summaryrefslogtreecommitdiff
path: root/include/linux/uaccess.h
blob: be395f5f7ee31108c654b25b02891383eae7011e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_UACCESS_H__
#define __LINUX_UACCESS_H__

#include <linux/cleanup.h>
#include <linux/fault-inject-usercopy.h>
#include <linux/instrumented.h>
#include <linux/minmax.h>
#include <linux/nospec.h>
#include <linux/sched.h>
#include <linux/ucopysize.h>

#include <asm/uaccess.h>

/*
 * Architectures that support memory tagging (assigning tags to memory regions,
 * embedding these tags into addresses that point to these memory regions, and
 * checking that the memory and the pointer tags match on memory accesses)
 * redefine this macro to strip tags from pointers.
 *
 * Passing down mm_struct allows to define untagging rules on per-process
 * basis.
 *
 * It's defined as noop for architectures that don't support memory tagging.
 */
#ifndef untagged_addr
#define untagged_addr(addr) (addr)
#endif

#ifndef untagged_addr_remote
#define untagged_addr_remote(mm, addr)	({		\
	mmap_assert_locked(mm);				\
	untagged_addr(addr);				\
})
#endif

#ifdef masked_user_access_begin
 #define can_do_masked_user_access() 1
# ifndef masked_user_write_access_begin
#  define masked_user_write_access_begin masked_user_access_begin
# endif
# ifndef masked_user_read_access_begin
#  define masked_user_read_access_begin masked_user_access_begin
#endif
#else
 #define can_do_masked_user_access() 0
 #define masked_user_access_begin(src) NULL
 #define masked_user_read_access_begin(src) NULL
 #define masked_user_write_access_begin(src) NULL
 #define mask_user_address(src) (src)
#endif

/*
 * Architectures should provide two primitives (raw_copy_{to,from}_user())
 * and get rid of their private instances of copy_{to,from}_user() and
 * __copy_{to,from}_user{,_inatomic}().
 *
 * raw_copy_{to,from}_user(to, from, size) should copy up to size bytes and
 * return the amount left to copy.  They should assume that access_ok() has
 * already been checked (and succeeded); they should *not* zero-pad anything.
 * No KASAN or object size checks either - those belong here.
 *
 * Both of these functions should attempt to copy size bytes starting at from
 * into the area starting at to.  They must not fetch or store anything
 * outside of those areas.  Return value must be between 0 (everything
 * copied successfully) and size (nothing copied).
 *
 * If raw_copy_{to,from}_user(to, from, size) returns N, size - N bytes starting
 * at to must become equal to the bytes fetched from the corresponding area
 * starting at from.  All data past to + size - N must be left unmodified.
 *
 * If copying succeeds, the return value must be 0.  If some data cannot be
 * fetched, it is permitted to copy less than had been fetched; the only
 * hard requirement is that not storing anything at all (i.e. returning size)
 * should happen only when nothing could be copied.  In other words, you don't
 * have to squeeze as much as possible - it is allowed, but not necessary.
 *
 * For raw_copy_from_user() to always points to kernel memory and no faults
 * on store should happen.  Interpretation of from is affected by set_fs().
 * For raw_copy_to_user() it's the other way round.
 *
 * Both can be inlined - it's up to architectures whether it wants to bother
 * with that.  They should not be used directly; they are used to implement
 * the 6 functions (copy_{to,from}_user(), __copy_{to,from}_user_inatomic())
 * that are used instead.  Out of those, __... ones are inlined.  Plain
 * copy_{to,from}_user() might or might not be inlined.  If you want them
 * inlined, have asm/uaccess.h define INLINE_COPY_{TO,FROM}_USER.
 *
 * NOTE: only copy_from_user() zero-pads the destination in case of short copy.
 * Neither __copy_from_user() nor __copy_from_user_inatomic() zero anything
 * at all; their callers absolutely must check the return value.
 *
 * Biarch ones should also provide raw_copy_in_user() - similar to the above,
 * but both source and destination are __user pointers (affected by set_fs()
 * as usual) and both source and destination can trigger faults.
 */

