summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2024-09-19 16:55:58 +0300
committerLinus Torvalds <torvalds@linux-foundation.org>2024-09-19 16:55:58 +0300
commit2004cef11ea072838f99bd95cefa5c8e45df0847 (patch)
treed7162235ad3c3985abbb5233657eef0c03819b28
parent509d2cd12a10d057fdf72f565b930f9a81140d59 (diff)
parentbc9057da1a220ff2cb6c8885fd5352558aceba2c (diff)
downloadlinux-2004cef11ea072838f99bd95cefa5c8e45df0847.tar.xz
Merge tag 'sched-core-2024-09-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar: - Implement the SCHED_DEADLINE server infrastructure - Daniel Bristot de Oliveira's last major contribution to the kernel: "SCHED_DEADLINE servers can help fixing starvation issues of low priority tasks (e.g., SCHED_OTHER) when higher priority tasks monopolize CPU cycles. Today we have RT Throttling; DEADLINE servers should be able to replace and improve that." (Daniel Bristot de Oliveira, Peter Zijlstra, Joel Fernandes, Youssef Esmat, Huang Shijie) - Preparatory changes for sched_ext integration: - Use set_next_task(.first) where required - Fix up set_next_task() implementations - Clean up DL server vs. core sched - Split up put_prev_task_balance() - Rework pick_next_task() - Combine the last put_prev_task() and the first set_next_task() - Rework dl_server - Add put_prev_task(.next) (Peter Zijlstra, with a fix by Tejun Heo) - Complete the EEVDF transition and refine EEVDF scheduling: - Implement delayed dequeue - Allow shorter slices to wakeup-preempt - Use sched_attr::sched_runtime to set request/slice suggestion - Document the new feature flags - Remove unused and duplicate-functionality fields - Simplify & unify pick_next_task_fair() - Misc debuggability enhancements (Peter Zijlstra, with fixes/cleanups by Dietmar Eggemann, Valentin Schneider and Chuyi Zhou) - Initialize the vruntime of a new task when it is first enqueued, resulting in significant decrease in latency of newly woken tasks (Zhang Qiao) - Introduce SM_IDLE and an idle re-entry fast-path in __schedule() (K Prateek Nayak, Peter Zijlstra) - Clean up and clarify the usage of Clean up usage of rt_task() (Qais Yousef) - Preempt SCHED_IDLE entities in strict cgroup hierarchies (Tianchen Ding) - Clarify the documentation of time units for deadline scheduler parameters (Christian Loehle) - Remove the HZ_BW chicken-bit feature flag introduced a year ago, the original change seems to be working fine (Phil Auld) - Misc fixes and cleanups (Chen Yu, Dan Carpenter, Huang Shijie, Peilin He, Qais Yousefm and Vincent Guittot) * tag 'sched-core-2024-09-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (64 commits) sched/cpufreq: Use NSEC_PER_MSEC for deadline task cpufreq/cppc: Use NSEC_PER_MSEC for deadline task sched/deadline: Clarify nanoseconds in uapi sched/deadline: Convert schedtool example to chrt sched/debug: Fix the runnable tasks output sched: Fix sched_delayed vs sched_core kernel/sched: Fix util_est accounting for DELAY_DEQUEUE kthread: Fix task state in kthread worker if being frozen sched/pelt: Use rq_clock_task() for hw_pressure sched/fair: Move effective_cpu_util() and effective_cpu_util() in fair.c sched/core: Introduce SM_IDLE and an idle re-entry fast-path in __schedule() sched: Add put_prev_task(.next) sched: Rework dl_server sched: Combine the last put_prev_task() and the first set_next_task() sched: Rework pick_next_task() sched: Split up put_prev_task_balance() sched: Clean up DL server vs core sched sched: Fixup set_next_task() implementations sched: Use set_next_task(.first) where required sched/fair: Properly deactivate sched_delayed task upon class change ...
-rw-r--r--Documentation/scheduler/sched-deadline.rst14
-rw-r--r--drivers/cpufreq/cppc_cpufreq.c6
-rw-r--r--fs/bcachefs/six.c2
-rw-r--r--fs/proc/base.c2
-rw-r--r--include/linux/ioprio.h2
-rw-r--r--include/linux/sched.h28
-rw-r--r--include/linux/sched/deadline.h14
-rw-r--r--include/linux/sched/prio.h1
-rw-r--r--include/linux/sched/rt.h33
-rw-r--r--include/uapi/linux/sched/types.h6
-rw-r--r--kernel/freezer.c2
-rw-r--r--kernel/kthread.c10
-rw-r--r--kernel/locking/rtmutex.c4
-rw-r--r--kernel/locking/rwsem.c4
-rw-r--r--kernel/locking/ww_mutex.h2
-rw-r--r--kernel/sched/core.c248
-rw-r--r--kernel/sched/cpufreq_schedutil.c6
-rw-r--r--kernel/sched/deadline.c503
-rw-r--r--kernel/sched/debug.c198
-rw-r--r--kernel/sched/fair.c770
-rw-r--r--kernel/sched/features.h30
-rw-r--r--kernel/sched/idle.c23
-rw-r--r--kernel/sched/rt.c261
-rw-r--r--kernel/sched/sched.h101
-rw-r--r--kernel/sched/stop_task.c18
-rw-r--r--kernel/sched/syscalls.c134
-rw-r--r--kernel/sched/topology.c8
-rw-r--r--kernel/sys.c2
-rw-r--r--kernel/time/hrtimer.c2
-rw-r--r--kernel/trace/trace_sched_wakeup.c2
-rw-r--r--mm/page-writeback.c4
-rw-r--r--mm/page_alloc.c2
32 files changed, 1695 insertions, 747 deletions
diff --git a/Documentation/scheduler/sched-deadline.rst b/Documentation/scheduler/sched-deadline.rst
index 9fe4846079bb..22838ed8e13a 100644
--- a/Documentation/scheduler/sched-deadline.rst
+++ b/Documentation/scheduler/sched-deadline.rst
@@ -749,21 +749,19 @@ Appendix A. Test suite
of the command line options. Please refer to rt-app documentation for more
details (`<rt-app-sources>/doc/*.json`).
- The second testing application is a modification of schedtool, called
- schedtool-dl, which can be used to setup SCHED_DEADLINE parameters for a
- certain pid/application. schedtool-dl is available at:
- https://github.com/scheduler-tools/schedtool-dl.git.
+ The second testing application is done using chrt which has support
+ for SCHED_DEADLINE.
The usage is straightforward::
- # schedtool -E -t 10000000:100000000 -e ./my_cpuhog_app
+ # chrt -d -T 10000000 -D 100000000 0 ./my_cpuhog_app
With this, my_cpuhog_app is put to run inside a SCHED_DEADLINE reservation
- of 10ms every 100ms (note that parameters are expressed in microseconds).
- You can also use schedtool to create a reservation for an already running
+ of 10ms every 100ms (note that parameters are expressed in nanoseconds).
+ You can also use chrt to create a reservation for an already running
application, given that you know its pid::
- # schedtool -E -t 10000000:100000000 my_app_pid
+ # chrt -d -T 10000000 -D 100000000 -p 0 my_app_pid
Appendix B. Minimal main()
==========================
diff --git a/drivers/cpufreq/cppc_cpufreq.c b/drivers/cpufreq/cppc_cpufreq.c
index bafa32dd375d..1a5ad184d28f 100644
--- a/drivers/cpufreq/cppc_cpufreq.c
+++ b/drivers/cpufreq/cppc_cpufreq.c
@@ -224,9 +224,9 @@ static void __init cppc_freq_invariance_init(void)
* Fake (unused) bandwidth; workaround to "fix"
* priority inheritance.
*/
- .sched_runtime = 1000000,
- .sched_deadline = 10000000,
- .sched_period = 10000000,
+ .sched_runtime = NSEC_PER_MSEC,
+ .sched_deadline = 10 * NSEC_PER_MSEC,
+ .sched_period = 10 * NSEC_PER_MSEC,
};
int ret;
diff --git a/fs/bcachefs/six.c b/fs/bcachefs/six.c
index 3a494c5d1247..9cbd3c14c94f 100644
--- a/fs/bcachefs/six.c
+++ b/fs/bcachefs/six.c
@@ -335,7 +335,7 @@ static inline bool six_owner_running(struct six_lock *lock)
*/
rcu_read_lock();
struct task_struct *owner = READ_ONCE(lock->owner);
- bool ret = owner ? owner_on_cpu(owner) : !rt_task(current);
+ bool ret = owner ? owner_on_cpu(owner) : !rt_or_dl_task(current);
rcu_read_unlock();
return ret;
diff --git a/fs/proc/base.c b/fs/proc/base.c
index e7810f3bd522..b31283d81c52 100644
--- a/fs/proc/base.c
+++ b/fs/proc/base.c
@@ -2626,7 +2626,7 @@ static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
}
task_lock(p);
- if (task_is_realtime(p))
+ if (rt_or_dl_task_policy(p))
slack_ns = 0;
else if (slack_ns == 0)
slack_ns = p->default_timer_slack_ns;
diff --git a/include/linux/ioprio.h b/include/linux/ioprio.h
index db1249cd9692..b25377b6ea98 100644
--- a/include/linux/ioprio.h
+++ b/include/linux/ioprio.h
@@ -40,7 +40,7 @@ static inline int task_nice_ioclass(struct task_struct *task)
{
if (task->policy == SCHED_IDLE)
return IOPRIO_CLASS_IDLE;
- else if (task_is_realtime(task))
+ else if (rt_or_dl_task_policy(task))
return IOPRIO_CLASS_RT;
else
return IOPRIO_CLASS_BE;
diff --git a/include/linux/sched.h b/include/linux/sched.h
index 3773c1c8f099..a1d0c7cab25c 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -149,8 +149,9 @@ struct user_event_mm;
* Special states are those that do not use the normal wait-loop pattern. See
* the comment with set_special_state().
*/
-#define is_special_task_state(state) \
- ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
+#define is_special_task_state(state) \
+ ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | \
+ TASK_DEAD | TASK_FROZEN))
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
# define debug_normal_state_change(state_value) \
@@ -541,9 +542,14 @@ struct sched_entity {
struct rb_node run_node;
u64 deadline;
u64 min_vruntime;
+ u64 min_slice;
struct list_head group_node;
- unsigned int on_rq;
+ unsigned char on_rq;
+ unsigned char sched_delayed;
+ unsigned char rel_deadline;
+ unsigned char custom_slice;
+ /* hole */
u64 exec_start;
u64 sum_exec_runtime;
@@ -639,12 +645,26 @@ struct sched_dl_entity {
*
* @dl_overrun tells if the task asked to be informed about runtime
* overruns.
+ *
+ * @dl_server tells if this is a server entity.
+ *
+ * @dl_defer tells if this is a deferred or regular server. For
+ * now only defer server exists.
+ *
+ * @dl_defer_armed tells if the deferrable server is waiting
+ * for the replenishment timer to activate it.
+ *
+ * @dl_defer_running tells if the deferrable server is actually
+ * running, skipping the defer phase.
*/
unsigned int dl_throttled : 1;
unsigned int dl_yielded : 1;
unsigned int dl_non_contending : 1;
unsigned int dl_overrun : 1;
unsigned int dl_server : 1;
+ unsigned int dl_defer : 1;
+ unsigned int dl_defer_armed : 1;
+ unsigned int dl_defer_running : 1;
/*
* Bandwidth enforcement timer. Each -deadline task has its
@@ -672,7 +692,7 @@ struct sched_dl_entity {
*/
struct rq *rq;
dl_server_has_tasks_f server_has_tasks;
- dl_server_pick_f server_pick;
+ dl_server_pick_f server_pick_task;
#ifdef CONFIG_RT_MUTEXES
/*
diff --git a/include/linux/sched/deadline.h b/include/linux/sched/deadline.h
index df3aca89d4f5..3a912ab42bb5 100644
--- a/include/linux/sched/deadline.h
+++ b/include/linux/sched/deadline.h
@@ -10,16 +10,16 @@
#include <linux/sched.h>
-#define MAX_DL_PRIO 0
-
-static inline int dl_prio(int prio)
+static inline bool dl_prio(int prio)
{
- if (unlikely(prio < MAX_DL_PRIO))
- return 1;
- return 0;
+ return unlikely(prio < MAX_DL_PRIO);
}
-static inline int dl_task(struct task_struct *p)
+/*
+ * Returns true if a task has a priority that belongs to DL class. PI-boosted
+ * tasks will return true. Use dl_policy() to ignore PI-boosted tasks.
+ */
+static inline bool dl_task(struct task_struct *p)
{
return dl_prio(p->prio);
}
diff --git a/include/linux/sched/prio.h b/include/linux/sched/prio.h
index ab83d85e1183..6ab43b4f72f9 100644
--- a/include/linux/sched/prio.h
+++ b/include/linux/sched/prio.h
@@ -14,6 +14,7 @@
*/
#define MAX_RT_PRIO 100
+#define MAX_DL_PRIO 0
#define MAX_PRIO (MAX_RT_PRIO + NICE_WIDTH)
#define DEFAULT_PRIO (MAX_RT_PRIO + NICE_WIDTH / 2)
diff --git a/include/linux/sched/rt.h b/include/linux/sched/rt.h
index b2b9e6eb9683..4e3338103654 100644
--- a/include/linux/sched/rt.h
+++ b/include/linux/sched/rt.h
@@ -6,19 +6,40 @@
struct task_struct;
-static inline int rt_prio(int prio)
+static inline bool rt_prio(int prio)
{
- if (unlikely(prio < MAX_RT_PRIO))
- return 1;
- return 0;
+ return unlikely(prio < MAX_RT_PRIO && prio >= MAX_DL_PRIO);
}
-static inline int rt_task(struct task_struct *p)
+static inline bool rt_or_dl_prio(int prio)
+{
+ return unlikely(prio < MAX_RT_PRIO);
+}
+
+/*
+ * Returns true if a task has a priority that belongs to RT class. PI-boosted
+ * tasks will return true. Use rt_policy() to ignore PI-boosted tasks.
+ */
+static inline bool rt_task(struct task_struct *p)
{
return rt_prio(p->prio);
}
-static inline bool task_is_realtime(struct task_struct *tsk)
+/*
+ * Returns true if a task has a priority that belongs to RT or DL classes.
+ * PI-boosted tasks will return true. Use rt_or_dl_task_policy() to ignore
+ * PI-boosted tasks.
+ */
+static inline bool rt_or_dl_task(struct task_struct *p)
+{
+ return rt_or_dl_prio(p->prio);
+}
+
+/*
+ * Returns true if a task has a policy that belongs to RT or DL classes.
+ * PI-boosted tasks will return false.
+ */
+static inline bool rt_or_dl_task_policy(struct task_struct *tsk)
{
int policy = tsk->policy;
diff --git a/include/uapi/linux/sched/types.h b/include/uapi/linux/sched/types.h
index 90662385689b..bf6e9ae031c1 100644
--- a/include/uapi/linux/sched/types.h
+++ b/include/uapi/linux/sched/types.h
@@ -58,9 +58,9 @@
*
* This is reflected by the following fields of the sched_attr structure:
*
- * @sched_deadline representative of the task's deadline
- * @sched_runtime representative of the task's runtime
- * @sched_period representative of the task's period
+ * @sched_deadline representative of the task's deadline in nanoseconds
+ * @sched_runtime representative of the task's runtime in nanoseconds
+ * @sched_period representative of the task's period in nanoseconds
*
* Given this task model, there are a multiplicity of scheduling algorithms
* and policies, that can be used to ensure all the tasks will make their
diff --git a/kernel/freezer.c b/kernel/freezer.c
index f57aaf96b829..44bbd7dbd2c8 100644
--- a/kernel/freezer.c
+++ b/kernel/freezer.c
@@ -72,7 +72,7 @@ bool __refrigerator(bool check_kthr_stop)
bool freeze;
raw_spin_lock_irq(&current->pi_lock);
- set_current_state(TASK_FROZEN);
+ WRITE_ONCE(current->__state, TASK_FROZEN);
/* unstale saved_state so that __thaw_task() will wake us up */
current->saved_state = TASK_RUNNING;
raw_spin_unlock_irq(&current->pi_lock);
diff --git a/kernel/kthread.c b/kernel/kthread.c
index f7be976ff88a..db4ceb0f503c 100644
--- a/kernel/kthread.c
+++ b/kernel/kthread.c
@@ -845,8 +845,16 @@ repeat:
* event only cares about the address.
*/
trace_sched_kthread_work_execute_end(work, func);
- } else if (!freezing(current))
+ } else if (!freezing(current)) {
schedule();
+ } else {
+ /*
+ * Handle the case where the current remains
+ * TASK_INTERRUPTIBLE. try_to_freeze() expects
+ * the current to be TASK_RUNNING.
+ */
+ __set_current_state(TASK_RUNNING);
+ }
try_to_freeze();
cond_resched();
diff --git a/kernel/locking/rtmutex.c b/kernel/locking/rtmutex.c
index fba1229f1de6..ebebd0eec7f6 100644
--- a/kernel/locking/rtmutex.c
+++ b/kernel/locking/rtmutex.c
@@ -347,7 +347,7 @@ static __always_inline int __waiter_prio(struct task_struct *task)
{
int prio = task->prio;
- if (!rt_prio(prio))
+ if (!rt_or_dl_prio(prio))
return DEFAULT_PRIO;
return prio;
@@ -435,7 +435,7 @@ static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter,
* Note that RT tasks are excluded from same priority (lateral)
* steals to prevent the introduction of an unbounded latency.
