summaryrefslogtreecommitdiff
path: root/tools/tracing/rtla/src/timerlat_aa.c
blob: ec4e0f4b0e6cdb7d2c4ab7461d915821d9d081c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2023 Red Hat Inc, Daniel Bristot de Oliveira <bristot@kernel.org>
 */

#include <stdlib.h>
#include <errno.h>
#include "utils.h"
#include "osnoise.h"
#include "timerlat.h"

enum timelat_state {
	TIMERLAT_INIT = 0,
	TIMERLAT_WAITING_IRQ,
	TIMERLAT_WAITING_THREAD,
};

#define MAX_COMM		24

/*
 * Per-cpu data statistics and data.
 */
struct timerlat_aa_data {
	/* Current CPU state */
	int			curr_state;

	/* timerlat IRQ latency */
	unsigned long long	tlat_irq_seqnum;
	unsigned long long	tlat_irq_latency;
	unsigned long long	tlat_irq_timstamp;

	/* timerlat Thread latency */
	unsigned long long	tlat_thread_seqnum;
	unsigned long long	tlat_thread_latency;
	unsigned long long	tlat_thread_timstamp;

	/*
	 * Information about the thread running when the IRQ
	 * arrived.
	 *
	 * This can be blocking or interference, depending on the
	 * priority of the thread. Assuming timerlat is the highest
	 * prio, it is blocking. If timerlat has a lower prio, it is
	 * interference.
	 * note: "unsigned long long" because they are fetch using tep_get_field_val();
	 */
	unsigned long long	run_thread_pid;
	char			run_thread_comm[MAX_COMM];
	unsigned long long	thread_blocking_duration;
	unsigned long long	max_exit_idle_latency;

	/* Information about the timerlat timer irq */
	unsigned long long	timer_irq_start_time;
	unsigned long long	timer_irq_start_delay;
	unsigned long long	timer_irq_duration;
	unsigned long long	timer_exit_from_idle;

	/*
	 * Information about the last IRQ before the timerlat irq
	 * arrived.
	 *
	 * If now - timestamp is <= latency, it might have influenced
	 * in the timerlat irq latency. Otherwise, ignore it.
	 */
	unsigned long long	prev_irq_duration;
	unsigned long long	prev_irq_timstamp;

	/*
	 * Interference sum.
	 */
	unsigned long long	thread_nmi_sum;
	unsigned long long	thread_irq_sum;
	unsigned long long	thread_softirq_sum;
	unsigned long long	thread_thread_sum;

	/*
	 * Interference task information.
	 */
	struct trace_seq	*prev_irqs_seq;
	struct trace_seq	*nmi_seq;
	struct trace_seq	*irqs_seq;
	struct trace_seq	*softirqs_seq;
	struct trace_seq	*threads_seq;
	struct trace_seq	*stack_seq;

	/*
	 * Current thread.
	 */
	char			current_comm[MAX_COMM];
	unsigned long long	current_pid;

	/*
	 * Is the system running a kworker?
	 */
	unsigned long long	kworker;
	unsigned long long	kworker_func;
};

/*
 * The analysis context and system wide view
 */
struct timerlat_aa_context {
	int nr_cpus;
	int dump_tasks;

	/* per CPU data */
	struct timerlat_aa_data *taa_data;

	/*
	 * required to translate function names and register
	 * events.
	 */
	struct osnoise_tool *tool;
};

/*
 * The data is stored as a local variable, but accessed via a helper function.
 *
 * It could be stored inside the trace context. But every access would
 * require container_of() + a series of pointers. Do we need it? Not sure.
 *
 * For now keep it simple. If needed, store it in the tool, add the *context
 * as a parameter in timerlat_aa_get_ctx() and do the magic there.
 */
static struct timerlat_aa_context *__timerlat_aa_ctx;

static struct timerlat_aa_context *timerlat_aa_get_ctx(void)
{
	return __timerlat_aa_ctx;
}

/*
 * timerlat_aa_get_data - Get the per-cpu data from the timerlat context
 */
static struct timerlat_aa_data
*timerlat_aa_get_data(struct timerlat_aa_context *taa_ctx, int cpu)
{
	return &taa_ctx->taa_data[cpu];
}