static __always_inline __must_check unsigned long
__copy_from_user_inatomic(void *to, const void __user *from, unsigned long n)
{
	unsigned long res;

	instrument_copy_from_user_before(to, from, n);
	check_object_size(to, n, false);
	res = raw_copy_from_user(to, from, n);
	instrument_copy_from_user_after(to, from, n, res);
	return res;
}

static __always_inline __must_check unsigned long
__copy_from_user(void *to, const void __user *from, unsigned long n)
{
	unsigned long res;

	might_fault();
	instrument_copy_from_user_before(to, from, n);
	if (should_fail_usercopy())
		return n;
	check_object_size(to, n, false);
	res = raw_copy_from_user(to, from, n);
	instrument_copy_from_user_after(to, from, n, res);
	return res;
}

/**
 * __copy_to_user_inatomic: - Copy a block of data into user space, with less checking.
 * @to:   Destination address, in user space.
 * @from: Source address, in kernel space.
 * @n:    Number of bytes to copy.
 *
 * Context: User context only.
 *
 * Copy data from kernel space to user space.  Caller must check
 * the specified block with access_ok() before calling this function.
 * The caller should also make sure he pins the user space address
 * so that we don't result in page fault and sleep.
 */
static __always_inline __must_check unsigned long
__copy_to_user_inatomic(void __user *to, const void *from, unsigned long n)
{
	if (should_fail_usercopy())
		return n;
	instrument_copy_to_user(to, from, n);
	check_object_size(from, n, true);
	return raw_copy_to_user(to, from, n);
}

static __always_inline __must_check unsigned long
__copy_to_user(void __user *to, const void *from, unsigned long n)
{
	might_fault();
	if (should_fail_usercopy())
		return n;
	instrument_copy_to_user(to, from, n);
	check_object_size(from, n, true);
	return raw_copy_to_user(to, from, n);
}

/*
 * Architectures that #define INLINE_COPY_TO_USER use this function
 * directly in the normal copy_to/from_user(), the other ones go
 * through an extern _copy_to/from_user(), which expands the same code
 * here.
 *
 * Rust code always uses the extern definition.
 */
static inline __must_check unsigned long
_inline_copy_from_user(void *to, const void __user *from, unsigned long n)
{
	unsigned long res = n;
	might_fault();
	if (should_fail_usercopy())
		goto fail;
	if (can_do_masked_user_access())
		from = mask_user_address(from);
	else {
		if (!access_ok(from, n))
			goto fail;
		/*
		 * Ensure that bad access_ok() speculation will not
		 * lead to nasty side effects *after* the copy is
		 * finished:
		 */
		barrier_nospec();
	}
	instrument_copy_from_user_before(to, from, n);
	res = raw_copy_from_user(to, from, n);
	instrument_copy_from_user_after(to, from, n, res);
	if (likely(!res))
		return 0;
fail:
	memset(to + (n - res), 0, res);
	return res;
}
extern __must_check unsigned long
_copy_from_user(void *, const void __user *, unsigned long);

static inline __must_check unsigned long
_inline_copy_to_user(void __user *to, const void *from, unsigned long n)
{
	might_fault();
	if (should_fail_usercopy())
		return n;
	if (access_ok(to, n)) {
		instrument_copy_to_user(to, from, n);
		n = raw_copy_to_user(to, from, n);
	}
	return n;
}
extern __must_check unsigned long
_copy_to_user(void __user *, const void *, unsigned long);

static __always_inline unsigned long __must_check
copy_from_user(void *to, const void __user *from, unsigned long n)
{
	if (!check_copy_size(to, n, false))
		return n;
#ifdef INLINE_COPY_FROM_USER
	return _inline_copy_from_user(to, from, n);
#else
	return _copy_from_user(to, from, n);
#endif
}

static __always_inline unsigned long __must_check
copy_to_user(void __user *to, const void *from, unsigned long n)
{
	if (!check_copy_size(from, n, true))
		return n;