*/
- if (rt_prio(waiter->tree.prio) || dl_prio(waiter->tree.prio))
+ if (rt_or_dl_prio(waiter->tree.prio))
return false;
return rt_waiter_node_equal(&waiter->tree, &top_waiter->tree);
diff --git a/kernel/locking/rwsem.c b/kernel/locking/rwsem.c
index 33cac79e3994..5ded7dff46ef 100644
--- a/kernel/locking/rwsem.c
+++ b/kernel/locking/rwsem.c
@@ -631,7 +631,7 @@ static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
* if it is an RT task or wait in the wait queue
* for too long.
*/
- if (has_handoff || (!rt_task(waiter->task) &&
+ if (has_handoff || (!rt_or_dl_task(waiter->task) &&
!time_after(jiffies, waiter->timeout)))
return false;
@@ -914,7 +914,7 @@ static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
if (owner_state != OWNER_WRITER) {
if (need_resched())
break;
- if (rt_task(current) &&
+ if (rt_or_dl_task(current) &&
(prev_owner_state != OWNER_WRITER))
break;
}
diff --git a/kernel/locking/ww_mutex.h b/kernel/locking/ww_mutex.h
index 3ad2cc4823e5..76d204b7d29c 100644
--- a/kernel/locking/ww_mutex.h
+++ b/kernel/locking/ww_mutex.h
@@ -237,7 +237,7 @@ __ww_ctx_less(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
int a_prio = a->task->prio;
int b_prio = b->task->prio;
- if (rt_prio(a_prio) || rt_prio(b_prio)) {
+ if (rt_or_dl_prio(a_prio) || rt_or_dl_prio(b_prio)) {
if (a_prio > b_prio)
return true;
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index 1d7f5941bcdc..a7af49b3a337 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -163,7 +163,10 @@ static inline int __task_prio(const struct task_struct *p)
if (p->sched_class == &stop_sched_class) /* trumps deadline */
return -2;
- if (rt_prio(p->prio)) /* includes deadline */
+ if (p->dl_server)
+ return -1; /* deadline */
+
+ if (rt_or_dl_prio(p->prio))
return p->prio; /* [-1, 99] */
if (p->sched_class == &idle_sched_class)
@@ -192,8 +195,24 @@ static inline bool prio_less(const struct task_struct *a,
if (-pb < -pa)
return false;
- if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
- return !dl_time_before(a->dl.deadline, b->dl.deadline);
+ if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
+ const struct sched_dl_entity *a_dl, *b_dl;
+
+ a_dl = &a->dl;
+ /*
+ * Since,'a' and 'b' can be CFS tasks served by DL server,
+ * __task_prio() can return -1 (for DL) even for those. In that
+ * case, get to the dl_server's DL entity.
+ */
+ if (a->dl_server)
+ a_dl = a->dl_server;
+
+ b_dl = &b->dl;
+ if (b->dl_server)
+ b_dl = b->dl_server;
+
+ return !dl_time_before(a_dl->deadline, b_dl->deadline);
+ }
if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
return cfs_prio_less(a, b, in_fi);
@@ -240,6 +259,9 @@ static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
void sched_core_enqueue(struct rq *rq, struct task_struct *p)
{
+ if (p->se.sched_delayed)
+ return;
+
rq->core->core_task_seq++;
if (!p->core_cookie)
@@ -250,6 +272,9 @@ void sched_core_enqueue(struct rq *rq, struct task_struct *p)
void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
{
+ if (p->se.sched_delayed)
+ return;
+
rq->core->core_task_seq++;
if (sched_core_enqueued(p)) {
@@ -1269,7 +1294,7 @@ bool sched_can_stop_tick(struct rq *rq)
* dequeued by migrating while the constrained task continues to run.
* E.g. going from 2->1 without going through pick_next_task().
*/
- if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
+ if (__need_bw_check(rq, rq->curr)) {
if (cfs_task_bw_constrained(rq->curr))
return false;
}
@@ -1672,6 +1697,9 @@ static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
if (unlikely(!p->sched_class->uclamp_enabled))
return;
+ if (p->se.sched_delayed)
+ return;
+
for_each_clamp_id(clamp_id)
uclamp_rq_inc_id(rq, p, clamp_id);
@@ -1696,6 +1724,9 @@ static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
if (unlikely(!p->sched_class->uclamp_enabled))
return;
+ if (p->se.sched_delayed)
+ return;
+
for_each_clamp_id(clamp_id)
uclamp_rq_dec_id(rq, p, clamp_id);
}
@@ -1975,14 +2006,21 @@ void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
}
- uclamp_rq_inc(rq, p);
p->sched_class->enqueue_task(rq, p, flags);
+ /*
+ * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear
+ * ->sched_delayed.
+ */
+ uclamp_rq_inc(rq, p);
if (sched_core_enabled(rq))
sched_core_enqueue(rq, p);
}
-void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
+/*
+ * Must only return false when DEQUEUE_SLEEP.
+ */
+inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
{
if (sched_core_enabled(rq))
sched_core_dequeue(rq, p, flags);
@@ -1995,8 +2033,12 @@ void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
psi_dequeue(p, flags & DEQUEUE_SLEEP);
}
+ /*
+ * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
+ * and mark the task ->sched_delayed.
+ */
uclamp_rq_dec(rq, p);
- p->sched_class->dequeue_task(rq, p, flags);
+ return p->sched_class->dequeue_task(rq, p, flags);
}
void activate_task(struct rq *rq, struct task_struct *p, int flags)
@@ -2014,12 +2056,25 @@ void activate_task(struct rq *rq, struct task_struct *p, int flags)
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
{
- WRITE_ONCE(p->on_rq, (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING);
+ SCHED_WARN_ON(flags & DEQUEUE_SLEEP);
+
+ WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
ASSERT_EXCLUSIVE_WRITER(p->on_rq);
+ /*
+ * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
+ * dequeue_task() and cleared *after* enqueue_task().
+ */
+
dequeue_task(rq, p, flags);
}
+static void block_task(struct rq *rq, struct task_struct *p, int flags)
+{
+ if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
+ __block_task(rq, p);
+}
+
/**
* task_curr - is this task currently executing on a CPU?
* @p: the task in question.
@@ -2233,6 +2288,12 @@ void migrate_disable(void)
struct task_struct *p = current;
if (p->migration_disabled) {
+#ifdef CONFIG_DEBUG_PREEMPT
+ /*
+ *Warn about overflow half-way through the range.
+ */
+ WARN_ON_ONCE((s16)p->migration_disabled < 0);
+#endif
p->migration_disabled++;
return;
}
@@ -2251,14 +2312,20 @@ void migrate_enable(void)
.flags = SCA_MIGRATE_ENABLE,
};
+#ifdef CONFIG_DEBUG_PREEMPT
+ /*
+ * Check both overflow from migrate_disable() and superfluous
+ * migrate_enable().
+ */
+ if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
+ return;
+#endif
+
if (p->migration_disabled > 1) {
p->migration_disabled--;
return;
}
- if (WARN_ON_ONCE(!p->migration_disabled))
- return;
-
/*
* Ensure stop_task runs either before or after this, and that
* __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
@@ -3607,8 +3674,6 @@ ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
rq->idle_stamp = 0;
}
#endif
-
- p->dl_server = NULL;
}
/*
@@ -3644,12 +3709,14 @@ static int ttwu_runnable(struct task_struct *p, int wake_flags)
rq = __task_rq_lock(p, &rf);
if (task_on_rq_queued(p)) {
+ update_rq_clock(rq);
+ if (p->se.sched_delayed)
+ enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
if (!task_on_cpu(rq, p)) {
/*
* When on_rq && !on_cpu the task is preempted, see if
* it should preempt the task that is current now.
*/
- update_rq_clock(rq);
wakeup_preempt(rq, p, wake_flags);
}
ttwu_do_wakeup(p);
@@ -4029,11 +4096,16 @@ int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
* case the whole 'p->on_rq && ttwu_runnable()' case below
* without taking any locks.
*
+ * Specifically, given current runs ttwu() we must be before
+ * schedule()'s block_task(), as such this must not observe
+ * sched_delayed.
+ *
* In particular:
* - we rely on Program-Order guarantees for all the ordering,
* - we're serialized against set_special_state() by virtue of
* it disabling IRQs (this allows not taking ->pi_lock).
*/
+ SCHED_WARN_ON(p->se.sched_delayed);
if (!ttwu_state_match(p, state, &success))
goto out;
@@ -4322,9 +4394,11 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
p->se.nr_migrations = 0;
p->se.vruntime = 0;
p->se.vlag = 0;
- p->se.slice = sysctl_sched_base_slice;
INIT_LIST_HEAD(&p->se.group_node);
+ /* A delayed task cannot be in clone(). */
+ SCHED_WARN_ON(p->se.sched_delayed);
+
#ifdef CONFIG_FAIR_GROUP_SCHED
p->se.cfs_rq = NULL;
#endif
@@ -4572,6 +4646,8 @@ int sched_fork(unsigned long clone_flags, struct task_struct *p)
p->prio = p->normal_prio = p->static_prio;
set_load_weight(p, false);
+ p->se.custom_slice = 0;
+ p->se.slice = sysctl_sched_base_slice;
/*
* We don't need the reset flag anymore after the fork. It has
@@ -4686,7 +4762,7 @@ void wake_up_new_task(struct task_struct *p)
update_rq_clock(rq);
post_init_entity_util_avg(p);
- activate_task(rq, p, ENQUEUE_NOCLOCK);
+ activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
trace_sched_wakeup_new(p);
wakeup_preempt(rq, p, WF_FORK);
#ifdef CONFIG_SMP
@@ -5769,8 +5845,8 @@ static inline void schedule_debug(struct task_struct *prev, bool preempt)
schedstat_inc(this_rq()->sched_count);
}
-static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
- struct rq_flags *rf)
+static void prev_balance(struct rq *rq, struct task_struct *prev,
+ struct rq_flags *rf)
{
#ifdef CONFIG_SMP
const struct sched_class *class;
@@ -5787,8 +5863,6 @@ static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
break;
}
#endif
-
- put_prev_task(rq, prev);
}
/*
@@ -5800,6 +5874,8 @@ __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
const struct sched_class *class;
struct task_struct *p;
+ rq->dl_server = NULL;
+
/*
* Optimization: we know that if all tasks are in the fair class we can
* call that function directly, but only if the @prev task wasn't of a
@@ -5815,35 +5891,28 @@ __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
/* Assume the next prioritized class is idle_sched_class */
if (!p) {
- put_prev_task(rq, prev);
- p = pick_next_task_idle(rq);
+ p = pick_task_idle(rq);
+ put_prev_set_next_task(rq, prev, p);
}
- /*
- * This is the fast path; it cannot be a DL server pick;
- * therefore even if @p == @prev, ->dl_server must be NULL.
- */
- if (p->dl_server)
- p->dl_server = NULL;
-
return p;
}
restart:
- put_prev_task_balance(rq, prev, rf);
-
- /*
- * We've updated @prev and no longer need the server link, clear it.
- * Must be done before ->pick_next_task() because that can (re)set
- * ->dl_server.
- */
- if (prev->dl_server)
- prev->dl_server = NULL;
+ prev_balance(rq, prev, rf);
for_each_class(class) {
- p = class->pick_next_task(rq);
- if (p)
- return p;
+ if (class->pick_next_task) {
+ p = class->pick_next_task(rq, prev);
+ if (p)
+ return p;
+ } else {
+ p = class->pick_task(rq);
+ if (p) {
+ put_prev_set_next_task(rq, prev, p);
+ return p;
+ }
+ }
}
BUG(); /* The idle class should always have a runnable task. */
@@ -5873,6 +5942,8 @@ static inline struct task_struct *pick_task(struct rq *rq)
const struct sched_class *class;
struct task_struct *p;
+ rq->dl_server = NULL;
+
for_each_class(class) {
p = class->pick_task(rq);
if (p)
@@ -5911,6 +5982,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
* another cpu during offline.
*/
rq->core_pick = NULL;
+ rq->core_dl_server = NULL;
return __pick_next_task(rq, prev, rf);
}
@@ -5929,16 +6001,13 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
next = rq->core_pick;
- if (next != prev) {
- put_prev_task(rq, prev);
- set_next_task(rq, next);
- }
-
+ rq->dl_server = rq->core_dl_server;
rq->core_pick = NULL;
- goto out;
+ rq->core_dl_server = NULL;
+ goto out_set_next;
}
- put_prev_task_balance(rq, prev, rf);
+ prev_balance(rq, prev, rf);
smt_mask = cpu_smt_mask(cpu);
need_sync = !!rq->core->core_cookie;
@@ -5979,6 +6048,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
next = pick_task(rq);
if (!next->core_cookie) {
rq->core_pick = NULL;
+ rq->core_dl_server = NULL;
/*
* For robustness, update the min_vruntime_fi for
* unconstrained picks as well.
@@ -6006,7 +6076,9 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
if (i != cpu && (rq_i != rq->core || !core_clock_updated))
update_rq_clock(rq_i);
- p = rq_i->core_pick = pick_task(rq_i);
+ rq_i->core_pick = p = pick_task(rq_i);
+ rq_i->core_dl_server = rq_i->dl_server;
+
if (!max || prio_less(max, p, fi_before))
max = p;
}
@@ -6030,6 +6102,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
}
rq_i->core_pick = p;
+ rq_i->core_dl_server = NULL;
if (p == rq_i->idle) {
if (rq_i->nr_running) {
@@ -6090,6 +6163,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
if (i == cpu) {
rq_i->core_pick = NULL;
+ rq_i->core_dl_server = NULL;
continue;
}
@@ -6098,6 +6172,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
if (rq_i->curr == rq_i->core_pick) {
rq_i->core_pick = NULL;
+ rq_i->core_dl_server = NULL;
continue;
}
@@ -6105,8 +6180,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
}
out_set_next:
- set_next_task(rq, next);
-out:
+ put_prev_set_next_task(rq, prev, next);
if (rq->core->core_forceidle_count && next == rq->idle)
queue_core_balance(rq);
@@ -6342,19 +6416,12 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
* Constants for the sched_mode argument of __schedule().
*
* The mode argument allows RT enabled kernels to differentiate a
- * preemption from blocking on an 'sleeping' spin/rwlock. Note that
- * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
- * optimize the AND operation out and just check for zero.
+ * preemption from blocking on an 'sleeping' spin/rwlock.
*/
-#define SM_NONE 0x0
-#define SM_PREEMPT 0x1
-#define SM_RTLOCK_WAIT 0x2
-
-#ifndef CONFIG_PREEMPT_RT
-# define SM_MASK_PREEMPT (~0U)
-#else
-# define SM_MASK_PREEMPT SM_PREEMPT
-#endif
+#define SM_IDLE (-1)
+#define SM_NONE 0
+#define SM_PREEMPT 1
+#define SM_RTLOCK_WAIT 2
/*
* __schedule() is the main scheduler function.
@@ -6395,9 +6462,14 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
*
* WARNING: must be called with preemption disabled!
*/
-static void __sched notrace __schedule(unsigned int sched_mode)
+static void __sched notrace __schedule(int sched_mode)
{
struct task_struct *prev, *next;
+ /*
+ * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
+ * as a preemption by schedule_debug() and RCU.
+ */
+ bool preempt = sched_mode > SM_NONE;
unsigned long *switch_count;
unsigned long prev_state;
struct rq_flags rf;
@@ -6408,13 +6480,13 @@ static void __sched notrace __schedule(unsigned int sched_mode)
rq = cpu_rq(cpu);
prev = rq->curr;
- schedule_debug(prev, !!sched_mode);
+ schedule_debug(prev, preempt);
if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
hrtick_clear(rq);
local_irq_disable();
- rcu_note_context_switch(!!sched_mode);
+ rcu_note_context_switch(preempt);
/*
* Make sure that signal_pending_state()->signal_pending() below
@@ -6443,22 +6515,32 @@ static void __sched notrace __schedule(unsigned int sched_mode)
switch_count = &prev->nivcsw;
+ /* Task state changes only considers SM_PREEMPT as preemption */
+ preempt = sched_mode == SM_PREEMPT;
+
/*
* We must load prev->state once (task_struct::state is volatile), such
* that we form a control dependency vs deactivate_task() below.
*/
prev_state = READ_ONCE(prev->__state);
- if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
+ if (sched_mode == SM_IDLE) {
+ if (!rq->nr_running) {
+ next = prev;
+ goto picked;
+ }
+ } else if (!preempt && prev_state) {
if (signal_pending_state(prev_state, prev)) {
WRITE_ONCE(prev->__state, TASK_RUNNING);
} else {
+ int flags = DEQUEUE_NOCLOCK;
+
prev->sched_contributes_to_load =
(prev_state & TASK_UNINTERRUPTIBLE) &&
!(prev_state & TASK_NOLOAD) &&
!(prev_state & TASK_FROZEN);
- if (prev->sched_contributes_to_load)
- rq->nr_uninterruptible++;
+ if (unlikely(is_special_task_state(prev_state)))
+ flags |= DEQUEUE_SPECIAL;
/*
* __schedule() ttwu()
@@ -6471,17 +6553,13 @@ static void __sched notrace __schedule(unsigned int sched_mode)
*
* After this, schedule() must not care about p->state any more.
