summaryrefslogtreecommitdiff
path: root/drivers/usb/cdns3/cdnsp-mem.c
blob: 97866bfb2da9d941c9aa915f78f8c79b26060fe8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
// SPDX-License-Identifier: GPL-2.0
/*
 * Cadence CDNSP DRD Driver.
 *
 * Copyright (C) 2020 Cadence.
 *
 * Author: Pawel Laszczak <pawell@cadence.com>
 *
 * Code based on Linux XHCI driver.
 * Origin: Copyright (C) 2008 Intel Corp.
 */

#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/slab.h>
#include <linux/usb.h>

#include "cdnsp-gadget.h"
#include "cdnsp-trace.h"

static void cdnsp_free_stream_info(struct cdnsp_device *pdev,
				   struct cdnsp_ep *pep);
/*
 * Allocates a generic ring segment from the ring pool, sets the dma address,
 * initializes the segment to zero, and sets the private next pointer to NULL.
 *
 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
 */
static struct cdnsp_segment *cdnsp_segment_alloc(struct cdnsp_device *pdev,
						 unsigned int cycle_state,
						 unsigned int max_packet,
						 gfp_t flags)
{
	struct cdnsp_segment *seg;
	dma_addr_t dma;
	int i;

	seg = kzalloc(sizeof(*seg), flags);
	if (!seg)
		return NULL;

	seg->trbs = dma_pool_zalloc(pdev->segment_pool, flags, &dma);
	if (!seg->trbs) {
		kfree(seg);
		return NULL;
	}

	if (max_packet) {
		seg->bounce_buf = kzalloc(max_packet, flags | GFP_DMA);
		if (!seg->bounce_buf)
			goto free_dma;
	}

	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs. */
	if (cycle_state == 0) {
		for (i = 0; i < TRBS_PER_SEGMENT; i++)
			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
	}
	seg->dma = dma;
	seg->next = NULL;

	return seg;

free_dma:
	dma_pool_free(pdev->segment_pool, seg->trbs, dma);
	kfree(seg);

	return NULL;
}

static void cdnsp_segment_free(struct cdnsp_device *pdev,
			       struct cdnsp_segment *seg)
{
	if (seg->trbs)
		dma_pool_free(pdev->segment_pool, seg->trbs, seg->dma);

	kfree(seg->bounce_buf);
	kfree(seg);
}

static void cdnsp_free_segments_for_ring(struct cdnsp_device *pdev,
					 struct cdnsp_segment *first)
{
	struct cdnsp_segment *seg;

	seg = first->next;

	while (seg != first) {
		struct cdnsp_segment *next = seg->next;

		cdnsp_segment_free(pdev, seg);
		seg = next;
	}

	cdnsp_segment_free(pdev, first);
}

/*
 * Make the prev segment point to the next segment.
 *
 * Change the last TRB in the prev segment to be a Link TRB which points to the
 * DMA address of the next segment. The caller needs to set any Link TRB
 * related flags, such as End TRB, Toggle Cycle, and no snoop.
 */
static void cdnsp_link_segments(struct cdnsp_device *pdev,
				struct cdnsp_segment *prev,
				struct cdnsp_segment *next,
				enum cdnsp_ring_type type)
{
	struct cdnsp_link_trb *link;
	u32 val;

	if (!prev || !next)
		return;

	prev->next = next;
	if (type != TYPE_EVENT) {
		link = &prev->trbs[TRBS_PER_SEGMENT - 1].link;
		link->segment_ptr = cpu_to_le64(next->dma);

		/*
		 * Set the last TRB in the segment to have a TRB type ID
		 * of Link TRB
		 */
		val = le32_to_cpu(link->control);
		val &= ~TRB_TYPE_BITMASK;
		val |= TRB_TYPE(TRB_LINK);
		link->control = cpu_to_le32(val);
	}
}

/*
 * Link the ring to the new segments.
 * Set Toggle Cycle for the new ring if needed.
 */
static void cdnsp_link_rings(struct cdnsp_device *pdev,
			     struct cdnsp_ring *ring,
			     struct cdnsp_segment *first,
			     struct cdnsp_segment *last,
			     unsigned int num_segs)
{
	struct cdnsp_segment *next;

	if (!ring || !first || !last)
		return;

	next = ring->enq_seg->next;
	cdnsp_link_segments(pdev, ring->enq_seg, first, ring->type);
	cdnsp_link_segments(pdev, last, next, ring->type);
	ring->num_segs += num_segs;
	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;

	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
			~cpu_to_le32(LINK_TOGGLE);
		last->trbs[TRBS_PER_SEGMENT - 1].link.control |=
			cpu_to_le32(LINK_TOGGLE);
		ring->last_seg = last;
	}
}

/*
 * We need a radix tree for mapping physical addresses of TRBs to which stream
 * ID they belong to. We need to do this because the device controller won't
 * tell us which stream ring the TRB came from. We could store the stream ID
 * in an event data TRB, but that doesn't help us for the cancellation case,
 * since the endpoint may stop before it reaches that event data TRB.
 *
 * The radix tree maps the upper portion of the TRB DMA address to a ring
 * segment that has the same upper portion of DMA addresses. For example,
 * say I have segments of size 1KB, that are always 1KB aligned. A segment may
 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
 * pass the radix tree a key to get the right stream ID:
 *
 *	0x10c90fff >> 10 = 0x43243
 *	0x10c912c0 >> 10 = 0x43244
 *	0x10c91400 >> 10 = 0x43245
 *
 * Obviously, only those TRBs with DMA addresses that are within the segment
 * will make the radix tree return the stream ID for that ring.
 *
 * Caveats for the radix tree:
 *
 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
 * extended systems (where the DMA address can be bigger than 32-bits),
 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
 */
static int cdnsp_insert_segment_mapping(struct radix_tree_root *trb_address_map,
					struct cdnsp_ring *ring,
					struct cdnsp_segment *seg,
					gfp_t mem_flags)
{
	unsigned long key;
	int ret;

