1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
// SPDX-License-Identifier: GPL-2.0
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/socket.h>
#include <linux/if_xdp.h>
#include <linux/if_link.h>
#include <net/if.h>
#include <inttypes.h>
#include "ksft.h"
#define UMEM_SZ (1U << 16)
#define NUM_DESC (UMEM_SZ / 2048)
static void print_usage(const char *bin)
{
fprintf(stderr, "Usage: %s ifindex queue_id [-z]\n\n"
"where:\n\t-z: force zerocopy mode", bin);
}
/* this is a simple helper program that creates an XDP socket and does the
* minimum necessary to get bind() to succeed.
*
* this test program is not intended to actually process packets, but could be
* extended in the future if that is actually needed.
*
* it is used by queues.py to ensure the xsk netlinux attribute is set
* correctly.
*/
int main(int argc, char **argv)
{
struct xdp_umem_reg umem_reg = { 0 };
struct sockaddr_xdp sxdp = { 0 };
int num_desc = NUM_DESC;
void *umem_area;
int retry = 0;
int ifindex;
int sock_fd;
int queue;
if (argc != 3 && argc != 4) {
print_usage(argv[0]);
return 1;
}
sock_fd = socket(AF_XDP, SOCK_RAW, 0);
if (sock_fd < 0) {
perror("socket creation failed");
/* if the kernel doesn't support AF_XDP, let the test program
* know with -1. All other error paths return 1.
*/
if (errno == EAFNOSUPPORT)
return -1;
return 1;
}
/* "Probing mode", just checking if AF_XDP sockets are supported */
if (!strcmp(argv[1], "-") && !strcmp(argv[2], "-")) {
printf("AF_XDP support detected\n");
close(sock_fd);
return 0;
}
ifindex = atoi(argv[1]);
queue = atoi(argv[2]);
umem_area = mmap(NULL, UMEM_SZ, PROT_READ | PROT_WRITE, MAP_PRIVATE |
MAP_ANONYMOUS, -1, 0);
if (umem_area == MAP_FAILED) {
perror("mmap failed");
return 1;
}
umem_reg.addr = (uintptr_t)umem_area;
umem_reg.len = UMEM_SZ;
umem_reg.chunk_size = 2048;
umem_reg.headroom = 0;
setsockopt(sock_fd, SOL_XDP, XDP_UMEM_REG, &umem_reg,
sizeof(umem_reg));
setsockopt(sock_fd, SOL_XDP, XDP_UMEM_FILL_RING, &num_desc,
sizeof(num_desc));
setsockopt(sock_fd, SOL_XDP, XDP_UMEM_COMPLETION_RING, &num_desc,
sizeof(num_desc));
setsockopt(sock_fd, SOL_XDP, XDP_RX_RING, &num_desc, sizeof(num_desc));
sxdp.sxdp_family = AF_XDP;
sxdp.sxdp_ifindex = ifindex;
sxdp.sxdp_queue_id = queue;
sxdp.sxdp_flags = 0;
if (argc > 3) {
if (!strcmp(argv[3], "-z")) {
sxdp.sxdp_flags = XDP_ZEROCOPY;
} else {
print_usage(argv[0]);
return 1;
}
}
while (1) {
if (bind(sock_fd, (struct sockaddr *)&sxdp, sizeof(sxdp)) == 0)
break;
if (errno == EBUSY && retry < 3) {
retry++;
sleep(1);
continue;
} else {
perror("bind failed");
munmap(umem_area, UMEM_SZ);
close(sock_fd);
return 1;
}
}
ksft_ready();
ksft_wait();
/* parent program will write a byte to stdin when its ready for this
* helper to exit
*/
close(sock_fd);
return 0;
}
|