#ifdef INLINE_COPY_TO_USER
	return _inline_copy_to_user(to, from, n);
#else
	return _copy_to_user(to, from, n);
#endif
}

#ifndef copy_mc_to_kernel
/*
 * Without arch opt-in this generic copy_mc_to_kernel() will not handle
 * #MC (or arch equivalent) during source read.
 */
static inline unsigned long __must_check
copy_mc_to_kernel(void *dst, const void *src, size_t cnt)
{
	memcpy(dst, src, cnt);
	return 0;
}
#endif

static __always_inline void pagefault_disabled_inc(void)
{
	current->pagefault_disabled++;
}

static __always_inline void pagefault_disabled_dec(void)
{
	current->pagefault_disabled--;
}

/*
 * These routines enable/disable the pagefault handler. If disabled, it will
 * not take any locks and go straight to the fixup table.
 *
 * User access methods will not sleep when called from a pagefault_disabled()
 * environment.
 */
static inline void pagefault_disable(void)
{
	pagefault_disabled_inc();
	/*
	 * make sure to have issued the store before a pagefault
	 * can hit.
	 */
	barrier();
}

static inline void pagefault_enable(void)
{
	/*
	 * make sure to issue those last loads/stores before enabling
	 * the pagefault handler again.
	 */
	barrier();
	pagefault_disabled_dec();
}

/*
 * Is the pagefault handler disabled? If so, user access methods will not sleep.
 */
static inline bool pagefault_disabled(void)
{
	return current->pagefault_disabled != 0;
}

/*
 * The pagefault handler is in general disabled by pagefault_disable() or
 * when in irq context (via in_atomic()).
 *
 * This function should only be used by the fault handlers. Other users should
 * stick to pagefault_disabled().
 * Please NEVER use preempt_disable() to disable the fault handler. With
 * !CONFIG_PREEMPT_COUNT, this is like a NOP. So the handler won't be disabled.
 * in_atomic() will report different values based on !CONFIG_PREEMPT_COUNT.
 */
#define faulthandler_disabled() (pagefault_disabled() || in_atomic())

DEFINE_LOCK_GUARD_0(pagefault, pagefault_disable(), pagefault_enable())

#ifndef CONFIG_ARCH_HAS_SUBPAGE_FAULTS

/**
 * probe_subpage_writeable: probe the user range for write faults at sub-page
 *			    granularity (e.g. arm64 MTE)
 * @uaddr: start of address range
 * @size: size of address range
 *
 * Returns 0 on success, the number of bytes not probed on fault.
 *
 * It is expected that the caller checked for the write permission of each
 * page in the range either by put_user() or GUP. The architecture port can
 * implement a more efficient get_user() probing if the same sub-page faults
 * are triggered by either a read or a write.
 */
static inline size_t probe_subpage_writeable(char __user *uaddr, size_t size)
{
	return 0;
}

#endif /* CONFIG_ARCH_HAS_SUBPAGE_FAULTS */

#ifndef ARCH_HAS_NOCACHE_UACCESS

static inline __must_check unsigned long
__copy_from_user_inatomic_nocache(void *to, const void __user *from,
				  unsigned long n)
{
	return __copy_from_user_inatomic(to, from, n);
}

#endif		/* ARCH_HAS_NOCACHE_UACCESS */

extern __must_check int check_zeroed_user(const void __user *from, size_t size);