/*
 * timerlat_aa_irq_latency - Handles timerlat IRQ event
 */
static int timerlat_aa_irq_latency(struct timerlat_aa_data *taa_data,
				   struct trace_seq *s, struct tep_record *record,
				   struct tep_event *event)
{
	/*
	 * For interference, we start now looking for things that can delay
	 * the thread.
	 */
	taa_data->curr_state = TIMERLAT_WAITING_THREAD;
	taa_data->tlat_irq_timstamp = record->ts;

	/*
	 * Zero values.
	 */
	taa_data->thread_nmi_sum = 0;
	taa_data->thread_irq_sum = 0;
	taa_data->thread_softirq_sum = 0;
	taa_data->thread_blocking_duration = 0;
	taa_data->timer_irq_start_time = 0;
	taa_data->timer_irq_duration = 0;
	taa_data->timer_exit_from_idle = 0;

	/*
	 * Zero interference tasks.
	 */
	trace_seq_reset(taa_data->nmi_seq);
	trace_seq_reset(taa_data->irqs_seq);
	trace_seq_reset(taa_data->softirqs_seq);
	trace_seq_reset(taa_data->threads_seq);

	/* IRQ latency values */
	tep_get_field_val(s, event, "timer_latency", record, &taa_data->tlat_irq_latency, 1);
	tep_get_field_val(s, event, "seqnum", record, &taa_data->tlat_irq_seqnum, 1);

	/* The thread that can cause blocking */
	tep_get_common_field_val(s, event, "common_pid", record, &taa_data->run_thread_pid, 1);

	/*
	 * Get exit from idle case.
	 *
	 * If it is not idle thread:
	 */
	if (taa_data->run_thread_pid)
		return 0;

	/*
	 * if the latency is shorter than the known exit from idle:
	 */
	if (taa_data->tlat_irq_latency < taa_data->max_exit_idle_latency)
		return 0;

	/*
	 * To be safe, ignore the cases in which an IRQ/NMI could have
	 * interfered with the timerlat IRQ.
	 */
	if (taa_data->tlat_irq_timstamp - taa_data->tlat_irq_latency
	    < taa_data->prev_irq_timstamp + taa_data->prev_irq_duration)
		return 0;

	taa_data->max_exit_idle_latency = taa_data->tlat_irq_latency;

	return 0;
}

/*
 * timerlat_aa_thread_latency - Handles timerlat thread event
 */
static int timerlat_aa_thread_latency(struct timerlat_aa_data *taa_data,
				      struct trace_seq *s, struct tep_record *record,
				      struct tep_event *event)
{
	/*
	 * For interference, we start now looking for things that can delay
	 * the IRQ of the next cycle.
	 */
	taa_data->curr_state = TIMERLAT_WAITING_IRQ;
	taa_data->tlat_thread_timstamp = record->ts;

	/* Thread latency values */
	tep_get_field_val(s, event, "timer_latency", record, &taa_data->tlat_thread_latency, 1);
	tep_get_field_val(s, event, "seqnum", record, &taa_data->tlat_thread_seqnum, 1);

	return 0;
}

/*
 * timerlat_aa_handler - Handle timerlat events
 *
 * This function is called to handle timerlat events recording statistics.
 *
 * Returns 0 on success, -1 otherwise.
 */
int timerlat_aa_handler(struct trace_seq *s, struct tep_record *record,
			struct tep_event *event, void *context)
{
	struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx();
	struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu);
	unsigned long long thread;

	if (!taa_data)
		return -1;

	tep_get_field_val(s, event, "context", record, &thread, 1);
	if (!thread)
		return timerlat_aa_irq_latency(taa_data, s, record, event);
	else
		return timerlat_aa_thread_latency(taa_data, s, record, event);
}