*/
- deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
-
- if (prev->in_iowait) {
- atomic_inc(&rq->nr_iowait);
- delayacct_blkio_start();
- }
+ block_task(rq, prev, flags);
}
switch_count = &prev->nvcsw;
}
next = pick_next_task(rq, prev, &rf);
+picked:
clear_tsk_need_resched(prev);
clear_preempt_need_resched();
#ifdef CONFIG_SCHED_DEBUG
@@ -6523,7 +6601,7 @@ static void __sched notrace __schedule(unsigned int sched_mode)
psi_account_irqtime(rq, prev, next);
psi_sched_switch(prev, next, !task_on_rq_queued(prev));
- trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
+ trace_sched_switch(preempt, prev, next, prev_state);
/* Also unlocks the rq: */
rq = context_switch(rq, prev, next, &rf);
@@ -6599,7 +6677,7 @@ static void sched_update_worker(struct task_struct *tsk)
}
}
-static __always_inline void __schedule_loop(unsigned int sched_mode)
+static __always_inline void __schedule_loop(int sched_mode)
{
do {
preempt_disable();
@@ -6644,7 +6722,7 @@ void __sched schedule_idle(void)
*/
WARN_ON_ONCE(current->__state);
do {
- __schedule(SM_NONE);
+ __schedule(SM_IDLE);
} while (need_resched());
}
@@ -8228,8 +8306,6 @@ void __init sched_init(void)
#endif /* CONFIG_RT_GROUP_SCHED */
}
- init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
-
#ifdef CONFIG_SMP
init_defrootdomain();
#endif
@@ -8284,8 +8360,13 @@ void __init sched_init(void)
init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
#endif /* CONFIG_FAIR_GROUP_SCHED */
- rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
#ifdef CONFIG_RT_GROUP_SCHED
+ /*
+ * This is required for init cpu because rt.c:__enable_runtime()
+ * starts working after scheduler_running, which is not the case
+ * yet.
+ */
+ rq->rt.rt_runtime = global_rt_runtime();
init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
#endif
#ifdef CONFIG_SMP
@@ -8317,10 +8398,12 @@ void __init sched_init(void)
#endif /* CONFIG_SMP */
hrtick_rq_init(rq);
atomic_set(&rq->nr_iowait, 0);
+ fair_server_init(rq);
#ifdef CONFIG_SCHED_CORE
rq->core = rq;
rq->core_pick = NULL;
+ rq->core_dl_server = NULL;
rq->core_enabled = 0;
rq->core_tree = RB_ROOT;
rq->core_forceidle_count = 0;
@@ -8333,6 +8416,7 @@ void __init sched_init(void)
}
set_load_weight(&init_task, false);
+ init_task.se.slice = sysctl_sched_base_slice,
/*
* The boot idle thread does lazy MMU switching as well:
@@ -8548,7 +8632,7 @@ void normalize_rt_tasks(void)
schedstat_set(p->stats.sleep_start, 0);
schedstat_set(p->stats.block_start, 0);
- if (!dl_task(p) && !rt_task(p)) {
+ if (!rt_or_dl_task(p)) {
/*
* Renice negative nice level userspace
* tasks back to 0:
diff --git a/kernel/sched/cpufreq_schedutil.c b/kernel/sched/cpufreq_schedutil.c
index eece6244f9d2..43111a515a28 100644
--- a/kernel/sched/cpufreq_schedutil.c
+++ b/kernel/sched/cpufreq_schedutil.c
@@ -654,9 +654,9 @@ static int sugov_kthread_create(struct sugov_policy *sg_policy)
* Fake (unused) bandwidth; workaround to "fix"
* priority inheritance.
*/
- .sched_runtime = 1000000,
- .sched_deadline = 10000000,
- .sched_period = 10000000,
+ .sched_runtime = NSEC_PER_MSEC,
+ .sched_deadline = 10 * NSEC_PER_MSEC,
+ .sched_period = 10 * NSEC_PER_MSEC,
};
struct cpufreq_policy *policy = sg_policy->policy;
int ret;
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c
index f59e5c19d944..9ce93d0bf452 100644
--- a/kernel/sched/deadline.c
+++ b/kernel/sched/deadline.c
@@ -320,19 +320,12 @@ void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
__sub_running_bw(dl_se->dl_bw, dl_rq);
}
-static void dl_change_utilization(struct task_struct *p, u64 new_bw)
+static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw)
{
- struct rq *rq;
-
- WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
-
- if (task_on_rq_queued(p))
- return;
+ if (dl_se->dl_non_contending) {
+ sub_running_bw(dl_se, &rq->dl);
+ dl_se->dl_non_contending = 0;
- rq = task_rq(p);
- if (p->dl.dl_non_contending) {
- sub_running_bw(&p->dl, &rq->dl);
- p->dl.dl_non_contending = 0;
/*
* If the timer handler is currently running and the
* timer cannot be canceled, inactive_task_timer()
@@ -340,13 +333,25 @@ static void dl_change_utilization(struct task_struct *p, u64 new_bw)
* will not touch the rq's active utilization,
* so we are still safe.
*/
- if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
- put_task_struct(p);
+ if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
+ if (!dl_server(dl_se))
+ put_task_struct(dl_task_of(dl_se));
+ }
}
- __sub_rq_bw(p->dl.dl_bw, &rq->dl);
+ __sub_rq_bw(dl_se->dl_bw, &rq->dl);
__add_rq_bw(new_bw, &rq->dl);
}
+static void dl_change_utilization(struct task_struct *p, u64 new_bw)
+{
+ WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
+
+ if (task_on_rq_queued(p))
+ return;
+
+ dl_rq_change_utilization(task_rq(p), &p->dl, new_bw);
+}
+
static void __dl_clear_params(struct sched_dl_entity *dl_se);
/*
@@ -771,6 +776,15 @@ static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
/* for non-boosted task, pi_of(dl_se) == dl_se */
dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
dl_se->runtime = pi_of(dl_se)->dl_runtime;
+
+ /*
+ * If it is a deferred reservation, and the server
+ * is not handling an starvation case, defer it.
+ */
+ if (dl_se->dl_defer & !dl_se->dl_defer_running) {
+ dl_se->dl_throttled = 1;
+ dl_se->dl_defer_armed = 1;
+ }
}
/*
@@ -809,6 +823,9 @@ static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
replenish_dl_new_period(dl_se, rq);
}
+static int start_dl_timer(struct sched_dl_entity *dl_se);
+static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t);
+
/*
* Pure Earliest Deadline First (EDF) scheduling does not deal with the
* possibility of a entity lasting more than what it declared, and thus
@@ -837,9 +854,18 @@ static void replenish_dl_entity(struct sched_dl_entity *dl_se)
/*
* This could be the case for a !-dl task that is boosted.
* Just go with full inherited parameters.
+ *
+ * Or, it could be the case of a deferred reservation that
+ * was not able to consume its runtime in background and
+ * reached this point with current u > U.
+ *
+ * In both cases, set a new period.
*/
- if (dl_se->dl_deadline == 0)
- replenish_dl_new_period(dl_se, rq);
+ if (dl_se->dl_deadline == 0 ||
+ (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) {
+ dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
+ dl_se->runtime = pi_of(dl_se)->dl_runtime;
+ }
if (dl_se->dl_yielded && dl_se->runtime > 0)
dl_se->runtime = 0;
@@ -873,6 +899,44 @@ static void replenish_dl_entity(struct sched_dl_entity *dl_se)
dl_se->dl_yielded = 0;
if (dl_se->dl_throttled)
dl_se->dl_throttled = 0;
+
+ /*
+ * If this is the replenishment of a deferred reservation,
+ * clear the flag and return.
+ */
+ if (dl_se->dl_defer_armed) {
+ dl_se->dl_defer_armed = 0;
+ return;
+ }
+
+ /*
+ * A this point, if the deferred server is not armed, and the deadline
+ * is in the future, if it is not running already, throttle the server
+ * and arm the defer timer.
+ */
+ if (dl_se->dl_defer && !dl_se->dl_defer_running &&
+ dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) {
+ if (!is_dl_boosted(dl_se) && dl_se->server_has_tasks(dl_se)) {
+
+ /*
+ * Set dl_se->dl_defer_armed and dl_throttled variables to
+ * inform the start_dl_timer() that this is a deferred
+ * activation.
+ */
+ dl_se->dl_defer_armed = 1;
+ dl_se->dl_throttled = 1;
+ if (!start_dl_timer(dl_se)) {
+ /*
+ * If for whatever reason (delays), a previous timer was
+ * queued but not serviced, cancel it and clean the
+ * deferrable server variables intended for start_dl_timer().
+ */
+ hrtimer_try_to_cancel(&dl_se->dl_timer);
+ dl_se->dl_defer_armed = 0;
+ dl_se->dl_throttled = 0;
+ }
+ }
+ }
}
/*
@@ -1023,6 +1087,15 @@ static void update_dl_entity(struct sched_dl_entity *dl_se)
}
replenish_dl_new_period(dl_se, rq);
+ } else if (dl_server(dl_se) && dl_se->dl_defer) {
+ /*
+ * The server can still use its previous deadline, so check if
+ * it left the dl_defer_running state.
+ */
+ if (!dl_se->dl_defer_running) {
+ dl_se->dl_defer_armed = 1;
+ dl_se->dl_throttled = 1;
+ }
}
}
@@ -1055,8 +1128,21 @@ static int start_dl_timer(struct sched_dl_entity *dl_se)
* We want the timer to fire at the deadline, but considering
* that it is actually coming from rq->clock and not from
* hrtimer's time base reading.
+ *
+ * The deferred reservation will have its timer set to
+ * (deadline - runtime). At that point, the CBS rule will decide
+ * if the current deadline can be used, or if a replenishment is
+ * required to avoid add too much pressure on the system
+ * (current u > U).
*/
- act = ns_to_ktime(dl_next_period(dl_se));
+ if (dl_se->dl_defer_armed) {
+ WARN_ON_ONCE(!dl_se->dl_throttled);
+ act = ns_to_ktime(dl_se->deadline - dl_se->runtime);
+ } else {
+ /* act = deadline - rel-deadline + period */
+ act = ns_to_ktime(dl_next_period(dl_se));
+ }
+
now = hrtimer_cb_get_time(timer);
delta = ktime_to_ns(now) - rq_clock(rq);
act = ktime_add_ns(act, delta);
@@ -1106,6 +1192,62 @@ static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
#endif
}
+/* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */
+static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC;
+
+static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se)
+{
+ struct rq *rq = rq_of_dl_se(dl_se);
+ u64 fw;
+
+ scoped_guard (rq_lock, rq) {
+ struct rq_flags *rf = &scope.rf;
+
+ if (!dl_se->dl_throttled || !dl_se->dl_runtime)
+ return HRTIMER_NORESTART;
+
+ sched_clock_tick();
+ update_rq_clock(rq);
+
+ if (!dl_se->dl_runtime)
+ return HRTIMER_NORESTART;
+
+ if (!dl_se->server_has_tasks(dl_se)) {
+ replenish_dl_entity(dl_se);
+ return HRTIMER_NORESTART;
+ }
+
+ if (dl_se->dl_defer_armed) {
+ /*
+ * First check if the server could consume runtime in background.
+ * If so, it is possible to push the defer timer for this amount
+ * of time. The dl_server_min_res serves as a limit to avoid
+ * forwarding the timer for a too small amount of time.
+ */
+ if (dl_time_before(rq_clock(dl_se->rq),
+ (dl_se->deadline - dl_se->runtime - dl_server_min_res))) {
+
+ /* reset the defer timer */
+ fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime;
+
+ hrtimer_forward_now(timer, ns_to_ktime(fw));
+ return HRTIMER_RESTART;
+ }
+
+ dl_se->dl_defer_running = 1;
+ }
+
+ enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
+
+ if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl))
+ resched_curr(rq);
+
+ __push_dl_task(rq, rf);
+ }
+
+ return HRTIMER_NORESTART;
+}
+
/*
* This is the bandwidth enforcement timer callback. If here, we know
* a task is not on its dl_rq, since the fact that the timer was running
@@ -1128,28 +1270,8 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
struct rq_flags rf;
struct rq *rq;
- if (dl_server(dl_se)) {
- struct rq *rq = rq_of_dl_se(dl_se);
- struct rq_flags rf;
-
- rq_lock(rq, &rf);
- if (dl_se->dl_throttled) {
- sched_clock_tick();
- update_rq_clock(rq);
-
- if (dl_se->server_has_tasks(dl_se)) {
- enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
- resched_curr(rq);
- __push_dl_task(rq, &rf);
- } else {
- replenish_dl_entity(dl_se);
- }
-
- }
- rq_unlock(rq, &rf);
-
- return HRTIMER_NORESTART;
- }
+ if (dl_server(dl_se))
+ return dl_server_timer(timer, dl_se);
p = dl_task_of(dl_se);
rq = task_rq_lock(p, &rf);
@@ -1319,22 +1441,10 @@ static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
return (delta * u_act) >> BW_SHIFT;
}
-static inline void
-update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
- int flags);
-static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
+s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
{
s64 scaled_delta_exec;
- if (unlikely(delta_exec <= 0)) {
- if (unlikely(dl_se->dl_yielded))
- goto throttle;
- return;
- }
-
- if (dl_entity_is_special(dl_se))
- return;
-
/*
* For tasks that participate in GRUB, we implement GRUB-PA: the
* spare reclaimed bandwidth is used to clock down frequency.
@@ -1353,8 +1463,64 @@ static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64
scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
}
+ return scaled_delta_exec;
+}
+
+static inline void
+update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
+ int flags);
+static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
+{
+ s64 scaled_delta_exec;
+
+ if (unlikely(delta_exec <= 0)) {
+ if (unlikely(dl_se->dl_yielded))
+ goto throttle;
+ return;
+ }
+
+ if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer)
+ return;
+
+ if (dl_entity_is_special(dl_se))
+ return;
+
+ scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec);
+
dl_se->runtime -= scaled_delta_exec;
+ /*
+ * The fair server can consume its runtime while throttled (not queued/
+ * running as regular CFS).
+ *
+ * If the server consumes its entire runtime in this state. The server
+ * is not required for the current period. Thus, reset the server by
+ * starting a new period, pushing the activation.
+ */
+ if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) {
+ /*
+ * If the server was previously activated - the starving condition
+ * took place, it this point it went away because the fair scheduler
+ * was able to get runtime in background. So return to the initial
+ * state.
+ */
+ dl_se->dl_defer_running = 0;
+
+ hrtimer_try_to_cancel(&dl_se->dl_timer);
+
+ replenish_dl_new_period(dl_se, dl_se->rq);
+
+ /*
+ * Not being able to start the timer seems problematic. If it could not
+ * be started for whatever reason, we need to "unthrottle" the DL server
+ * and queue right away. Otherwise nothing might queue it. That's similar
+ * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn.
+ */
+ WARN_ON_ONCE(!start_dl_timer(dl_se));
+
+ return;
+ }
+
throttle:
if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
dl_se->dl_throttled = 1;
@@ -1382,6 +1548,14 @@ throttle:
}
/*
+ * The fair server (sole dl_server) does not account for real-time
+ * workload because it is running fair work.
+ */
+ if (dl_se == &rq->fair_server)
+ return;
+
+#ifdef CONFIG_RT_GROUP_SCHED
+ /*
* Because -- for now -- we share the rt bandwidth, we need to
* account our runtime there too, otherwise actual rt tasks
* would be able to exceed the shared quota.
@@ -1405,34 +1579,155 @@ throttle:
rt_rq->rt_time += delta_exec;
raw_spin_unlock(&rt_rq->rt_runtime_lock);
}
+#endif
+}
+
+/*
+ * In the non-defer mode, the idle time is not accounted, as the
+ * server provides a guarantee.
+ *
+ * If the dl_server is in defer mode, the idle time is also considered
+ * as time available for the fair server, avoiding a penalty for the
+ * rt scheduler that did not consumed that time.
+ */
+void dl_server_update_idle_time(struct rq *rq, struct task_struct *p)
+{
+ s64 delta_exec, scaled_delta_exec;
+
+ if (!rq->fair_server.dl_defer)
+ return;
+
+ /* no need to discount more */
+ if (rq->fair_server.runtime < 0)
+ return;
+
+ delta_exec = rq_clock_task(rq) - p->se.exec_start;
+ if (delta_exec < 0)
+ return;
+
+ scaled_delta_exec = dl_scaled_delta_exec(rq, &rq->fair_server, delta_exec);
+
+ rq->fair_server.runtime -= scaled_delta_exec;
+
+ if (rq->fair_server.runtime < 0) {
+ rq->fair_server.dl_defer_running = 0;
+ rq->fair_server.runtime = 0;
+ }
+
+ p->se.exec_start = rq_clock_task(rq);
}
void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
{
- update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
+ /* 0 runtime = fair server disabled */
+ if (dl_se->dl_runtime)
+ update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
}
void dl_server_start(struct sched_dl_entity *dl_se)
{
+ struct rq *rq = dl_se->rq;
+
+ /*
+ * XXX: the apply do not work fine at the init phase for the
+ * fair server because things are not yet set. We need to improve
+ * this before getting generic.