/**
 * copy_struct_from_user: copy a struct from userspace
 * @dst:   Destination address, in kernel space. This buffer must be @ksize
 *         bytes long.
 * @ksize: Size of @dst struct.
 * @src:   Source address, in userspace.
 * @usize: (Alleged) size of @src struct.
 *
 * Copies a struct from userspace to kernel space, in a way that guarantees
 * backwards-compatibility for struct syscall arguments (as long as future
 * struct extensions are made such that all new fields are *appended* to the
 * old struct, and zeroed-out new fields have the same meaning as the old
 * struct).
 *
 * @ksize is just sizeof(*dst), and @usize should've been passed by userspace.
 * The recommended usage is something like the following:
 *
 *   SYSCALL_DEFINE2(foobar, const struct foo __user *, uarg, size_t, usize)
 *   {
 *      int err;
 *      struct foo karg = {};
 *
 *      if (usize > PAGE_SIZE)
 *        return -E2BIG;
 *      if (usize < FOO_SIZE_VER0)
 *        return -EINVAL;
 *
 *      err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize);
 *      if (err)
 *        return err;
 *
 *      // ...
 *   }
 *
 * There are three cases to consider:
 *  * If @usize == @ksize, then it's copied verbatim.
 *  * If @usize < @ksize, then the userspace has passed an old struct to a
 *    newer kernel. The rest of the trailing bytes in @dst (@ksize - @usize)
 *    are to be zero-filled.
 *  * If @usize > @ksize, then the userspace has passed a new struct to an
 *    older kernel. The trailing bytes unknown to the kernel (@usize - @ksize)
 *    are checked to ensure they are zeroed, otherwise -E2BIG is returned.
 *
 * Returns (in all cases, some data may have been copied):
 *  * -E2BIG:  (@usize > @ksize) and there are non-zero trailing bytes in @src.
 *  * -EFAULT: access to userspace failed.
 */
static __always_inline __must_check int
copy_struct_from_user(void *dst, size_t ksize, const void __user *src,
		      size_t usize)
{
	size_t size = min(ksize, usize);
	size_t rest = max(ksize, usize) - size;

	/* Double check if ksize is larger than a known object size. */
	if (WARN_ON_ONCE(ksize > __builtin_object_size(dst, 1)))
		return -E2BIG;

	/* Deal with trailing bytes. */
	if (usize < ksize) {
		memset(dst + size, 0, rest);
	} else if (usize > ksize) {
		int ret = check_zeroed_user(src + size, rest);
		if (ret <= 0)
			return ret ?: -E2BIG;
	}
	/* Copy the interoperable parts of the struct. */
	if (copy_from_user(dst, src, size))
		return -EFAULT;
	return 0;
}

/**
 * copy_struct_to_user: copy a struct to userspace
 * @dst:   Destination address, in userspace. This buffer must be @ksize
 *         bytes long.
 * @usize: (Alleged) size of @dst struct.
 * @src:   Source address, in kernel space.
 * @ksize: Size of @src struct.
 * @ignored_trailing: Set to %true if there was a non-zero byte in @src that
 * userspace cannot see because they are using an smaller struct.
 *
 * Copies a struct from kernel space to userspace, in a way that guarantees
 * backwards-compatibility for struct syscall arguments (as long as future
 * struct extensions are made such that all new fields are *appended* to the
 * old struct, and zeroed-out new fields have the same meaning as the old
 * struct).
 *
 * Some syscalls may wish to make sure that userspace knows about everything in
 * the struct, and if there is a non-zero value that userspce doesn't know
 * about, they want to return an error (such as -EMSGSIZE) or have some other
 * fallback (such as adding a "you're missing some information" flag). If
 * @ignored_trailing is non-%NULL, it will be set to %true if there was a
 * non-zero byte that could not be copied to userspace (ie. was past @usize).
 *
 * While unconditionally returning an error in this case is the simplest
 * solution, for maximum backward compatibility you should try to only return
 * -EMSGSIZE if the user explicitly requested the data that couldn't be copied.
 * Note that structure sizes can change due to header changes and simple
 * recompilations without code changes(!), so if you care about
 * @ignored_trailing you probably want to make sure that any new field data is
 * associated with a flag. Otherwise you might assume that a program knows
 * about data it does not.
 *
 * @ksize is just sizeof(*src), and @usize should've been passed by userspace.
 * The recommended usage is something like the following:
 *
 *   SYSCALL_DEFINE2(foobar, struct foo __user *, uarg, size_t, usize)
 *   {
 *      int err;
 *      bool ignored_trailing;
 *      struct foo karg = {};
 *
 *      if (usize > PAGE_SIZE)
 *		return -E2BIG;
 *      if (usize < FOO_SIZE_VER0)
 *		return -EINVAL;
 *
 *      // ... modify karg somehow ...
 *
 *      err = copy_struct_to_user(uarg, usize, &karg, sizeof(karg),
 *				  &ignored_trailing);
 *      if (err)
 *		return err;
 *      if (ignored_trailing)
 *		return -EMSGSIZE:
 *
 *      // ...
 *   }
 *
 * There are three cases to consider:
 *  * If @usize == @ksize, then it's copied verbatim.
 *  * If @usize < @ksize, then the kernel is trying to pass userspace a newer
 *    struct than it supports. Thus we only copy the interoperable portions
 *    (@usize) and ignore the rest (but @ignored_trailing is set to %true if
 *    any of the trailing (@ksize - @usize) bytes are non-zero).
 *  * If @usize > @ksize, then the kernel is trying to pass userspace an older
 *    struct than userspace supports. In order to make sure the
 *    unknown-to-the-kernel fields don't contain garbage values, we zero the
 *    trailing (@usize - @ksize) bytes.
 *
 * Returns (in all cases, some data may have been copied):
 *  * -EFAULT: access to userspace failed.
 */
static __always_inline __must_check int
copy_struct_to_user(void __user *dst, size_t usize, const void *src,
		    size_t ksize, bool *ignored_trailing)
{
	size_t size = min(ksize, usize);
	size_t rest = max(ksize, usize) - size;

