summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPaolo Bonzini <pbonzini@redhat.com>2025-03-19 16:04:33 +0300
committerPaolo Bonzini <pbonzini@redhat.com>2025-03-19 16:04:33 +0300
commit4286a3ec2595697f398ce1dc895a2f5b006dae99 (patch)
treee87fd74c521a2569e22de4b7798216aee0bf2b51
parente335300095c370149aada9783df2d7bf5b0db7c7 (diff)
parent0dab791f05ce2c9f0215f50cb46ed0c3126fe211 (diff)
downloadlinux-4286a3ec2595697f398ce1dc895a2f5b006dae99.tar.xz
Merge tag 'kvm-x86-mmu-6.15' of https://github.com/kvm-x86/linux into HEAD
KVM x86/mmu changes for 6.15 Add support for "fast" aging of SPTEs in both the TDP MMU and Shadow MMU, where "fast" means "without holding mmu_lock". Not taking mmu_lock allows multiple aging actions to run in parallel, and more importantly avoids stalling vCPUs, e.g. due to holding mmu_lock for an extended duration while a vCPU is faulting in memory. For the TDP MMU, protect aging via RCU; the page tables are RCU-protected and KVM doesn't need to access any metadata to age SPTEs. For the Shadow MMU, use bit 1 of rmap pointers (bit 0 is used to terminate a list of rmaps) to implement a per-rmap single-bit spinlock. When aging a gfn, acquire the rmap's spinlock with read-only permissions, which allows hardening and optimizing the locking and aging, e.g. locking an rmap for write requires mmu_lock to also be held. The lock is NOT a true R/W spinlock, i.e. multiple concurrent readers aren't supported. To avoid forcing all SPTE updates to use atomic operations (clearing the Accessed bit out of mmu_lock makes it inherently volatile), rework and rename spte_has_volatile_bits() to spte_needs_atomic_update() and deliberately exclude the Accessed bit. KVM (and mm/) already tolerates false positives/negatives for Accessed information, and all testing has shown that reducing the latency of aging is far more beneficial to overall system performance than providing "perfect" young/old information.
-rw-r--r--Documentation/virt/kvm/locking.rst4
-rw-r--r--arch/x86/include/asm/kvm_host.h4
-rw-r--r--arch/x86/kvm/Kconfig1
-rw-r--r--arch/x86/kvm/mmu/mmu.c365
-rw-r--r--arch/x86/kvm/mmu/spte.c31
-rw-r--r--arch/x86/kvm/mmu/spte.h2
-rw-r--r--arch/x86/kvm/mmu/tdp_iter.h34
-rw-r--r--arch/x86/kvm/mmu/tdp_mmu.c45
-rw-r--r--include/linux/kvm_host.h1
-rw-r--r--virt/kvm/Kconfig4
-rw-r--r--virt/kvm/kvm_main.c55
11 files changed, 375 insertions, 171 deletions
diff --git a/Documentation/virt/kvm/locking.rst b/Documentation/virt/kvm/locking.rst
index c56d5f26c750..ae8bce7fecbe 100644
--- a/Documentation/virt/kvm/locking.rst
+++ b/Documentation/virt/kvm/locking.rst
@@ -196,7 +196,7 @@ writable between reading spte and updating spte. Like below case:
The Dirty bit is lost in this case.
In order to avoid this kind of issue, we always treat the spte as "volatile"
-if it can be updated out of mmu-lock [see spte_has_volatile_bits()]; it means
+if it can be updated out of mmu-lock [see spte_needs_atomic_update()]; it means
the spte is always atomically updated in this case.
3) flush tlbs due to spte updated
@@ -212,7 +212,7 @@ function to update spte (present -> present).
Since the spte is "volatile" if it can be updated out of mmu-lock, we always
atomically update the spte and the race caused by fast page fault can be avoided.
-See the comments in spte_has_volatile_bits() and mmu_spte_update().
+See the comments in spte_needs_atomic_update() and mmu_spte_update().
Lockless Access Tracking:
diff --git a/arch/x86/include/asm/kvm_host.h b/arch/x86/include/asm/kvm_host.h
index 32ae3aa50c7e..667b93071252 100644
--- a/arch/x86/include/asm/kvm_host.h
+++ b/arch/x86/include/asm/kvm_host.h
@@ -27,6 +27,7 @@
#include <linux/kfifo.h>
#include <linux/sched/vhost_task.h>
#include <linux/call_once.h>
+#include <linux/atomic.h>
#include <asm/apic.h>
#include <asm/pvclock-abi.h>
@@ -405,7 +406,7 @@ union kvm_cpu_role {
};
struct kvm_rmap_head {
- unsigned long val;
+ atomic_long_t val;
};
struct kvm_pio_request {
@@ -1479,6 +1480,7 @@ struct kvm_arch {
* tdp_mmu_page set.
