summaryrefslogtreecommitdiff
path: root/fs/smb/client/compress.c
blob: 63b5a55b7a57514199a2f8947c1bacdc1f42a5ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2024, SUSE LLC
 *
 * Authors: Enzo Matsumiya <ematsumiya@suse.de>
 *
 * This file implements I/O compression support for SMB2 messages (SMB 3.1.1 only).
 * See compress/ for implementation details of each algorithm.
 *
 * References:
 * MS-SMB2 "3.1.4.4 Compressing the Message"
 * MS-SMB2 "3.1.5.3 Decompressing the Chained Message"
 * MS-XCA - for details of the supported algorithms
 */
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/uio.h>
#include <linux/sort.h>

#include "cifsglob.h"
#include "../common/smb2pdu.h"
#include "cifsproto.h"
#include "smb2proto.h"

#include "compress/lz77.h"
#include "compress.h"

/*
 * The heuristic_*() functions below try to determine data compressibility.
 *
 * Derived from fs/btrfs/compression.c, changing coding style, some parameters, and removing
 * unused parts.
 *
 * Read that file for better and more detailed explanation of the calculations.
 *
 * The algorithms are ran in a collected sample of the input (uncompressed) data.
 * The sample is formed of 2K reads in PAGE_SIZE intervals, with a maximum size of 4M.
 *
 * Parsing the sample goes from "low-hanging fruits" (fastest algorithms, likely compressible)
 * to "need more analysis" (likely uncompressible).
 */

struct bucket {
	unsigned int count;
};

/**
 * has_low_entropy() - Compute Shannon entropy of the sampled data.
 * @bkt:	Bytes counts of the sample.
 * @slen:	Size of the sample.
 *
 * Return: true if the level (percentage of number of bits that would be required to
 *	   compress the data) is below the minimum threshold.
 *
 * Note:
 * There _is_ an entropy level here that's > 65 (minimum threshold) that would indicate a
 * possibility of compression, but compressing, or even further analysing, it would waste so much
 * resources that it's simply not worth it.
 *
 * Also Shannon entropy is the last computed heuristic; if we got this far and ended up
 * with uncertainty, just stay on the safe side and call it uncompressible.
 */
static bool has_low_entropy(struct bucket *bkt, size_t slen)
{
	const size_t threshold = 65, max_entropy = 8 * ilog2(16);
	size_t i, p, p2, len, sum = 0;

#define pow4(n) (n * n * n * n)
	len = ilog2(pow4(slen));

	for (i = 0; i < 256 && bkt[i].count > 0; i++) {
		p = bkt[i].count;
		p2 = ilog2(pow4(p));
		sum += p * (len - p2);
	}

	sum /= slen;

	return ((sum * 100 / max_entropy) <= threshold);
}

#define BYTE_DIST_BAD		0
#define BYTE_DIST_GOOD		1
#define BYTE_DIST_MAYBE		2
/**
 * calc_byte_distribution() - Compute byte distribution on the sampled data.
 * @bkt:	Byte counts of the sample.
 * @slen:	Size of the sample.
 *
 * Return:
 * BYTE_DIST_BAD:	A "hard no" for compression -- a computed uniform distribution of
 *			the bytes (e.g. random or encrypted data).
 * BYTE_DIST_GOOD:	High probability (normal (Gaussian) distribution) of the data being
 *			compressible.
 * BYTE_DIST_MAYBE:	When computed byte distribution resulted in "low > n < high"
 *			grounds.  has_low_entropy() should be used for a final decision.
 */
static int calc_byte_distribution(struct bucket *bkt, size_t slen)
{
	const size_t low = 64, high = 200, threshold = slen * 90 / 100;
	size_t sum = 0;
	int i;

	for (i = 0; i < low; i++)
		sum += bkt[i].count;

	if (sum > threshold)
		return BYTE_DIST_BAD;

	for (; i < high && bkt[i].count > 0; i++) {
		sum += bkt[i].count;
		if (sum > threshold)
			break;
	}

	if (i <= low)
		return BYTE_DIST_GOOD;

	if (i >= high)
		return BYTE_DIST_BAD;

	return BYTE_DIST_MAYBE;
}

static bool is_mostly_ascii(const struct bucket *bkt)
{
	size_t count = 0;
	int i;

	for (i = 0; i < 256; i++)
		if (bkt[i].count > 0)
			/* Too many non-ASCII (0-63) bytes. */
			if (++count > 64)
				return false;

	return true;
}

static bool has_repeated_data(const u8 *sample, size_t len)
{
	size_t s = len / 2;

	return (!memcmp(&sample[0], &sample[s], s));
}

static int cmp_bkt(const void *_a, const void *_b)
{
	const struct bucket *a = _a, *b = _b;

	/* Reverse sort. */
	if (a->count > b->count)
		return -1;

	return 1;
}

/*
 * TODO:
 * Support other iter types, if required.
 * Only ITER_XARRAY is supported for now.
 */
static int collect_sample(const struct iov_iter *iter, ssize_t max, u8 *sample)
{
	struct folio *folios[16], *folio;
	unsigned int nr, i, j, npages;
	loff_t start = iter->xarray_start + iter->iov_offset;
	pgoff_t last, index = start / PAGE_SIZE;
	size_t len, off, foff;
	ssize_t ret = 0;
	void *p;
	int s = 0;

	last = (start + max - 1) / PAGE_SIZE;
	do {
		nr = xa_extract(iter->xarray, (void **)folios, index, last, ARRAY_SIZE(folios),
				XA_PRESENT);
		if (nr == 0)
			return -EIO;

		for (i = 0; i < nr; i++) {
			folio = folios[i];
			npages = folio_nr_pages(folio);
			foff = start - folio_pos(folio);
			off = foff % PAGE_SIZE;

