summaryrefslogtreecommitdiff
path: root/mm/slab.h
blob: a59c8e5d24417a4cf99fbe18577bd8853c0b340f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef MM_SLAB_H
#define MM_SLAB_H
/*
 * Internal slab definitions
 */
void __init kmem_cache_init(void);

#ifdef CONFIG_64BIT
# ifdef system_has_cmpxchg128
# define system_has_freelist_aba()	system_has_cmpxchg128()
# define try_cmpxchg_freelist		try_cmpxchg128
# endif
#define this_cpu_try_cmpxchg_freelist	this_cpu_try_cmpxchg128
typedef u128 freelist_full_t;
#else /* CONFIG_64BIT */
# ifdef system_has_cmpxchg64
# define system_has_freelist_aba()	system_has_cmpxchg64()
# define try_cmpxchg_freelist		try_cmpxchg64
# endif
#define this_cpu_try_cmpxchg_freelist	this_cpu_try_cmpxchg64
typedef u64 freelist_full_t;
#endif /* CONFIG_64BIT */

#if defined(system_has_freelist_aba) && !defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
#undef system_has_freelist_aba
#endif

/*
 * Freelist pointer and counter to cmpxchg together, avoids the typical ABA
 * problems with cmpxchg of just a pointer.
 */
typedef union {
	struct {
		void *freelist;
		unsigned long counter;
	};
	freelist_full_t full;
} freelist_aba_t;

/* Reuses the bits in struct page */
struct slab {
	unsigned long __page_flags;

#if defined(CONFIG_SLAB)

	struct kmem_cache *slab_cache;
	union {
		struct {
			struct list_head slab_list;
			void *freelist;	/* array of free object indexes */
			void *s_mem;	/* first object */
		};
		struct rcu_head rcu_head;
	};
	unsigned int active;

#elif defined(CONFIG_SLUB)

	struct kmem_cache *slab_cache;
	union {
		struct {
			union {
				struct list_head slab_list;
#ifdef CONFIG_SLUB_CPU_PARTIAL
				struct {
					struct slab *next;
					int slabs;	/* Nr of slabs left */
				};
#endif
			};
			/* Double-word boundary */
			union {
				struct {
					void *freelist;		/* first free object */
					union {
						unsigned long counters;
						struct {
							unsigned inuse:16;
							unsigned objects:15;
							unsigned frozen:1;
						};
					};
				};
#ifdef system_has_freelist_aba
				freelist_aba_t freelist_counter;
#endif
			};
		};
		struct rcu_head rcu_head;
	};
	unsigned int __unused;

#else
#error "Unexpected slab allocator configured"
#endif

	atomic_t __page_refcount;
#ifdef CONFIG_MEMCG
	unsigned long memcg_data;
#endif
};

#define SLAB_MATCH(pg, sl)						\
	static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
SLAB_MATCH(flags, __page_flags);
SLAB_MATCH(compound_head, slab_cache);	/* Ensure bit 0 is clear */
SLAB_MATCH(_refcount, __page_refcount);
#ifdef CONFIG_MEMCG
SLAB_MATCH(memcg_data, memcg_data);
#endif
#undef SLAB_MATCH
static_assert(sizeof(struct slab) <= sizeof(struct page));
#if defined(system_has_freelist_aba) && defined(CONFIG_SLUB)
static_assert(IS_ALIGNED(offsetof(struct slab, freelist), sizeof(freelist_aba_t)));
#endif

/**
 * folio_slab - Converts from folio to slab.
 * @folio: The folio.
 *
 * Currently struct slab is a different representation of a folio where
 * folio_test_slab() is true.
 *
 * Return: The slab which contains this folio.
 */
#define folio_slab(folio)	(_Generic((folio),			\
	const struct folio *:	(const struct slab *)(folio),		\
	struct folio *:		(struct slab *)(folio)))

/**
 * slab_folio - The folio allocated for a slab
 * @slab: The slab.
 *
 * Slabs are allocated as folios that contain the individual objects and are
 * using some fields in the first struct page of the folio - those fields are
 * now accessed by struct slab. It is occasionally necessary to convert back to
 * a folio in order to communicate with the rest of the mm.  Please use this
 * helper function instead of casting yourself, as the implementation may change
 * in the future.
 */
#define slab_folio(s)		(_Generic((s),				\
	const struct slab *:	(const struct folio *)s,		\
	struct slab *:		(struct folio *)s))