	/* Double check if ksize is larger than a known object size. */
	if (WARN_ON_ONCE(ksize > __builtin_object_size(src, 1)))
		return -E2BIG;

	/* Deal with trailing bytes. */
	if (usize > ksize) {
		if (clear_user(dst + size, rest))
			return -EFAULT;
	}
	if (ignored_trailing)
		*ignored_trailing = ksize < usize &&
			memchr_inv(src + size, 0, rest) != NULL;
	/* Copy the interoperable parts of the struct. */
	if (copy_to_user(dst, src, size))
		return -EFAULT;
	return 0;
}

bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size);

long copy_from_kernel_nofault(void *dst, const void *src, size_t size);
long notrace copy_to_kernel_nofault(void *dst, const void *src, size_t size);

long copy_from_user_nofault(void *dst, const void __user *src, size_t size);
long notrace copy_to_user_nofault(void __user *dst, const void *src,
		size_t size);

long strncpy_from_kernel_nofault(char *dst, const void *unsafe_addr,
		long count);

long strncpy_from_user_nofault(char *dst, const void __user *unsafe_addr,
		long count);
long strnlen_user_nofault(const void __user *unsafe_addr, long count);

#ifdef arch_get_kernel_nofault
/*
 * Wrap the architecture implementation so that @label can be outside of a
 * cleanup() scope. A regular C goto works correctly, but ASM goto does
 * not. Clang rejects such an attempt, but GCC silently emits buggy code.
 */
#define __get_kernel_nofault(dst, src, type, label)		\
do {								\
	__label__ local_label;					\
	arch_get_kernel_nofault(dst, src, type, local_label);	\
	if (0) {						\
	local_label:						\
		goto label;					\
	}							\
} while (0)

#define __put_kernel_nofault(dst, src, type, label)		\
do {								\
	__label__ local_label;					\
	arch_put_kernel_nofault(dst, src, type, local_label);	\
	if (0) {						\
	local_label:						\
		goto label;					\
	}							\
} while (0)

#elif !defined(__get_kernel_nofault) /* arch_get_kernel_nofault */

#define __get_kernel_nofault(dst, src, type, label)	\
do {							\
	type __user *p = (type __force __user *)(src);	\
	type data;					\
	if (__get_user(data, p))			\
		goto label;				\
	*(type *)dst = data;				\
} while (0)