*
* For reads, this list is protected by:
+ * RCU alone or
* the MMU lock in read mode + RCU or
* the MMU lock in write mode
*
diff --git a/arch/x86/kvm/Kconfig b/arch/x86/kvm/Kconfig
index ea2c4f21c1ca..fe8ea8c097de 100644
--- a/arch/x86/kvm/Kconfig
+++ b/arch/x86/kvm/Kconfig
@@ -22,6 +22,7 @@ config KVM_X86
select KVM_COMMON
select KVM_GENERIC_MMU_NOTIFIER
select KVM_ELIDE_TLB_FLUSH_IF_YOUNG
+ select KVM_MMU_LOCKLESS_AGING
select HAVE_KVM_IRQCHIP
select HAVE_KVM_PFNCACHE
select HAVE_KVM_DIRTY_RING_TSO
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c
index 8160870398b9..63bb77ee1bb1 100644
--- a/arch/x86/kvm/mmu/mmu.c
+++ b/arch/x86/kvm/mmu/mmu.c
@@ -501,7 +501,7 @@ static bool mmu_spte_update(u64 *sptep, u64 new_spte)
return false;
}
- if (!spte_has_volatile_bits(old_spte))
+ if (!spte_needs_atomic_update(old_spte))
__update_clear_spte_fast(sptep, new_spte);
else
old_spte = __update_clear_spte_slow(sptep, new_spte);
@@ -524,7 +524,7 @@ static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
int level = sptep_to_sp(sptep)->role.level;
if (!is_shadow_present_pte(old_spte) ||
- !spte_has_volatile_bits(old_spte))
+ !spte_needs_atomic_update(old_spte))
__update_clear_spte_fast(sptep, SHADOW_NONPRESENT_VALUE);
else
old_spte = __update_clear_spte_slow(sptep, SHADOW_NONPRESENT_VALUE);
@@ -853,32 +853,173 @@ static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu
* About rmap_head encoding:
*
* If the bit zero of rmap_head->val is clear, then it points to the only spte
- * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
+ * in this rmap chain. Otherwise, (rmap_head->val & ~3) points to a struct
* pte_list_desc containing more mappings.
*/
#define KVM_RMAP_MANY BIT(0)
/*
+ * rmaps and PTE lists are mostly protected by mmu_lock (the shadow MMU always
+ * operates with mmu_lock held for write), but rmaps can be walked without
+ * holding mmu_lock so long as the caller can tolerate SPTEs in the rmap chain
+ * being zapped/dropped _while the rmap is locked_.
+ *
+ * Other than the KVM_RMAP_LOCKED flag, modifications to rmap entries must be
+ * done while holding mmu_lock for write. This allows a task walking rmaps
+ * without holding mmu_lock to concurrently walk the same entries as a task
+ * that is holding mmu_lock but _not_ the rmap lock. Neither task will modify
+ * the rmaps, thus the walks are stable.
+ *
+ * As alluded to above, SPTEs in rmaps are _not_ protected by KVM_RMAP_LOCKED,
+ * only the rmap chains themselves are protected. E.g. holding an rmap's lock
+ * ensures all "struct pte_list_desc" fields are stable.
+ */
+#define KVM_RMAP_LOCKED BIT(1)
+
+static unsigned long __kvm_rmap_lock(struct kvm_rmap_head *rmap_head)
+{
+ unsigned long old_val, new_val;
+
+ lockdep_assert_preemption_disabled();
+
+ /*
+ * Elide the lock if the rmap is empty, as lockless walkers (read-only
+ * mode) don't need to (and can't) walk an empty rmap, nor can they add
+ * entries to the rmap. I.e. the only paths that process empty rmaps
+ * do so while holding mmu_lock for write, and are mutually exclusive.
+ */
+ old_val = atomic_long_read(&rmap_head->val);
+ if (!old_val)
+ return 0;
+
+ do {
+ /*
+ * If the rmap is locked, wait for it to be unlocked before
+ * trying acquire the lock, e.g. to avoid bouncing the cache
+ * line.
+ */
+ while (old_val & KVM_RMAP_LOCKED) {
+ cpu_relax();
+ old_val = atomic_long_read(&rmap_head->val);
+ }
+
+ /*
+ * Recheck for an empty rmap, it may have been purged by the
+ * task that held the lock.
+ */
+ if (!old_val)
+ return 0;
+
+ new_val = old_val | KVM_RMAP_LOCKED;
+ /*
+ * Use try_cmpxchg_acquire() to prevent reads and writes to the rmap
+ * from being reordered outside of the critical section created by
+ * __kvm_rmap_lock().
+ *
+ * Pairs with the atomic_long_set_release() in kvm_rmap_unlock().
+ *
+ * For the !old_val case, no ordering is needed, as there is no rmap
+ * to walk.
+ */
+ } while (!atomic_long_try_cmpxchg_acquire(&rmap_head->val, &old_val, new_val));
+
+ /*
+ * Return the old value, i.e. _without_ the LOCKED bit set. It's
+ * impossible for the return value to be 0 (see above), i.e. the read-
+ * only unlock flow can't get a false positive and fail to unlock.
+ */
+ return old_val;
+}
+
+static unsigned long kvm_rmap_lock(struct kvm *kvm,
+ struct kvm_rmap_head *rmap_head)
+{
+ lockdep_assert_held_write(&kvm->mmu_lock);
+
+ return __kvm_rmap_lock(rmap_head);
+}
+
+static void __kvm_rmap_unlock(struct kvm_rmap_head *rmap_head,
+ unsigned long val)
+{
+ KVM_MMU_WARN_ON(val & KVM_RMAP_LOCKED);
+ /*
+ * Ensure that all accesses to the rmap have completed before unlocking
+ * the rmap.
+ *
+ * Pairs with the atomic_long_try_cmpxchg_acquire() in __kvm_rmap_lock().
+ */
+ atomic_long_set_release(&rmap_head->val, val);
+}
+
+static void kvm_rmap_unlock(struct kvm *kvm,
+ struct kvm_rmap_head *rmap_head,
+ unsigned long new_val)
+{
+ lockdep_assert_held_write(&kvm->mmu_lock);
+
+ __kvm_rmap_unlock(rmap_head, new_val);
+}
+
+static unsigned long kvm_rmap_get(struct kvm_rmap_head *rmap_head)
+{
+ return atomic_long_read(&rmap_head->val) & ~KVM_RMAP_LOCKED;
+}
+
+/*
+ * If mmu_lock isn't held, rmaps can only be locked in read-only mode. The
+ * actual locking is the same, but the caller is disallowed from modifying the
+ * rmap, and so the unlock flow is a nop if the rmap is/was empty.