/**
 * page_slab - Converts from first struct page to slab.
 * @p: The first (either head of compound or single) page of slab.
 *
 * A temporary wrapper to convert struct page to struct slab in situations where
 * we know the page is the compound head, or single order-0 page.
 *
 * Long-term ideally everything would work with struct slab directly or go
 * through folio to struct slab.
 *
 * Return: The slab which contains this page
 */
#define page_slab(p)		(_Generic((p),				\
	const struct page *:	(const struct slab *)(p),		\
	struct page *:		(struct slab *)(p)))

/**
 * slab_page - The first struct page allocated for a slab
 * @slab: The slab.
 *
 * A convenience wrapper for converting slab to the first struct page of the
 * underlying folio, to communicate with code not yet converted to folio or
 * struct slab.
 */
#define slab_page(s) folio_page(slab_folio(s), 0)

/*
 * If network-based swap is enabled, sl*b must keep track of whether pages
 * were allocated from pfmemalloc reserves.
 */
static inline bool slab_test_pfmemalloc(const struct slab *slab)
{
	return folio_test_active((struct folio *)slab_folio(slab));
}

static inline void slab_set_pfmemalloc(struct slab *slab)
{
	folio_set_active(slab_folio(slab));
}

static inline void slab_clear_pfmemalloc(struct slab *slab)
{
	folio_clear_active(slab_folio(slab));
}

static inline void __slab_clear_pfmemalloc(struct slab *slab)
{
	__folio_clear_active(slab_folio(slab));
}

static inline void *slab_address(const struct slab *slab)
{
	return folio_address(slab_folio(slab));
}

static inline int slab_nid(const struct slab *slab)
{
	return folio_nid(slab_folio(slab));
}

static inline pg_data_t *slab_pgdat(const struct slab *slab)
{
	return folio_pgdat(slab_folio(slab));
}

static inline struct slab *virt_to_slab(const void *addr)
{
	struct folio *folio = virt_to_folio(addr);

	if (!folio_test_slab(folio))
		return NULL;

	return folio_slab(folio);
}

static inline int slab_order(const struct slab *slab)
{
	return folio_order((struct folio *)slab_folio(slab));
}

static inline size_t slab_size(const struct slab *slab)
{
	return PAGE_SIZE << slab_order(slab);
}

#ifdef CONFIG_SLAB
#include <linux/slab_def.h>
#endif

#ifdef CONFIG_SLUB
#include <linux/slub_def.h>
#endif

#include <linux/memcontrol.h>
#include <linux/fault-inject.h>
#include <linux/kasan.h>
#include <linux/kmemleak.h>
#include <linux/random.h>
#include <linux/sched/mm.h>
#include <linux/list_lru.h>

/*
 * State of the slab allocator.
 *
 * This is used to describe the states of the allocator during bootup.
 * Allocators use this to gradually bootstrap themselves. Most allocators
 * have the problem that the structures used for managing slab caches are
 * allocated from slab caches themselves.
 */
enum slab_state {
	DOWN,			/* No slab functionality yet */
	PARTIAL,		/* SLUB: kmem_cache_node available */
	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
	UP,			/* Slab caches usable but not all extras yet */
	FULL			/* Everything is working */
};

extern enum slab_state slab_state;

/* The slab cache mutex protects the management structures during changes */
extern struct mutex slab_mutex;

/* The list of all slab caches on the system */
extern struct list_head slab_caches;

/* The slab cache that manages slab cache information */
extern struct kmem_cache *kmem_cache;

/* A table of kmalloc cache names and sizes */
extern const struct kmalloc_info_struct {
	const char *name[NR_KMALLOC_TYPES];
	unsigned int size;
} kmalloc_info[];

/* Kmalloc array related functions */
void setup_kmalloc_cache_index_table(void);
void create_kmalloc_caches(slab_flags_t);

/* Find the kmalloc slab corresponding for a certain size */
struct kmem_cache *kmalloc_slab(size_t, gfp_t);

void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
			      int node, size_t orig_size,
			      unsigned long caller);
void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller);

gfp_t kmalloc_fix_flags(gfp_t flags);