+ */
if (!dl_server(dl_se)) {
+ u64 runtime = 50 * NSEC_PER_MSEC;
+ u64 period = 1000 * NSEC_PER_MSEC;
+
+ dl_server_apply_params(dl_se, runtime, period, 1);
+
dl_se->dl_server = 1;
+ dl_se->dl_defer = 1;
setup_new_dl_entity(dl_se);
}
+
+ if (!dl_se->dl_runtime)
+ return;
+
enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
+ if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl))
+ resched_curr(dl_se->rq);
}
void dl_server_stop(struct sched_dl_entity *dl_se)
{
+ if (!dl_se->dl_runtime)
+ return;
+
dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
+ hrtimer_try_to_cancel(&dl_se->dl_timer);
+ dl_se->dl_defer_armed = 0;
+ dl_se->dl_throttled = 0;
}
void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
dl_server_has_tasks_f has_tasks,
- dl_server_pick_f pick)
+ dl_server_pick_f pick_task)
{
dl_se->rq = rq;
dl_se->server_has_tasks = has_tasks;
- dl_se->server_pick = pick;
+ dl_se->server_pick_task = pick_task;
+}
+
+void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq)
+{
+ u64 new_bw = dl_se->dl_bw;
+ int cpu = cpu_of(rq);
+ struct dl_bw *dl_b;
+
+ dl_b = dl_bw_of(cpu_of(rq));
+ guard(raw_spinlock)(&dl_b->lock);
+
+ if (!dl_bw_cpus(cpu))
+ return;
+
+ __dl_add(dl_b, new_bw, dl_bw_cpus(cpu));
+}
+
+int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init)
+{
+ u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime);
+ u64 new_bw = to_ratio(period, runtime);
+ struct rq *rq = dl_se->rq;
+ int cpu = cpu_of(rq);
+ struct dl_bw *dl_b;
+ unsigned long cap;
+ int retval = 0;
+ int cpus;
+
+ dl_b = dl_bw_of(cpu);
+ guard(raw_spinlock)(&dl_b->lock);
+
+ cpus = dl_bw_cpus(cpu);
+ cap = dl_bw_capacity(cpu);
+
+ if (__dl_overflow(dl_b, cap, old_bw, new_bw))
+ return -EBUSY;
+
+ if (init) {
+ __add_rq_bw(new_bw, &rq->dl);
+ __dl_add(dl_b, new_bw, cpus);
+ } else {
+ __dl_sub(dl_b, dl_se->dl_bw, cpus);
+ __dl_add(dl_b, new_bw, cpus);
+
+ dl_rq_change_utilization(rq, dl_se, new_bw);
+ }
+
+ dl_se->dl_runtime = runtime;
+ dl_se->dl_deadline = period;
+ dl_se->dl_period = period;
+
+ dl_se->runtime = 0;
+ dl_se->deadline = 0;
+
+ dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
+ dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
+
+ return retval;
}
/*
@@ -1599,46 +1894,40 @@ static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
}
-static inline struct sched_statistics *
+static __always_inline struct sched_statistics *
__schedstats_from_dl_se(struct sched_dl_entity *dl_se)
{
+ if (!schedstat_enabled())
+ return NULL;
+
+ if (dl_server(dl_se))
+ return NULL;
+
return &dl_task_of(dl_se)->stats;
}
static inline void
update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
{
- struct sched_statistics *stats;
-
- if (!schedstat_enabled())
- return;
-
- stats = __schedstats_from_dl_se(dl_se);
- __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
+ struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
+ if (stats)
+ __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
}
static inline void
update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
{
- struct sched_statistics *stats;
-
- if (!schedstat_enabled())
- return;
-
- stats = __schedstats_from_dl_se(dl_se);
- __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
+ struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
+ if (stats)
+ __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
}
static inline void
update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
{
- struct sched_statistics *stats;
-
- if (!schedstat_enabled())
- return;
-
- stats = __schedstats_from_dl_se(dl_se);
- __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
+ struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
+ if (stats)
+ __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
}
static inline void
@@ -1735,7 +2024,7 @@ enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
* be counted in the active utilization; hence, we need to call
* add_running_bw().
*/
- if (dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
+ if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
if (flags & ENQUEUE_WAKEUP)
task_contending(dl_se, flags);
@@ -1757,6 +2046,25 @@ enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
setup_new_dl_entity(dl_se);
}
+ /*
+ * If the reservation is still throttled, e.g., it got replenished but is a
+ * deferred task and still got to wait, don't enqueue.
+ */
+ if (dl_se->dl_throttled && start_dl_timer(dl_se))
+ return;
+
+ /*
+ * We're about to enqueue, make sure we're not ->dl_throttled!
+ * In case the timer was not started, say because the defer time
+ * has passed, mark as not throttled and mark unarmed.
+ * Also cancel earlier timers, since letting those run is pointless.
+ */
+ if (dl_se->dl_throttled) {
+ hrtimer_try_to_cancel(&dl_se->dl_timer);
+ dl_se->dl_defer_armed = 0;
+ dl_se->dl_throttled = 0;
+ }
+
__enqueue_dl_entity(dl_se);
}
@@ -1846,7 +2154,7 @@ static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
enqueue_pushable_dl_task(rq, p);
}
-static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
+static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
{
update_curr_dl(rq);
@@ -1856,6 +2164,8 @@ static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
dequeue_dl_entity(&p->dl, flags);
if (!p->dl.dl_throttled && !dl_server(&p->dl))
dequeue_pushable_dl_task(rq, p);
+
+ return true;
}
/*
@@ -2074,6 +2384,9 @@ static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
deadline_queue_push_tasks(rq);
+
+ if (hrtick_enabled(rq))
+ start_hrtick_dl(rq, &p->dl);
}
static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
@@ -2086,7 +2399,11 @@ static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
return __node_2_dle(left);
}
-static struct task_struct *pick_task_dl(struct rq *rq)
+/*
+ * __pick_next_task_dl - Helper to pick the next -deadline task to run.
+ * @rq: The runqueue to pick the next task from.
+ */
+static struct task_struct *__pick_task_dl(struct rq *rq)
{
struct sched_dl_entity *dl_se;
struct dl_rq *dl_rq = &rq->dl;
@@ -2100,14 +2417,13 @@ again:
WARN_ON_ONCE(!dl_se);
if (dl_server(dl_se)) {
- p = dl_se->server_pick(dl_se);
+ p = dl_se->server_pick_task(dl_se);
if (!p) {
- WARN_ON_ONCE(1);
dl_se->dl_yielded = 1;
update_curr_dl_se(rq, dl_se, 0);
goto again;
}
- p->dl_server = dl_se;
+ rq->dl_server = dl_se;
} else {
p = dl_task_of(dl_se);
}
@@ -2115,24 +2431,12 @@ again:
return p;
}
-static struct task_struct *pick_next_task_dl(struct rq *rq)
+static struct task_struct *pick_task_dl(struct rq *rq)
{
- struct task_struct *p;
-
- p = pick_task_dl(rq);
- if (!p)
- return p;
-
- if (!p->dl_server)
- set_next_task_dl(rq, p, true);
-
- if (hrtick_enabled(rq))
- start_hrtick_dl(rq, &p->dl);
-
- return p;
+ return __pick_task_dl(rq);
}
-static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
+static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next)
{
struct sched_dl_entity *dl_se = &p->dl;
struct dl_rq *dl_rq = &rq->dl;
@@ -2824,13 +3128,12 @@ DEFINE_SCHED_CLASS(dl) = {
.wakeup_preempt = wakeup_preempt_dl,
- .pick_next_task = pick_next_task_dl,
+ .pick_task = pick_task_dl,
.put_prev_task = put_prev_task_dl,
.set_next_task = set_next_task_dl,
#ifdef CONFIG_SMP
.balance = balance_dl,
- .pick_task = pick_task_dl,
.select_task_rq = select_task_rq_dl,
.migrate_task_rq = migrate_task_rq_dl,
.set_cpus_allowed = set_cpus_allowed_dl,
diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c
index c1eb9a1afd13..de1dc5264b3f 100644
--- a/kernel/sched/debug.c
+++ b/kernel/sched/debug.c
@@ -333,8 +333,165 @@ static const struct file_operations sched_debug_fops = {
.release = seq_release,
};
+enum dl_param {
+ DL_RUNTIME = 0,
+ DL_PERIOD,
+};
+
+static unsigned long fair_server_period_max = (1UL << 22) * NSEC_PER_USEC; /* ~4 seconds */
+static unsigned long fair_server_period_min = (100) * NSEC_PER_USEC; /* 100 us */
+
+static ssize_t sched_fair_server_write(struct file *filp, const char __user *ubuf,
+ size_t cnt, loff_t *ppos, enum dl_param param)
+{
+ long cpu = (long) ((struct seq_file *) filp->private_data)->private;
+ struct rq *rq = cpu_rq(cpu);
+ u64 runtime, period;
+ size_t err;
+ int retval;
+ u64 value;
+
+ err = kstrtoull_from_user(ubuf, cnt, 10, &value);
+ if (err)
+ return err;
+
+ scoped_guard (rq_lock_irqsave, rq) {
+ runtime = rq->fair_server.dl_runtime;
+ period = rq->fair_server.dl_period;
+
+ switch (param) {
+ case DL_RUNTIME:
+ if (runtime == value)
+ break;
+ runtime = value;
+ break;
+ case DL_PERIOD:
+ if (value == period)
+ break;
+ period = value;
+ break;
+ }
+
+ if (runtime > period ||
+ period > fair_server_period_max ||
+ period < fair_server_period_min) {
+ return -EINVAL;
+ }
+
+ if (rq->cfs.h_nr_running) {
+ update_rq_clock(rq);
+ dl_server_stop(&rq->fair_server);
+ }
+
+ retval = dl_server_apply_params(&rq->fair_server, runtime, period, 0);
+ if (retval)
+ cnt = retval;
+
+ if (!runtime)
+ printk_deferred("Fair server disabled in CPU %d, system may crash due to starvation.\n",
+ cpu_of(rq));
+
+ if (rq->cfs.h_nr_running)
+ dl_server_start(&rq->fair_server);
+ }
+
+ *ppos += cnt;
+ return cnt;
+}
+
+static size_t sched_fair_server_show(struct seq_file *m, void *v, enum dl_param param)
+{
+ unsigned long cpu = (unsigned long) m->private;
+ struct rq *rq = cpu_rq(cpu);
+ u64 value;
+
+ switch (param) {
+ case DL_RUNTIME:
+ value = rq->fair_server.dl_runtime;
+ break;
+ case DL_PERIOD:
+ value = rq->fair_server.dl_period;
+ break;
+ }
+
+ seq_printf(m, "%llu\n", value);
+ return 0;
+
+}
+
+static ssize_t
+sched_fair_server_runtime_write(struct file *filp, const char __user *ubuf,
+ size_t cnt, loff_t *ppos)
+{
+ return sched_fair_server_write(filp, ubuf, cnt, ppos, DL_RUNTIME);
+}
+
+static int sched_fair_server_runtime_show(struct seq_file *m, void *v)
+{
+ return sched_fair_server_show(m, v, DL_RUNTIME);
+}
+
+static int sched_fair_server_runtime_open(struct inode *inode, struct file *filp)
+{
+ return single_open(filp, sched_fair_server_runtime_show, inode->i_private);
+}
+
+static const struct file_operations fair_server_runtime_fops = {
+ .open = sched_fair_server_runtime_open,
+ .write = sched_fair_server_runtime_write,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = single_release,
+};
+
+static ssize_t
+sched_fair_server_period_write(struct file *filp, const char __user *ubuf,
+ size_t cnt, loff_t *ppos)
+{
+ return sched_fair_server_write(filp, ubuf, cnt, ppos, DL_PERIOD);
+}
+
+static int sched_fair_server_period_show(struct seq_file *m, void *v)
+{
+ return sched_fair_server_show(m, v, DL_PERIOD);
+}
+
+static int sched_fair_server_period_open(struct inode *inode, struct file *filp)
+{
+ return single_open(filp, sched_fair_server_period_show, inode->i_private);
+}
+
+static const struct file_operations fair_server_period_fops = {
+ .open = sched_fair_server_period_open,
+ .write = sched_fair_server_period_write,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = single_release,
+};
+
static struct dentry *debugfs_sched;
+static void debugfs_fair_server_init(void)
+{
+ struct dentry *d_fair;
+ unsigned long cpu;
+
+ d_fair = debugfs_create_dir("fair_server", debugfs_sched);
+ if (!d_fair)
+ return;
+
+ for_each_possible_cpu(cpu) {
+ struct dentry *d_cpu;
+ char buf[32];
+
+ snprintf(buf, sizeof(buf), "cpu%lu", cpu);
+ d_cpu = debugfs_create_dir(buf, d_fair);
+
+ debugfs_create_file("runtime", 0644, d_cpu, (void *) cpu, &fair_server_runtime_fops);
+ debugfs_create_file("period", 0644, d_cpu, (void *) cpu, &fair_server_period_fops);
+ }
+}
+
static __init int sched_init_debug(void)
{
struct dentry __maybe_unused *numa;
@@ -374,6 +531,8 @@ static __init int sched_init_debug(void)
debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops);
+ debugfs_fair_server_init();
+
return 0;
}
late_initcall(sched_init_debug);
@@ -580,27 +739,27 @@ print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
else
SEQ_printf(m, " %c", task_state_to_char(p));
- SEQ_printf(m, "%15s %5d %9Ld.%06ld %c %9Ld.%06ld %9Ld.%06ld %9Ld.%06ld %9Ld %5d ",
+ SEQ_printf(m, " %15s %5d %9Ld.%06ld %c %9Ld.%06ld %c %9Ld.%06ld %9Ld.%06ld %9Ld %5d ",
p->comm, task_pid_nr(p),
SPLIT_NS(p->se.vruntime),
entity_eligible(cfs_rq_of(&p->se), &p->se) ? 'E' : 'N',
SPLIT_NS(p->se.deadline),
+ p->se.custom_slice ? 'S' : ' ',
SPLIT_NS(p->se.slice),
SPLIT_NS(p->se.sum_exec_runtime),
(long long)(p->nvcsw + p->nivcsw),
p->prio);
- SEQ_printf(m, "%9lld.%06ld %9lld.%06ld %9lld.%06ld %9lld.%06ld",
+ SEQ_printf(m, "%9lld.%06ld %9lld.%06ld %9lld.%06ld",
SPLIT_NS(schedstat_val_or_zero(p->stats.wait_sum)),
- SPLIT_NS(p->se.sum_exec_runtime),
SPLIT_NS(schedstat_val_or_zero(p->stats.sum_sleep_runtime)),
SPLIT_NS(schedstat_val_or_zero(p->stats.sum_block_runtime)));
#ifdef CONFIG_NUMA_BALANCING
- SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
+ SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
#endif
#ifdef CONFIG_CGROUP_SCHED
- SEQ_printf_task_group_path(m, task_group(p), " %s")
+ SEQ_printf_task_group_path(m, task_group(p), " %s")
#endif
SEQ_printf(m, "\n");
@@ -612,10 +771,26 @@ static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
SEQ_printf(m, "\n");
SEQ_printf(m, "runnable tasks:\n");
- SEQ_printf(m, " S task PID tree-key switches prio"
- " wait-time sum-exec sum-sleep\n");
+ SEQ_printf(m, " S task PID vruntime eligible "
+ "deadline slice sum-exec switches "
+ "prio wait-time sum-sleep sum-block"
+#ifdef CONFIG_NUMA_BALANCING
+ " node group-id"
+#endif
+#ifdef CONFIG_CGROUP_SCHED
+ " group-path"
+#endif
+ "\n");
SEQ_printf(m, "-------------------------------------------------------"
- "------------------------------------------------------\n");
+ "------------------------------------------------------"
+ "------------------------------------------------------"
+#ifdef CONFIG_NUMA_BALANCING
+ "--------------"
+#endif
+#ifdef CONFIG_CGROUP_SCHED
+ "--------------"
+#endif
+ "\n");
rcu_read_lock();
for_each_process_thread(g, p) {
@@ -641,8 +816,6 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
SEQ_printf(m, "\n");
SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
#endif
- SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
- SPLIT_NS(cfs_rq->exec_clock));
raw_spin_rq_lock_irqsave(rq, flags);
root = __pick_root_entity(cfs_rq);
@@ -669,8 +842,6 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
SPLIT_NS(right_vruntime));
spread = right_vruntime - left_vruntime;
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", SPLIT_NS(spread));
- SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
- cfs_rq->nr_spread_over);
SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
SEQ_printf(m, " .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running);
SEQ_printf(m, " .%-30s: %d\n", "idle_nr_running",
@@ -730,9 +901,12 @@ void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
PU(rt_nr_running);
+
+#ifdef CONFIG_RT_GROUP_SCHED
P(rt_throttled);
PN(rt_time);
PN(rt_runtime);
+#endif
#undef PN
#undef PU
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index 8dc9385f6da4..b9784e13e6b6 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -511,7 +511,7 @@ static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
static int se_is_idle(struct sched_entity *se)
{
- return 0;
+ return task_has_idle_policy(task_of(se));
}
#endif /* CONFIG_FAIR_GROUP_SCHED */
@@ -779,8 +779,22 @@ static void update_min_vruntime(struct cfs_rq *cfs_rq)
}
/* ensure we never gain time by being placed backwards. */
- u64_u32_store(cfs_rq->min_vruntime,
- __update_min_vruntime(cfs_rq, vruntime));
+ cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
+}
+
+static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
+{
+ struct sched_entity *root = __pick_root_entity(cfs_rq);
+ struct sched_entity *curr = cfs_rq->curr;
+ u64 min_slice = ~0ULL;
+
+ if (curr && curr->on_rq)
+ min_slice = curr->slice;
+
+ if (root)
+ min_slice = min(min_slice, root->min_slice);
+
+ return min_slice;
}
static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
@@ -799,19 +813,34 @@ static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node
}
}
+static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
+{
+ if (node) {
+ struct sched_entity *rse = __node_2_se(node);
+ if (rse->min_slice < se->min_slice)
+ se->min_slice = rse->min_slice;
+ }
+}
+
/*
* se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
*/
static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
{
u64 old_min_vruntime = se->min_vruntime;
+ u64 old_min_slice = se->min_slice;
struct rb_node *node = &se->run_node;
se->min_vruntime = se->vruntime;
__min_vruntime_update(se, node->rb_right);
__min_vruntime_update(se, node->rb_left);
- return se->min_vruntime == old_min_vruntime;
+ se->min_slice = se->slice;
+ __min_slice_update(se, node->rb_right);
+ __min_slice_update(se, node->rb_left);
+
+ return se->min_vruntime == old_min_vruntime &&
+ se->min_slice == old_min_slice;
}
RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
@@ -824,6 +853,7 @@ static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
avg_vruntime_add(cfs_rq, se);
se->min_vruntime = se->vruntime;
+ se->min_slice = se->slice;
rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
__entity_less, &min_vruntime_cb);
}
@@ -974,17 +1004,18 @@ static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
* XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
* this is probably good enough.
