.rst | 80 | ||||
-rw-r--r-- | Documentation/core-api/kho/index.rst | 13 |
8 files changed, 317 insertions, 0 deletions
diff --git a/Documentation/core-api/index.rst b/Documentation/core-api/index.rst index e9789bd381d8..7a4ca18ca6e2 100644 --- a/Documentation/core-api/index.rst +++ b/Documentation/core-api/index.rst @@ -115,6 +115,7 @@ more memory-management documentation in Documentation/mm/index.rst. pin_user_pages boot-time-mm gfp_mask-from-fs-io + kho/index Interfaces for kernel debugging =============================== diff --git a/Documentation/core-api/kho/bindings/kho.yaml b/Documentation/core-api/kho/bindings/kho.yaml new file mode 100644 index 000000000000..11e8ab7b219d --- /dev/null +++ b/Documentation/core-api/kho/bindings/kho.yaml @@ -0,0 +1,43 @@ +# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) +%YAML 1.2 +--- +title: Kexec HandOver (KHO) root tree + +maintainers: + - Mike Rapoport <rppt@kernel.org> + - Changyuan Lyu <changyuanl@google.com> + +description: | + System memory preserved by KHO across kexec. + +properties: + compatible: + enum: + - kho-v1 + + preserved-memory-map: + description: | + physical address (u64) of an in-memory structure describing all preserved + folios and memory ranges. + +patternProperties: + "$[0-9a-f_]+^": + $ref: sub-fdt.yaml# + description: physical address of a KHO user's own FDT. + +required: + - compatible + - preserved-memory-map + +additionalProperties: false + +examples: + - | + kho { + compatible = "kho-v1"; + preserved-memory-map = <0xf0be16 0x1000000>; + + memblock { + fdt = <0x80cc16 0x1000000>; + }; + }; diff --git a/Documentation/core-api/kho/bindings/memblock/memblock.yaml b/Documentation/core-api/kho/bindings/memblock/memblock.yaml new file mode 100644 index 000000000000..d388c28eb91d --- /dev/null +++ b/Documentation/core-api/kho/bindings/memblock/memblock.yaml @@ -0,0 +1,39 @@ +# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) +%YAML 1.2 +--- +title: Memblock reserved memory + +maintainers: + - Mike Rapoport <rppt@kernel.org> + +description: | + Memblock can serialize its current memory reservations created with + reserve_mem command line option across kexec through KHO. + The post-KHO kernel can then consume these reservations and they are + guaranteed to have the same physical address. + +properties: + compatible: + enum: + - reserve-mem-v1 + +patternProperties: + "$[0-9a-f_]+^": + $ref: reserve-mem.yaml# + description: reserved memory regions + +required: + - compatible + +additionalProperties: false + +examples: + - | + memblock { + compatible = "memblock-v1"; + n1 { + compatible = "reserve-mem-v1"; + start = <0xc06b 0x4000000>; + size = <0x04 0x00>; + }; + }; diff --git a/Documentation/core-api/kho/bindings/memblock/reserve-mem.yaml b/Documentation/core-api/kho/bindings/memblock/reserve-mem.yaml new file mode 100644 index 000000000000..10282d3d1bcd --- /dev/null +++ b/Documentation/core-api/kho/bindings/memblock/reserve-mem.yaml @@ -0,0 +1,40 @@ +# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) +%YAML 1.2 +--- +title: Memblock reserved memory regions + +maintainers: + - Mike Rapoport <rppt@kernel.org> + +description: | + Memblock can serialize its current memory reservations created with + reserve_mem command line option across kexec through KHO. + This object describes each such region. + +properties: + compatible: + enum: + - reserve-mem-v1 + + start: + description: | + physical address (u64) of the reserved memory region. + + size: + description: | + size (u64) of the reserved memory region. + +required: + - compatible + - start + - size + +additionalProperties: false + +examples: + - | + n1 { + compatible = "reserve-mem-v1"; + start = <0xc06b 0x4000000>; + size = <0x04 0x00>; + }; diff --git a/Documentation/core-api/kho/bindings/sub-fdt.yaml b/Documentation/core-api/kho/bindings/sub-fdt.yaml new file mode 100644 index 000000000000..b9a3d2d24850 --- /dev/null +++ b/Documentation/core-api/kho/bindings/sub-fdt.yaml @@ -0,0 +1,27 @@ +# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) +%YAML 1.2 +--- +title: KHO users' FDT address + +maintainers: + - Mike Rapoport <rppt@kernel.org> + - Changyuan Lyu <changyuanl@google.com> + +description: | + Physical address of an FDT blob registered by a KHO user. + +properties: + fdt: + description: | + physical address (u64) of an FDT blob. + +required: + - fdt + +additionalProperties: false + +examples: + - | + memblock { + fdt = <0x80cc16 0x1000000>; + }; diff --git a/Documentation/core-api/kho/concepts.rst b/Documentation/core-api/kho/concepts.rst new file mode 100644 index 000000000000..36d5c05cfb30 --- /dev/null +++ b/Documentation/core-api/kho/concepts.rst @@ -0,0 +1,74 @@ +.. SPDX-License-Identifier: GPL-2.0-or-later +.. _kho-concepts: + +======================= +Kexec Handover Concepts +======================= + +Kexec HandOver (KHO) is a mechanism that allows Linux to preserve memory +regions, which could contain serialized system states, across kexec. + +It introduces multiple concepts: + +KHO FDT +======= + +Every KHO kexec carries a KHO specific flattened device tree (FDT) blob +that describes preserved memory regions. These regions contain either +serialized subsystem states, or in-memory data that shall not be touched +across kexec. After KHO, subsystems can retrieve and restore preserved +memory regions from KHO FDT. + +KHO only uses the FDT container format and libfdt library, but does not +adhere to the same property semantics that normal device trees do: Properties +are passed in native endianness and standardized properties like ``regs`` and +``ranges`` do not exist, hence there are no ``#...