	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);

	/* Skip any segments that were already added. */
	if (radix_tree_lookup(trb_address_map, key))
		return 0;

	ret = radix_tree_maybe_preload(mem_flags);
	if (ret)
		return ret;

	ret = radix_tree_insert(trb_address_map, key, ring);
	radix_tree_preload_end();

	return ret;
}

static void cdnsp_remove_segment_mapping(struct radix_tree_root *trb_address_map,
					 struct cdnsp_segment *seg)
{
	unsigned long key;

	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
	if (radix_tree_lookup(trb_address_map, key))
		radix_tree_delete(trb_address_map, key);
}

static int cdnsp_update_stream_segment_mapping(struct radix_tree_root *trb_address_map,
					       struct cdnsp_ring *ring,
					       struct cdnsp_segment *first_seg,
					       struct cdnsp_segment *last_seg,
					       gfp_t mem_flags)
{
	struct cdnsp_segment *failed_seg;
	struct cdnsp_segment *seg;
	int ret;

	seg = first_seg;
	do {
		ret = cdnsp_insert_segment_mapping(trb_address_map, ring, seg,
						   mem_flags);
		if (ret)
			goto remove_streams;
		if (seg == last_seg)
			return 0;
		seg = seg->next;
	} while (seg != first_seg);

	return 0;

remove_streams:
	failed_seg = seg;
	seg = first_seg;
	do {
		cdnsp_remove_segment_mapping(trb_address_map, seg);
		if (seg == failed_seg)
			return ret;
		seg = seg->next;
	} while (seg != first_seg);

	return ret;
}

static void cdnsp_remove_stream_mapping(struct cdnsp_ring *ring)
{
	struct cdnsp_segment *seg;

	seg = ring->first_seg;
	do {
		cdnsp_remove_segment_mapping(ring->trb_address_map, seg);
		seg = seg->next;
	} while (seg != ring->first_seg);
}

static int cdnsp_update_stream_mapping(struct cdnsp_ring *ring)
{
	return cdnsp_update_stream_segment_mapping(ring->trb_address_map, ring,
			ring->first_seg, ring->last_seg, GFP_ATOMIC);
}

static void cdnsp_ring_free(struct cdnsp_device *pdev, struct cdnsp_ring *ring)
{
	if (!ring)
		return;

	trace_cdnsp_ring_free(ring);

	if (ring->first_seg) {
		if (ring->type == TYPE_STREAM)
			cdnsp_remove_stream_mapping(ring);

		cdnsp_free_segments_for_ring(pdev, ring->first_seg);
	}

	kfree(ring);
}

void cdnsp_initialize_ring_info(struct cdnsp_ring *ring)
{
	ring->enqueue = ring->first_seg->trbs;
	ring->enq_seg = ring->first_seg;
	ring->dequeue = ring->enqueue;
	ring->deq_seg = ring->first_seg;

	/*
	 * The ring is initialized to 0. The producer must write 1 to the cycle
	 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
	 *
	 * New rings are initialized with cycle state equal to 1; if we are
	 * handling ring expansion, set the cycle state equal to the old ring.
	 */
	ring->cycle_state = 1;

	/*
	 * Each segment has a link TRB, and leave an extra TRB for SW
	 * accounting purpose
	 */
	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
}

/* Allocate segments and link them for a ring. */
static int cdnsp_alloc_segments_for_ring(struct cdnsp_device *pdev,
					 struct cdnsp_segment **first,
					 struct cdnsp_segment **last,
					 unsigned int num_segs,
					 unsigned int cycle_state,
					 enum cdnsp_ring_type type,
					 unsigned int max_packet,
					 gfp_t flags)
{
	struct cdnsp_segment *prev;

	/* Allocate first segment. */
	prev = cdnsp_segment_alloc(pdev, cycle_state, max_packet, flags);
	if (!prev)
		return -ENOMEM;

	num_segs--;
	*first = prev;

	/* Allocate all other segments. */
	while (num_segs > 0) {
		struct cdnsp_segment	*next;

		next = cdnsp_segment_alloc(pdev, cycle_state,
					   max_packet, flags);
		if (!next) {
			cdnsp_free_segments_for_ring(pdev, *first);
			return -ENOMEM;
		}

		cdnsp_link_segments(pdev, prev, next, type);

		prev = next;
		num_segs--;
	}

	cdnsp_link_segments(pdev, prev, *first, type);
	*last = prev;

	return 0;
}

/*
 * Create a new ring with zero or more segments.
 *
 * Link each segment together into a ring.
 * Set the end flag and the cycle toggle bit on the last segment.
 */
static struct cdnsp_ring *cdnsp_ring_alloc(struct cdnsp_device *pdev,
					   unsigned int num_segs,
					   enum cdnsp_ring_type type,
					   unsigned int max_packet,
					   gfp_t flags)
{
	struct cdnsp_ring *ring;
	int ret;

	ring = kzalloc(sizeof *(ring), flags);
	if (!ring)
		return NULL;

	ring->num_segs = num_segs;
	ring->bounce_buf_len = max_packet;
	INIT_LIST_HEAD(&ring->td_list);
	ring->type = type;

	if (num_segs == 0)
		return ring;

	ret = cdnsp_alloc_segments_for_ring(pdev, &ring->first_seg,
					    &ring->last_seg, num_segs,
					    1, type, max_packet, flags);
	if (ret)
		goto fail;