/* Functions provided by the slab allocators */
int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);

void __init new_kmalloc_cache(int idx, enum kmalloc_cache_type type,
			      slab_flags_t flags);
extern void create_boot_cache(struct kmem_cache *, const char *name,
			unsigned int size, slab_flags_t flags,
			unsigned int useroffset, unsigned int usersize);

int slab_unmergeable(struct kmem_cache *s);
struct kmem_cache *find_mergeable(unsigned size, unsigned align,
		slab_flags_t flags, const char *name, void (*ctor)(void *));
struct kmem_cache *
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
		   slab_flags_t flags, void (*ctor)(void *));

slab_flags_t kmem_cache_flags(unsigned int object_size,
	slab_flags_t flags, const char *name);

static inline bool is_kmalloc_cache(struct kmem_cache *s)
{
	return (s->flags & SLAB_KMALLOC);
}

/* Legal flag mask for kmem_cache_create(), for various configurations */
#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
			 SLAB_CACHE_DMA32 | SLAB_PANIC | \
			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )

#if defined(CONFIG_DEBUG_SLAB)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
#elif defined(CONFIG_SLUB_DEBUG)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
#else
#define SLAB_DEBUG_FLAGS (0)
#endif

#if defined(CONFIG_SLAB)
#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
			  SLAB_ACCOUNT)
#elif defined(CONFIG_SLUB)
#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
			  SLAB_TEMPORARY | SLAB_ACCOUNT | \
			  SLAB_NO_USER_FLAGS | SLAB_KMALLOC)
#else
#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
#endif

/* Common flags available with current configuration */
#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)

/* Common flags permitted for kmem_cache_create */
#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
			      SLAB_RED_ZONE | \
			      SLAB_POISON | \
			      SLAB_STORE_USER | \
			      SLAB_TRACE | \
			      SLAB_CONSISTENCY_CHECKS | \
			      SLAB_MEM_SPREAD | \
			      SLAB_NOLEAKTRACE | \
			      SLAB_RECLAIM_ACCOUNT | \
			      SLAB_TEMPORARY | \
			      SLAB_ACCOUNT | \
			      SLAB_KMALLOC | \
			      SLAB_NO_USER_FLAGS)

bool __kmem_cache_empty(struct kmem_cache *);
int __kmem_cache_shutdown(struct kmem_cache *);
void __kmem_cache_release(struct kmem_cache *);
int __kmem_cache_shrink(struct kmem_cache *);
void slab_kmem_cache_release(struct kmem_cache *);

struct seq_file;
struct file;

struct slabinfo {
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs;
	unsigned long num_slabs;
	unsigned long shared_avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int shared;
	unsigned int objects_per_slab;
	unsigned int cache_order;
};

void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos);

static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
{
	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
}

#ifdef CONFIG_SLUB_DEBUG
#ifdef CONFIG_SLUB_DEBUG_ON
DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
#else
DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
#endif
extern void print_tracking(struct kmem_cache *s, void *object);
long validate_slab_cache(struct kmem_cache *s);
static inline bool __slub_debug_enabled(void)
{
	return static_branch_unlikely(&slub_debug_enabled);
}
#else
static inline void print_tracking(struct kmem_cache *s, void *object)
{
}
static inline bool __slub_debug_enabled(void)
{
	return false;
}
#endif

/*
 * Returns true if any of the specified slub_debug flags is enabled for the
 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
 * the static key.
 */
static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
{
	if (IS_ENABLED(CONFIG_SLUB_DEBUG))
		VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
	if (__slub_debug_enabled())
		return s->flags & flags;
	return false;
}

#ifdef CONFIG_MEMCG_KMEM
/*
 * slab_objcgs - get the object cgroups vector associated with a slab
 * @slab: a pointer to the slab struct
 *
 * Returns a pointer to the object cgroups vector associated with the slab,
 * or NULL if no such vector has been associated yet.
 */
static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
{
	unsigned long memcg_data = READ_ONCE(slab->memcg_data);

	VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS),
							slab_page(slab));
	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab));

	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
}

int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
				 gfp_t gfp, bool new_slab);
void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
		     enum node_stat_item idx, int nr);

static inline void memcg_free_slab_cgroups(struct slab *slab)
{
	kfree(slab_objcgs(slab));
	slab->memcg_data = 0;
}

static inline size_t obj_full_size(struct kmem_cache *s)
{
	/*
	 * For each accounted object there is an extra space which is used
	 * to store obj_cgroup membership. Charge it too.
	 */
	return s->size + sizeof(struct obj_cgroup *);
}