#define __put_kernel_nofault(dst, src, type, label)	\
do {							\
	type __user *p = (type __force __user *)(dst);	\
	type data = *(type *)src;			\
	if (__put_user(data, p))			\
		goto label;				\
} while (0)

#endif  /* !__get_kernel_nofault */

/**
 * get_kernel_nofault(): safely attempt to read from a location
 * @val: read into this variable
 * @ptr: address to read from
 *
 * Returns 0 on success, or -EFAULT.
 */
#define get_kernel_nofault(val, ptr) ({				\
	const typeof(val) *__gk_ptr = (ptr);			\
	copy_from_kernel_nofault(&(val), __gk_ptr, sizeof(val));\
})

#ifdef user_access_begin

#ifdef arch_unsafe_get_user
/*
 * Wrap the architecture implementation so that @label can be outside of a
 * cleanup() scope. A regular C goto works correctly, but ASM goto does
 * not. Clang rejects such an attempt, but GCC silently emits buggy code.
 *
 * Some architectures use internal local labels already, but this extra
 * indirection here is harmless because the compiler optimizes it out
 * completely in any case. This construct just ensures that the ASM GOTO
 * target is always in the local scope. The C goto 'label' works correctly
 * when leaving a cleanup() scope.
 */
#define unsafe_get_user(x, ptr, label)			\
do {							\
	__label__ local_label;				\
	arch_unsafe_get_user(x, ptr, local_label);	\
	if (0) {					\
	local_label:					\
		goto label;				\
	}						\
} while (0)

#define unsafe_put_user(x, ptr, label)			\
do {							\
	__label__ local_label;				\
	arch_unsafe_put_user(x, ptr, local_label);	\
	if (0) {					\
	local_label:					\
		goto label;				\
	}						\
} while (0)
#endif /* arch_unsafe_get_user */

#else /* user_access_begin */
#define user_access_begin(ptr,len) access_ok(ptr, len)
#define user_access_end() do { } while (0)
#define unsafe_op_wrap(op, err) do { if (unlikely(op)) goto err; } while (0)
#define unsafe_get_user(x,p,e) unsafe_op_wrap(__get_user(x,p),e)
#define unsafe_put_user(x,p,e) unsafe_op_wrap(__put_user(x,p),e)
#define unsafe_copy_to_user(d,s,l,e) unsafe_op_wrap(__copy_to_user(d,s,l),e)
#define unsafe_copy_from_user(d,s,l,e) unsafe_op_wrap(__copy_from_user(d,s,l),e)
static inline unsigned long user_access_save(void) { return 0UL; }
static inline void user_access_restore(unsigned long flags) { }
#endif /* !user_access_begin */

#ifndef user_write_access_begin
#define user_write_access_begin user_access_begin
#define user_write_access_end user_access_end
#endif
#ifndef user_read_access_begin
#define user_read_access_begin user_access_begin
#define user_read_access_end user_access_end
#endif

/* Define RW variant so the below _mode macro expansion works */
#define masked_user_rw_access_begin(u)	masked_user_access_begin(u)
#define user_rw_access_begin(u, s)	user_access_begin(u, s)
#define user_rw_access_end()		user_access_end()

/* Scoped user access */
#define USER_ACCESS_GUARD(_mode)				\
static __always_inline void __user *				\
class_user_##_mode##_begin(void __user *ptr)			\
{								\
	return ptr;						\
}								\
								\
static __always_inline void					\
class_user_##_mode##_end(void __user *ptr)			\
{								\
	user_##_mode##_access_end();				\
}								\
								\
DEFINE_CLASS(user_ ##_mode## _access, void __user *,		\
	     class_user_##_mode##_end(_T),			\
	     class_user_##_mode##_begin(ptr), void __user *ptr)	\
								\
static __always_inline class_user_##_mode##_access_t		\
class_user_##_mode##_access_ptr(void __user *scope)		\
{								\
	return scope;						\
}