/*
 * timerlat_aa_nmi_handler - Handles NMI noise
 *
 * It is used to collect information about interferences from NMI. It is
 * hooked to the osnoise:nmi_noise event.
 */
static int timerlat_aa_nmi_handler(struct trace_seq *s, struct tep_record *record,
				   struct tep_event *event, void *context)
{
	struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx();
	struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu);
	unsigned long long duration;
	unsigned long long start;

	tep_get_field_val(s, event, "duration", record, &duration, 1);
	tep_get_field_val(s, event, "start", record, &start, 1);

	if (taa_data->curr_state == TIMERLAT_WAITING_IRQ) {
		taa_data->prev_irq_duration = duration;
		taa_data->prev_irq_timstamp = start;

		trace_seq_reset(taa_data->prev_irqs_seq);
		trace_seq_printf(taa_data->prev_irqs_seq, "\t%24s	\t\t\t%9.2f us\n",
			 "nmi", ns_to_usf(duration));
		return 0;
	}

	taa_data->thread_nmi_sum += duration;
	trace_seq_printf(taa_data->nmi_seq, "	%24s	\t\t\t%9.2f us\n",
		 "nmi", ns_to_usf(duration));

	return 0;
}

/*
 * timerlat_aa_irq_handler - Handles IRQ noise
 *
 * It is used to collect information about interferences from IRQ. It is
 * hooked to the osnoise:irq_noise event.
 *
 * It is a little bit more complex than the other because it measures:
 *	- The IRQs that can delay the timer IRQ before it happened.
 *	- The Timerlat IRQ handler
 *	- The IRQs that happened between the timerlat IRQ and the timerlat thread
 *	  (IRQ interference).
 */
static int timerlat_aa_irq_handler(struct trace_seq *s, struct tep_record *record,
				   struct tep_event *event, void *context)
{
	struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx();
	struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu);
	unsigned long long expected_start;
	unsigned long long duration;
	unsigned long long vector;
	unsigned long long start;
	char *desc;
	int val;

	tep_get_field_val(s, event, "duration", record, &duration, 1);
	tep_get_field_val(s, event, "start", record, &start, 1);
	tep_get_field_val(s, event, "vector", record, &vector, 1);
	desc = tep_get_field_raw(s, event, "desc", record, &val, 1);

	/*
	 * Before the timerlat IRQ.
	 */
	if (taa_data->curr_state == TIMERLAT_WAITING_IRQ) {
		taa_data->prev_irq_duration = duration;
		taa_data->prev_irq_timstamp = start;

		trace_seq_reset(taa_data->prev_irqs_seq);
		trace_seq_printf(taa_data->prev_irqs_seq, "\t%24s:%-3llu	\t\t%9.2f us\n",
				 desc, vector, ns_to_usf(duration));
		return 0;
	}

	/*
	 * The timerlat IRQ: taa_data->timer_irq_start_time is zeroed at
	 * the timerlat irq handler.
	 */
	if (!taa_data->timer_irq_start_time) {
		expected_start = taa_data->tlat_irq_timstamp - taa_data->tlat_irq_latency;

		taa_data->timer_irq_start_time = start;
		taa_data->timer_irq_duration = duration;

		taa_data->timer_irq_start_delay = taa_data->timer_irq_start_time - expected_start;

		/*
		 * not exit from idle.
		 */
		if (taa_data->run_thread_pid)
			return 0;

		if (expected_start > taa_data->prev_irq_timstamp + taa_data->prev_irq_duration)
			taa_data->timer_exit_from_idle = taa_data->timer_irq_start_delay;

		return 0;
	}

	/*
	 * IRQ interference.
	 */
	taa_data->thread_irq_sum += duration;
	trace_seq_printf(taa_data->irqs_seq, "	%24s:%-3llu	\t	%9.2f us\n",
			 desc, vector, ns_to_usf(duration));

	return 0;
}

static char *softirq_name[] = { "HI", "TIMER",	"NET_TX", "NET_RX", "BLOCK",
				"IRQ_POLL", "TASKLET", "SCHED", "HRTIMER", "RCU" };


/*
 * timerlat_aa_softirq_handler - Handles Softirq noise
 *
 * It is used to collect information about interferences from Softirq. It is
 * hooked to the osnoise:softirq_noise event.
 *
 * It is only printed in the non-rt kernel, as softirqs become thread on RT.
 */
static int timerlat_aa_softirq_handler(struct trace_seq *s, struct tep_record *record,
				       struct tep_event *event, void *context)
{
	struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx();
	struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu);
	unsigned long long duration;
	unsigned long long vector;
	unsigned long long start;

	if (taa_data->curr_state == TIMERLAT_WAITING_IRQ)
		return 0;

	tep_get_field_val(s, event, "duration", record, &duration, 1);
	tep_get_field_val(s, event, "start", record, &start, 1);
	tep_get_field_val(s, event, "vector", record, &vector, 1);

	taa_data->thread_softirq_sum += duration;

	trace_seq_printf(taa_data->softirqs_seq, "\t%24s:%-3llu	\t	%9.2f us\n",
			 softirq_name[vector], vector, ns_to_usf(duration));
	return 0;
}