/*
 * Returns false if the allocation should fail.
 */
static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
					     struct list_lru *lru,
					     struct obj_cgroup **objcgp,
					     size_t objects, gfp_t flags)
{
	struct obj_cgroup *objcg;

	if (!memcg_kmem_online())
		return true;

	if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
		return true;

	objcg = get_obj_cgroup_from_current();
	if (!objcg)
		return true;

	if (lru) {
		int ret;
		struct mem_cgroup *memcg;

		memcg = get_mem_cgroup_from_objcg(objcg);
		ret = memcg_list_lru_alloc(memcg, lru, flags);
		css_put(&memcg->css);

		if (ret)
			goto out;
	}

	if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
		goto out;

	*objcgp = objcg;
	return true;
out:
	obj_cgroup_put(objcg);
	return false;
}

static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
					      struct obj_cgroup *objcg,
					      gfp_t flags, size_t size,
					      void **p)
{
	struct slab *slab;
	unsigned long off;
	size_t i;

	if (!memcg_kmem_online() || !objcg)
		return;

	for (i = 0; i < size; i++) {
		if (likely(p[i])) {
			slab = virt_to_slab(p[i]);

			if (!slab_objcgs(slab) &&
			    memcg_alloc_slab_cgroups(slab, s, flags,
							 false)) {
				obj_cgroup_uncharge(objcg, obj_full_size(s));
				continue;
			}

			off = obj_to_index(s, slab, p[i]);
			obj_cgroup_get(objcg);
			slab_objcgs(slab)[off] = objcg;
			mod_objcg_state(objcg, slab_pgdat(slab),
					cache_vmstat_idx(s), obj_full_size(s));
		} else {
			obj_cgroup_uncharge(objcg, obj_full_size(s));
		}
	}
	obj_cgroup_put(objcg);
}

static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
					void **p, int objects)
{
	struct obj_cgroup **objcgs;
	int i;

	if (!memcg_kmem_online())
		return;

	objcgs = slab_objcgs(slab);
	if (!objcgs)
		return;

	for (i = 0; i < objects; i++) {
		struct obj_cgroup *objcg;
		unsigned int off;

		off = obj_to_index(s, slab, p[i]);
		objcg = objcgs[off];
		if (!objcg)
			continue;

		objcgs[off] = NULL;
		obj_cgroup_uncharge(objcg, obj_full_size(s));
		mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
				-obj_full_size(s));
		obj_cgroup_put(objcg);
	}
}

#else /* CONFIG_MEMCG_KMEM */
static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
{
	return NULL;
}

static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
{
	return NULL;
}

static inline int memcg_alloc_slab_cgroups(struct slab *slab,
					       struct kmem_cache *s, gfp_t gfp,
					       bool new_slab)
{
	return 0;
}

static inline void memcg_free_slab_cgroups(struct slab *slab)
{
}

static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
					     struct list_lru *lru,
					     struct obj_cgroup **objcgp,
					     size_t objects, gfp_t flags)
{
	return true;
}

static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
					      struct obj_cgroup *objcg,
					      gfp_t flags, size_t size,
					      void **p)
{
}

static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
					void **p, int objects)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct slab *slab;

	slab = virt_to_slab(obj);
	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n",
					__func__))
		return NULL;
	return slab->slab_cache;
}

static __always_inline void account_slab(struct slab *slab, int order,
					 struct kmem_cache *s, gfp_t gfp)
{
	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
		memcg_alloc_slab_cgroups(slab, s, gfp, true);

	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
			    PAGE_SIZE << order);
}

static __always_inline void unaccount_slab(struct slab *slab, int order,
					   struct kmem_cache *s)
{
	if (memcg_kmem_online())
		memcg_free_slab_cgroups(slab);

	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
			    -(PAGE_SIZE << order));
}

static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
{
	struct kmem_cache *cachep;

	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
		return s;

	cachep = virt_to_cache(x);
	if (WARN(cachep && cachep != s,
		  "%s: Wrong slab cache. %s but object is from %s\n",
		  __func__, s->name, cachep->name))
		print_tracking(cachep, x);
	return cachep;
}

void free_large_kmalloc(struct folio *folio, void *object);

size_t __ksize(const void *objp);

static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifndef CONFIG_SLUB
	return s->object_size;

#else /* CONFIG_SLUB */
# ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->object_size;
# endif
	if (s->flags & SLAB_KASAN)
		return s->object_size;
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
#endif
}

static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
						     struct list_lru *lru,
						     struct obj_cgroup **objcgp,
						     size_t size, gfp_t flags)
{
	flags &= gfp_allowed_mask;

	might_alloc(flags);

	if (should_failslab(s, flags))
		return NULL;

	if (!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags))
		return NULL;

	return s;
}

static inline void slab_post_alloc_hook(struct kmem_cache *s,
					struct obj_cgroup *objcg, gfp_t flags,
					size_t size, void **p, bool init,
					unsigned int orig_size)
{
	unsigned int zero_size = s->object_size;
	size_t i;

	flags &= gfp_allowed_mask;