*/
-static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
+static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
if ((s64)(se->vruntime - se->deadline) < 0)
- return;
+ return false;
/*
* For EEVDF the virtual time slope is determined by w_i (iow.
* nice) while the request time r_i is determined by
* sysctl_sched_base_slice.
*/
- se->slice = sysctl_sched_base_slice;
+ if (!se->custom_slice)
+ se->slice = sysctl_sched_base_slice;
/*
* EEVDF: vd_i = ve_i + r_i / w_i
@@ -994,10 +1025,7 @@ static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
/*
* The task has consumed its request, reschedule.
*/
- if (cfs_rq->nr_running > 1) {
- resched_curr(rq_of(cfs_rq));
- clear_buddies(cfs_rq, se);
- }
+ return true;
}
#include "pelt.h"
@@ -1135,6 +1163,38 @@ static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
dl_server_update(p->dl_server, delta_exec);
}
+static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
+{
+ if (!sched_feat(PREEMPT_SHORT))
+ return false;
+
+ if (curr->vlag == curr->deadline)
+ return false;
+
+ return !entity_eligible(cfs_rq, curr);
+}
+
+static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
+ struct sched_entity *pse, struct sched_entity *se)
+{
+ if (!sched_feat(PREEMPT_SHORT))
+ return false;
+
+ if (pse->slice >= se->slice)
+ return false;
+
+ if (!entity_eligible(cfs_rq, pse))
+ return false;
+
+ if (entity_before(pse, se))
+ return true;
+
+ if (!entity_eligible(cfs_rq, se))
+ return true;
+
+ return false;
+}
+
/*
* Used by other classes to account runtime.
*/
@@ -1156,23 +1216,44 @@ s64 update_curr_common(struct rq *rq)
static void update_curr(struct cfs_rq *cfs_rq)
{
struct sched_entity *curr = cfs_rq->curr;
+ struct rq *rq = rq_of(cfs_rq);
s64 delta_exec;
+ bool resched;
if (unlikely(!curr))
return;
- delta_exec = update_curr_se(rq_of(cfs_rq), curr);
+ delta_exec = update_curr_se(rq, curr);
if (unlikely(delta_exec <= 0))
return;
curr->vruntime += calc_delta_fair(delta_exec, curr);
- update_deadline(cfs_rq, curr);
+ resched = update_deadline(cfs_rq, curr);
update_min_vruntime(cfs_rq);
- if (entity_is_task(curr))
- update_curr_task(task_of(curr), delta_exec);
+ if (entity_is_task(curr)) {
+ struct task_struct *p = task_of(curr);
+
+ update_curr_task(p, delta_exec);
+
+ /*
+ * Any fair task that runs outside of fair_server should
+ * account against fair_server such that it can account for
+ * this time and possibly avoid running this period.
+ */
+ if (p->dl_server != &rq->fair_server)
+ dl_server_update(&rq->fair_server, delta_exec);
+ }
account_cfs_rq_runtime(cfs_rq, delta_exec);
+
+ if (rq->nr_running == 1)
+ return;
+
+ if (resched || did_preempt_short(cfs_rq, curr)) {
+ resched_curr(rq);
+ clear_buddies(cfs_rq, curr);
+ }
}
static void update_curr_fair(struct rq *rq)
@@ -5178,7 +5259,8 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
u64 vslice, vruntime = avg_vruntime(cfs_rq);
s64 lag = 0;
- se->slice = sysctl_sched_base_slice;
+ if (!se->custom_slice)
+ se->slice = sysctl_sched_base_slice;
vslice = calc_delta_fair(se->slice, se);
/*
@@ -5259,6 +5341,12 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
se->vruntime = vruntime - lag;
+ if (sched_feat(PLACE_REL_DEADLINE) && se->rel_deadline) {
+ se->deadline += se->vruntime;
+ se->rel_deadline = 0;
+ return;
+ }
+
/*
* When joining the competition; the existing tasks will be,
* on average, halfway through their slice, as such start tasks
@@ -5279,6 +5367,9 @@ static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
static inline bool cfs_bandwidth_used(void);
static void
+requeue_delayed_entity(struct sched_entity *se);
+
+static void
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
bool curr = cfs_rq->curr == se;
@@ -5365,20 +5456,48 @@ static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
-static void
+static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
+{
+ se->sched_delayed = 0;
+ if (sched_feat(DELAY_ZERO) && se->vlag > 0)
+ se->vlag = 0;
+}
+
+static bool
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
- int action = UPDATE_TG;
+ bool sleep = flags & DEQUEUE_SLEEP;
+ update_curr(cfs_rq);
+
+ if (flags & DEQUEUE_DELAYED) {
+ SCHED_WARN_ON(!se->sched_delayed);
+ } else {
+ bool delay = sleep;
+ /*
+ * DELAY_DEQUEUE relies on spurious wakeups, special task
+ * states must not suffer spurious wakeups, excempt them.
+ */
+ if (flags & DEQUEUE_SPECIAL)
+ delay = false;
+
+ SCHED_WARN_ON(delay && se->sched_delayed);
+
+ if (sched_feat(DELAY_DEQUEUE) && delay &&
+ !entity_eligible(cfs_rq, se)) {
+ if (cfs_rq->next == se)
+ cfs_rq->next = NULL;
+ update_load_avg(cfs_rq, se, 0);
+ se->sched_delayed = 1;
+ return false;
+ }
+ }
+
+ int action = UPDATE_TG;
if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
action |= DO_DETACH;
/*
- * Update run-time statistics of the 'current'.
- */
- update_curr(cfs_rq);
-
- /*
* When dequeuing a sched_entity, we must:
* - Update loads to have both entity and cfs_rq synced with now.
* - For group_entity, update its runnable_weight to reflect the new
@@ -5395,6 +5514,11 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
clear_buddies(cfs_rq, se);
update_entity_lag(cfs_rq, se);
+ if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
+ se->deadline -= se->vruntime;
+ se->rel_deadline = 1;
+ }
+
if (se != cfs_rq->curr)
__dequeue_entity(cfs_rq, se);
se->on_rq = 0;
@@ -5414,8 +5538,13 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
update_min_vruntime(cfs_rq);
+ if (flags & DEQUEUE_DELAYED)
+ finish_delayed_dequeue_entity(se);
+
if (cfs_rq->nr_running == 0)
update_idle_cfs_rq_clock_pelt(cfs_rq);
+
+ return true;
}
static void
@@ -5441,6 +5570,7 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
}
update_stats_curr_start(cfs_rq, se);
+ SCHED_WARN_ON(cfs_rq->curr);
cfs_rq->curr = se;
/*
@@ -5461,6 +5591,8 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
se->prev_sum_exec_runtime = se->sum_exec_runtime;
}
+static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
+
/*
* Pick the next process, keeping these things in mind, in this order:
* 1) keep things fair between processes/task groups
@@ -5469,16 +5601,26 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
* 4) do not run the "skip" process, if something else is available
*/
static struct sched_entity *
-pick_next_entity(struct cfs_rq *cfs_rq)
+pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
{
/*
* Enabling NEXT_BUDDY will affect latency but not fairness.
*/
if (sched_feat(NEXT_BUDDY) &&
- cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
+ cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
+ /* ->next will never be delayed */
+ SCHED_WARN_ON(cfs_rq->next->sched_delayed);
return cfs_rq->next;
+ }
- return pick_eevdf(cfs_rq);
+ struct sched_entity *se = pick_eevdf(cfs_rq);
+ if (se->sched_delayed) {
+ dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
+ SCHED_WARN_ON(se->sched_delayed);
+ SCHED_WARN_ON(se->on_rq);
+ return NULL;
+ }
+ return se;
}
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
@@ -5502,6 +5644,7 @@ static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
/* in !on_rq case, update occurred at dequeue */
update_load_avg(cfs_rq, prev, 0);
}
+ SCHED_WARN_ON(cfs_rq->curr != prev);
cfs_rq->curr = NULL;
}
@@ -5765,6 +5908,7 @@ static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
struct sched_entity *se;
long task_delta, idle_task_delta, dequeue = 1;
+ long rq_h_nr_running = rq->cfs.h_nr_running;
raw_spin_lock(&cfs_b->lock);
/* This will start the period timer if necessary */
@@ -5798,11 +5942,21 @@ static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
idle_task_delta = cfs_rq->idle_h_nr_running;
for_each_sched_entity(se) {
struct cfs_rq *qcfs_rq = cfs_rq_of(se);
+ int flags;
+
/* throttled entity or throttle-on-deactivate */
if (!se->on_rq)
goto done;
- dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
+ /*
+ * Abuse SPECIAL to avoid delayed dequeue in this instance.
+ * This avoids teaching dequeue_entities() about throttled
+ * entities and keeps things relatively simple.
+ */
+ flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
+ if (se->sched_delayed)
+ flags |= DEQUEUE_DELAYED;
+ dequeue_entity(qcfs_rq, se, flags);
if (cfs_rq_is_idle(group_cfs_rq(se)))
idle_task_delta = cfs_rq->h_nr_running;
@@ -5836,6 +5990,9 @@ static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
/* At this point se is NULL and we are at root level*/
sub_nr_running(rq, task_delta);
+ /* Stop the fair server if throttling resulted in no runnable tasks */
+ if (rq_h_nr_running && !rq->cfs.h_nr_running)
+ dl_server_stop(&rq->fair_server);
done:
/*
* Note: distribution will already see us throttled via the
@@ -5854,6 +6011,7 @@ void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
struct sched_entity *se;
long task_delta, idle_task_delta;
+ long rq_h_nr_running = rq->cfs.h_nr_running;
se = cfs_rq->tg->se[cpu_of(rq)];
@@ -5891,8 +6049,10 @@ void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
for_each_sched_entity(se) {
struct cfs_rq *qcfs_rq = cfs_rq_of(se);
- if (se->on_rq)
+ if (se->on_rq) {
+ SCHED_WARN_ON(se->sched_delayed);
break;
+ }
enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
if (cfs_rq_is_idle(group_cfs_rq(se)))
@@ -5923,6 +6083,10 @@ void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
goto unthrottle_throttle;
}
+ /* Start the fair server if un-throttling resulted in new runnable tasks */
+ if (!rq_h_nr_running && rq->cfs.h_nr_running)
+ dl_server_start(&rq->fair_server);
+
/* At this point se is NULL and we are at root level*/
add_nr_running(rq, task_delta);
@@ -6555,7 +6719,7 @@ static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
{
int cpu = cpu_of(rq);
- if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
+ if (!cfs_bandwidth_used())
return;
if (!tick_nohz_full_cpu(cpu))
@@ -6738,6 +6902,37 @@ static int sched_idle_cpu(int cpu)
}
#endif
+static void
+requeue_delayed_entity(struct sched_entity *se)
+{
+ struct cfs_rq *cfs_rq = cfs_rq_of(se);
+
+ /*
+ * se->sched_delayed should imply: se->on_rq == 1.
+ * Because a delayed entity is one that is still on
+ * the runqueue competing until elegibility.
+ */
+ SCHED_WARN_ON(!se->sched_delayed);
+ SCHED_WARN_ON(!se->on_rq);
+
+ if (sched_feat(DELAY_ZERO)) {
+ update_entity_lag(cfs_rq, se);
+ if (se->vlag > 0) {
+ cfs_rq->nr_running--;
+ if (se != cfs_rq->curr)
+ __dequeue_entity(cfs_rq, se);
+ se->vlag = 0;
+ place_entity(cfs_rq, se, 0);
+ if (se != cfs_rq->curr)
+ __enqueue_entity(cfs_rq, se);
+ cfs_rq->nr_running++;
+ }
+ }
+
+ update_load_avg(cfs_rq, se, 0);
+ se->sched_delayed = 0;
+}
+
/*
* The enqueue_task method is called before nr_running is
* increased. Here we update the fair scheduling stats and
@@ -6750,6 +6945,8 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
struct sched_entity *se = &p->se;
int idle_h_nr_running = task_has_idle_policy(p);
int task_new = !(flags & ENQUEUE_WAKEUP);
+ int rq_h_nr_running = rq->cfs.h_nr_running;
+ u64 slice = 0;
/*
* The code below (indirectly) updates schedutil which looks at
@@ -6757,7 +6954,13 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
* Let's add the task's estimated utilization to the cfs_rq's
* estimated utilization, before we update schedutil.
*/
- util_est_enqueue(&rq->cfs, p);
+ if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE))))
+ util_est_enqueue(&rq->cfs, p);
+
+ if (flags & ENQUEUE_DELAYED) {
+ requeue_delayed_entity(se);
+ return;
+ }
/*
* If in_iowait is set, the code below may not trigger any cpufreq
@@ -6768,10 +6971,24 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
for_each_sched_entity(se) {
- if (se->on_rq)
+ if (se->on_rq) {
+ if (se->sched_delayed)
+ requeue_delayed_entity(se);
break;
+ }
cfs_rq = cfs_rq_of(se);
+
+ /*
+ * Basically set the slice of group entries to the min_slice of
+ * their respective cfs_rq. This ensures the group can service
+ * its entities in the desired time-frame.
+ */
+ if (slice) {
+ se->slice = slice;
+ se->custom_slice = 1;
+ }
enqueue_entity(cfs_rq, se, flags);
+ slice = cfs_rq_min_slice(cfs_rq);
cfs_rq->h_nr_running++;
cfs_rq->idle_h_nr_running += idle_h_nr_running;
@@ -6793,6 +7010,9 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
se_update_runnable(se);
update_cfs_group(se);
+ se->slice = slice;
+ slice = cfs_rq_min_slice(cfs_rq);
+
cfs_rq->h_nr_running++;
cfs_rq->idle_h_nr_running += idle_h_nr_running;
@@ -6804,6 +7024,13 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
goto enqueue_throttle;
}
+ if (!rq_h_nr_running && rq->cfs.h_nr_running) {
+ /* Account for idle runtime */
+ if (!rq->nr_running)
+ dl_server_update_idle_time(rq, rq->curr);
+ dl_server_start(&rq->fair_server);
+ }
+
/* At this point se is NULL and we are at root level*/
add_nr_running(rq, 1);
@@ -6833,36 +7060,59 @@ enqueue_throttle:
static void set_next_buddy(struct sched_entity *se);
/*
- * The dequeue_task method is called before nr_running is
- * decreased. We remove the task from the rbtree and
- * update the fair scheduling stats:
+ * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
+ * failing half-way through and resume the dequeue later.
+ *
+ * Returns:
+ * -1 - dequeue delayed
+ * 0 - dequeue throttled
+ * 1 - dequeue complete
*/
-static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
+static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
{
- struct cfs_rq *cfs_rq;
- struct sched_entity *se = &p->se;
- int task_sleep = flags & DEQUEUE_SLEEP;
- int idle_h_nr_running = task_has_idle_policy(p);
bool was_sched_idle = sched_idle_rq(rq);
+ int rq_h_nr_running = rq->cfs.h_nr_running;
+ bool task_sleep = flags & DEQUEUE_SLEEP;
+ bool task_delayed = flags & DEQUEUE_DELAYED;
+ struct task_struct *p = NULL;
+ int idle_h_nr_running = 0;
+ int h_nr_running = 0;
+ struct cfs_rq *cfs_rq;
+ u64 slice = 0;
- util_est_dequeue(&rq->cfs, p);
+ if (entity_is_task(se)) {
+ p = task_of(se);
+ h_nr_running = 1;
+ idle_h_nr_running = task_has_idle_policy(p);
+ } else {
+ cfs_rq = group_cfs_rq(se);
+ slice = cfs_rq_min_slice(cfs_rq);
+ }
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
- dequeue_entity(cfs_rq, se, flags);
- cfs_rq->h_nr_running--;
+ if (!dequeue_entity(cfs_rq, se, flags)) {
+ if (p && &p->se == se)
+ return -1;
+
+ break;
+ }
+
+ cfs_rq->h_nr_running -= h_nr_running;
cfs_rq->idle_h_nr_running -= idle_h_nr_running;
if (cfs_rq_is_idle(cfs_rq))
- idle_h_nr_running = 1;
+ idle_h_nr_running = h_nr_running;
/* end evaluation on encountering a throttled cfs_rq */
if (cfs_rq_throttled(cfs_rq))
- goto dequeue_throttle;
+ return 0;
/* Don't dequeue parent if it has other entities besides us */
if (cfs_rq->load.weight) {
+ slice = cfs_rq_min_slice(cfs_rq);
+
/* Avoid re-evaluating load for this entity: */
se = parent_entity(se);
/*
@@ -6874,6 +7124,7 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
break;
}
flags |= DEQUEUE_SLEEP;
+ flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
}
for_each_sched_entity(se) {
@@ -6883,28 +7134,61 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
se_update_runnable(se);
update_cfs_group(se);
- cfs_rq->h_nr_running--;
+ se->slice = slice;
+ slice = cfs_rq_min_slice(cfs_rq);
+
+ cfs_rq->h_nr_running -= h_nr_running;
cfs_rq->idle_h_nr_running -= idle_h_nr_running;
if (cfs_rq_is_idle(cfs_rq))
- idle_h_nr_running = 1;
+ idle_h_nr_running = h_nr_running;
/* end evaluation on encountering a throttled cfs_rq */
if (cfs_rq_throttled(cfs_rq))
- goto dequeue_throttle;
-
+ return 0;
}
- /* At this point se is NULL and we are at root level*/
- sub_nr_running(rq, 1);
+ sub_nr_running(rq, h_nr_running);
+
+ if (rq_h_nr_running && !rq->cfs.h_nr_running)
+ dl_server_stop(&rq->fair_server);
/* balance early to pull high priority tasks */
if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
rq->next_balance = jiffies;
-dequeue_throttle:
- util_est_update(&rq->cfs, p, task_sleep);
+ if (p && task_delayed) {
+ SCHED_WARN_ON(!task_sleep);
+ SCHED_WARN_ON(p->on_rq != 1);
+
+ /* Fix-up what dequeue_task_fair() skipped */
+ hrtick_update(rq);
+
+ /* Fix-up what block_task() skipped. */
+ __block_task(rq, p);
+ }
+
+ return 1;
+}
+
+/*
+ * The dequeue_task method is called before nr_running is
+ * decreased. We remove the task from the rbtree and
+ * update the fair scheduling stats:
+ */
+static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
+{
+ if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE))))
+ util_est_dequeue(&rq->cfs, p);
+
+ if (dequeue_entities(rq, &p->se, flags) < 0) {
+ util_est_update(&rq->cfs, p, DEQUEUE_SLEEP);
+ return false;
+ }
+
+ util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
hrtick_update(rq);
+ return true;
}
#ifdef CONFIG_SMP
@@ -7803,6 +8087,105 @@ static unsigned long cpu_util_without(int cpu, struct task_struct *p)
}
/*
+ * This function computes an effective utilization for the given CPU, to be
+ * used for frequency selection given the linear relation: f = u * f_max.