/*
 * timerlat_aa_softirq_handler - Handles thread noise
 *
 * It is used to collect information about interferences from threads. It is
 * hooked to the osnoise:thread_noise event.
 *
 * Note: if you see thread noise, your timerlat thread was not the highest prio one.
 */
static int timerlat_aa_thread_handler(struct trace_seq *s, struct tep_record *record,
				      struct tep_event *event, void *context)
{
	struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx();
	struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu);
	unsigned long long duration;
	unsigned long long start;
	unsigned long long pid;
	const char *comm;
	int val;

	if (taa_data->curr_state == TIMERLAT_WAITING_IRQ)
		return 0;

	tep_get_field_val(s, event, "duration", record, &duration, 1);
	tep_get_field_val(s, event, "start", record, &start, 1);

	tep_get_common_field_val(s, event, "common_pid", record, &pid, 1);
	comm = tep_get_field_raw(s, event, "comm", record, &val, 1);

	if (pid == taa_data->run_thread_pid && !taa_data->thread_blocking_duration) {
		taa_data->thread_blocking_duration = duration;

		if (comm)
			strncpy(taa_data->run_thread_comm, comm, MAX_COMM);
		else
			sprintf(taa_data->run_thread_comm, "<...>");

	} else {
		taa_data->thread_thread_sum += duration;

		trace_seq_printf(taa_data->threads_seq, "\t%24s:%-3llu	\t\t%9.2f us\n",
			 comm, pid, ns_to_usf(duration));
	}

	return 0;
}

/*
 * timerlat_aa_stack_handler - Handles timerlat IRQ stack trace
 *
 * Saves and parse the stack trace generated by the timerlat IRQ.
 */
static int timerlat_aa_stack_handler(struct trace_seq *s, struct tep_record *record,
			      struct tep_event *event, void *context)
{
	struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx();
	struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu);
	unsigned long *caller;
	const char *function;
	int val, i;

	trace_seq_reset(taa_data->stack_seq);

	trace_seq_printf(taa_data->stack_seq, "    Blocking thread stack trace\n");
	caller = tep_get_field_raw(s, event, "caller", record, &val, 1);
	if (caller) {
		for (i = 0; ; i++) {
			function = tep_find_function(taa_ctx->tool->trace.tep, caller[i]);
			if (!function)
				break;
			trace_seq_printf(taa_data->stack_seq, "\t\t-> %s\n", function);
		}
	}
	return 0;
}

/*
 * timerlat_aa_sched_switch_handler - Tracks the current thread running on the CPU
 *
 * Handles the sched:sched_switch event to trace the current thread running on the
 * CPU. It is used to display the threads running on the other CPUs when the trace
 * stops.
 */
static int timerlat_aa_sched_switch_handler(struct trace_seq *s, struct tep_record *record,
					    struct tep_event *event, void *context)
{
	struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx();
	struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu);
	const char *comm;
	int val;

	tep_get_field_val(s, event, "next_pid", record, &taa_data->current_pid, 1);
	comm = tep_get_field_raw(s, event, "next_comm", record, &val, 1);

	strncpy(taa_data->current_comm, comm, MAX_COMM);

	/*
	 * If this was a kworker, clean the last kworkers that ran.
	 */
	taa_data->kworker = 0;
	taa_data->kworker_func = 0;

	return 0;
}

/*
 * timerlat_aa_kworker_start_handler - Tracks a kworker running on the CPU
 *
 * Handles workqueue:workqueue_execute_start event, keeping track of
 * the job that a kworker could be doing in the CPU.
 *
 * We already catch problems of hardware related latencies caused by work queues
 * running driver code that causes hardware stall. For example, with DRM drivers.
 */
static int timerlat_aa_kworker_start_handler(struct trace_seq *s, struct tep_record *record,
					     struct tep_event *event, void *context)
{
	struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx();
	struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu);

	tep_get_field_val(s, event, "work", record, &taa_data->kworker, 1);
	tep_get_field_val(s, event, "function", record, &taa_data->kworker_func, 1);
	return 0;
}