+ */
+static unsigned long kvm_rmap_lock_readonly(struct kvm_rmap_head *rmap_head)
+{
+ unsigned long rmap_val;
+
+ preempt_disable();
+ rmap_val = __kvm_rmap_lock(rmap_head);
+
+ if (!rmap_val)
+ preempt_enable();
+
+ return rmap_val;
+}
+
+static void kvm_rmap_unlock_readonly(struct kvm_rmap_head *rmap_head,
+ unsigned long old_val)
+{
+ if (!old_val)
+ return;
+
+ KVM_MMU_WARN_ON(old_val != kvm_rmap_get(rmap_head));
+
+ __kvm_rmap_unlock(rmap_head, old_val);
+ preempt_enable();
+}
+
+/*
* Returns the number of pointers in the rmap chain, not counting the new one.
*/
-static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte,
- struct kvm_rmap_head *rmap_head)
+static int pte_list_add(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
+ u64 *spte, struct kvm_rmap_head *rmap_head)
{
+ unsigned long old_val, new_val;
struct pte_list_desc *desc;
int count = 0;
- if (!rmap_head->val) {
- rmap_head->val = (unsigned long)spte;
- } else if (!(rmap_head->val & KVM_RMAP_MANY)) {
+ old_val = kvm_rmap_lock(kvm, rmap_head);
+
+ if (!old_val) {
+ new_val = (unsigned long)spte;
+ } else if (!(old_val & KVM_RMAP_MANY)) {
desc = kvm_mmu_memory_cache_alloc(cache);
- desc->sptes[0] = (u64 *)rmap_head->val;
+ desc->sptes[0] = (u64 *)old_val;
desc->sptes[1] = spte;
desc->spte_count = 2;
desc->tail_count = 0;
- rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY;
+ new_val = (unsigned long)desc | KVM_RMAP_MANY;
++count;
} else {
- desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
+ desc = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY);
count = desc->tail_count + desc->spte_count;
/*
@@ -887,21 +1028,25 @@ static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte,
*/
if (desc->spte_count == PTE_LIST_EXT) {
desc = kvm_mmu_memory_cache_alloc(cache);
- desc->more = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
+ desc->more = (struct pte_list_desc *)(old_val & ~KVM_RMAP_MANY);
desc->spte_count = 0;
desc->tail_count = count;
- rmap_head->val = (unsigned long)desc | KVM_RMAP_MANY;
+ new_val = (unsigned long)desc | KVM_RMAP_MANY;
+ } else {
+ new_val = old_val;
}
desc->sptes[desc->spte_count++] = spte;
}
+
+ kvm_rmap_unlock(kvm, rmap_head, new_val);
+
return count;
}
-static void pte_list_desc_remove_entry(struct kvm *kvm,
- struct kvm_rmap_head *rmap_head,
+static void pte_list_desc_remove_entry(struct kvm *kvm, unsigned long *rmap_val,
struct pte_list_desc *desc, int i)
{
- struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
+ struct pte_list_desc *head_desc = (struct pte_list_desc *)(*rmap_val & ~KVM_RMAP_MANY);
int j = head_desc->spte_count - 1;
/*
@@ -928,9 +1073,9 @@ static void pte_list_desc_remove_entry(struct kvm *kvm,
* head at the next descriptor, i.e. the new head.
*/
if (!head_desc->more)
- rmap_head->val = 0;
+ *rmap_val = 0;
else
- rmap_head->val = (unsigned long)head_desc->more | KVM_RMAP_MANY;
+ *rmap_val = (unsigned long)head_desc->more | KVM_RMAP_MANY;
mmu_free_pte_list_desc(head_desc);
}
@@ -938,24 +1083,26 @@ static void pte_list_remove(struct kvm *kvm, u64 *spte,
struct kvm_rmap_head *rmap_head)
{
struct pte_list_desc *desc;
+ unsigned long rmap_val;
int i;
- if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm))
- return;
+ rmap_val = kvm_rmap_lock(kvm, rmap_head);
+ if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_val, kvm))
+ goto out;
- if (!(rmap_head->val & KVM_RMAP_MANY)) {
- if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm))
- return;
+ if (!(rmap_val & KVM_RMAP_MANY)) {
+ if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_val != spte, kvm))
+ goto out;
- rmap_head->val = 0;
+ rmap_val = 0;
} else {
- desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
+ desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY);
while (desc) {
for (i = 0; i < desc->spte_count; ++i) {
if (desc->sptes[i] == spte) {
- pte_list_desc_remove_entry(kvm, rmap_head,
+ pte_list_desc_remove_entry(kvm, &rmap_val,
desc, i);
- return;
+ goto out;
}
}
desc = desc->more;
@@ -963,6 +1110,9 @@ static void pte_list_remove(struct kvm *kvm, u64 *spte,
KVM_BUG_ON_DATA_CORRUPTION(true, kvm);
}
+
+out:
+ kvm_rmap_unlock(kvm, rmap_head, rmap_val);
}
static void kvm_zap_one_rmap_spte(struct kvm *kvm,
@@ -977,17 +1127,19 @@ static bool kvm_zap_all_rmap_sptes(struct kvm *kvm,
struct kvm_rmap_head *rmap_head)
{
struct pte_list_desc *desc, *next;
+ unsigned long rmap_val;
int i;
- if (!rmap_head->val)
+ rmap_val = kvm_rmap_lock(kvm, rmap_head);
+ if (!rmap_val)
return false;
- if (!(rmap_head->val & KVM_RMAP_MANY)) {
- mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
+ if (!(rmap_val & KVM_RMAP_MANY)) {
+ mmu_spte_clear_track_bits(kvm, (u64 *)rmap_val);
goto out;
}
- desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
+ desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY);
for (; desc; desc = next) {
for (i = 0; i < desc->spte_count; i++)
@@ -997,20 +1149,21 @@ static bool kvm_zap_all_rmap_sptes(struct kvm *kvm,
}
out:
/* rmap_head is meaningless now, remember to reset it */
- rmap_head->val = 0;
+ kvm_rmap_unlock(kvm, rmap_head, 0);
return true;
}
unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
{