			for (j = foff / PAGE_SIZE; j < npages; j++) {
				size_t len2;

				len = min_t(size_t, max, PAGE_SIZE - off);
				len2 = min_t(size_t, len, SZ_2K);

				p = kmap_local_page(folio_page(folio, j));
				memcpy(&sample[s], p, len2);
				kunmap_local(p);

				if (ret < 0)
					return ret;

				s += len2;

				if (len2 < SZ_2K || s >= max - SZ_2K)
					return s;

				max -= len;
				if (max <= 0)
					return s;

				start += len;
				off = 0;
				index++;
			}
		}
	} while (nr == ARRAY_SIZE(folios));

	return s;
}

/**
 * is_compressible() - Determines if a chunk of data is compressible.
 * @data: Iterator containing uncompressed data.
 *
 * Return: true if @data is compressible, false otherwise.
 *
 * Tests shows that this function is quite reliable in predicting data compressibility,
 * matching close to 1:1 with the behaviour of LZ77 compression success and failures.
 */
static bool is_compressible(const struct iov_iter *data)
{
	const size_t read_size = SZ_2K, bkt_size = 256, max = SZ_4M;
	struct bucket *bkt = NULL;
	size_t len;
	u8 *sample;
	bool ret = false;
	int i;

	/* Preventive double check -- already checked in should_compress(). */
	len = iov_iter_count(data);
	if (unlikely(len < read_size))
		return ret;

	if (len - read_size > max)
		len = max;

	sample = kvzalloc(len, GFP_KERNEL);
	if (!sample) {
		WARN_ON_ONCE(1);

		return ret;
	}

	/* Sample 2K bytes per page of the uncompressed data. */
	i = collect_sample(data, len, sample);
	if (i <= 0) {
		WARN_ON_ONCE(1);

		goto out;
	}

	len = i;
	ret = true;

	if (has_repeated_data(sample, len))
		goto out;

	bkt = kcalloc(bkt_size, sizeof(*bkt), GFP_KERNEL);
	if (!bkt) {
		WARN_ON_ONCE(1);
		ret = false;

		goto out;
	}

	for (i = 0; i < len; i++)
		bkt[sample[i]].count++;

	if (is_mostly_ascii(bkt))
		goto out;

	/* Sort in descending order */
	sort(bkt, bkt_size, sizeof(*bkt), cmp_bkt, NULL);

	i = calc_byte_distribution(bkt, len);
	if (i != BYTE_DIST_MAYBE) {
		ret = !!i;

		goto out;
	}

	ret = has_low_entropy(bkt, len);
out:
	kvfree(sample);
	kfree(bkt);

	return ret;
}

bool should_compress(const struct cifs_tcon *tcon, const struct smb_rqst *rq)
{
	const struct smb2_hdr *shdr = rq->rq_iov->iov_base;

	if (unlikely(!tcon || !tcon->ses || !tcon->ses->server))
		return false;

	if (!tcon->ses->server->compression.enabled)
		return false;

	if (!(tcon->share_flags & SMB2_SHAREFLAG_COMPRESS_DATA))
		return false;

	if (shdr->Command == SMB2_WRITE) {
		const struct smb2_write_req *wreq = rq->rq_iov->iov_base;

		if (le32_to_cpu(wreq->Length) < SMB_COMPRESS_MIN_LEN)
			return false;

		return is_compressible(&rq->rq_iter);
	}

	return (shdr->Command == SMB2_READ);
}

int smb_compress(struct TCP_Server_Info *server, struct smb_rqst *rq, compress_send_fn send_fn)
{
	struct iov_iter iter;
	u32 slen, dlen;
	void *src, *dst = NULL;
	int ret;

	if (!server || !rq || !rq->rq_iov || !rq->rq_iov->iov_base)
		return -EINVAL;

	if (rq->rq_iov->iov_len != sizeof(struct smb2_write_req))
		return -EINVAL;

	slen = iov_iter_count(&rq->rq_iter);
	src = kvzalloc(slen, GFP_KERNEL);
	if (!src) {
		ret = -ENOMEM;
		goto err_free;
	}

	/* Keep the original iter intact. */
	iter = rq->rq_iter;

	if (!copy_from_iter_full(src, slen, &iter)) {
		ret = -EIO;
		goto err_free;
	}

	/*
	 * This is just overprovisioning, as the algorithm will error out if @dst reaches 7/8
	 * of @slen.
	 */
	dlen = slen;
	dst = kvzalloc(dlen, GFP_KERNEL);
	if (!dst) {
		ret = -ENOMEM;
		goto err_free;
	}

	ret = lz77_compress(src, slen, dst, &dlen);
	if (!ret) {
		struct smb2_compression_hdr hdr = { 0 };
		struct smb_rqst comp_rq = { .rq_nvec = 3, };
		struct kvec iov[3];

		hdr.ProtocolId = SMB2_COMPRESSION_TRANSFORM_ID;
		hdr.OriginalCompressedSegmentSize = cpu_to_le32(slen);
		hdr.CompressionAlgorithm = SMB3_COMPRESS_LZ77;
		hdr.Flags = SMB2_COMPRESSION_FLAG_NONE;
		hdr.Offset = cpu_to_le32(rq->rq_iov[0].iov_len);

		iov[0].iov_base = &hdr;
		iov[0].iov_len = sizeof(hdr);
		iov[1] = rq->rq_iov[0];
		iov[2].iov_base = dst;
		iov[2].iov_len = dlen;

		comp_rq.rq_iov = iov;

		ret = send_fn(server, 1, &comp_rq);
	} else if (ret == -EMSGSIZE || dlen >= slen) {
		ret = send_fn(server, 1, rq);
	}
err_free:
	kvfree(dst);
	kvfree(src);

	return ret;
}