/*
 * timerlat_thread_analysis - Prints the analysis of a CPU that hit a stop tracing
 *
 * This is the core of the analysis.
 */
static void timerlat_thread_analysis(struct timerlat_aa_data *taa_data, int cpu,
				     int irq_thresh, int thread_thresh)
{
	unsigned long long exp_irq_ts;
	int total;
	int irq;

	/*
	 * IRQ latency or Thread latency?
	 */
	if (taa_data->tlat_irq_seqnum > taa_data->tlat_thread_seqnum) {
		irq = 1;
		total = taa_data->tlat_irq_latency;
	} else {
		irq = 0;
		total = taa_data->tlat_thread_latency;
	}

	/*
	 * Expected IRQ arrival time using the trace clock as the base.
	 */
	exp_irq_ts = taa_data->timer_irq_start_time - taa_data->timer_irq_start_delay;

	if (exp_irq_ts < taa_data->prev_irq_timstamp + taa_data->prev_irq_duration)
		printf("  Previous IRQ interference:	\t	up to %9.2f us",
			ns_to_usf(taa_data->prev_irq_duration));

	/*
	 * The delay that the IRQ suffered before starting.
	 */
	printf("  IRQ handler delay:		%16s	%9.2f us (%.2f %%)\n",
		(ns_to_usf(taa_data->timer_exit_from_idle) > 10) ? "(exit from idle)" : "",
		ns_to_usf(taa_data->timer_irq_start_delay),
		ns_to_per(total, taa_data->timer_irq_start_delay));

	/*
	 * Timerlat IRQ.
	 */
	printf("  IRQ latency:	\t\t\t\t	%9.2f us\n",
		ns_to_usf(taa_data->tlat_irq_latency));

	if (irq) {
		/*
		 * If the trace stopped due to IRQ, the other events will not happen
		 * because... the trace stopped :-).
		 *
		 * That is all folks, the stack trace was printed before the stop,
		 * so it will be displayed, it is the key.
		 */
		printf("  Blocking thread:\n");
		printf("	%24s:%-9llu\n",
			taa_data->run_thread_comm, taa_data->run_thread_pid);
	} else  {
		/*
		 * The duration of the IRQ handler that handled the timerlat IRQ.
		 */
		printf("  Timerlat IRQ duration:	\t\t	%9.2f us (%.2f %%)\n",
			ns_to_usf(taa_data->timer_irq_duration),
			ns_to_per(total, taa_data->timer_irq_duration));

		/*
		 * The amount of time that the current thread postponed the scheduler.
		 *
		 * Recalling that it is net from NMI/IRQ/Softirq interference, so there
		 * is no need to compute values here.
		 */
		printf("  Blocking thread:	\t\t\t	%9.2f us (%.2f %%)\n",
			ns_to_usf(taa_data->thread_blocking_duration),
			ns_to_per(total, taa_data->thread_blocking_duration));

		printf("	%24s:%-9llu		%9.2f us\n",
			taa_data->run_thread_comm, taa_data->run_thread_pid,
			ns_to_usf(taa_data->thread_blocking_duration));
	}

	/*
	 * Print the stack trace!
	 */
	trace_seq_do_printf(taa_data->stack_seq);

	/*
	 * NMIs can happen during the IRQ, so they are always possible.
	 */
	if (taa_data->thread_nmi_sum)
		printf("  NMI interference	\t\t\t	%9.2f us (%.2f %%)\n",
			ns_to_usf(taa_data->thread_nmi_sum),
			ns_to_per(total, taa_data->thread_nmi_sum));

	/*
	 * If it is an IRQ latency, the other factors can be skipped.
	 */
	if (irq)
		goto print_total;