	/*
	 * For kmalloc object, the allocated memory size(object_size) is likely
	 * larger than the requested size(orig_size). If redzone check is
	 * enabled for the extra space, don't zero it, as it will be redzoned
	 * soon. The redzone operation for this extra space could be seen as a
	 * replacement of current poisoning under certain debug option, and
	 * won't break other sanity checks.
	 */
	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
	    (s->flags & SLAB_KMALLOC))
		zero_size = orig_size;

	/*
	 * As memory initialization might be integrated into KASAN,
	 * kasan_slab_alloc and initialization memset must be
	 * kept together to avoid discrepancies in behavior.
	 *
	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
	 */
	for (i = 0; i < size; i++) {
		p[i] = kasan_slab_alloc(s, p[i], flags, init);
		if (p[i] && init && !kasan_has_integrated_init())
			memset(p[i], 0, zero_size);
		kmemleak_alloc_recursive(p[i], s->object_size, 1,
					 s->flags, flags);
		kmsan_slab_alloc(s, p[i], flags);
	}

	memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
}

/*
 * The slab lists for all objects.
 */
struct kmem_cache_node {
#ifdef CONFIG_SLAB
	raw_spinlock_t list_lock;
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long total_slabs;	/* length of all slab lists */
	unsigned long free_slabs;	/* length of free slab list only */
	unsigned long free_objects;
	unsigned int free_limit;
	unsigned int colour_next;	/* Per-node cache coloring */
	struct array_cache *shared;	/* shared per node */
	struct alien_cache **alien;	/* on other nodes */
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
#endif

#ifdef CONFIG_SLUB
	spinlock_t list_lock;
	unsigned long nr_partial;
	struct list_head partial;
#ifdef CONFIG_SLUB_DEBUG
	atomic_long_t nr_slabs;
	atomic_long_t total_objects;
	struct list_head full;
#endif
#endif

};

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
	return s->node[node];
}

/*
 * Iterator over all nodes. The body will be executed for each node that has
 * a kmem_cache_node structure allocated (which is true for all online nodes)
 */
#define for_each_kmem_cache_node(__s, __node, __n) \
	for (__node = 0; __node < nr_node_ids; __node++) \
		 if ((__n = get_node(__s, __node)))


#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
void dump_unreclaimable_slab(void);
#else
static inline void dump_unreclaimable_slab(void)
{
}
#endif

void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);

#ifdef CONFIG_SLAB_FREELIST_RANDOM
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
			gfp_t gfp);
void cache_random_seq_destroy(struct kmem_cache *cachep);
#else
static inline int cache_random_seq_create(struct kmem_cache *cachep,
					unsigned int count, gfp_t gfp)
{
	return 0;
}
static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
{
	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
				&init_on_alloc)) {
		if (c->ctor)
			return false;
		if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
			return flags & __GFP_ZERO;
		return true;
	}
	return flags & __GFP_ZERO;
}

static inline bool slab_want_init_on_free(struct kmem_cache *c)
{
	if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
				&init_on_free))
		return !(c->ctor ||
			 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
	return false;
}

#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
void debugfs_slab_release(struct kmem_cache *);
#else
static inline void debugfs_slab_release(struct kmem_cache *s) { }
#endif

#ifdef CONFIG_PRINTK
#define KS_ADDRS_COUNT 16
struct kmem_obj_info {
	void *kp_ptr;
	struct slab *kp_slab;
	void *kp_objp;
	unsigned long kp_data_offset;
	struct kmem_cache *kp_slab_cache;
	void *kp_ret;
	void *kp_stack[KS_ADDRS_COUNT];
	void *kp_free_stack[KS_ADDRS_COUNT];
};
void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
#endif

#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
void __check_heap_object(const void *ptr, unsigned long n,
			 const struct slab *slab, bool to_user);
#else
static inline
void __check_heap_object(const void *ptr, unsigned long n,
			 const struct slab *slab, bool to_user)
{
}
#endif

#ifdef CONFIG_SLUB_DEBUG
void skip_orig_size_check(struct kmem_cache *s, const void *object);
#endif

#endif /* MM_SLAB_H */