diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2024-03-12 02:00:17 +0300 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2024-03-12 02:00:17 +0300 |
commit | 720c857907530e6cdc86c9bc1102ea6b372fbfb6 (patch) | |
tree | 03f492c411e076f009d4daf7b9755ded20756347 /Documentation/arch | |
parent | ca7e917769121195bae45d4886f6e24efd6f99ae (diff) | |
parent | c416b5bac6ad6ffe21e36225553b82ff2ec1558c (diff) | |
download | linux-720c857907530e6cdc86c9bc1102ea6b372fbfb6.tar.xz |
Merge tag 'x86-fred-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 FRED support from Thomas Gleixner:
"Support for x86 Fast Return and Event Delivery (FRED).
FRED is a replacement for IDT event delivery on x86 and addresses most
of the technical nightmares which IDT exposes:
1) Exception cause registers like CR2 need to be manually preserved
in nested exception scenarios.
2) Hardware interrupt stack switching is suboptimal for nested
exceptions as the interrupt stack mechanism rewinds the stack on
each entry which requires a massive effort in the low level entry
of #NMI code to handle this.
3) No hardware distinction between entry from kernel or from user
which makes establishing kernel context more complex than it needs
to be especially for unconditionally nestable exceptions like NMI.
4) NMI nesting caused by IRET unconditionally reenabling NMIs, which
is a problem when the perf NMI takes a fault when collecting a
stack trace.
5) Partial restore of ESP when returning to a 16-bit segment
6) Limitation of the vector space which can cause vector exhaustion
on large systems.
7) Inability to differentiate NMI sources
FRED addresses these shortcomings by:
1) An extended exception stack frame which the CPU uses to save
exception cause registers. This ensures that the meta information
for each exception is preserved on stack and avoids the extra
complexity of preserving it in software.
2) Hardware interrupt stack switching is non-rewinding if a nested
exception uses the currently interrupt stack.
3) The entry points for kernel and user context are separate and GS
BASE handling which is required to establish kernel context for
per CPU variable access is done in hardware.
4) NMIs are now nesting protected. They are only reenabled on the
return from NMI.
5) FRED guarantees full restore of ESP
6) FRED does not put a limitation on the vector space by design
because it uses a central entry points for kernel and user space
and the CPUstores the entry type (exception, trap, interrupt,
syscall) on the entry stack along with the vector number. The
entry code has to demultiplex this information, but this removes
the vector space restriction.
The first hardware implementations will still have the current
restricted vector space because lifting this limitation requires
further changes to the local APIC.
7) FRED stores the vector number and meta information on stack which
allows having more than one NMI vector in future hardware when the
required local APIC changes are in place.
The series implements the initial FRED support by:
- Reworking the existing entry and IDT handling infrastructure to
accomodate for the alternative entry mechanism.
- Expanding the stack frame to accomodate for the extra 16 bytes FRED
requires to store context and meta information
- Providing FRED specific C entry points for events which have
information pushed to the extended stack frame, e.g. #PF and #DB.
- Providing FRED specific C entry points for #NMI and #MCE
- Implementing the FRED specific ASM entry points and the C code to
demultiplex the events
- Providing detection and initialization mechanisms and the necessary
tweaks in context switching, GS BASE handling etc.
The FRED integration aims for maximum code reuse vs the existing IDT
implementation to the extent possible and the deviation in hot paths
like context switching are handled with alternatives to minimalize the
impact. The low level entry and exit paths are seperate due to the
extended stack frame and the hardware based GS BASE swichting and
therefore have no impact on IDT based systems.
It has been extensively tested on existing systems and on the FRED
simulation and as of now there are no outstanding problems"
* tag 'x86-fred-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits)
x86/fred: Fix init_task thread stack pointer initialization
MAINTAINERS: Add a maintainer entry for FRED
x86/fred: Fix a build warning with allmodconfig due to 'inline' failing to inline properly
x86/fred: Invoke FRED initialization code to enable FRED
x86/fred: Add FRED initialization functions
x86/syscall: Split IDT syscall setup code into idt_syscall_init()
KVM: VMX: Call fred_entry_from_kvm() for IRQ/NMI handling
x86/entry: Add fred_entry_from_kvm() for VMX to handle IRQ/NMI
x86/entry/calling: Allow PUSH_AND_CLEAR_REGS being used beyond actual entry code
x86/fred: Fixup fault on ERETU by jumping to fred_entrypoint_user
x86/fred: Let ret_from_fork_asm() jmp to asm_fred_exit_user when FRED is enabled
x86/traps: Add sysvec_install() to install a system interrupt handler
x86/fred: FRED entry/exit and dispatch code
x86/fred: Add a machine check entry stub for FRED
x86/fred: Add a NMI entry stub for FRED
x86/fred: Add a debug fault entry stub for FRED
x86/idtentry: Incorporate definitions/declarations of the FRED entries
x86/fred: Make exc_page_fault() work for FRED
x86/fred: Allow single-step trap and NMI when starting a new task
x86/fred: No ESPFIX needed when FRED is enabled
...
