1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
|
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2015 MediaTek Inc.
* Author:
* Zhigang.Wei <zhigang.wei@mediatek.com>
* Chunfeng.Yun <chunfeng.yun@mediatek.com>
*/
#ifndef _XHCI_MTK_H_
#define _XHCI_MTK_H_
#include <linux/clk.h>
#include <linux/hashtable.h>
#include <linux/regulator/consumer.h>
#include "xhci.h"
#define BULK_CLKS_NUM 6
#define BULK_VREGS_NUM 2
/* support at most 64 ep, use 32 size hash table */
#define SCH_EP_HASH_BITS 5
/**
* To simplify scheduler algorithm, set a upper limit for ESIT,
* if a synchromous ep's ESIT is larger than @XHCI_MTK_MAX_ESIT,
* round down to the limit value, that means allocating more
* bandwidth to it.
*/
#define XHCI_MTK_MAX_ESIT (1 << 6)
#define XHCI_MTK_BW_INDEX(x) ((x) & (XHCI_MTK_MAX_ESIT - 1))
/**
* @fs_bus_bw: array to keep track of bandwidth already used for FS
* @ep_list: Endpoints using this TT
*/
struct mu3h_sch_tt {
u32 fs_bus_bw[XHCI_MTK_MAX_ESIT];
struct list_head ep_list;
};
/**
* struct mu3h_sch_bw_info: schedule information for bandwidth domain
*
* @bus_bw: array to keep track of bandwidth already used at each uframes
*
* treat a HS root port as a bandwidth domain, but treat a SS root port as
* two bandwidth domains, one for IN eps and another for OUT eps.
*/
struct mu3h_sch_bw_info {
u32 bus_bw[XHCI_MTK_MAX_ESIT];
};
/**
* struct mu3h_sch_ep_info: schedule information for endpoint
*
* @esit: unit is 125us, equal to 2 << Interval field in ep-context
* @num_esit: number of @esit in a period
* @num_budget_microframes: number of continuous uframes
* (@repeat==1) scheduled within the interval
* @bw_cost_per_microframe: bandwidth cost per microframe
* @hentry: hash table entry
* @endpoint: linked into bandwidth domain which it belongs to
* @tt_endpoint: linked into mu3h_sch_tt's list which it belongs to
* @bw_info: bandwidth domain which this endpoint belongs
* @sch_tt: mu3h_sch_tt linked into
* @ep_type: endpoint type
* @maxpkt: max packet size of endpoint
* @ep: address of usb_host_endpoint struct
* @allocated: the bandwidth is aready allocated from bus_bw
* @offset: which uframe of the interval that transfer should be
* scheduled first time within the interval
* @repeat: the time gap between two uframes that transfers are
* scheduled within a interval. in the simple algorithm, only
* assign 0 or 1 to it; 0 means using only one uframe in a
* interval, and 1 means using @num_budget_microframes
* continuous uframes
* @pkts: number of packets to be transferred in the scheduled uframes
* @cs_count: number of CS that host will trigger
* @burst_mode: burst mode for scheduling. 0: normal burst mode,
* distribute the bMaxBurst+1 packets for a single burst
* according to @pkts and @repeat, repeate the burst multiple
* times; 1: distribute the (bMaxBurst+1)*(Mult+1) packets
* according to @pkts and @repeat. normal mode is used by
* default
*/
struct mu3h_sch_ep_info {
u32 esit;
u32 num_esit;
u32 num_budget_microframes;
u32 bw_cost_per_microframe;
struct list_head endpoint;
struct hlist_node hentry;
struct list_head tt_endpoint;
struct mu3h_sch_bw_info *bw_info;
struct mu3h_sch_tt *sch_tt;
u32 ep_type;
u32 maxpkt;
struct usb_host_endpoint *ep;
enum usb_device_speed speed;
bool allocated;
/*
* mtk xHCI scheduling information put into reserved DWs
* in ep context
*/
u32 offset;
u32 repeat;
u32 pkts;
u32 cs_count;
u32 burst_mode;
};
#define MU3C_U3_PORT_MAX 4
#define MU3C_U2_PORT_MAX 5
/**
* struct mu3c_ippc_regs: MTK ssusb ip port control registers
* @ip_pw_ctr0~3: ip power and clock control registers
* @ip_pw_sts1~2: ip power and clock status registers
* @ip_xhci_cap: ip xHCI capability register
* @u3_ctrl_p[x]: ip usb3 port x control register, only low 4bytes are used
* @u2_ctrl_p[x]: ip usb2 port x control register, only low 4bytes are used
* @u2_phy_pll: usb2 phy pll control register
*/
struct mu3c_ippc_regs {
__le32 ip_pw_ctr0;
__le32 ip_pw_ctr1;
__le32 ip_pw_ctr2;
__le32 ip_pw_ctr3;
__le32 ip_pw_sts1;
__le32 ip_pw_sts2;
__le32 reserved0[3];
__le32 ip_xhci_cap;
__le32 reserved1[2];
__le64 u3_ctrl_p[MU3C_U3_PORT_MAX];
__le64 u2_ctrl_p[MU3C_U2_PORT_MAX];
__le32 reserved2;
__le32 u2_phy_pll;
__le32 reserved3[33]; /* 0x80 ~ 0xff */
};
struct xhci_hcd_mtk {
struct device *dev;
struct usb_hcd *hcd;
struct mu3h_sch_bw_info *sch_array;
struct list_head bw_ep_chk_list;
DECLARE_HASHTABLE(sch_ep_hash, SCH_EP_HASH_BITS);
struct mu3c_ippc_regs __iomem *ippc_regs;
int num_u2_ports;
int num_u3_ports;
int u2p_dis_msk;
int u3p_dis_msk;
struct clk_bulk_data clks[BULK_CLKS_NUM];
struct regulator_bulk_data supplies[BULK_VREGS_NUM];
unsigned int has_ippc:1;
unsigned int lpm_support:1;
unsigned int u2_lpm_disable:1;
/* usb remote wakeup */
unsigned int uwk_en:1;
struct regmap *uwk;
u32 uwk_reg_base;
u32 uwk_vers;
};
static inline struct xhci_hcd_mtk *hcd_to_mtk(struct usb_hcd *hcd)
{
return dev_get_drvdata(hcd->self.controller);
}
int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk);
void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk);
int xhci_mtk_add_ep(struct usb_hcd *hcd, struct usb_device *udev,
struct usb_host_endpoint *ep);
int xhci_mtk_drop_ep(struct usb_hcd *hcd, struct usb_device *udev,
struct usb_host_endpoint *ep);
int xhci_mtk_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev);
void xhci_mtk_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev);
#endif /* _XHCI_MTK_H_ */
|