+ unsigned long rmap_val = kvm_rmap_get(rmap_head);
struct pte_list_desc *desc;
- if (!rmap_head->val)
+ if (!rmap_val)
return 0;
- else if (!(rmap_head->val & KVM_RMAP_MANY))
+ else if (!(rmap_val & KVM_RMAP_MANY))
return 1;
- desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
+ desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY);
return desc->tail_count + desc->spte_count;
}
@@ -1053,6 +1206,7 @@ static void rmap_remove(struct kvm *kvm, u64 *spte)
*/
struct rmap_iterator {
/* private fields */
+ struct rmap_head *head;
struct pte_list_desc *desc; /* holds the sptep if not NULL */
int pos; /* index of the sptep */
};
@@ -1067,23 +1221,19 @@ struct rmap_iterator {
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
struct rmap_iterator *iter)
{
- u64 *sptep;
+ unsigned long rmap_val = kvm_rmap_get(rmap_head);
- if (!rmap_head->val)
+ if (!rmap_val)
return NULL;
- if (!(rmap_head->val & KVM_RMAP_MANY)) {
+ if (!(rmap_val & KVM_RMAP_MANY)) {
iter->desc = NULL;
- sptep = (u64 *)rmap_head->val;
- goto out;
+ return (u64 *)rmap_val;
}
- iter->desc = (struct pte_list_desc *)(rmap_head->val & ~KVM_RMAP_MANY);
+ iter->desc = (struct pte_list_desc *)(rmap_val & ~KVM_RMAP_MANY);
iter->pos = 0;
- sptep = iter->desc->sptes[iter->pos];
-out:
- BUG_ON(!is_shadow_present_pte(*sptep));
- return sptep;
+ return iter->desc->sptes[iter->pos];
}
/*
@@ -1093,14 +1243,11 @@ out:
*/
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
- u64 *sptep;
-
if (iter->desc) {
if (iter->pos < PTE_LIST_EXT - 1) {
++iter->pos;
- sptep = iter->desc->sptes[iter->pos];
- if (sptep)
- goto out;
+ if (iter->desc->sptes[iter->pos])
+ return iter->desc->sptes[iter->pos];
}
iter->desc = iter->desc->more;
@@ -1108,20 +1255,24 @@ static u64 *rmap_get_next(struct rmap_iterator *iter)
if (iter->desc) {
iter->pos = 0;
/* desc->sptes[0] cannot be NULL */
- sptep = iter->desc->sptes[iter->pos];
- goto out;
+ return iter->desc->sptes[iter->pos];
}
}
return NULL;
-out:
- BUG_ON(!is_shadow_present_pte(*sptep));
- return sptep;
}
-#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
- for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
- _spte_; _spte_ = rmap_get_next(_iter_))
+#define __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \
+ for (_sptep_ = rmap_get_first(_rmap_head_, _iter_); \
+ _sptep_; _sptep_ = rmap_get_next(_iter_))
+
+#define for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \
+ __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \
+ if (!WARN_ON_ONCE(!is_shadow_present_pte(*(_sptep_)))) \
+
+#define for_each_rmap_spte_lockless(_rmap_head_, _iter_, _sptep_, _spte_) \
+ __for_each_rmap_spte(_rmap_head_, _iter_, _sptep_) \
+ if (is_shadow_present_pte(_spte_ = mmu_spte_get_lockless(sptep)))
static void drop_spte(struct kvm *kvm, u64 *sptep)
{
@@ -1207,12 +1358,13 @@ static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
struct rmap_iterator iter;
bool flush = false;
- for_each_rmap_spte(rmap_head, &iter, sptep)
+ for_each_rmap_spte(rmap_head, &iter, sptep) {
if (spte_ad_need_write_protect(*sptep))
flush |= test_and_clear_bit(PT_WRITABLE_SHIFT,
(unsigned long *)sptep);
else
flush |= spte_clear_dirty(sptep);
+ }
return flush;
}
@@ -1401,7 +1553,7 @@ static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
while (++iterator->rmap <= iterator->end_rmap) {
iterator->gfn += KVM_PAGES_PER_HPAGE(iterator->level);
- if (iterator->rmap->val)
+ if (atomic_long_read(&iterator->rmap->val))
return;
}
@@ -1533,7 +1685,7 @@ static void __rmap_add(struct kvm *kvm,
kvm_update_page_stats(kvm, sp->role.level, 1);
rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
- rmap_count = pte_list_add(cache, spte, rmap_head);
+ rmap_count = pte_list_add(kvm, cache, spte, rmap_head);
if (rmap_count > kvm->stat.max_mmu_rmap_size)
kvm->stat.max_mmu_rmap_size = rmap_count;
@@ -1552,51 +1704,67 @@ static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot,
}
static bool kvm_rmap_age_gfn_range(struct kvm *kvm,
- struct kvm_gfn_range *range, bool test_only)
+ struct kvm_gfn_range *range,
+ bool test_only)
{
- struct slot_rmap_walk_iterator iterator;
+ struct kvm_rmap_head *rmap_head;
struct rmap_iterator iter;
+ unsigned long rmap_val;
bool young = false;
u64 *sptep;
+ gfn_t gfn;
+ int level;
+ u64 spte;
- for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
- range->start, range->end - 1, &iterator) {
- for_each_rmap_spte(iterator.rmap, &iter, sptep) {
- u64 spte = *sptep;
+ for (level = PG_LEVEL_4K; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
+ for (gfn = range->start; gfn < range->end;
+ gfn += KVM_PAGES_PER_HPAGE(level)) {
+ rmap_head = gfn_to_rmap(gfn, level, range->slot);
+ rmap_val = kvm_rmap_lock_readonly(rmap_head);
- if (!is_accessed_spte(spte))
- continue;
+ for_each_rmap_spte_lockless(rmap_head, &iter, sptep, spte) {
+ if (!is_accessed_spte(spte))
+ continue;
- if (test_only)
- return true;
-
- if (spte_ad_enabled(spte)) {
- clear_bit((ffs(shadow_accessed_mask) - 1),
- (unsigned long *)sptep);
- } else {
- /*
- * WARN if mmu_spte_update() signals the need
- * for a TLB flush, as Access tracking a SPTE
- * should never trigger an _immediate_ flush.