	/* Only event ring does not use link TRB. */
	if (type != TYPE_EVENT)
		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
			cpu_to_le32(LINK_TOGGLE);

	cdnsp_initialize_ring_info(ring);
	trace_cdnsp_ring_alloc(ring);
	return ring;
fail:
	kfree(ring);
	return NULL;
}

void cdnsp_free_endpoint_rings(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
{
	cdnsp_ring_free(pdev, pep->ring);
	pep->ring = NULL;
	cdnsp_free_stream_info(pdev, pep);
}

/*
 * Expand an existing ring.
 * Allocate a new ring which has same segment numbers and link the two rings.
 */
int cdnsp_ring_expansion(struct cdnsp_device *pdev,
			 struct cdnsp_ring *ring,
			 unsigned int num_trbs,
			 gfp_t flags)
{
	unsigned int num_segs_needed;
	struct cdnsp_segment *first;
	struct cdnsp_segment *last;
	unsigned int num_segs;
	int ret;

	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
			(TRBS_PER_SEGMENT - 1);

	/* Allocate number of segments we needed, or double the ring size. */
	num_segs = max(ring->num_segs, num_segs_needed);

	ret = cdnsp_alloc_segments_for_ring(pdev, &first, &last, num_segs,
					    ring->cycle_state, ring->type,
					    ring->bounce_buf_len, flags);
	if (ret)
		return -ENOMEM;

	if (ring->type == TYPE_STREAM)
		ret = cdnsp_update_stream_segment_mapping(ring->trb_address_map,
							  ring, first,
							  last, flags);

	if (ret) {
		cdnsp_free_segments_for_ring(pdev, first);

		return ret;
	}

	cdnsp_link_rings(pdev, ring, first, last, num_segs);
	trace_cdnsp_ring_expansion(ring);

	return 0;
}

static int cdnsp_init_device_ctx(struct cdnsp_device *pdev)
{
	int size = HCC_64BYTE_CONTEXT(pdev->hcc_params) ? 2048 : 1024;

	pdev->out_ctx.type = CDNSP_CTX_TYPE_DEVICE;
	pdev->out_ctx.size = size;
	pdev->out_ctx.ctx_size = CTX_SIZE(pdev->hcc_params);
	pdev->out_ctx.bytes = dma_pool_zalloc(pdev->device_pool, GFP_ATOMIC,
					      &pdev->out_ctx.dma);

	if (!pdev->out_ctx.bytes)
		return -ENOMEM;

	pdev->in_ctx.type = CDNSP_CTX_TYPE_INPUT;
	pdev->in_ctx.ctx_size = pdev->out_ctx.ctx_size;
	pdev->in_ctx.size = size + pdev->out_ctx.ctx_size;
	pdev->in_ctx.bytes = dma_pool_zalloc(pdev->device_pool, GFP_ATOMIC,
					     &pdev->in_ctx.dma);

	if (!pdev->in_ctx.bytes) {
		dma_pool_free(pdev->device_pool, pdev->out_ctx.bytes,
			      pdev->out_ctx.dma);
		return -ENOMEM;
	}

	return 0;
}

struct cdnsp_input_control_ctx
	*cdnsp_get_input_control_ctx(struct cdnsp_container_ctx *ctx)
{
	if (ctx->type != CDNSP_CTX_TYPE_INPUT)
		return NULL;

	return (struct cdnsp_input_control_ctx *)ctx->bytes;
}

struct cdnsp_slot_ctx *cdnsp_get_slot_ctx(struct cdnsp_container_ctx *ctx)
{
	if (ctx->type == CDNSP_CTX_TYPE_DEVICE)
		return (struct cdnsp_slot_ctx *)ctx->bytes;

	return (struct cdnsp_slot_ctx *)(ctx->bytes + ctx->ctx_size);
}

struct cdnsp_ep_ctx *cdnsp_get_ep_ctx(struct cdnsp_container_ctx *ctx,
				      unsigned int ep_index)
{
	/* Increment ep index by offset of start of ep ctx array. */
	ep_index++;
	if (ctx->type == CDNSP_CTX_TYPE_INPUT)
		ep_index++;

	return (struct cdnsp_ep_ctx *)(ctx->bytes + (ep_index * ctx->ctx_size));
}

static void cdnsp_free_stream_ctx(struct cdnsp_device *pdev,
				  struct cdnsp_ep *pep)
{
	dma_pool_free(pdev->device_pool, pep->stream_info.stream_ctx_array,
		      pep->stream_info.ctx_array_dma);
}

/* The stream context array must be a power of 2. */
static struct cdnsp_stream_ctx
	*cdnsp_alloc_stream_ctx(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
{
	size_t size = sizeof(struct cdnsp_stream_ctx) *
		      pep->stream_info.num_stream_ctxs;

	if (size > CDNSP_CTX_SIZE)
		return NULL;