-cells`` properties. + +KHO is still under development. The FDT schema is unstable and would change +in the future. + +Scratch Regions +=============== + +To boot into kexec, we need to have a physically contiguous memory range that +contains no handed over memory. Kexec then places the target kernel and initrd +into that region. The new kernel exclusively uses this region for memory +allocations before during boot up to the initialization of the page allocator. + +We guarantee that we always have such regions through the scratch regions: On +first boot KHO allocates several physically contiguous memory regions. Since +after kexec these regions will be used by early memory allocations, there is a +scratch region per NUMA node plus a scratch region to satisfy allocations +requests that do not require particular NUMA node assignment. +By default, size of the scratch region is calculated based on amount of memory +allocated during boot. The ``kho_scratch`` kernel command line option may be +used to explicitly define size of the scratch regions. +The scratch regions are declared as CMA when page allocator is initialized so +that their memory can be used during system lifetime. CMA gives us the +guarantee that no handover pages land in that region, because handover pages +must be at a static physical memory location and CMA enforces that only +movable pages can be located inside. + +After KHO kexec, we ignore the ``kho_scratch`` kernel command line option and +instead reuse the exact same region that was originally allocated. This allows +us to recursively execute any amount of KHO kexecs. Because we used this region +for boot memory allocations and as target memory for kexec blobs, some parts +of that memory region may be reserved. These reservations are irrelevant for +the next KHO, because kexec can overwrite even the original kernel. + +.. _kho-finalization-phase: + +KHO finalization phase +====================== + +To enable user space based kexec file loader, the kernel needs to be able to +provide the FDT that describes the current kernel's state before +performing the actual kexec. The process of generating that FDT is +called serialization. When the FDT is generated, some properties +of the system may become immutable because they are already written down +in the FDT. That state is called the KHO finalization phase. + +Public API +========== +.. kernel-doc:: kernel/kexec_handover.c + :export: diff --git a/Documentation/core-api/kho/fdt.rst b/Documentation/core-api/kho/fdt.rst new file mode 100644 index 000000000000..62505285d60d --- /dev/null +++ b/Documentation/core-api/kho/fdt.rst @@ -0,0 +1,80 @@ +.. SPDX-License-Identifier: GPL-2.0-or-later + +======= +KHO FDT +======= + +KHO uses the flattened device tree (FDT) container format and libfdt +library to create and parse the data that is passed between the +kernels. The properties in KHO FDT are stored in native format. +It includes the physical address of an in-memory structure describing +all preserved memory regions, as well as physical addresses of KHO users' +own FDTs. Interpreting those sub FDTs is the responsibility of KHO users. + +KHO nodes and properties +======================== + +Property ``preserved-memory-map`` +--------------------------------- + +KHO saves a special property named ``preserved-memory-map`` under the root node. +This node contains the physical address of an in-memory structure for KHO to +preserve memory regions across kexec. + +Property ``compatible`` +----------------------- + +The ``compatible`` property determines compatibility between the kernel +that created the KHO FDT and the kernel that attempts to load it. +If the kernel that loads the KHO FDT is not compatible with it, the entire +KHO process will be bypassed. + +Property ``fdt`` +---------------- + +Generally, a KHO user serialize its state into its own FDT and instructs +KHO to preserve the underlying memory, such that after kexec, the new kernel +can recover its state from the preserved FDT. + +A KHO user thus can create a node in KHO root tree and save the physical address +of its own FDT in that node's property ``fdt`` . + +Examples +======== + +The following example demonstrates KHO FDT that preserves two memory +regions created with ``reserve_mem`` kernel command line parameter:: + + /dts-v1/; + + / { + compatible = "kho-v1"; + + preserved-memory-map = <0x40be16 0x1000000>; + + memblock { + fdt = <0x1517 0x1000000>; + }; + }; + +where the ``memblock`` node contains an FDT that is requested by the +subsystem memblock for preservation. The FDT contains the following +serialized data:: + + /dts-v1/; + + / { + compatible = "memblock-v1"; + + n1 { + compatible = "reserve-mem-v1"; + start = <0xc06b 0x4000000>; + size = <0x04 0x00>; + }; + + n2 { + compatible = "reserve-mem-v1"; + start = <0xc067 0x4000000>; + size = <0x04 0x00>; + }; + }; diff --git a/Documentation/core-api/kho/index.rst b/Documentation/core-api/kho/index.rst new file mode 100644 index 000000000000..0c63b0c5c143 --- /dev/null +++ b/Documentation/core-api/kho/index.rst @@ -0,0 +1,13 @@ +.. SPDX-License-Identifier: GPL-2.0-or-later + +======================== +Kexec Handover Subsystem +======================== + +.. toctree:: + :maxdepth: 1 + + concepts + fdt + +.. only:: subproject and html |