Diffstat (limited to 'Documentation/arch')
-rw-r--r-- | Documentation/arch/x86/x86_64/fred.rst | 96 | ||||
-rw-r--r-- | Documentation/arch/x86/x86_64/index.rst | 1 |
2 files changed, 97 insertions, 0 deletions
diff --git a/Documentation/arch/x86/x86_64/fred.rst b/Documentation/arch/x86/x86_64/fred.rst new file mode 100644 index 000000000000..9f57e7b91f7e --- /dev/null +++ b/Documentation/arch/x86/x86_64/fred.rst @@ -0,0 +1,96 @@ +.. SPDX-License-Identifier: GPL-2.0 + +========================================= +Flexible Return and Event Delivery (FRED) +========================================= + +Overview +======== + +The FRED architecture defines simple new transitions that change +privilege level (ring transitions). The FRED architecture was +designed with the following goals: + +1) Improve overall performance and response time by replacing event + delivery through the interrupt descriptor table (IDT event + delivery) and event return by the IRET instruction with lower + latency transitions. + +2) Improve software robustness by ensuring that event delivery + establishes the full supervisor context and that event return + establishes the full user context. + +The new transitions defined by the FRED architecture are FRED event +delivery and, for returning from events, two FRED return instructions. +FRED event delivery can effect a transition from ring 3 to ring 0, but +it is used also to deliver events incident to ring 0. One FRED +instruction (ERETU) effects a return from ring 0 to ring 3, while the +other (ERETS) returns while remaining in ring 0. Collectively, FRED +event delivery and the FRED return instructions are FRED transitions. + +In addition to these transitions, the FRED architecture defines a new +instruction (LKGS) for managing the state of the GS segment register. +The LKGS instruction can be used by 64-bit operating systems that do +not use the new FRED transitions. + +Furthermore, the FRED architecture is easy to extend for future CPU +architectures. + +Software based event dispatching +================================ + +FRED operates differently from IDT in terms of event handling. Instead +of directly dispatching an event to its handler based on the event +vector, FRED requires the software to dispatch an event to its handler +based on both the event's type and vector. Therefore, an event dispatch +framework must be implemented to facilitate the event-to-handler +dispatch process. The FRED event dispatch framework takes control +once an event is delivered, and employs a two-level dispatch. + +The first level dispatching is event type based, and the second level +dispatching is event vector based. + +Full supervisor/user context +============================ + +FRED event delivery atomically save and restore full supervisor/user +context upon event delivery and return. Thus it avoids the problem of +transient states due to %cr2 and/or %dr6, and it is no longer needed +to handle all the ugly corner cases caused by half baked entry states. + +FRED allows explicit unblock of NMI with new event return instructions +ERETS/ERETU, avoiding the mess caused by IRET which unconditionally +unblocks NMI, e.g., when an exception happens during NMI handling. + +FRED always restores the full value of %rsp, thus ESPFIX is no longer +needed when FRED is enabled. + +LKGS +==== + +LKGS behaves like the MOV to GS instruction except that it loads the +base address into the IA32_KERNEL_GS_BASE MSR instead of the GS +segment’s descriptor cache. With LKGS, it ends up with avoiding +mucking with kernel GS, i.e., an operating system can always operate +with its own GS base address. + +Because FRED event delivery from ring 3 and ERETU both swap the value +of the GS base address and that of the IA32_KERNEL_GS_BASE MSR, plus +the introduction of LKGS instruction, the SWAPGS instruction is no +longer needed when FRED is enabled, thus is disallowed (#UD). + +Stack levels +============ + +4 stack levels 0~3 are introduced to replace the nonreentrant IST for +event handling, and each stack level should be configured to use a +dedicated stack. + +The current stack level could be unchanged or go higher upon FRED +event delivery. If unchanged, the CPU keeps using the current event +stack. If higher, the CPU switches to a new event stack specified by +the MSR of the new stack level, i.e., MSR_IA32_FRED_RSP[123]. + +Only execution of a FRED return instruction ERET[US], could lower the +current stack level, causing the CPU to switch back to the stack it was +on before a previous event delivery that promoted the stack level. diff --git a/Documentation/arch/x86/x86_64/index.rst b/Documentation/arch/x86/x86_64/index.rst index a56070fc8e77..ad15e9bd623f 100644 --- a/Documentation/arch/x86/x86_64/index.rst +++ b/Documentation/arch/x86/x86_64/index.rst @@ -15,3 +15,4 @@ x86_64 Support cpu-hotplug-spec machinecheck fsgs + fred |