	/**
	 * Driver uses intentionally the device_pool to allocated stream
	 * context array. Device Pool has 2048 bytes of size what gives us
	 * 128 entries.
	 */
	return dma_pool_zalloc(pdev->device_pool, GFP_DMA32 | GFP_ATOMIC,
			       &pep->stream_info.ctx_array_dma);
}

struct cdnsp_ring *cdnsp_dma_to_transfer_ring(struct cdnsp_ep *pep, u64 address)
{
	if (pep->ep_state & EP_HAS_STREAMS)
		return radix_tree_lookup(&pep->stream_info.trb_address_map,
					 address >> TRB_SEGMENT_SHIFT);

	return pep->ring;
}

/*
 * Change an endpoint's internal structure so it supports stream IDs.
 * The number of requested streams includes stream 0, which cannot be used by
 * driver.
 *
 * The number of stream contexts in the stream context array may be bigger than
 * the number of streams the driver wants to use. This is because the number of
 * stream context array entries must be a power of two.
 */
int cdnsp_alloc_stream_info(struct cdnsp_device *pdev,
			    struct cdnsp_ep *pep,
			    unsigned int num_stream_ctxs,
			    unsigned int num_streams)
{
	struct cdnsp_stream_info *stream_info;
	struct cdnsp_ring *cur_ring;
	u32 cur_stream;
	u64 addr;
	int ret;
	int mps;

	stream_info = &pep->stream_info;
	stream_info->num_streams = num_streams;
	stream_info->num_stream_ctxs = num_stream_ctxs;

	/* Initialize the array of virtual pointers to stream rings. */
	stream_info->stream_rings = kcalloc(num_streams,
					    sizeof(struct cdnsp_ring *),
					    GFP_ATOMIC);
	if (!stream_info->stream_rings)
		return -ENOMEM;

	/* Initialize the array of DMA addresses for stream rings for the HW. */
	stream_info->stream_ctx_array = cdnsp_alloc_stream_ctx(pdev, pep);
	if (!stream_info->stream_ctx_array)
		goto cleanup_stream_rings;

	memset(stream_info->stream_ctx_array, 0,
	       sizeof(struct cdnsp_stream_ctx) * num_stream_ctxs);
	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
	mps = usb_endpoint_maxp(pep->endpoint.desc);

	/*
	 * Allocate rings for all the streams that the driver will use,
	 * and add their segment DMA addresses to the radix tree.
	 * Stream 0 is reserved.
	 */
	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		cur_ring = cdnsp_ring_alloc(pdev, 2, TYPE_STREAM, mps,
					    GFP_ATOMIC);
		stream_info->stream_rings[cur_stream] = cur_ring;

		if (!cur_ring)
			goto cleanup_rings;

		cur_ring->stream_id = cur_stream;
		cur_ring->trb_address_map = &stream_info->trb_address_map;

		/* Set deq ptr, cycle bit, and stream context type. */
		addr = cur_ring->first_seg->dma | SCT_FOR_CTX(SCT_PRI_TR) |
		       cur_ring->cycle_state;

		stream_info->stream_ctx_array[cur_stream].stream_ring =
			cpu_to_le64(addr);

		trace_cdnsp_set_stream_ring(cur_ring);

		ret = cdnsp_update_stream_mapping(cur_ring);
		if (ret)
			goto cleanup_rings;
	}

	return 0;

cleanup_rings:
	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
		cur_ring = stream_info->stream_rings[cur_stream];
		if (cur_ring) {
			cdnsp_ring_free(pdev, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
		}
	}

cleanup_stream_rings:
	kfree(pep->stream_info.stream_rings);

	return -ENOMEM;
}

/* Frees all stream contexts associated with the endpoint. */
static void cdnsp_free_stream_info(struct cdnsp_device *pdev,
				   struct cdnsp_ep *pep)
{
	struct cdnsp_stream_info *stream_info = &pep->stream_info;
	struct cdnsp_ring *cur_ring;
	int cur_stream;

	if (!(pep->ep_state & EP_HAS_STREAMS))
		return;

	for (cur_stream = 1; cur_stream < stream_info->num_streams;
	     cur_stream++) {
		cur_ring = stream_info->stream_rings[cur_stream];
		if (cur_ring) {
			cdnsp_ring_free(pdev, cur_ring);
			stream_info->stream_rings[cur_stream] = NULL;
		}
	}

	if (stream_info->stream_ctx_array)
		cdnsp_free_stream_ctx(pdev, pep);

	kfree(stream_info->stream_rings);
	pep->ep_state &= ~EP_HAS_STREAMS;
}

/* All the cdnsp_tds in the ring's TD list should be freed at this point.*/
static void cdnsp_free_priv_device(struct cdnsp_device *pdev)
{
	pdev->dcbaa->dev_context_ptrs[1] = 0;

	cdnsp_free_endpoint_rings(pdev, &pdev->eps[0]);

	if (pdev->in_ctx.bytes)
		dma_pool_free(pdev->device_pool, pdev->in_ctx.bytes,
			      pdev->in_ctx.dma);

	if (pdev->out_ctx.bytes)
		dma_pool_free(pdev->device_pool, pdev->out_ctx.bytes,
			      pdev->out_ctx.dma);

	pdev->in_ctx.bytes = NULL;
	pdev->out_ctx.bytes = NULL;
}

static int cdnsp_alloc_priv_device(struct cdnsp_device *pdev)
{
	int ret;

	ret = cdnsp_init_device_ctx(pdev);
	if (ret)
		return ret;

	/* Allocate endpoint 0 ring. */
	pdev->eps[0].ring = cdnsp_ring_alloc(pdev, 2, TYPE_CTRL, 0, GFP_ATOMIC);
	if (!pdev->eps[0].ring)
		goto fail;