- */
- spte = mark_spte_for_access_track(spte);
- WARN_ON_ONCE(mmu_spte_update(sptep, spte));
+ if (test_only) {
+ kvm_rmap_unlock_readonly(rmap_head, rmap_val);
+ return true;
+ }
+
+ if (spte_ad_enabled(spte))
+ clear_bit((ffs(shadow_accessed_mask) - 1),
+ (unsigned long *)sptep);
+ else
+ /*
+ * If the following cmpxchg fails, the
+ * spte is being concurrently modified
+ * and should most likely stay young.
+ */
+ cmpxchg64(sptep, spte,
+ mark_spte_for_access_track(spte));
+ young = true;
}
- young = true;
+
+ kvm_rmap_unlock_readonly(rmap_head, rmap_val);
}
}
return young;
}
+static bool kvm_may_have_shadow_mmu_sptes(struct kvm *kvm)
+{
+ return !tdp_mmu_enabled || READ_ONCE(kvm->arch.indirect_shadow_pages);
+}
+
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
{
bool young = false;
- if (kvm_memslots_have_rmaps(kvm))
- young = kvm_rmap_age_gfn_range(kvm, range, false);
-
if (tdp_mmu_enabled)
- young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
+ young = kvm_tdp_mmu_age_gfn_range(kvm, range);
+
+ if (kvm_may_have_shadow_mmu_sptes(kvm))
+ young |= kvm_rmap_age_gfn_range(kvm, range, false);
return young;
}
@@ -1605,11 +1773,14 @@ bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
{
bool young = false;
- if (kvm_memslots_have_rmaps(kvm))
- young = kvm_rmap_age_gfn_range(kvm, range, true);
-
if (tdp_mmu_enabled)
- young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
+ young = kvm_tdp_mmu_test_age_gfn(kvm, range);
+
+ if (young)
+ return young;
+
+ if (kvm_may_have_shadow_mmu_sptes(kvm))
+ young |= kvm_rmap_age_gfn_range(kvm, range, true);
return young;
}
@@ -1656,13 +1827,14 @@ static unsigned kvm_page_table_hashfn(gfn_t gfn)
return hash_64(gfn, KVM_MMU_HASH_SHIFT);
}
-static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache,
+static void mmu_page_add_parent_pte(struct kvm *kvm,
+ struct kvm_mmu_memory_cache *cache,
struct kvm_mmu_page *sp, u64 *parent_pte)
{
if (!parent_pte)
return;
- pte_list_add(cache, parent_pte, &sp->parent_ptes);
+ pte_list_add(kvm, cache, parent_pte, &sp->parent_ptes);
}
static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
@@ -2352,7 +2524,7 @@ static void __link_shadow_page(struct kvm *kvm,
mmu_spte_set(sptep, spte);
- mmu_page_add_parent_pte(cache, sp, sptep);
+ mmu_page_add_parent_pte(kvm, cache, sp, sptep);
/*
* The non-direct sub-pagetable must be updated before linking. For
@@ -2416,7 +2588,8 @@ static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
* avoids retaining a large number of stale nested SPs.
*/
if (tdp_enabled && invalid_list &&
- child->role.guest_mode && !child->parent_ptes.val)
+ child->role.guest_mode &&
+ !atomic_long_read(&child->parent_ptes.val))
return kvm_mmu_prepare_zap_page(kvm, child,
invalid_list);
}
diff --git a/arch/x86/kvm/mmu/spte.c b/arch/x86/kvm/mmu/spte.c
index 22551e2f1d00..0f9f47b4ab0e 100644
--- a/arch/x86/kvm/mmu/spte.c
+++ b/arch/x86/kvm/mmu/spte.c
@@ -129,25 +129,32 @@ static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
}
/*
- * Returns true if the SPTE has bits that may be set without holding mmu_lock.
- * The caller is responsible for checking if the SPTE is shadow-present, and
- * for determining whether or not the caller cares about non-leaf SPTEs.
+ * Returns true if the SPTE needs to be updated atomically due to having bits
+ * that may be changed without holding mmu_lock, and for which KVM must not
+ * lose information. E.g. KVM must not drop Dirty bit information. The caller
+ * is responsible for checking if the SPTE is shadow-present, and for
+ * determining whether or not the caller cares about non-leaf SPTEs.
*/
-bool spte_has_volatile_bits(u64 spte)
+bool spte_needs_atomic_update(u64 spte)
{
+ /* SPTEs can be made Writable bit by KVM's fast page fault handler. */
if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
return true;
- if (is_access_track_spte(spte))
+ /*
+ * A/D-disabled SPTEs can be access-tracked by aging, and access-tracked
+ * SPTEs can be restored by KVM's fast page fault handler.