+ *
+ * The scheduler tracks the following metrics:
+ *
+ * cpu_util_{cfs,rt,dl,irq}()
+ * cpu_bw_dl()
+ *
+ * Where the cfs,rt and dl util numbers are tracked with the same metric and
+ * synchronized windows and are thus directly comparable.
+ *
+ * The cfs,rt,dl utilization are the running times measured with rq->clock_task
+ * which excludes things like IRQ and steal-time. These latter are then accrued
+ * in the IRQ utilization.
+ *
+ * The DL bandwidth number OTOH is not a measured metric but a value computed
+ * based on the task model parameters and gives the minimal utilization
+ * required to meet deadlines.
+ */
+unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
+ unsigned long *min,
+ unsigned long *max)
+{
+ unsigned long util, irq, scale;
+ struct rq *rq = cpu_rq(cpu);
+
+ scale = arch_scale_cpu_capacity(cpu);
+
+ /*
+ * Early check to see if IRQ/steal time saturates the CPU, can be
+ * because of inaccuracies in how we track these -- see
+ * update_irq_load_avg().
+ */
+ irq = cpu_util_irq(rq);
+ if (unlikely(irq >= scale)) {
+ if (min)
+ *min = scale;
+ if (max)
+ *max = scale;
+ return scale;
+ }
+
+ if (min) {
+ /*
+ * The minimum utilization returns the highest level between:
+ * - the computed DL bandwidth needed with the IRQ pressure which
+ * steals time to the deadline task.
+ * - The minimum performance requirement for CFS and/or RT.
+ */
+ *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
+
+ /*
+ * When an RT task is runnable and uclamp is not used, we must
+ * ensure that the task will run at maximum compute capacity.
+ */
+ if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
+ *min = max(*min, scale);
+ }
+
+ /*
+ * Because the time spend on RT/DL tasks is visible as 'lost' time to
+ * CFS tasks and we use the same metric to track the effective
+ * utilization (PELT windows are synchronized) we can directly add them
+ * to obtain the CPU's actual utilization.
+ */
+ util = util_cfs + cpu_util_rt(rq);
+ util += cpu_util_dl(rq);
+
+ /*
+ * The maximum hint is a soft bandwidth requirement, which can be lower
+ * than the actual utilization because of uclamp_max requirements.
+ */
+ if (max)
+ *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
+
+ if (util >= scale)
+ return scale;
+
+ /*
+ * There is still idle time; further improve the number by using the
+ * IRQ metric. Because IRQ/steal time is hidden from the task clock we
+ * need to scale the task numbers:
+ *
+ * max - irq
+ * U' = irq + --------- * U
+ * max
+ */
+ util = scale_irq_capacity(util, irq, scale);
+ util += irq;
+
+ return min(scale, util);
+}
+
+unsigned long sched_cpu_util(int cpu)
+{
+ return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
+}
+
+/*
* energy_env - Utilization landscape for energy estimation.
* @task_busy_time: Utilization contribution by the task for which we test the
* placement. Given by eenv_task_busy_time().
@@ -8286,7 +8669,21 @@ static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
static void task_dead_fair(struct task_struct *p)
{
- remove_entity_load_avg(&p->se);
+ struct sched_entity *se = &p->se;
+
+ if (se->sched_delayed) {
+ struct rq_flags rf;
+ struct rq *rq;
+
+ rq = task_rq_lock(p, &rf);
+ if (se->sched_delayed) {
+ update_rq_clock(rq);
+ dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
+ }
+ task_rq_unlock(rq, p, &rf);
+ }
+
+ remove_entity_load_avg(se);
}
/*
@@ -8322,7 +8719,7 @@ static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context
static int
balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
- if (rq->nr_running)
+ if (sched_fair_runnable(rq))
return 1;
return sched_balance_newidle(rq, rf) != 0;
@@ -8381,16 +8778,7 @@ static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int
if (test_tsk_need_resched(curr))
return;
- /* Idle tasks are by definition preempted by non-idle tasks. */
- if (unlikely(task_has_idle_policy(curr)) &&
- likely(!task_has_idle_policy(p)))
- goto preempt;
-
- /*
- * Batch and idle tasks do not preempt non-idle tasks (their preemption
- * is driven by the tick):
- */
- if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
+ if (!sched_feat(WAKEUP_PREEMPTION))
return;
find_matching_se(&se, &pse);
@@ -8400,7 +8788,7 @@ static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int
pse_is_idle = se_is_idle(pse);
/*
- * Preempt an idle group in favor of a non-idle group (and don't preempt
+ * Preempt an idle entity in favor of a non-idle entity (and don't preempt
* in the inverse case).
*/
if (cse_is_idle && !pse_is_idle)
@@ -8408,11 +8796,26 @@ static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int
if (cse_is_idle != pse_is_idle)
return;
+ /*
+ * BATCH and IDLE tasks do not preempt others.
+ */
+ if (unlikely(p->policy != SCHED_NORMAL))
+ return;
+
cfs_rq = cfs_rq_of(se);
update_curr(cfs_rq);
+ /*
+ * If @p has a shorter slice than current and @p is eligible, override
+ * current's slice protection in order to allow preemption.
+ *
+ * Note that even if @p does not turn out to be the most eligible
+ * task at this moment, current's slice protection will be lost.
+ */
+ if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline)
+ se->vlag = se->deadline + 1;
/*
- * XXX pick_eevdf(cfs_rq) != se ?
+ * If @p has become the most eligible task, force preemption.
*/
if (pick_eevdf(cfs_rq) == pse)
goto preempt;
@@ -8423,7 +8826,6 @@ preempt:
resched_curr(rq);
}
-#ifdef CONFIG_SMP
static struct task_struct *pick_task_fair(struct rq *rq)
{
struct sched_entity *se;
@@ -8435,95 +8837,58 @@ again:
return NULL;
do {
- struct sched_entity *curr = cfs_rq->curr;
-
- /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
- if (curr) {
- if (curr->on_rq)
- update_curr(cfs_rq);
- else
- curr = NULL;
+ /* Might not have done put_prev_entity() */
+ if (cfs_rq->curr && cfs_rq->curr->on_rq)
+ update_curr(cfs_rq);
- if (unlikely(check_cfs_rq_runtime(cfs_rq)))
- goto again;
- }
+ if (unlikely(check_cfs_rq_runtime(cfs_rq)))
+ goto again;
- se = pick_next_entity(cfs_rq);
+ se = pick_next_entity(rq, cfs_rq);
+ if (!se)
+ goto again;
cfs_rq = group_cfs_rq(se);
} while (cfs_rq);
return task_of(se);
}
-#endif
+
+static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
+static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
- struct cfs_rq *cfs_rq = &rq->cfs;
struct sched_entity *se;
struct task_struct *p;
int new_tasks;
again:
- if (!sched_fair_runnable(rq))
+ p = pick_task_fair(rq);
+ if (!p)
goto idle;
+ se = &p->se;
#ifdef CONFIG_FAIR_GROUP_SCHED
- if (!prev || prev->sched_class != &fair_sched_class)
+ if (prev->sched_class != &fair_sched_class)
goto simple;
+ __put_prev_set_next_dl_server(rq, prev, p);
+
/*
* Because of the set_next_buddy() in dequeue_task_fair() it is rather
* likely that a next task is from the same cgroup as the current.
*
* Therefore attempt to avoid putting and setting the entire cgroup
* hierarchy, only change the part that actually changes.
- */
-
- do {
- struct sched_entity *curr = cfs_rq->curr;
-
- /*
- * Since we got here without doing put_prev_entity() we also
- * have to consider cfs_rq->curr. If it is still a runnable
- * entity, update_curr() will update its vruntime, otherwise
- * forget we've ever seen it.
- */
- if (curr) {
- if (curr->on_rq)
- update_curr(cfs_rq);
- else
- curr = NULL;
-
- /*
- * This call to check_cfs_rq_runtime() will do the
- * throttle and dequeue its entity in the parent(s).
- * Therefore the nr_running test will indeed
- * be correct.
- */
- if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
- cfs_rq = &rq->cfs;
-
- if (!cfs_rq->nr_running)
- goto idle;
-
- goto simple;
- }
- }
-
- se = pick_next_entity(cfs_rq);
- cfs_rq = group_cfs_rq(se);
- } while (cfs_rq);
-
- p = task_of(se);
-
- /*
+ *
* Since we haven't yet done put_prev_entity and if the selected task
* is a different task than we started out with, try and touch the
* least amount of cfs_rqs.
*/
if (prev != p) {
struct sched_entity *pse = &prev->se;
+ struct cfs_rq *cfs_rq;
while (!(cfs_rq = is_same_group(se, pse))) {
int se_depth = se->depth;
@@ -8541,38 +8906,15 @@ again:
put_prev_entity(cfs_rq, pse);
set_next_entity(cfs_rq, se);
- }
-
- goto done;
-simple:
-#endif
- if (prev)
- put_prev_task(rq, prev);
- do {
- se = pick_next_entity(cfs_rq);
- set_next_entity(cfs_rq, se);
- cfs_rq = group_cfs_rq(se);
- } while (cfs_rq);
+ __set_next_task_fair(rq, p, true);
+ }
- p = task_of(se);
+ return p;
-done: __maybe_unused;
-#ifdef CONFIG_SMP
- /*
- * Move the next running task to the front of
- * the list, so our cfs_tasks list becomes MRU
- * one.
- */
- list_move(&p->se.group_node, &rq->cfs_tasks);
+simple:
#endif
-
- if (hrtick_enabled_fair(rq))
- hrtick_start_fair(rq, p);
-
- update_misfit_status(p, rq);
- sched_fair_update_stop_tick(rq, p);
-
+ put_prev_set_next_task(rq, prev, p);
return p;
idle:
@@ -8601,15 +8943,34 @@ idle:
return NULL;
}
-static struct task_struct *__pick_next_task_fair(struct rq *rq)
+static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
{
- return pick_next_task_fair(rq, NULL, NULL);
+ return pick_next_task_fair(rq, prev, NULL);
+}
+
+static bool fair_server_has_tasks(struct sched_dl_entity *dl_se)
+{
+ return !!dl_se->rq->cfs.nr_running;
+}
+
+static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
+{
+ return pick_task_fair(dl_se->rq);
+}
+
+void fair_server_init(struct rq *rq)
+{
+ struct sched_dl_entity *dl_se = &rq->fair_server;
+
+ init_dl_entity(dl_se);
+
+ dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task);
}
/*
* Account for a descheduled task:
*/
-static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
+static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
{
struct sched_entity *se = &prev->se;
struct cfs_rq *cfs_rq;
@@ -9360,9 +9721,10 @@ static bool __update_blocked_others(struct rq *rq, bool *done)
hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
+ /* hw_pressure doesn't care about invariance */
decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
- update_hw_load_avg(now, rq, hw_pressure) |
+ update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure) |
update_irq_load_avg(rq, 0);
if (others_have_blocked(rq))
@@ -12702,22 +13064,7 @@ static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
*/
static void task_fork_fair(struct task_struct *p)
{
- struct sched_entity *se = &p->se, *curr;
- struct cfs_rq *cfs_rq;
- struct rq *rq = this_rq();
- struct rq_flags rf;
-
- rq_lock(rq, &rf);
- update_rq_clock(rq);
-
set_task_max_allowed_capacity(p);
-
- cfs_rq = task_cfs_rq(current);
- curr = cfs_rq->curr;
- if (curr)
- update_curr(cfs_rq);
- place_entity(cfs_rq, se, ENQUEUE_INITIAL);
- rq_unlock(rq, &rf);
}
/*
@@ -12829,10 +13176,28 @@ static void attach_task_cfs_rq(struct task_struct *p)
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
detach_task_cfs_rq(p);
+ /*
+ * Since this is called after changing class, this is a little weird
+ * and we cannot use DEQUEUE_DELAYED.
+ */
+ if (p->se.sched_delayed) {
+ /* First, dequeue it from its new class' structures */
+ dequeue_task(rq, p, DEQUEUE_NOCLOCK | DEQUEUE_SLEEP);
+ /*
+ * Now, clean up the fair_sched_class side of things
+ * related to sched_delayed being true and that wasn't done
+ * due to the generic dequeue not using DEQUEUE_DELAYED.
+ */
+ finish_delayed_dequeue_entity(&p->se);
+ p->se.rel_deadline = 0;
+ __block_task(rq, p);
+ }
}
static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
+ SCHED_WARN_ON(p->se.sched_delayed);
+
attach_task_cfs_rq(p);
set_task_max_allowed_capacity(p);
@@ -12850,12 +13215,7 @@ static void switched_to_fair(struct rq *rq, struct task_struct *p)
}
}
-/* Account for a task changing its policy or group.
- *
- * This routine is mostly called to set cfs_rq->curr field when a task
- * migrates between groups/classes.
- */
-static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
+static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
{
struct sched_entity *se = &p->se;
@@ -12868,6 +13228,27 @@ static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
list_move(&se->group_node, &rq->cfs_tasks);
}
#endif
+ if (!first)
+ return;
+
+ SCHED_WARN_ON(se->sched_delayed);
+
+ if (hrtick_enabled_fair(rq))
+ hrtick_start_fair(rq, p);
+
+ update_misfit_status(p, rq);
+ sched_fair_update_stop_tick(rq, p);
+}
+
+/*
+ * Account for a task changing its policy or group.
+ *
+ * This routine is mostly called to set cfs_rq->curr field when a task
+ * migrates between groups/classes.
+ */
+static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
+{
+ struct sched_entity *se = &p->se;
for_each_sched_entity(se) {
struct cfs_rq *cfs_rq = cfs_rq_of(se);
@@ -12876,12 +13257,14 @@ static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
/* ensure bandwidth has been allocated on our new cfs_rq */
account_cfs_rq_runtime(cfs_rq, 0);
}
+
+ __set_next_task_fair(rq, p, first);
}
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
cfs_rq->tasks_timeline = RB_ROOT_CACHED;
- u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
+ cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifdef CONFIG_SMP
raw_spin_lock_init(&cfs_rq->removed.lock);
#endif
@@ -12983,28 +13366,35 @@ void online_fair_sched_group(struct task_group *tg)
void unregister_fair_sched_group(struct task_group *tg)
{
- unsigned long flags;
- struct rq *rq;
int cpu;
destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
for_each_possible_cpu(cpu) {
- if (tg->se[cpu])
- remove_entity_load_avg(tg->se[cpu]);
+ struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
+ struct sched_entity *se = tg->se[cpu];
+ struct rq *rq = cpu_rq(cpu);
+
+ if (se) {
+ if (se->sched_delayed) {
+ guard(rq_lock_irqsave)(rq);
+ if (se->sched_delayed) {
+ update_rq_clock(rq);
+ dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
+ }
+ list_del_leaf_cfs_rq(cfs_rq);
+ }
+ remove_entity_load_avg(se);
+ }
/*
* Only empty task groups can be destroyed; so we can speculatively
* check on_list without danger of it being re-added.
*/
- if (!tg->cfs_rq[cpu]->on_list)
- continue;
-
- rq = cpu_rq(cpu);
-
- raw_spin_rq_lock_irqsave(rq, flags);
- list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
- raw_spin_rq_unlock_irqrestore(rq, flags);
+ if (cfs_rq->on_list) {
+ guard(rq_lock_irqsave)(rq);
+ list_del_leaf_cfs_rq(cfs_rq);
+ }
}
}
@@ -13194,13 +13584,13 @@ DEFINE_SCHED_CLASS(fair) = {
.wakeup_preempt = check_preempt_wakeup_fair,
+ .pick_task = pick_task_fair,
.pick_next_task = __pick_next_task_fair,
.put_prev_task = put_prev_task_fair,
.set_next_task = set_next_task_fair,
#ifdef CONFIG_SMP
.balance = balance_fair,
- .pick_task = pick_task_fair,
.select_task_rq = select_task_rq_fair,
.migrate_task_rq = migrate_task_rq_fair,
diff --git a/kernel/sched/features.h b/kernel/sched/features.h
index 143f55df890b..290874079f60 100644
--- a/kernel/sched/features.h
+++ b/kernel/sched/features.h
@@ -5,8 +5,24 @@
* sleep+wake cycles. EEVDF placement strategy #1, #2 if disabled.