	/* Point to output device context in dcbaa. */
	pdev->dcbaa->dev_context_ptrs[1] = cpu_to_le64(pdev->out_ctx.dma);
	pdev->cmd.in_ctx = &pdev->in_ctx;

	trace_cdnsp_alloc_priv_device(pdev);
	return 0;
fail:
	dma_pool_free(pdev->device_pool, pdev->out_ctx.bytes,
		      pdev->out_ctx.dma);
	dma_pool_free(pdev->device_pool, pdev->in_ctx.bytes,
		      pdev->in_ctx.dma);

	return ret;
}

void cdnsp_copy_ep0_dequeue_into_input_ctx(struct cdnsp_device *pdev)
{
	struct cdnsp_ep_ctx *ep0_ctx = pdev->eps[0].in_ctx;
	struct cdnsp_ring *ep_ring = pdev->eps[0].ring;
	dma_addr_t dma;

	dma = cdnsp_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue);
	ep0_ctx->deq = cpu_to_le64(dma | ep_ring->cycle_state);
}

/* Setup an controller private device for a Set Address command. */
int cdnsp_setup_addressable_priv_dev(struct cdnsp_device *pdev)
{
	struct cdnsp_slot_ctx *slot_ctx;
	struct cdnsp_ep_ctx *ep0_ctx;
	u32 max_packets, port;

	ep0_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, 0);
	slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);

	/* Only the control endpoint is valid - one endpoint context. */
	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));

	switch (pdev->gadget.speed) {
	case USB_SPEED_SUPER_PLUS:
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
		max_packets = MAX_PACKET(512);
		break;
	case USB_SPEED_SUPER:
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
		max_packets = MAX_PACKET(512);
		break;
	case USB_SPEED_HIGH:
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
		max_packets = MAX_PACKET(64);
		break;
	case USB_SPEED_FULL:
		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
		max_packets = MAX_PACKET(64);
		break;
	default:
		/* Speed was not set , this shouldn't happen. */
		return -EINVAL;
	}

	port = DEV_PORT(pdev->active_port->port_num);
	slot_ctx->dev_port |= cpu_to_le32(port);
	slot_ctx->dev_state = cpu_to_le32((pdev->device_address &
					   DEV_ADDR_MASK));
	ep0_ctx->tx_info = cpu_to_le32(EP_AVG_TRB_LENGTH(0x8));
	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
					 max_packets);

	ep0_ctx->deq = cpu_to_le64(pdev->eps[0].ring->first_seg->dma |
				   pdev->eps[0].ring->cycle_state);

	trace_cdnsp_setup_addressable_priv_device(pdev);

	return 0;
}

/*
 * Convert interval expressed as 2^(bInterval - 1) == interval into
 * straight exponent value 2^n == interval.
 */
static unsigned int cdnsp_parse_exponent_interval(struct usb_gadget *g,
						  struct cdnsp_ep *pep)
{
	unsigned int interval;

	interval = clamp_val(pep->endpoint.desc->bInterval, 1, 16) - 1;
	if (interval != pep->endpoint.desc->bInterval - 1)
		dev_warn(&g->dev, "ep %s - rounding interval to %d %sframes\n",
			 pep->name, 1 << interval,
			 g->speed == USB_SPEED_FULL ? "" : "micro");

	/*
	 * Full speed isoc endpoints specify interval in frames,
	 * not microframes. We are using microframes everywhere,
	 * so adjust accordingly.
	 */
	if (g->speed == USB_SPEED_FULL)
		interval += 3;	/* 1 frame = 2^3 uframes */

	/* Controller handles only up to 512ms (2^12). */
	if (interval > 12)
		interval = 12;

	return interval;
}

/*
 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
 * microframes, rounded down to nearest power of 2.
 */
static unsigned int cdnsp_microframes_to_exponent(struct usb_gadget *g,
						  struct cdnsp_ep *pep,
						  unsigned int desc_interval,
						  unsigned int min_exponent,
						  unsigned int max_exponent)
{
	unsigned int interval;

	interval = fls(desc_interval) - 1;
	return clamp_val(interval, min_exponent, max_exponent);
}

/*
 * Return the polling interval.
 *
 * The polling interval is expressed in "microframes". If controllers's Interval
 * field is set to N, it will service the endpoint every 2^(Interval)*125us.
 */
static unsigned int cdnsp_get_endpoint_interval(struct usb_gadget *g,
						struct cdnsp_ep *pep)
{
	unsigned int interval = 0;

	switch (g->speed) {
	case USB_SPEED_HIGH:
	case USB_SPEED_SUPER_PLUS:
	case USB_SPEED_SUPER:
		if (usb_endpoint_xfer_int(pep->endpoint.desc) ||
		    usb_endpoint_xfer_isoc(pep->endpoint.desc))
			interval = cdnsp_parse_exponent_interval(g, pep);
		break;
	case USB_SPEED_FULL:
		if (usb_endpoint_xfer_isoc(pep->endpoint.desc)) {
			interval = cdnsp_parse_exponent_interval(g, pep);
		} else if (usb_endpoint_xfer_int(pep->endpoint.desc)) {
			interval = pep->endpoint.desc->bInterval << 3;
			interval = cdnsp_microframes_to_exponent(g, pep,
								 interval,
								 3, 10);
		}

		break;
	default:
		WARN_ON(1);
	}

	return interval;
}

/*
 * The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
 * High speed endpoint descriptors can define "the number of additional
 * transaction opportunities per microframe", but that goes in the Max Burst
 * endpoint context field.
 */
static u32 cdnsp_get_endpoint_mult(struct usb_gadget *g, struct cdnsp_ep *pep)
{
	if (g->speed < USB_SPEED_SUPER ||
	    !usb_endpoint_xfer_isoc(pep->endpoint.desc))
		return 0;

	return pep->endpoint.comp_desc->bmAttributes;
}

static u32 cdnsp_get_endpoint_max_burst(struct usb_gadget *g,
					struct cdnsp_ep *pep)
{
	/* Super speed and Plus have max burst in ep companion desc */
	if (g->speed >= USB_SPEED_SUPER)
		return pep->endpoint.comp_desc->bMaxBurst;