+ */
+ if (!spte_ad_enabled(spte))
return true;
- if (spte_ad_enabled(spte)) {
- if (!(spte & shadow_accessed_mask) ||
- (is_writable_pte(spte) && !(spte & shadow_dirty_mask)))
- return true;
- }
-
- return false;
+ /*
+ * Dirty and Accessed bits can be set by the CPU. Ignore the Accessed
+ * bit, as KVM tolerates false negatives/positives, e.g. KVM doesn't
+ * invalidate TLBs when aging SPTEs, and so it's safe to clobber the
+ * Accessed bit (and rare in practice).
+ */
+ return is_writable_pte(spte) && !(spte & shadow_dirty_mask);
}
bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
diff --git a/arch/x86/kvm/mmu/spte.h b/arch/x86/kvm/mmu/spte.h
index 59746854c0af..79cdceba9857 100644
--- a/arch/x86/kvm/mmu/spte.h
+++ b/arch/x86/kvm/mmu/spte.h
@@ -519,7 +519,7 @@ static inline u64 get_mmio_spte_generation(u64 spte)
return gen;
}
-bool spte_has_volatile_bits(u64 spte);
+bool spte_needs_atomic_update(u64 spte);
bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
const struct kvm_memory_slot *slot,
diff --git a/arch/x86/kvm/mmu/tdp_iter.h b/arch/x86/kvm/mmu/tdp_iter.h
index 047b78333653..364c5da6c499 100644
--- a/arch/x86/kvm/mmu/tdp_iter.h
+++ b/arch/x86/kvm/mmu/tdp_iter.h
@@ -25,6 +25,13 @@ static inline u64 kvm_tdp_mmu_write_spte_atomic(tdp_ptep_t sptep, u64 new_spte)
return xchg(rcu_dereference(sptep), new_spte);
}
+static inline u64 tdp_mmu_clear_spte_bits_atomic(tdp_ptep_t sptep, u64 mask)
+{
+ atomic64_t *sptep_atomic = (atomic64_t *)rcu_dereference(sptep);
+
+ return (u64)atomic64_fetch_and(~mask, sptep_atomic);
+}
+
static inline void __kvm_tdp_mmu_write_spte(tdp_ptep_t sptep, u64 new_spte)
{
KVM_MMU_WARN_ON(is_ept_ve_possible(new_spte));
@@ -32,28 +39,21 @@ static inline void __kvm_tdp_mmu_write_spte(tdp_ptep_t sptep, u64 new_spte)
}
/*
- * SPTEs must be modified atomically if they are shadow-present, leaf
- * SPTEs, and have volatile bits, i.e. has bits that can be set outside
- * of mmu_lock. The Writable bit can be set by KVM's fast page fault
- * handler, and Accessed and Dirty bits can be set by the CPU.
- *
- * Note, non-leaf SPTEs do have Accessed bits and those bits are
- * technically volatile, but KVM doesn't consume the Accessed bit of
- * non-leaf SPTEs, i.e. KVM doesn't care if it clobbers the bit. This
- * logic needs to be reassessed if KVM were to use non-leaf Accessed
- * bits, e.g. to skip stepping down into child SPTEs when aging SPTEs.
+ * SPTEs must be modified atomically if they are shadow-present, leaf SPTEs,
+ * and have volatile bits (bits that can be set outside of mmu_lock) that
+ * must not be clobbered.
*/
-static inline bool kvm_tdp_mmu_spte_need_atomic_write(u64 old_spte, int level)
+static inline bool kvm_tdp_mmu_spte_need_atomic_update(u64 old_spte, int level)
{
return is_shadow_present_pte(old_spte) &&
is_last_spte(old_spte, level) &&
- spte_has_volatile_bits(old_spte);
+ spte_needs_atomic_update(old_spte);
}
static inline u64 kvm_tdp_mmu_write_spte(tdp_ptep_t sptep, u64 old_spte,
u64 new_spte, int level)
{
- if (kvm_tdp_mmu_spte_need_atomic_write(old_spte, level))
+ if (kvm_tdp_mmu_spte_need_atomic_update(old_spte, level))
return kvm_tdp_mmu_write_spte_atomic(sptep, new_spte);
__kvm_tdp_mmu_write_spte(sptep, new_spte);
@@ -63,12 +63,8 @@ static inline u64 kvm_tdp_mmu_write_spte(tdp_ptep_t sptep, u64 old_spte,
static inline u64 tdp_mmu_clear_spte_bits(tdp_ptep_t sptep, u64 old_spte,
u64 mask, int level)
{
- atomic64_t *sptep_atomic;
-
- if (kvm_tdp_mmu_spte_need_atomic_write(old_spte, level)) {
- sptep_atomic = (atomic64_t *)rcu_dereference(sptep);
- return (u64)atomic64_fetch_and(~mask, sptep_atomic);
- }
+ if (kvm_tdp_mmu_spte_need_atomic_update(old_spte, level))
+ return tdp_mmu_clear_spte_bits_atomic(sptep, mask);
__kvm_tdp_mmu_write_spte(sptep, old_spte & ~mask);
return old_spte;
diff --git a/arch/x86/kvm/mmu/tdp_mmu.c b/arch/x86/kvm/mmu/tdp_mmu.c
index 046b6ba31197..7cc0564f5f97 100644
--- a/arch/x86/kvm/mmu/tdp_mmu.c
+++ b/arch/x86/kvm/mmu/tdp_mmu.c
@@ -193,6 +193,19 @@ static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm,
!tdp_mmu_root_match((_root), (_types)))) { \
} else
+/*
+ * Iterate over all TDP MMU roots in an RCU read-side critical section.