*/
SCHED_FEAT(PLACE_LAG, true)
+/*
+ * Give new tasks half a slice to ease into the competition.
+ */
SCHED_FEAT(PLACE_DEADLINE_INITIAL, true)
+/*
+ * Preserve relative virtual deadline on 'migration'.
+ */
+SCHED_FEAT(PLACE_REL_DEADLINE, true)
+/*
+ * Inhibit (wakeup) preemption until the current task has either matched the
+ * 0-lag point or until is has exhausted it's slice.
+ */
SCHED_FEAT(RUN_TO_PARITY, true)
+/*
+ * Allow wakeup of tasks with a shorter slice to cancel RESPECT_SLICE for
+ * current.
+ */
+SCHED_FEAT(PREEMPT_SHORT, true)
/*
* Prefer to schedule the task we woke last (assuming it failed
@@ -22,6 +38,18 @@ SCHED_FEAT(NEXT_BUDDY, false)
SCHED_FEAT(CACHE_HOT_BUDDY, true)
/*
+ * Delay dequeueing tasks until they get selected or woken.
+ *
+ * By delaying the dequeue for non-eligible tasks, they remain in the
+ * competition and can burn off their negative lag. When they get selected
+ * they'll have positive lag by definition.
+ *
+ * DELAY_ZERO clips the lag on dequeue (or wakeup) to 0.
+ */
+SCHED_FEAT(DELAY_DEQUEUE, true)
+SCHED_FEAT(DELAY_ZERO, true)
+
+/*
* Allow wakeup-time preemption of the current task:
*/
SCHED_FEAT(WAKEUP_PREEMPTION, true)
@@ -85,5 +113,3 @@ SCHED_FEAT(WA_BIAS, true)
SCHED_FEAT(UTIL_EST, true)
SCHED_FEAT(LATENCY_WARN, false)
-
-SCHED_FEAT(HZ_BW, true)
diff --git a/kernel/sched/idle.c b/kernel/sched/idle.c
index 6e78d071beb5..7a105a0123aa 100644
--- a/kernel/sched/idle.c
+++ b/kernel/sched/idle.c
@@ -450,43 +450,35 @@ static void wakeup_preempt_idle(struct rq *rq, struct task_struct *p, int flags)
resched_curr(rq);
}
-static void put_prev_task_idle(struct rq *rq, struct task_struct *prev)
+static void put_prev_task_idle(struct rq *rq, struct task_struct *prev, struct task_struct *next)
{
+ dl_server_update_idle_time(rq, prev);
}
static void set_next_task_idle(struct rq *rq, struct task_struct *next, bool first)
{
update_idle_core(rq);
schedstat_inc(rq->sched_goidle);
+ next->se.exec_start = rq_clock_task(rq);
}
-#ifdef CONFIG_SMP
-static struct task_struct *pick_task_idle(struct rq *rq)
+struct task_struct *pick_task_idle(struct rq *rq)
{
return rq->idle;
}
-#endif
-
-struct task_struct *pick_next_task_idle(struct rq *rq)
-{
- struct task_struct *next = rq->idle;
-
- set_next_task_idle(rq, next, true);
-
- return next;
-}
/*
* It is not legal to sleep in the idle task - print a warning
* message if some code attempts to do it:
*/
-static void
+static bool
dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags)
{
raw_spin_rq_unlock_irq(rq);
printk(KERN_ERR "bad: scheduling from the idle thread!\n");
dump_stack();
raw_spin_rq_lock_irq(rq);
+ return true;
}
/*
@@ -528,13 +520,12 @@ DEFINE_SCHED_CLASS(idle) = {
.wakeup_preempt = wakeup_preempt_idle,
- .pick_next_task = pick_next_task_idle,
+ .pick_task = pick_task_idle,
.put_prev_task = put_prev_task_idle,
.set_next_task = set_next_task_idle,
#ifdef CONFIG_SMP
.balance = balance_idle,
- .pick_task = pick_task_idle,
.select_task_rq = select_task_rq_idle,
.set_cpus_allowed = set_cpus_allowed_common,
#endif
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c
index 310523c1b9e3..172c588de542 100644
--- a/kernel/sched/rt.c
+++ b/kernel/sched/rt.c
@@ -8,10 +8,6 @@ int sched_rr_timeslice = RR_TIMESLICE;
/* More than 4 hours if BW_SHIFT equals 20. */
static const u64 max_rt_runtime = MAX_BW;
-static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
-
-struct rt_bandwidth def_rt_bandwidth;
-
/*
* period over which we measure -rt task CPU usage in us.
* default: 1s
@@ -66,6 +62,40 @@ static int __init sched_rt_sysctl_init(void)
late_initcall(sched_rt_sysctl_init);
#endif
+void init_rt_rq(struct rt_rq *rt_rq)
+{
+ struct rt_prio_array *array;
+ int i;
+
+ array = &rt_rq->active;
+ for (i = 0; i < MAX_RT_PRIO; i++) {
+ INIT_LIST_HEAD(array->queue + i);
+ __clear_bit(i, array->bitmap);
+ }
+ /* delimiter for bitsearch: */
+ __set_bit(MAX_RT_PRIO, array->bitmap);
+
+#if defined CONFIG_SMP
+ rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
+ rt_rq->highest_prio.next = MAX_RT_PRIO-1;
+ rt_rq->overloaded = 0;
+ plist_head_init(&rt_rq->pushable_tasks);
+#endif /* CONFIG_SMP */
+ /* We start is dequeued state, because no RT tasks are queued */
+ rt_rq->rt_queued = 0;
+
+#ifdef CONFIG_RT_GROUP_SCHED
+ rt_rq->rt_time = 0;
+ rt_rq->rt_throttled = 0;
+ rt_rq->rt_runtime = 0;
+ raw_spin_lock_init(&rt_rq->rt_runtime_lock);
+#endif
+}
+
+#ifdef CONFIG_RT_GROUP_SCHED
+
+static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
+
static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
struct rt_bandwidth *rt_b =
@@ -130,35 +160,6 @@ static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
do_start_rt_bandwidth(rt_b);
}
-void init_rt_rq(struct rt_rq *rt_rq)
-{
- struct rt_prio_array *array;
- int i;
-
- array = &rt_rq->active;
- for (i = 0; i < MAX_RT_PRIO; i++) {
- INIT_LIST_HEAD(array->queue + i);
- __clear_bit(i, array->bitmap);
- }
- /* delimiter for bit-search: */
- __set_bit(MAX_RT_PRIO, array->bitmap);
-
-#if defined CONFIG_SMP
- rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
- rt_rq->highest_prio.next = MAX_RT_PRIO-1;
- rt_rq->overloaded = 0;
- plist_head_init(&rt_rq->pushable_tasks);
-#endif /* CONFIG_SMP */
- /* We start is dequeued state, because no RT tasks are queued */
- rt_rq->rt_queued = 0;
-
- rt_rq->rt_time = 0;
- rt_rq->rt_throttled = 0;
- rt_rq->rt_runtime = 0;
- raw_spin_lock_init(&rt_rq->rt_runtime_lock);
-}
-
-#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
hrtimer_cancel(&rt_b->rt_period_timer);
@@ -195,7 +196,6 @@ void unregister_rt_sched_group(struct task_group *tg)
{
if (tg->rt_se)
destroy_rt_bandwidth(&tg->rt_bandwidth);
-
}
void free_rt_sched_group(struct task_group *tg)
@@ -253,8 +253,7 @@ int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
if (!tg->rt_se)
goto err;
- init_rt_bandwidth(&tg->rt_bandwidth,
- ktime_to_ns(def_rt_bandwidth.rt_period), 0);
+ init_rt_bandwidth(&tg->rt_bandwidth, ktime_to_ns(global_rt_period()), 0);
for_each_possible_cpu(i) {
rt_rq = kzalloc_node(sizeof(struct rt_rq),
@@ -604,70 +603,6 @@ static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
return &rt_rq->tg->rt_bandwidth;
}
-#else /* !CONFIG_RT_GROUP_SCHED */
-
-static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
-{
- return rt_rq->rt_runtime;
-}
-
-static inline u64 sched_rt_period(struct rt_rq *rt_rq)
-{
- return ktime_to_ns(def_rt_bandwidth.rt_period);
-}
-
-typedef struct rt_rq *rt_rq_iter_t;
-
-#define for_each_rt_rq(rt_rq, iter, rq) \
- for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
-
-#define for_each_sched_rt_entity(rt_se) \
- for (; rt_se; rt_se = NULL)
-
-static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
-{
- return NULL;
-}
-
-static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
-{
- struct rq *rq = rq_of_rt_rq(rt_rq);
-
- if (!rt_rq->rt_nr_running)
- return;
-
- enqueue_top_rt_rq(rt_rq);
- resched_curr(rq);
-}
-
-static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
-{
- dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
-}
-
-static inline int rt_rq_throttled(struct rt_rq *rt_rq)
-{
- return rt_rq->rt_throttled;
-}
-
-static inline const struct cpumask *sched_rt_period_mask(void)
-{
- return cpu_online_mask;
-}
-
-static inline
-struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
-{
- return &cpu_rq(cpu)->rt;
-}
-
-static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
-{
- return &def_rt_bandwidth;
-}
-
-#endif /* CONFIG_RT_GROUP_SCHED */
-
bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
{
struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
@@ -859,7 +794,7 @@ static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
const struct cpumask *span;
span = sched_rt_period_mask();
-#ifdef CONFIG_RT_GROUP_SCHED
+
/*
* FIXME: isolated CPUs should really leave the root task group,
* whether they are isolcpus or were isolated via cpusets, lest
@@ -871,7 +806,7 @@ static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
*/
if (rt_b == &root_task_group.rt_bandwidth)
span = cpu_online_mask;
-#endif
+
for_each_cpu(i, span) {
int enqueue = 0;
struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
@@ -938,18 +873,6 @@ static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
return idle;
}
-static inline int rt_se_prio(struct sched_rt_entity *rt_se)
-{
-#ifdef CONFIG_RT_GROUP_SCHED
- struct rt_rq *rt_rq = group_rt_rq(rt_se);
-
- if (rt_rq)
- return rt_rq->highest_prio.curr;
-#endif
-
- return rt_task_of(rt_se)->prio;
-}
-
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
{
u64 runtime = sched_rt_runtime(rt_rq);
@@ -993,6 +916,72 @@ static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
return 0;
}
+#else /* !CONFIG_RT_GROUP_SCHED */
+
+typedef struct rt_rq *rt_rq_iter_t;
+
+#define for_each_rt_rq(rt_rq, iter, rq) \
+ for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
+
+#define for_each_sched_rt_entity(rt_se) \
+ for (; rt_se; rt_se = NULL)
+
+static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
+{
+ return NULL;
+}
+
+static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
+{
+ struct rq *rq = rq_of_rt_rq(rt_rq);
+
+ if (!rt_rq->rt_nr_running)
+ return;
+
+ enqueue_top_rt_rq(rt_rq);
+ resched_curr(rq);
+}
+
+static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
+{
+ dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
+}
+
+static inline int rt_rq_throttled(struct rt_rq *rt_rq)
+{
+ return false;
+}
+
+static inline const struct cpumask *sched_rt_period_mask(void)
+{
+ return cpu_online_mask;
+}
+
+static inline
+struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
+{
+ return &cpu_rq(cpu)->rt;
+}
+
+#ifdef CONFIG_SMP
+static void __enable_runtime(struct rq *rq) { }
+static void __disable_runtime(struct rq *rq) { }
+#endif
+
+#endif /* CONFIG_RT_GROUP_SCHED */
+
+static inline int rt_se_prio(struct sched_rt_entity *rt_se)
+{
+#ifdef CONFIG_RT_GROUP_SCHED
+ struct rt_rq *rt_rq = group_rt_rq(rt_se);
+
+ if (rt_rq)
+ return rt_rq->highest_prio.curr;
+#endif
+
+ return rt_task_of(rt_se)->prio;
+}
+
/*
* Update the current task's runtime statistics. Skip current tasks that
* are not in our scheduling class.
@@ -1000,7 +989,6 @@ static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
static void update_curr_rt(struct rq *rq)
{
struct task_struct *curr = rq->curr;
- struct sched_rt_entity *rt_se = &curr->rt;
s64 delta_exec;
if (curr->sched_class != &rt_sched_class)
@@ -1010,6 +998,9 @@ static void update_curr_rt(struct rq *rq)
if (unlikely(delta_exec <= 0))
return;
+#ifdef CONFIG_RT_GROUP_SCHED
+ struct sched_rt_entity *rt_se = &curr->rt;
+
if (!rt_bandwidth_enabled())
return;
@@ -1028,6 +1019,7 @@ static void update_curr_rt(struct rq *rq)
do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
}
}
+#endif
}
static void
@@ -1184,7 +1176,6 @@ dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
- start_rt_bandwidth(&def_rt_bandwidth);
}
static inline
@@ -1492,7 +1483,7 @@ enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
enqueue_pushable_task(rq, p);
}
-static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
+static bool dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
{
struct sched_rt_entity *rt_se = &p->rt;
@@ -1500,6 +1491,8 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
dequeue_rt_entity(rt_se, flags);
dequeue_pushable_task(rq, p);
+
+ return true;
}
/*
@@ -1755,17 +1748,7 @@ static struct task_struct *pick_task_rt(struct rq *rq)
return p;
}
-static struct task_struct *pick_next_task_rt(struct rq *rq)
-{
- struct task_struct *p = pick_task_rt(rq);
-
- if (p)
- set_next_task_rt(rq, p, true);
-
- return p;
-}
-
-static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
+static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct task_struct *next)
{
struct sched_rt_entity *rt_se = &p->rt;
struct rt_rq *rt_rq = &rq->rt;
@@ -2652,13 +2635,12 @@ DEFINE_SCHED_CLASS(rt) = {
.wakeup_preempt = wakeup_preempt_rt,
- .pick_next_task = pick_next_task_rt,
+ .pick_task = pick_task_rt,
.put_prev_task = put_prev_task_rt,
.set_next_task = set_next_task_rt,
#ifdef CONFIG_SMP
.balance = balance_rt,
- .pick_task = pick_task_rt,
.select_task_rq = select_task_rq_rt,
.set_cpus_allowed = set_cpus_allowed_common,
.rq_online = rq_online_rt,
@@ -2912,19 +2894,6 @@ int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
#ifdef CONFIG_SYSCTL
static int sched_rt_global_constraints(void)
{
- unsigned long flags;
- int i;
-
- raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
- for_each_possible_cpu(i) {
- struct rt_rq *rt_rq = &cpu_rq(i)->rt;
-
- raw_spin_lock(&rt_rq->rt_runtime_lock);
- rt_rq->rt_runtime = global_rt_runtime();
- raw_spin_unlock(&rt_rq->rt_runtime_lock);
- }
- raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
-
return 0;
}
#endif /* CONFIG_SYSCTL */
@@ -2944,12 +2913,6 @@ static int sched_rt_global_validate(void)
static void sched_rt_do_global(void)
{
- unsigned long flags;
-
- raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
- def_rt_bandwidth.rt_runtime = global_rt_runtime();
- def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
- raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
}
static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer,
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index 4c36cc680361..3744f16a1293 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -68,6 +68,7 @@
#include <linux/wait_api.h>
#include <linux/wait_bit.h>
#include <linux/workqueue_api.h>
+#include <linux/delayacct.h>
#include <trace/events/power.h>
#include <trace/events/sched.h>
@@ -335,7 +336,7 @@ extern bool __checkparam_dl(const struct sched_attr *attr);
extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
extern int dl_bw_check_overflow(int cpu);
-
+extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec);
/*
* SCHED_DEADLINE supports servers (nested scheduling) with the following
* interface:
@@ -361,7 +362,14 @@ extern void dl_server_start(struct sched_dl_entity *dl_se);
extern void dl_server_stop(struct sched_dl_entity *dl_se);
extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
dl_server_has_tasks_f has_tasks,
- dl_server_pick_f pick);
+ dl_server_pick_f pick_task);
+
+extern void dl_server_update_idle_time(struct rq *rq,
+ struct task_struct *p);
+extern void fair_server_init(struct rq *rq);
+extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq);
+extern int dl_server_apply_params(struct sched_dl_entity *dl_se,
+ u64 runtime, u64 period, bool init);
#ifdef CONFIG_CGROUP_SCHED
@@ -599,17 +607,12 @@ struct cfs_rq {
s64 avg_vruntime;
u64 avg_load;
- u64 exec_clock;
u64 min_vruntime;
#ifdef CONFIG_SCHED_CORE
unsigned int forceidle_seq;
u64 min_vruntime_fi;
#endif
-#ifndef CONFIG_64BIT
- u64 min_vruntime_copy;
-#endif
-
struct rb_root_cached tasks_timeline;
/*
@@ -619,10 +622,6 @@ struct cfs_rq {
struct sched_entity *curr;
struct sched_entity *next;
-#ifdef CONFIG_SCHED_DEBUG
- unsigned int nr_spread_over;
-#endif
-
#ifdef CONFIG_SMP
/*
* CFS load tracking
@@ -726,13 +725,13 @@ struct rt_rq {
#endif /* CONFIG_SMP */
int rt_queued;
+#ifdef CONFIG_RT_GROUP_SCHED
int rt_throttled;
u64 rt_time;
u64 rt_runtime;
/* Nests inside the rq lock: */
raw_spinlock_t rt_runtime_lock;
-#ifdef CONFIG_RT_GROUP_SCHED
unsigned int rt_nr_boosted;
struct rq *rq;
@@ -820,6 +819,9 @@ static inline void se_update_runnable(struct sched_entity *se)
static inline long se_runnable(struct sched_entity *se)
{
+ if (se->sched_delayed)
+ return false;
+