	if (g->speed == USB_SPEED_HIGH &&
	    (usb_endpoint_xfer_isoc(pep->endpoint.desc) ||
	     usb_endpoint_xfer_int(pep->endpoint.desc)))
		return usb_endpoint_maxp_mult(pep->endpoint.desc) - 1;

	return 0;
}

static u32 cdnsp_get_endpoint_type(const struct usb_endpoint_descriptor *desc)
{
	int in;

	in = usb_endpoint_dir_in(desc);

	switch (usb_endpoint_type(desc)) {
	case USB_ENDPOINT_XFER_CONTROL:
		return CTRL_EP;
	case USB_ENDPOINT_XFER_BULK:
		return in ? BULK_IN_EP : BULK_OUT_EP;
	case USB_ENDPOINT_XFER_ISOC:
		return in ? ISOC_IN_EP : ISOC_OUT_EP;
	case USB_ENDPOINT_XFER_INT:
		return in ? INT_IN_EP : INT_OUT_EP;
	}

	return 0;
}

/*
 * Return the maximum endpoint service interval time (ESIT) payload.
 * Basically, this is the maxpacket size, multiplied by the burst size
 * and mult size.
 */
static u32 cdnsp_get_max_esit_payload(struct usb_gadget *g,
				      struct cdnsp_ep *pep)
{
	int max_packet;
	int max_burst;

	/* Only applies for interrupt or isochronous endpoints*/
	if (usb_endpoint_xfer_control(pep->endpoint.desc) ||
	    usb_endpoint_xfer_bulk(pep->endpoint.desc))
		return 0;

	/* SuperSpeedPlus Isoc ep sending over 48k per EIST. */
	if (g->speed >= USB_SPEED_SUPER_PLUS &&
	    USB_SS_SSP_ISOC_COMP(pep->endpoint.desc->bmAttributes))
		return le16_to_cpu(pep->endpoint.comp_desc->wBytesPerInterval);
	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
	else if (g->speed >= USB_SPEED_SUPER)
		return le16_to_cpu(pep->endpoint.comp_desc->wBytesPerInterval);

	max_packet = usb_endpoint_maxp(pep->endpoint.desc);
	max_burst = usb_endpoint_maxp_mult(pep->endpoint.desc);

	/* A 0 in max burst means 1 transfer per ESIT */
	return max_packet * max_burst;
}

int cdnsp_endpoint_init(struct cdnsp_device *pdev,
			struct cdnsp_ep *pep,
			gfp_t mem_flags)
{
	enum cdnsp_ring_type ring_type;
	struct cdnsp_ep_ctx *ep_ctx;
	unsigned int err_count = 0;
	unsigned int avg_trb_len;
	unsigned int max_packet;
	unsigned int max_burst;
	unsigned int interval;
	u32 max_esit_payload;
	unsigned int mult;
	u32 endpoint_type;
	int ret;

	ep_ctx = pep->in_ctx;

	endpoint_type = cdnsp_get_endpoint_type(pep->endpoint.desc);
	if (!endpoint_type)
		return -EINVAL;

	ring_type = usb_endpoint_type(pep->endpoint.desc);

	/*
	 * Get values to fill the endpoint context, mostly from ep descriptor.
	 * The average TRB buffer length for bulk endpoints is unclear as we
	 * have no clue on scatter gather list entry size. For Isoc and Int,
	 * set it to max available.
	 */
	max_esit_payload = cdnsp_get_max_esit_payload(&pdev->gadget, pep);
	interval = cdnsp_get_endpoint_interval(&pdev->gadget, pep);
	mult = cdnsp_get_endpoint_mult(&pdev->gadget, pep);
	max_packet = usb_endpoint_maxp(pep->endpoint.desc);
	max_burst = cdnsp_get_endpoint_max_burst(&pdev->gadget, pep);
	avg_trb_len = max_esit_payload;

	/* Allow 3 retries for everything but isoc, set CErr = 3. */
	if (!usb_endpoint_xfer_isoc(pep->endpoint.desc))
		err_count = 3;
	if (usb_endpoint_xfer_bulk(pep->endpoint.desc) &&
	    pdev->gadget.speed == USB_SPEED_HIGH)
		max_packet = 512;
	/* Controller spec indicates that ctrl ep avg TRB Length should be 8. */
	if (usb_endpoint_xfer_control(pep->endpoint.desc))
		avg_trb_len = 8;

	/* Set up the endpoint ring. */
	pep->ring = cdnsp_ring_alloc(pdev, 2, ring_type, max_packet, mem_flags);
	if (!pep->ring)
		return -ENOMEM;

	pep->skip = false;

	/* Fill the endpoint context */
	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
				EP_INTERVAL(interval) | EP_MULT(mult));
	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
				MAX_PACKET(max_packet) | MAX_BURST(max_burst) |
				ERROR_COUNT(err_count));
	ep_ctx->deq = cpu_to_le64(pep->ring->first_seg->dma |
				  pep->ring->cycle_state);