+ * It is safe to iterate over the SPTEs under the root, but their values will
+ * be unstable, so all writes must be atomic. As this routine is meant to be
+ * used without holding the mmu_lock at all, any bits that are flipped must
+ * be reflected in kvm_tdp_mmu_spte_need_atomic_write().
+ */
+#define for_each_tdp_mmu_root_rcu(_kvm, _root, _as_id, _types) \
+ list_for_each_entry_rcu(_root, &_kvm->arch.tdp_mmu_roots, link) \
+ if ((_as_id >= 0 && kvm_mmu_page_as_id(_root) != _as_id) || \
+ !tdp_mmu_root_match((_root), (_types))) { \
+ } else
+
#define for_each_valid_tdp_mmu_root(_kvm, _root, _as_id) \
__for_each_tdp_mmu_root(_kvm, _root, _as_id, KVM_VALID_ROOTS)
@@ -774,9 +787,6 @@ static inline void tdp_mmu_iter_set_spte(struct kvm *kvm, struct tdp_iter *iter,
continue; \
else
-#define tdp_mmu_for_each_pte(_iter, _kvm, _root, _start, _end) \
- for_each_tdp_pte(_iter, _kvm, _root, _start, _end)
-
static inline bool __must_check tdp_mmu_iter_need_resched(struct kvm *kvm,
struct tdp_iter *iter)
{
@@ -1235,7 +1245,7 @@ int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
rcu_read_lock();
- tdp_mmu_for_each_pte(iter, kvm, root, fault->gfn, fault->gfn + 1) {
+ for_each_tdp_pte(iter, kvm, root, fault->gfn, fault->gfn + 1) {
int r;
if (fault->nx_huge_page_workaround_enabled)
@@ -1332,21 +1342,22 @@ bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range,
* from the clear_young() or clear_flush_young() notifier, which uses the
* return value to determine if the page has been accessed.
*/
-static void kvm_tdp_mmu_age_spte(struct tdp_iter *iter)
+static void kvm_tdp_mmu_age_spte(struct kvm *kvm, struct tdp_iter *iter)
{
u64 new_spte;
if (spte_ad_enabled(iter->old_spte)) {
- iter->old_spte = tdp_mmu_clear_spte_bits(iter->sptep,
- iter->old_spte,
- shadow_accessed_mask,
- iter->level);
+ iter->old_spte = tdp_mmu_clear_spte_bits_atomic(iter->sptep,
+ shadow_accessed_mask);
new_spte = iter->old_spte & ~shadow_accessed_mask;
} else {
new_spte = mark_spte_for_access_track(iter->old_spte);
- iter->old_spte = kvm_tdp_mmu_write_spte(iter->sptep,
- iter->old_spte, new_spte,
- iter->level);
+ /*
+ * It is safe for the following cmpxchg to fail. Leave the
+ * Accessed bit set, as the spte is most likely young anyway.
+ */
+ if (__tdp_mmu_set_spte_atomic(kvm, iter, new_spte))
+ return;
}
trace_kvm_tdp_mmu_spte_changed(iter->as_id, iter->gfn, iter->level,
@@ -1371,9 +1382,9 @@ static bool __kvm_tdp_mmu_age_gfn_range(struct kvm *kvm,
* valid roots!
*/
WARN_ON(types & ~KVM_VALID_ROOTS);
- __for_each_tdp_mmu_root(kvm, root, range->slot->as_id, types) {
- guard(rcu)();
+ guard(rcu)();
+ for_each_tdp_mmu_root_rcu(kvm, root, range->slot->as_id, types) {
tdp_root_for_each_leaf_pte(iter, kvm, root, range->start, range->end) {
if (!is_accessed_spte(iter.old_spte))
continue;
@@ -1382,7 +1393,7 @@ static bool __kvm_tdp_mmu_age_gfn_range(struct kvm *kvm,
return true;
ret = true;
- kvm_tdp_mmu_age_spte(&iter);
+ kvm_tdp_mmu_age_spte(kvm, &iter);
}
}
@@ -1904,7 +1915,7 @@ int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
*root_level = vcpu->arch.mmu->root_role.level;
- tdp_mmu_for_each_pte(iter, vcpu->kvm, root, gfn, gfn + 1) {
+ for_each_tdp_pte(iter, vcpu->kvm, root, gfn, gfn + 1) {
leaf = iter.level;
sptes[leaf] = iter.old_spte;
}
@@ -1931,7 +1942,7 @@ u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gfn_t gfn,
struct tdp_iter iter;
tdp_ptep_t sptep = NULL;
- tdp_mmu_for_each_pte(iter, vcpu->kvm, root, gfn, gfn + 1) {
+ for_each_tdp_pte(iter, vcpu->kvm, root, gfn, gfn + 1) {
*spte = iter.old_spte;
sptep = iter.sptep;
}
diff --git a/include/linux/kvm_host.h b/include/linux/kvm_host.h
index f34f4cfaa513..c28a6aa1f2ed 100644
--- a/include/linux/kvm_host.h
+++ b/include/linux/kvm_host.h
@@ -267,6 +267,7 @@ struct kvm_gfn_range {
union kvm_mmu_notifier_arg arg;
enum kvm_gfn_range_filter attr_filter;
bool may_block;
+ bool lockless;
};
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
diff --git a/virt/kvm/Kconfig b/virt/kvm/Kconfig
index 54e959e7d68f..746e1f466aa6 100644
--- a/virt/kvm/Kconfig
+++ b/virt/kvm/Kconfig
@@ -104,6 +104,10 @@ config KVM_ELIDE_TLB_FLUSH_IF_YOUNG
depends on KVM_GENERIC_MMU_NOTIFIER
bool
+config KVM_MMU_LOCKLESS_AGING
+ depends on KVM_GENERIC_MMU_NOTIFIER
+ bool
+
config KVM_GENERIC_MEMORY_ATTRIBUTES
depends on KVM_GENERIC_MMU_NOTIFIER
bool
diff --git a/virt/kvm/kvm_main.c b/virt/kvm/kvm_main.c
index ba0327e2d0d3..201c14ff476f 100644
--- a/virt/kvm/kvm_main.c