	/*
	 * Prints the interference caused by IRQs to the thread latency.
	 */
	if (taa_data->thread_irq_sum) {
		printf("  IRQ interference	\t\t\t	%9.2f us (%.2f %%)\n",
			ns_to_usf(taa_data->thread_irq_sum),
			ns_to_per(total, taa_data->thread_irq_sum));

		trace_seq_do_printf(taa_data->irqs_seq);
	}

	/*
	 * Prints the interference caused by Softirqs to the thread latency.
	 */
	if (taa_data->thread_softirq_sum) {
		printf("  Softirq interference	\t\t\t	%9.2f us (%.2f %%)\n",
			ns_to_usf(taa_data->thread_softirq_sum),
			ns_to_per(total, taa_data->thread_softirq_sum));

		trace_seq_do_printf(taa_data->softirqs_seq);
	}

	/*
	 * Prints the interference caused by other threads to the thread latency.
	 *
	 * If this happens, your timerlat is not the highest prio. OK, migration
	 * thread can happen. But otherwise, you are not measuring the "scheduling
	 * latency" only, and here is the difference from scheduling latency and
	 * timer handling latency.
	 */
	if (taa_data->thread_thread_sum) {
		printf("  Thread interference	\t\t\t	%9.2f us (%.2f %%)\n",
			ns_to_usf(taa_data->thread_thread_sum),
			ns_to_per(total, taa_data->thread_thread_sum));

		trace_seq_do_printf(taa_data->threads_seq);
	}

	/*
	 * Done.
	 */
print_total:
	printf("------------------------------------------------------------------------\n");
	printf("  %s latency:	\t\t\t	%9.2f us (100%%)\n", irq ? "IRQ" : "Thread",
		ns_to_usf(total));
}

/**
 * timerlat_auto_analysis - Analyze the collected data
 */
void timerlat_auto_analysis(int irq_thresh, int thread_thresh)
{
	struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx();
	unsigned long long max_exit_from_idle = 0;
	struct timerlat_aa_data *taa_data;
	int max_exit_from_idle_cpu;
	struct tep_handle *tep;
	int cpu;

	/* bring stop tracing to the ns scale */
	irq_thresh = irq_thresh * 1000;
	thread_thresh = thread_thresh * 1000;

	for (cpu = 0; cpu < taa_ctx->nr_cpus; cpu++) {
		taa_data = timerlat_aa_get_data(taa_ctx, cpu);

		if (irq_thresh && taa_data->tlat_irq_latency >= irq_thresh) {
			printf("## CPU %d hit stop tracing, analyzing it ##\n", cpu);
			timerlat_thread_analysis(taa_data, cpu, irq_thresh, thread_thresh);
		} else if (thread_thresh && (taa_data->tlat_thread_latency) >= thread_thresh) {
			printf("## CPU %d hit stop tracing, analyzing it ##\n", cpu);
			timerlat_thread_analysis(taa_data, cpu, irq_thresh, thread_thresh);
		}

		if (taa_data->max_exit_idle_latency > max_exit_from_idle) {
			max_exit_from_idle = taa_data->max_exit_idle_latency;
			max_exit_from_idle_cpu = cpu;
		}

	}

	if (max_exit_from_idle) {
		printf("\n");
		printf("Max timerlat IRQ latency from idle: %.2f us in cpu %d\n",
			ns_to_usf(max_exit_from_idle), max_exit_from_idle_cpu);
	}
	if (!taa_ctx->dump_tasks)
		return;

	printf("\n");
	printf("Printing CPU tasks:\n");
	for (cpu = 0; cpu < taa_ctx->nr_cpus; cpu++) {
		taa_data = timerlat_aa_get_data(taa_ctx, cpu);
		tep = taa_ctx->tool->trace.tep;

		printf("    [%.3d] %24s:%llu", cpu, taa_data->current_comm, taa_data->current_pid);

		if (taa_data->kworker_func)
			printf(" kworker:%s:%s",
				tep_find_function(tep, taa_data->kworker) ? : "<...>",
				tep_find_function(tep, taa_data->kworker_func));
		printf("\n");
	}