	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
				EP_AVG_TRB_LENGTH(avg_trb_len));

	if (usb_endpoint_xfer_bulk(pep->endpoint.desc) &&
	    pdev->gadget.speed > USB_SPEED_HIGH) {
		ret = cdnsp_alloc_streams(pdev, pep);
		if (ret < 0)
			return ret;
	}

	return 0;
}

void cdnsp_endpoint_zero(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
{
	pep->in_ctx->ep_info = 0;
	pep->in_ctx->ep_info2 = 0;
	pep->in_ctx->deq = 0;
	pep->in_ctx->tx_info = 0;
}

static int cdnsp_alloc_erst(struct cdnsp_device *pdev,
			    struct cdnsp_ring *evt_ring,
			    struct cdnsp_erst *erst)
{
	struct cdnsp_erst_entry *entry;
	struct cdnsp_segment *seg;
	unsigned int val;
	size_t size;

	size = sizeof(struct cdnsp_erst_entry) * evt_ring->num_segs;
	erst->entries = dma_alloc_coherent(pdev->dev, size,
					   &erst->erst_dma_addr, GFP_KERNEL);
	if (!erst->entries)
		return -ENOMEM;

	erst->num_entries = evt_ring->num_segs;

	seg = evt_ring->first_seg;
	for (val = 0; val < evt_ring->num_segs; val++) {
		entry = &erst->entries[val];
		entry->seg_addr = cpu_to_le64(seg->dma);
		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
		entry->rsvd = 0;
		seg = seg->next;
	}

	return 0;
}

static void cdnsp_free_erst(struct cdnsp_device *pdev, struct cdnsp_erst *erst)
{
	size_t size = sizeof(struct cdnsp_erst_entry) * (erst->num_entries);
	struct device *dev = pdev->dev;

	if (erst->entries)
		dma_free_coherent(dev, size, erst->entries,
				  erst->erst_dma_addr);

	erst->entries = NULL;
}

void cdnsp_mem_cleanup(struct cdnsp_device *pdev)
{
	struct device *dev = pdev->dev;

	cdnsp_free_priv_device(pdev);
	cdnsp_free_erst(pdev, &pdev->erst);

	if (pdev->event_ring)
		cdnsp_ring_free(pdev, pdev->event_ring);

	pdev->event_ring = NULL;

	if (pdev->cmd_ring)
		cdnsp_ring_free(pdev, pdev->cmd_ring);

	pdev->cmd_ring = NULL;

	dma_pool_destroy(pdev->segment_pool);
	pdev->segment_pool = NULL;
	dma_pool_destroy(pdev->device_pool);
	pdev->device_pool = NULL;

	dma_free_coherent(dev, sizeof(*pdev->dcbaa),
			  pdev->dcbaa, pdev->dcbaa->dma);

	pdev->dcbaa = NULL;

	pdev->usb2_port.exist = 0;
	pdev->usb3_port.exist = 0;
	pdev->usb2_port.port_num = 0;
	pdev->usb3_port.port_num = 0;
	pdev->active_port = NULL;
}

static void cdnsp_set_event_deq(struct cdnsp_device *pdev)
{
	dma_addr_t deq;
	u64 temp;

	deq = cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg,
				    pdev->event_ring->dequeue);

	/* Update controller event ring dequeue pointer */
	temp = cdnsp_read_64(&pdev->ir_set->erst_dequeue);
	temp &= ERST_PTR_MASK;

	/*
	 * Don't clear the EHB bit (which is RW1C) because
	 * there might be more events to service.
	 */
	temp &= ~ERST_EHB;

	cdnsp_write_64(((u64)deq & (u64)~ERST_PTR_MASK) | temp,
		       &pdev->ir_set->erst_dequeue);
}

static void cdnsp_add_in_port(struct cdnsp_device *pdev,
			      struct cdnsp_port *port,
			      __le32 __iomem *addr)
{
	u32 temp, port_offset, port_count;

	temp = readl(addr);
	port->maj_rev = CDNSP_EXT_PORT_MAJOR(temp);
	port->min_rev = CDNSP_EXT_PORT_MINOR(temp);

	/* Port offset and count in the third dword.*/
	temp = readl(addr + 2);
	port_offset = CDNSP_EXT_PORT_OFF(temp);
	port_count = CDNSP_EXT_PORT_COUNT(temp);

	trace_cdnsp_port_info(addr, port_offset, port_count, port->maj_rev);

	port->port_num = port_offset;
	port->exist = 1;
}

/*
 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
 * specify what speeds each port is supposed to be.
 */
static int cdnsp_setup_port_arrays(struct cdnsp_device *pdev)
{
	void __iomem *base;
	u32 offset;
	int i;

	base = &pdev->cap_regs->hc_capbase;
	offset = cdnsp_find_next_ext_cap(base, 0,
					 EXT_CAP_CFG_DEV_20PORT_CAP_ID);
	pdev->port20_regs = base + offset;

	offset = cdnsp_find_next_ext_cap(base, 0, D_XEC_CFG_3XPORT_CAP);
	pdev->port3x_regs =  base + offset;

	offset = 0;
	base = &pdev->cap_regs->hc_capbase;

	/* Driver expects max 2 extended protocol capability. */
	for (i = 0; i < 2; i++) {
		u32 temp;

		offset = cdnsp_find_next_ext_cap(base, offset,
						 EXT_CAPS_PROTOCOL);
		temp = readl(base + offset);

		if (CDNSP_EXT_PORT_MAJOR(temp) == 0x03 &&
		    !pdev->usb3_port.port_num)
			cdnsp_add_in_port(pdev, &pdev->usb3_port,
					  base + offset);

		if (CDNSP_EXT_PORT_MAJOR(temp) == 0x02 &&
		    !pdev->usb2_port.port_num)
			cdnsp_add_in_port(pdev, &pdev->usb2_port,
					  base + offset);
	}

	if (!pdev->usb2_port.exist || !pdev->usb3_port.exist) {
		dev_err(pdev->dev, "Error: Only one port detected\n");
		return -ENODEV;
	}

	trace_cdnsp_init("Found USB 2.0 ports and  USB 3.0 ports.");