if (entity_is_task(se))
return !!se->on_rq;
else
@@ -834,6 +836,9 @@ static inline void se_update_runnable(struct sched_entity *se) { }
static inline long se_runnable(struct sched_entity *se)
{
+ if (se->sched_delayed)
+ return false;
+
return !!se->on_rq;
}
@@ -1044,6 +1049,8 @@ struct rq {
struct rt_rq rt;
struct dl_rq dl;
+ struct sched_dl_entity fair_server;
+
#ifdef CONFIG_FAIR_GROUP_SCHED
/* list of leaf cfs_rq on this CPU: */
struct list_head leaf_cfs_rq_list;
@@ -1059,6 +1066,7 @@ struct rq {
unsigned int nr_uninterruptible;
struct task_struct __rcu *curr;
+ struct sched_dl_entity *dl_server;
struct task_struct *idle;
struct task_struct *stop;
unsigned long next_balance;
@@ -1158,7 +1166,6 @@ struct rq {
/* latency stats */
struct sched_info rq_sched_info;
unsigned long long rq_cpu_time;
- /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
/* sys_sched_yield() stats */
unsigned int yld_count;
@@ -1187,6 +1194,7 @@ struct rq {
/* per rq */
struct rq *core;
struct task_struct *core_pick;
+ struct sched_dl_entity *core_dl_server;
unsigned int core_enabled;
unsigned int core_sched_seq;
struct rb_root core_tree;
@@ -2247,11 +2255,13 @@ extern const u32 sched_prio_to_wmult[40];
*
*/
-#define DEQUEUE_SLEEP 0x01
+#define DEQUEUE_SLEEP 0x01 /* Matches ENQUEUE_WAKEUP */
#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
+#define DEQUEUE_SPECIAL 0x10
#define DEQUEUE_MIGRATING 0x100 /* Matches ENQUEUE_MIGRATING */
+#define DEQUEUE_DELAYED 0x200 /* Matches ENQUEUE_DELAYED */
#define ENQUEUE_WAKEUP 0x01
#define ENQUEUE_RESTORE 0x02
@@ -2267,6 +2277,7 @@ extern const u32 sched_prio_to_wmult[40];
#endif
#define ENQUEUE_INITIAL 0x80
#define ENQUEUE_MIGRATING 0x100
+#define ENQUEUE_DELAYED 0x200
#define RETRY_TASK ((void *)-1UL)
@@ -2285,23 +2296,31 @@ struct sched_class {
#endif
void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
- void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
+ bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
void (*yield_task) (struct rq *rq);
bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
- struct task_struct *(*pick_next_task)(struct rq *rq);
+ struct task_struct *(*pick_task)(struct rq *rq);
+ /*
+ * Optional! When implemented pick_next_task() should be equivalent to:
+ *
+ * next = pick_task();
+ * if (next) {
+ * put_prev_task(prev);
+ * set_next_task_first(next);
+ * }
+ */
+ struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev);
- void (*put_prev_task)(struct rq *rq, struct task_struct *p);
+ void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next);
void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
#ifdef CONFIG_SMP
int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
- struct task_struct * (*pick_task)(struct rq *rq);
-
void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
void (*task_woken)(struct rq *this_rq, struct task_struct *task);
@@ -2345,7 +2364,7 @@ struct sched_class {
static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
{
WARN_ON_ONCE(rq->curr != prev);
- prev->sched_class->put_prev_task(rq, prev);
+ prev->sched_class->put_prev_task(rq, prev, NULL);
}
static inline void set_next_task(struct rq *rq, struct task_struct *next)
@@ -2353,6 +2372,30 @@ static inline void set_next_task(struct rq *rq, struct task_struct *next)
next->sched_class->set_next_task(rq, next, false);
}
+static inline void
+__put_prev_set_next_dl_server(struct rq *rq,
+ struct task_struct *prev,
+ struct task_struct *next)
+{
+ prev->dl_server = NULL;
+ next->dl_server = rq->dl_server;
+ rq->dl_server = NULL;
+}
+
+static inline void put_prev_set_next_task(struct rq *rq,
+ struct task_struct *prev,
+ struct task_struct *next)
+{
+ WARN_ON_ONCE(rq->curr != prev);
+
+ __put_prev_set_next_dl_server(rq, prev, next);
+
+ if (next == prev)
+ return;
+
+ prev->sched_class->put_prev_task(rq, prev, next);
+ next->sched_class->set_next_task(rq, next, true);
+}
/*
* Helper to define a sched_class instance; each one is placed in a separate
@@ -2408,7 +2451,7 @@ static inline bool sched_fair_runnable(struct rq *rq)
}
extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
-extern struct task_struct *pick_next_task_idle(struct rq *rq);
+extern struct task_struct *pick_task_idle(struct rq *rq);
#define SCA_CHECK 0x01
#define SCA_MIGRATE_DISABLE 0x02
@@ -2515,7 +2558,6 @@ extern void reweight_task(struct task_struct *p, const struct load_weight *lw);
extern void resched_curr(struct rq *rq);
extern void resched_cpu(int cpu);
-extern struct rt_bandwidth def_rt_bandwidth;
extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
@@ -2586,6 +2628,19 @@ static inline void sub_nr_running(struct rq *rq, unsigned count)
sched_update_tick_dependency(rq);
}
+static inline void __block_task(struct rq *rq, struct task_struct *p)
+{
+ WRITE_ONCE(p->on_rq, 0);
+ ASSERT_EXCLUSIVE_WRITER(p->on_rq);
+ if (p->sched_contributes_to_load)
+ rq->nr_uninterruptible++;
+
+ if (p->in_iowait) {
+ atomic_inc(&rq->nr_iowait);
+ delayacct_blkio_start();
+ }
+}
+
extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
@@ -3607,7 +3662,7 @@ extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *c
extern void __setscheduler_prio(struct task_struct *p, int prio);
extern void set_load_weight(struct task_struct *p, bool update_load);
extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
-extern void dequeue_task(struct rq *rq, struct task_struct *p, int flags);
+extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags);
extern void check_class_changed(struct rq *rq, struct task_struct *p,
const struct sched_class *prev_class,
diff --git a/kernel/sched/stop_task.c b/kernel/sched/stop_task.c
index b1b8fe61c532..058dd42e3d9b 100644
--- a/kernel/sched/stop_task.c
+++ b/kernel/sched/stop_task.c
@@ -41,26 +41,17 @@ static struct task_struct *pick_task_stop(struct rq *rq)
return rq->stop;
}
-static struct task_struct *pick_next_task_stop(struct rq *rq)
-{
- struct task_struct *p = pick_task_stop(rq);
-
- if (p)
- set_next_task_stop(rq, p, true);
-
- return p;
-}
-
static void
enqueue_task_stop(struct rq *rq, struct task_struct *p, int flags)
{
add_nr_running(rq, 1);
}
-static void
+static bool
dequeue_task_stop(struct rq *rq, struct task_struct *p, int flags)
{
sub_nr_running(rq, 1);
+ return true;
}
static void yield_task_stop(struct rq *rq)
@@ -68,7 +59,7 @@ static void yield_task_stop(struct rq *rq)
BUG(); /* the stop task should never yield, its pointless. */
}
-static void put_prev_task_stop(struct rq *rq, struct task_struct *prev)
+static void put_prev_task_stop(struct rq *rq, struct task_struct *prev, struct task_struct *next)
{
update_curr_common(rq);
}
@@ -111,13 +102,12 @@ DEFINE_SCHED_CLASS(stop) = {
.wakeup_preempt = wakeup_preempt_stop,
- .pick_next_task = pick_next_task_stop,
+ .pick_task = pick_task_stop,
.put_prev_task = put_prev_task_stop,
.set_next_task = set_next_task_stop,
#ifdef CONFIG_SMP
.balance = balance_stop,
- .pick_task = pick_task_stop,
.select_task_rq = select_task_rq_stop,
.set_cpus_allowed = set_cpus_allowed_common,
#endif
diff --git a/kernel/sched/syscalls.c b/kernel/sched/syscalls.c
index 195d2f2834a9..cb03c790c27a 100644
--- a/kernel/sched/syscalls.c
+++ b/kernel/sched/syscalls.c
@@ -57,7 +57,7 @@ static int effective_prio(struct task_struct *p)
* keep the priority unchanged. Otherwise, update priority
* to the normal priority:
*/
- if (!rt_prio(p->prio))
+ if (!rt_or_dl_prio(p->prio))
return p->normal_prio;
return p->prio;
}
@@ -258,107 +258,6 @@ int sched_core_idle_cpu(int cpu)
#endif
-#ifdef CONFIG_SMP
-/*
- * This function computes an effective utilization for the given CPU, to be
- * used for frequency selection given the linear relation: f = u * f_max.
- *
- * The scheduler tracks the following metrics:
- *
- * cpu_util_{cfs,rt,dl,irq}()
- * cpu_bw_dl()
- *
- * Where the cfs,rt and dl util numbers are tracked with the same metric and
- * synchronized windows and are thus directly comparable.
- *
- * The cfs,rt,dl utilization are the running times measured with rq->clock_task
- * which excludes things like IRQ and steal-time. These latter are then accrued
- * in the IRQ utilization.
- *
- * The DL bandwidth number OTOH is not a measured metric but a value computed
- * based on the task model parameters and gives the minimal utilization
- * required to meet deadlines.
- */
-unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
- unsigned long *min,
- unsigned long *max)
-{
- unsigned long util, irq, scale;
- struct rq *rq = cpu_rq(cpu);
-
- scale = arch_scale_cpu_capacity(cpu);
-
- /*
- * Early check to see if IRQ/steal time saturates the CPU, can be
- * because of inaccuracies in how we track these -- see
- * update_irq_load_avg().
- */
- irq = cpu_util_irq(rq);
- if (unlikely(irq >= scale)) {
- if (min)
- *min = scale;
- if (max)
- *max = scale;
- return scale;
- }
-
- if (min) {
- /*
- * The minimum utilization returns the highest level between:
- * - the computed DL bandwidth needed with the IRQ pressure which
- * steals time to the deadline task.
- * - The minimum performance requirement for CFS and/or RT.
- */
- *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
-
- /*
- * When an RT task is runnable and uclamp is not used, we must
- * ensure that the task will run at maximum compute capacity.
- */
- if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
- *min = max(*min, scale);
- }
-
- /*
- * Because the time spend on RT/DL tasks is visible as 'lost' time to
- * CFS tasks and we use the same metric to track the effective
- * utilization (PELT windows are synchronized) we can directly add them
- * to obtain the CPU's actual utilization.
- */
- util = util_cfs + cpu_util_rt(rq);
- util += cpu_util_dl(rq);
-
- /*
- * The maximum hint is a soft bandwidth requirement, which can be lower
- * than the actual utilization because of uclamp_max requirements.
- */
- if (max)
- *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
-
- if (util >= scale)
- return scale;
-
- /*
- * There is still idle time; further improve the number by using the
- * IRQ metric. Because IRQ/steal time is hidden from the task clock we
- * need to scale the task numbers:
- *
- * max - irq
- * U' = irq + --------- * U
- * max
- */
- util = scale_irq_capacity(util, irq, scale);
- util += irq;
-
- return min(scale, util);
-}
-
-unsigned long sched_cpu_util(int cpu)
-{
- return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
-}
-#endif /* CONFIG_SMP */
-
/**
* find_process_by_pid - find a process with a matching PID value.
* @pid: the pid in question.
@@ -401,13 +300,23 @@ static void __setscheduler_params(struct task_struct *p,
p->policy = policy;
- if (dl_policy(policy))
+ if (dl_policy(policy)) {
__setparam_dl(p, attr);
- else if (fair_policy(policy))
+ } else if (fair_policy(policy)) {
p->static_prio = NICE_TO_PRIO(attr->sched_nice);
+ if (attr->sched_runtime) {
+ p->se.custom_slice = 1;
+ p->se.slice = clamp_t(u64, attr->sched_runtime,
+ NSEC_PER_MSEC/10, /* HZ=1000 * 10 */
+ NSEC_PER_MSEC*100); /* HZ=100 / 10 */
+ } else {
+ p->se.custom_slice = 0;
+ p->se.slice = sysctl_sched_base_slice;
+ }
+ }
/* rt-policy tasks do not have a timerslack */
- if (task_is_realtime(p)) {
+ if (rt_or_dl_task_policy(p)) {
p->timer_slack_ns = 0;
} else if (p->timer_slack_ns == 0) {
/* when switching back to non-rt policy, restore timerslack */
@@ -708,7 +617,9 @@ recheck:
* but store a possible modification of reset_on_fork.
*/
if (unlikely(policy == p->policy)) {
- if (fair_policy(policy) && attr->sched_nice != task_nice(p))
+ if (fair_policy(policy) &&
+ (attr->sched_nice != task_nice(p) ||
+ (attr->sched_runtime != p->se.slice)))
goto change;
if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
goto change;
@@ -854,6 +765,9 @@ static int _sched_setscheduler(struct task_struct *p, int policy,
.sched_nice = PRIO_TO_NICE(p->static_prio),
};
+ if (p->se.custom_slice)
+ attr.sched_runtime = p->se.slice;
+
/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
@@ -1020,12 +934,14 @@ err_size:
static void get_params(struct task_struct *p, struct sched_attr *attr)
{
- if (task_has_dl_policy(p))
+ if (task_has_dl_policy(p)) {
__getparam_dl(p, attr);
- else if (task_has_rt_policy(p))
+ } else if (task_has_rt_policy(p)) {
attr->sched_priority = p->rt_priority;
- else
+ } else {
attr->sched_nice = task_nice(p);
+ attr->sched_runtime = p->se.slice;
+ }
}
/**
diff --git a/kernel/sched/topology.c b/kernel/sched/topology.c
index 76504b776d03..9748a4c8d668 100644
--- a/kernel/sched/topology.c
+++ b/kernel/sched/topology.c
@@ -516,6 +516,14 @@ void rq_attach_root(struct rq *rq, struct root_domain *rd)
if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
set_rq_online(rq);
+ /*
+ * Because the rq is not a task, dl_add_task_root_domain() did not
+ * move the fair server bw to the rd if it already started.
+ * Add it now.
+ */
+ if (rq->fair_server.dl_server)
+ __dl_server_attach_root(&rq->fair_server, rq);
+
rq_unlock_irqrestore(rq, &rf);
if (old_rd)
diff --git a/kernel/sys.c b/kernel/sys.c
index e3c4cffb520c..b7e096e1c3a1 100644
--- a/kernel/sys.c
+++ b/kernel/sys.c
@@ -2557,7 +2557,7 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
error = current->timer_slack_ns;
break;
case PR_SET_TIMERSLACK:
- if (task_is_realtime(current))
+ if (rt_or_dl_task_policy(current))
break;
if (arg2 <= 0)
current->timer_slack_ns =
diff --git a/kernel/time/hrtimer.c b/kernel/time/hrtimer.c
index 12eb40d6290e..cddcd08ea827 100644
--- a/kernel/time/hrtimer.c
+++ b/kernel/time/hrtimer.c
@@ -1977,7 +1977,7 @@ static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
* expiry.
*/
if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
- if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
+ if (rt_or_dl_task_policy(current) && !(mode & HRTIMER_MODE_SOFT))
mode |= HRTIMER_MODE_HARD;
}
diff --git a/kernel/trace/trace_sched_wakeup.c b/kernel/trace/trace_sched_wakeup.c
index 130ca7e7787e..ae2ace5e515a 100644
--- a/kernel/trace/trace_sched_wakeup.c
+++ b/kernel/trace/trace_sched_wakeup.c
@@ -547,7 +547,7 @@ probe_wakeup(void *ignore, struct task_struct *p)
* - wakeup_dl handles tasks belonging to sched_dl class only.
*/
if (tracing_dl || (wakeup_dl && !dl_task(p)) ||
- (wakeup_rt && !dl_task(p) && !rt_task(p)) ||
+ (wakeup_rt && !rt_or_dl_task(p)) ||
(!dl_task(p) && (p->prio >= wakeup_prio || p->prio >= current->prio)))
return;
diff --git a/mm/page-writeback.c b/mm/page-writeback.c
index 4430ac68e4c4..7a04cb1918fd 100644
--- a/mm/page-writeback.c
+++ b/mm/page-writeback.c
@@ -418,7 +418,7 @@ static void domain_dirty_limits(struct dirty_throttle_control *dtc)
bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
tsk = current;
- if (rt_task(tsk)) {
+ if (rt_or_dl_task(tsk)) {
bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
}
@@ -477,7 +477,7 @@ static unsigned long node_dirty_limit(struct pglist_data *pgdat)
else
dirty = vm_dirty_ratio * node_memory / 100;
- if (rt_task(tsk))
+ if (rt_or_dl_task(tsk))
dirty += dirty / 4;
/*
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index 91ace8ca97e2..0aefae4a26b2 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -4004,7 +4004,7 @@ gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
*/
if (alloc_flags & ALLOC_MIN_RESERVE)
alloc_flags &= ~ALLOC_CPUSET;
- } else if (unlikely(rt_task(current)) && in_task())
+ } else if (unlikely(rt_or_dl_task(current)) && in_task())
alloc_flags |= ALLOC_MIN_RESERVE;
alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);