USER_ACCESS_GUARD(read)
USER_ACCESS_GUARD(write)
USER_ACCESS_GUARD(rw)
#undef USER_ACCESS_GUARD

/**
 * __scoped_user_access_begin - Start a scoped user access
 * @mode:	The mode of the access class (read, write, rw)
 * @uptr:	The pointer to access user space memory
 * @size:	Size of the access
 * @elbl:	Error label to goto when the access region is rejected
 *
 * Internal helper for __scoped_user_access(). Don't use directly.
 */
#define __scoped_user_access_begin(mode, uptr, size, elbl)		\
({									\
	typeof(uptr) __retptr;						\
									\
	if (can_do_masked_user_access()) {				\
		__retptr = masked_user_##mode##_access_begin(uptr);	\
	} else {							\
		__retptr = uptr;					\
		if (!user_##mode##_access_begin(uptr, size))		\
			goto elbl;					\
	}								\
	__retptr;							\
})

/**
 * __scoped_user_access - Open a scope for user access
 * @mode:	The mode of the access class (read, write, rw)
 * @uptr:	The pointer to access user space memory
 * @size:	Size of the access
 * @elbl:	Error label to goto when the access region is rejected. It
 *		must be placed outside the scope
 *
 * If the user access function inside the scope requires a fault label, it
 * can use @elbl or a different label outside the scope, which requires
 * that user access which is implemented with ASM GOTO has been properly
 * wrapped. See unsafe_get_user() for reference.
 *
 *	scoped_user_rw_access(ptr, efault) {
 *		unsafe_get_user(rval, &ptr->rval, efault);
 *		unsafe_put_user(wval, &ptr->wval, efault);
 *	}
 *	return 0;
 *  efault:
 *	return -EFAULT;
 *
 * The scope is internally implemented as a autoterminating nested for()
 * loop, which can be left with 'return', 'break' and 'goto' at any
 * point.
 *
 * When the scope is left user_##@_mode##_access_end() is automatically
 * invoked.
 *
 * When the architecture supports masked user access and the access region
 * which is determined by @uptr and @size is not a valid user space
 * address, i.e. < TASK_SIZE, the scope sets the pointer to a faulting user
 * space address and does not terminate early. This optimizes for the good
 * case and lets the performance uncritical bad case go through the fault.
 *
 * The eventual modification of the pointer is limited to the scope.
 * Outside of the scope the original pointer value is unmodified, so that
 * the original pointer value is available for diagnostic purposes in an
 * out of scope fault path.
 *
 * Nesting scoped user access into a user access scope is invalid and fails
 * the build. Nesting into other guards, e.g. pagefault is safe.
 *
 * The masked variant does not check the size of the access and relies on a
 * mapping hole (e.g. guard page) to catch an out of range pointer, the
 * first access to user memory inside the scope has to be within
 * @uptr ... @uptr + PAGE_SIZE - 1
 *
 * Don't use directly. Use scoped_masked_user_$MODE_access() instead.
 */
#define __scoped_user_access(mode, uptr, size, elbl)					\
for (bool done = false; !done; done = true)						\
	for (void __user *_tmpptr = __scoped_user_access_begin(mode, uptr, size, elbl); \
	     !done; done = true)							\
		for (CLASS(user_##mode##_access, scope)(_tmpptr); !done; done = true)	\
			/* Force modified pointer usage within the scope */		\
			for (const typeof(uptr) uptr = _tmpptr; !done; done = true)

/**
 * scoped_user_read_access_size - Start a scoped user read access with given size
 * @usrc:	Pointer to the user space address to read from
 * @size:	Size of the access starting from @usrc
 * @elbl:	Error label to goto when the access region is rejected
 *
 * For further information see __scoped_user_access() above.
 */
#define scoped_user_read_access_size(usrc, size, elbl)		\
	__scoped_user_access(read, usrc, size, elbl)