	pdev->usb2_port.regs = (struct cdnsp_port_regs __iomem *)
			       (&pdev->op_regs->port_reg_base + NUM_PORT_REGS *
				(pdev->usb2_port.port_num - 1));

	pdev->usb3_port.regs = (struct cdnsp_port_regs __iomem *)
			       (&pdev->op_regs->port_reg_base + NUM_PORT_REGS *
				(pdev->usb3_port.port_num - 1));

	return 0;
}

/*
 * Initialize memory for CDNSP (one-time init).
 *
 * Program the PAGESIZE register, initialize the device context array, create
 * device contexts, set up a command ring segment, create event
 * ring (one for now).
 */
int cdnsp_mem_init(struct cdnsp_device *pdev)
{
	struct device *dev = pdev->dev;
	int ret = -ENOMEM;
	unsigned int val;
	dma_addr_t dma;
	u32 page_size;
	u64 val_64;

	/*
	 * Use 4K pages, since that's common and the minimum the
	 * controller supports
	 */
	page_size = 1 << 12;

	val = readl(&pdev->op_regs->config_reg);
	val |= ((val & ~MAX_DEVS) | CDNSP_DEV_MAX_SLOTS) | CONFIG_U3E;
	writel(val, &pdev->op_regs->config_reg);

	/*
	 * Doorbell array must be physically contiguous
	 * and 64-byte (cache line) aligned.
	 */
	pdev->dcbaa = dma_alloc_coherent(dev, sizeof(*pdev->dcbaa),
					 &dma, GFP_KERNEL);
	if (!pdev->dcbaa)
		return -ENOMEM;

	pdev->dcbaa->dma = dma;

	cdnsp_write_64(dma, &pdev->op_regs->dcbaa_ptr);

	/*
	 * Initialize the ring segment pool.  The ring must be a contiguous
	 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
	 * however, the command ring segment needs 64-byte aligned segments
	 * and our use of dma addresses in the trb_address_map radix tree needs
	 * TRB_SEGMENT_SIZE alignment, so driver pick the greater alignment
	 * need.
	 */
	pdev->segment_pool = dma_pool_create("CDNSP ring segments", dev,
					     TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE,
					     page_size);
	if (!pdev->segment_pool)
		goto release_dcbaa;

	pdev->device_pool = dma_pool_create("CDNSP input/output contexts", dev,
					    CDNSP_CTX_SIZE, 64, page_size);
	if (!pdev->device_pool)
		goto destroy_segment_pool;


	/* Set up the command ring to have one segments for now. */
	pdev->cmd_ring = cdnsp_ring_alloc(pdev, 1, TYPE_COMMAND, 0, GFP_KERNEL);
	if (!pdev->cmd_ring)
		goto destroy_device_pool;

	/* Set the address in the Command Ring Control register */
	val_64 = cdnsp_read_64(&pdev->op_regs->cmd_ring);
	val_64 = (val_64 & (u64)CMD_RING_RSVD_BITS) |
		 (pdev->cmd_ring->first_seg->dma & (u64)~CMD_RING_RSVD_BITS) |
		 pdev->cmd_ring->cycle_state;
	cdnsp_write_64(val_64, &pdev->op_regs->cmd_ring);

	val = readl(&pdev->cap_regs->db_off);
	val &= DBOFF_MASK;
	pdev->dba = (void __iomem *)pdev->cap_regs + val;

	/* Set ir_set to interrupt register set 0 */
	pdev->ir_set = &pdev->run_regs->ir_set[0];

	/*
	 * Event ring setup: Allocate a normal ring, but also setup
	 * the event ring segment table (ERST).
	 */
	pdev->event_ring = cdnsp_ring_alloc(pdev, ERST_NUM_SEGS, TYPE_EVENT,
					    0, GFP_KERNEL);
	if (!pdev->event_ring)
		goto free_cmd_ring;

	ret = cdnsp_alloc_erst(pdev, pdev->event_ring, &pdev->erst);
	if (ret)
		goto free_event_ring;

	/* Set ERST count with the number of entries in the segment table. */
	val = readl(&pdev->ir_set->erst_size);
	val &= ERST_SIZE_MASK;
	val |= ERST_NUM_SEGS;
	writel(val, &pdev->ir_set->erst_size);

	/* Set the segment table base address. */
	val_64 = cdnsp_read_64(&pdev->ir_set->erst_base);
	val_64 &= ERST_PTR_MASK;
	val_64 |= (pdev->erst.erst_dma_addr & (u64)~ERST_PTR_MASK);
	cdnsp_write_64(val_64, &pdev->ir_set->erst_base);

	/* Set the event ring dequeue address. */
	cdnsp_set_event_deq(pdev);

	ret = cdnsp_setup_port_arrays(pdev);
	if (ret)
		goto free_erst;

	ret = cdnsp_alloc_priv_device(pdev);
	if (ret) {
		dev_err(pdev->dev,
			"Could not allocate cdnsp_device data structures\n");
		goto free_erst;
	}

	return 0;

free_erst:
	cdnsp_free_erst(pdev, &pdev->erst);
free_event_ring:
	cdnsp_ring_free(pdev, pdev->event_ring);
free_cmd_ring:
	cdnsp_ring_free(pdev, pdev->cmd_ring);
destroy_device_pool:
	dma_pool_destroy(pdev->device_pool);
destroy_segment_pool:
	dma_pool_destroy(pdev->segment_pool);
release_dcbaa:
	dma_free_coherent(dev, sizeof(*pdev->dcbaa), pdev->dcbaa,
			  pdev->dcbaa->dma);

	cdnsp_reset(pdev);

	return ret;
}