+++ b/virt/kvm/kvm_main.c
@@ -517,6 +517,7 @@ struct kvm_mmu_notifier_range {
on_lock_fn_t on_lock;
bool flush_on_ret;
bool may_block;
+ bool lockless;
};
/*
@@ -551,8 +552,8 @@ static void kvm_null_fn(void)
node; \
node = interval_tree_iter_next(node, start, last)) \
-static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
- const struct kvm_mmu_notifier_range *range)
+static __always_inline kvm_mn_ret_t kvm_handle_hva_range(struct kvm *kvm,
+ const struct kvm_mmu_notifier_range *range)
{
struct kvm_mmu_notifier_return r = {
.ret = false,
@@ -571,6 +572,10 @@ static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
IS_KVM_NULL_FN(range->handler)))
return r;
+ /* on_lock will never be called for lockless walks */
+ if (WARN_ON_ONCE(range->lockless && !IS_KVM_NULL_FN(range->on_lock)))
+ return r;
+
idx = srcu_read_lock(&kvm->srcu);
for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
@@ -607,15 +612,18 @@ static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
gfn_range.slot = slot;
+ gfn_range.lockless = range->lockless;
if (!r.found_memslot) {
r.found_memslot = true;
- KVM_MMU_LOCK(kvm);
- if (!IS_KVM_NULL_FN(range->on_lock))
- range->on_lock(kvm);
-
- if (IS_KVM_NULL_FN(range->handler))
- goto mmu_unlock;
+ if (!range->lockless) {
+ KVM_MMU_LOCK(kvm);
+ if (!IS_KVM_NULL_FN(range->on_lock))
+ range->on_lock(kvm);
+
+ if (IS_KVM_NULL_FN(range->handler))
+ goto mmu_unlock;
+ }
}
r.ret |= range->handler(kvm, &gfn_range);
}
@@ -625,7 +633,7 @@ static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
kvm_flush_remote_tlbs(kvm);
mmu_unlock:
- if (r.found_memslot)
+ if (r.found_memslot && !range->lockless)
KVM_MMU_UNLOCK(kvm);
srcu_read_unlock(&kvm->srcu, idx);
@@ -633,7 +641,7 @@ mmu_unlock:
return r;
}
-static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
+static __always_inline int kvm_age_hva_range(struct mmu_notifier *mn,
unsigned long start,
unsigned long end,
gfn_handler_t handler,
@@ -647,17 +655,18 @@ static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
.on_lock = (void *)kvm_null_fn,
.flush_on_ret = flush_on_ret,
.may_block = false,
+ .lockless = IS_ENABLED(CONFIG_KVM_MMU_LOCKLESS_AGING),
};
- return __kvm_handle_hva_range(kvm, &range).ret;
+ return kvm_handle_hva_range(kvm, &range).ret;
}
-static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
- unsigned long start,
- unsigned long end,
- gfn_handler_t handler)
+static __always_inline int kvm_age_hva_range_no_flush(struct mmu_notifier *mn,
+ unsigned long start,
+ unsigned long end,
+ gfn_handler_t handler)
{
- return kvm_handle_hva_range(mn, start, end, handler, false);
+ return kvm_age_hva_range(mn, start, end, handler, false);
}
void kvm_mmu_invalidate_begin(struct kvm *kvm)
@@ -752,7 +761,7 @@ static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
* that guest memory has been reclaimed. This needs to be done *after*
* dropping mmu_lock, as x86's reclaim path is slooooow.
*/
- if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
+ if (kvm_handle_hva_range(kvm, &hva_range).found_memslot)
kvm_arch_guest_memory_reclaimed(kvm);
return 0;
@@ -798,7 +807,7 @@ static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
};
bool wake;
- __kvm_handle_hva_range(kvm, &hva_range);
+ kvm_handle_hva_range(kvm, &hva_range);
/* Pairs with the increment in range_start(). */
spin_lock(&kvm->mn_invalidate_lock);
@@ -822,8 +831,8 @@ static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
{
trace_kvm_age_hva(start, end);
- return kvm_handle_hva_range(mn, start, end, kvm_age_gfn,
- !IS_ENABLED(CONFIG_KVM_ELIDE_TLB_FLUSH_IF_YOUNG));
+ return kvm_age_hva_range(mn, start, end, kvm_age_gfn,
+ !IS_ENABLED(CONFIG_KVM_ELIDE_TLB_FLUSH_IF_YOUNG));
}
static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
@@ -846,7 +855,7 @@ static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
* cadence. If we find this inaccurate, we might come up with a
* more sophisticated heuristic later.
*/
- return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
+ return kvm_age_hva_range_no_flush(mn, start, end, kvm_age_gfn);
}
static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
@@ -855,8 +864,8 @@ static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
{
trace_kvm_test_age_hva(address);
- return kvm_handle_hva_range_no_flush(mn, address, address + 1,
- kvm_test_age_gfn);
+ return kvm_age_hva_range_no_flush(mn, address, address + 1,
+ kvm_test_age_gfn);
}
static void kvm_mmu_notifier_release(struct mmu_notifier *mn,