/**
 * scoped_user_read_access - Start a scoped user read access
 * @usrc:	Pointer to the user space address to read from
 * @elbl:	Error label to goto when the access region is rejected
 *
 * The size of the access starting from @usrc is determined via sizeof(*@usrc)).
 *
 * For further information see __scoped_user_access() above.
 */
#define scoped_user_read_access(usrc, elbl)				\
	scoped_user_read_access_size(usrc, sizeof(*(usrc)), elbl)

/**
 * scoped_user_write_access_size - Start a scoped user write access with given size
 * @udst:	Pointer to the user space address to write to
 * @size:	Size of the access starting from @udst
 * @elbl:	Error label to goto when the access region is rejected
 *
 * For further information see __scoped_user_access() above.
 */
#define scoped_user_write_access_size(udst, size, elbl)			\
	__scoped_user_access(write, udst, size, elbl)

/**
 * scoped_user_write_access - Start a scoped user write access
 * @udst:	Pointer to the user space address to write to
 * @elbl:	Error label to goto when the access region is rejected
 *
 * The size of the access starting from @udst is determined via sizeof(*@udst)).
 *
 * For further information see __scoped_user_access() above.
 */
#define scoped_user_write_access(udst, elbl)				\
	scoped_user_write_access_size(udst, sizeof(*(udst)), elbl)

/**
 * scoped_user_rw_access_size - Start a scoped user read/write access with given size
 * @uptr	Pointer to the user space address to read from and write to
 * @size:	Size of the access starting from @uptr
 * @elbl:	Error label to goto when the access region is rejected
 *
 * For further information see __scoped_user_access() above.
 */
#define scoped_user_rw_access_size(uptr, size, elbl)			\
	__scoped_user_access(rw, uptr, size, elbl)

/**
 * scoped_user_rw_access - Start a scoped user read/write access
 * @uptr	Pointer to the user space address to read from and write to
 * @elbl:	Error label to goto when the access region is rejected
 *
 * The size of the access starting from @uptr is determined via sizeof(*@uptr)).
 *
 * For further information see __scoped_user_access() above.
 */
#define scoped_user_rw_access(uptr, elbl)				\
	scoped_user_rw_access_size(uptr, sizeof(*(uptr)), elbl)

/**
 * get_user_inline - Read user data inlined
 * @val:	The variable to store the value read from user memory
 * @usrc:	Pointer to the user space memory to read from
 *
 * Return: 0 if successful, -EFAULT when faulted
 *
 * Inlined variant of get_user(). Only use when there is a demonstrable
 * performance reason.
 */
#define get_user_inline(val, usrc)				\
({								\
	__label__ efault;					\
	typeof(usrc) _tmpsrc = usrc;				\
	int _ret = 0;						\
								\
	scoped_user_read_access(_tmpsrc, efault)		\
		unsafe_get_user(val, _tmpsrc, efault);		\
	if (0) {						\
	efault:							\
		_ret = -EFAULT;					\
	}							\
	_ret;							\
})

/**
 * put_user_inline - Write to user memory inlined
 * @val:	The value to write
 * @udst:	Pointer to the user space memory to write to
 *
 * Return: 0 if successful, -EFAULT when faulted
 *
 * Inlined variant of put_user(). Only use when there is a demonstrable
 * performance reason.
 */
#define put_user_inline(val, udst)				\
({								\
	__label__ efault;					\
	typeof(udst) _tmpdst = udst;				\
	int _ret = 0;						\
								\
	scoped_user_write_access(_tmpdst, efault)		\
		unsafe_put_user(val, _tmpdst, efault);		\
	if (0) {						\
	efault:							\
		_ret = -EFAULT;					\
	}							\
	_ret;							\
})

#ifdef CONFIG_HARDENED_USERCOPY
void __noreturn usercopy_abort(const char *name, const char *detail,
			       bool to_user, unsigned long offset,
			       unsigned long len);
#endif

#endif		/* __LINUX_UACCESS_H__ */