}

/*
 * timerlat_aa_destroy_seqs - Destroy seq files used to store parsed data
 */
static void timerlat_aa_destroy_seqs(struct timerlat_aa_context *taa_ctx)
{
	struct timerlat_aa_data *taa_data;
	int i;

	if (!taa_ctx->taa_data)
		return;

	for (i = 0; i < taa_ctx->nr_cpus; i++) {
		taa_data = timerlat_aa_get_data(taa_ctx, i);

		if (taa_data->prev_irqs_seq) {
			trace_seq_destroy(taa_data->prev_irqs_seq);
			free(taa_data->prev_irqs_seq);
		}

		if (taa_data->nmi_seq) {
			trace_seq_destroy(taa_data->nmi_seq);
			free(taa_data->nmi_seq);
		}

		if (taa_data->irqs_seq) {
			trace_seq_destroy(taa_data->irqs_seq);
			free(taa_data->irqs_seq);
		}

		if (taa_data->softirqs_seq) {
			trace_seq_destroy(taa_data->softirqs_seq);
			free(taa_data->softirqs_seq);
		}

		if (taa_data->threads_seq) {
			trace_seq_destroy(taa_data->threads_seq);
			free(taa_data->threads_seq);
		}

		if (taa_data->stack_seq) {
			trace_seq_destroy(taa_data->stack_seq);
			free(taa_data->stack_seq);
		}
	}
}

/*
 * timerlat_aa_init_seqs - Init seq files used to store parsed information
 *
 * Instead of keeping data structures to store raw data, use seq files to
 * store parsed data.
 *
 * Allocates and initialize seq files.
 *
 * Returns 0 on success, -1 otherwise.
 */
static int timerlat_aa_init_seqs(struct timerlat_aa_context *taa_ctx)
{
	struct timerlat_aa_data *taa_data;
	int i;

	for (i = 0; i < taa_ctx->nr_cpus; i++) {

		taa_data = timerlat_aa_get_data(taa_ctx, i);

		taa_data->prev_irqs_seq = calloc(1, sizeof(*taa_data->prev_irqs_seq));
		if (!taa_data->prev_irqs_seq)
			goto out_err;

		trace_seq_init(taa_data->prev_irqs_seq);

		taa_data->nmi_seq = calloc(1, sizeof(*taa_data->nmi_seq));
		if (!taa_data->nmi_seq)
			goto out_err;

		trace_seq_init(taa_data->nmi_seq);

		taa_data->irqs_seq = calloc(1, sizeof(*taa_data->irqs_seq));
		if (!taa_data->irqs_seq)
			goto out_err;

		trace_seq_init(taa_data->irqs_seq);

		taa_data->softirqs_seq = calloc(1, sizeof(*taa_data->softirqs_seq));
		if (!taa_data->softirqs_seq)
			goto out_err;

		trace_seq_init(taa_data->softirqs_seq);

		taa_data->threads_seq = calloc(1, sizeof(*taa_data->threads_seq));
		if (!taa_data->threads_seq)
			goto out_err;

		trace_seq_init(taa_data->threads_seq);

		taa_data->stack_seq = calloc(1, sizeof(*taa_data->stack_seq));
		if (!taa_data->stack_seq)
			goto out_err;

		trace_seq_init(taa_data->stack_seq);
	}

	return 0;

out_err:
	timerlat_aa_destroy_seqs(taa_ctx);
	return -1;
}

/*
 * timerlat_aa_unregister_events - Unregister events used in the auto-analysis
 */
static void timerlat_aa_unregister_events(struct osnoise_tool *tool, int dump_tasks)
{
	tracefs_event_disable(tool->trace.inst, "osnoise", NULL);

	tep_unregister_event_handler(tool->trace.tep, -1, "osnoise", "nmi_noise",
				     timerlat_aa_nmi_handler, tool);

	tep_unregister_event_handler(tool->trace.tep, -1, "osnoise", "irq_noise",
				     timerlat_aa_irq_handler, tool);

	tep_unregister_event_handler(tool->trace.tep, -1, "osnoise", "softirq_noise",
				     timerlat_aa_softirq_handler, tool);

	tep_unregister_event_handler(tool->trace.tep, -1, "osnoise", "thread_noise",
				     timerlat_aa_thread_handler, tool);

	tep_unregister_event_handler(tool->trace.tep, -1, "ftrace", "kernel_stack",
				     timerlat_aa_stack_handler, tool);
	if (!dump_tasks)
		return;

	tracefs_event_disable(tool->trace.inst, "sched", "sched_switch");
	tep_unregister_event_handler(tool->trace.tep, -1, "sched", "sched_switch",
				     timerlat_aa_sched_switch_handler, tool);

	tracefs_event_disable(tool->trace.inst, "workqueue", "workqueue_execute_start");
	tep_unregister_event_handler(tool->trace.tep, -1, "workqueue", "workqueue_execute_start",
				     timerlat_aa_kworker_start_handler, tool);
}

/*
 * timerlat_aa_register_events - Register events used in the auto-analysis
 *
 * Returns 0 on success, -1 otherwise.
 */
static int timerlat_aa_register_events(struct osnoise_tool *tool, int dump_tasks)
{
	int retval;

	/*
	 * register auto-analysis handlers.
	 */
	retval = tracefs_event_enable(tool->trace.inst, "osnoise", NULL);
	if (retval < 0 && !errno) {
		err_msg("Could not find osnoise events\n");
		goto out_err;
	}

	tep_register_event_handler(tool->trace.tep, -1, "osnoise", "nmi_noise",
				   timerlat_aa_nmi_handler, tool);

	tep_register_event_handler(tool->trace.tep, -1, "osnoise", "irq_noise",
				   timerlat_aa_irq_handler, tool);

	tep_register_event_handler(tool->trace.tep, -1, "osnoise", "softirq_noise",
				   timerlat_aa_softirq_handler, tool);

	tep_register_event_handler(tool->trace.tep, -1, "osnoise", "thread_noise",
				   timerlat_aa_thread_handler, tool);

	tep_register_event_handler(tool->trace.tep, -1, "ftrace", "kernel_stack",
				   timerlat_aa_stack_handler, tool);

	if (!dump_tasks)
		return 0;

	/*
	 * Dump task events.
	 */
	retval = tracefs_event_enable(tool->trace.inst, "sched", "sched_switch");
	if (retval < 0 && !errno) {
		err_msg("Could not find sched_switch\n");
		goto out_err;
	}

	tep_register_event_handler(tool->trace.tep, -1, "sched", "sched_switch",
				   timerlat_aa_sched_switch_handler, tool);

	retval = tracefs_event_enable(tool->trace.inst, "workqueue", "workqueue_execute_start");
	if (retval < 0 && !errno) {
		err_msg("Could not find workqueue_execute_start\n");
		goto out_err;
	}

	tep_register_event_handler(tool->trace.tep, -1, "workqueue", "workqueue_execute_start",
				   timerlat_aa_kworker_start_handler, tool);

	return 0;

out_err:
	timerlat_aa_unregister_events(tool, dump_tasks);
	return -1;
}

/**
 * timerlat_aa_destroy - Destroy timerlat auto-analysis
 */
void timerlat_aa_destroy(void)
{
	struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx();

	if (!taa_ctx)
		return;

	if (!taa_ctx->taa_data)
		goto out_ctx;

	timerlat_aa_unregister_events(taa_ctx->tool, taa_ctx->dump_tasks);
	timerlat_aa_destroy_seqs(taa_ctx);
	free(taa_ctx->taa_data);
out_ctx:
	free(taa_ctx);
}

/**
 * timerlat_aa_init - Initialize timerlat auto-analysis
 *
 * Returns 0 on success, -1 otherwise.
 */
int timerlat_aa_init(struct osnoise_tool *tool, int nr_cpus, int dump_tasks)
{
	struct timerlat_aa_context *taa_ctx;
	int retval;

	taa_ctx = calloc(1, sizeof(*taa_ctx));
	if (!taa_ctx)
		return -1;

	__timerlat_aa_ctx = taa_ctx;

	taa_ctx->nr_cpus = nr_cpus;
	taa_ctx->tool = tool;
	taa_ctx->dump_tasks = dump_tasks;

	taa_ctx->taa_data = calloc(nr_cpus, sizeof(*taa_ctx->taa_data));
	if (!taa_ctx->taa_data)
		goto out_err;

	retval = timerlat_aa_init_seqs(taa_ctx);
	if (retval)
		goto out_err;

	retval = timerlat_aa_register_events(tool, dump_tasks);
	if (retval)
		goto out_err;

	return 0;

out_err:
	timerlat_aa_destroy();
	return -1;
}