1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2011-2015, 2017, 2020, The Linux Foundation. All rights reserved.
* Copyright (c) Qualcomm Technologies, Inc. and/or its subsidiaries.
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/iio/consumer.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/thermal.h>
#include "../thermal_hwmon.h"
#define QPNP_TM_REG_DIG_MINOR 0x00
#define QPNP_TM_REG_DIG_MAJOR 0x01
#define QPNP_TM_REG_TYPE 0x04
#define QPNP_TM_REG_SUBTYPE 0x05
#define QPNP_TM_REG_STATUS 0x08
#define QPNP_TM_REG_IRQ_STATUS 0x10
#define QPNP_TM_REG_SHUTDOWN_CTRL1 0x40
#define QPNP_TM_REG_ALARM_CTRL 0x46
/* TEMP_DAC_STGx registers are only present for TEMP_GEN2 v2.0 */
#define QPNP_TM_REG_TEMP_DAC_STG1 0x47
#define QPNP_TM_REG_TEMP_DAC_STG2 0x48
#define QPNP_TM_REG_TEMP_DAC_STG3 0x49
#define QPNP_TM_REG_LITE_TEMP_CFG1 0x50
#define QPNP_TM_REG_LITE_TEMP_CFG2 0x51
#define QPNP_TM_TYPE 0x09
#define QPNP_TM_SUBTYPE_GEN1 0x08
#define QPNP_TM_SUBTYPE_GEN2 0x09
#define QPNP_TM_SUBTYPE_LITE 0xC0
#define STATUS_GEN1_STAGE_MASK GENMASK(1, 0)
#define STATUS_GEN2_STATE_MASK GENMASK(6, 4)
/* IRQ status only needed for TEMP_ALARM_LITE */
#define IRQ_STATUS_MASK BIT(0)
#define SHUTDOWN_CTRL1_OVERRIDE_STAGE2 BIT(6)
#define SHUTDOWN_CTRL1_THRESHOLD_MASK GENMASK(1, 0)
#define SHUTDOWN_CTRL1_RATE_25HZ BIT(3)
#define ALARM_CTRL_FORCE_ENABLE BIT(7)
#define LITE_TEMP_CFG_THRESHOLD_MASK GENMASK(3, 2)
#define THRESH_COUNT 4
#define STAGE_COUNT 3
enum overtemp_stage {
STAGE1 = 0,
STAGE2,
STAGE3,
};
/* Over-temperature trip point values in mC */
static const long temp_map_gen1[THRESH_COUNT][STAGE_COUNT] = {
{ 105000, 125000, 145000 },
{ 110000, 130000, 150000 },
{ 115000, 135000, 155000 },
{ 120000, 140000, 160000 },
};
static const long temp_map_gen2_v1[THRESH_COUNT][STAGE_COUNT] = {
{ 90000, 110000, 140000 },
{ 95000, 115000, 145000 },
{ 100000, 120000, 150000 },
{ 105000, 125000, 155000 },
};
#define TEMP_THRESH_STEP 5000 /* Threshold step: 5 C */
#define THRESH_MIN 0
#define THRESH_MAX 3
#define TEMP_STAGE_HYSTERESIS 2000
/*
* For TEMP_GEN2 v2.0, TEMP_DAC_STG1/2/3 registers are used to set the threshold
* for each stage independently.
* TEMP_DAC_STG* = 0 --> 80 C
* Each 8 step increase in TEMP_DAC_STG* value corresponds to 5 C (5000 mC).
*/
#define TEMP_DAC_MIN 80000
#define TEMP_DAC_SCALE_NUM 8
#define TEMP_DAC_SCALE_DEN 5000
#define TEMP_DAC_TEMP_TO_REG(temp) \
(((temp) - TEMP_DAC_MIN) * TEMP_DAC_SCALE_NUM / TEMP_DAC_SCALE_DEN)
#define TEMP_DAC_REG_TO_TEMP(reg) \
(TEMP_DAC_MIN + (reg) * TEMP_DAC_SCALE_DEN / TEMP_DAC_SCALE_NUM)
static const long temp_dac_max[STAGE_COUNT] = {
119375, 159375, 159375
};
/*
* TEMP_ALARM_LITE has two stages: warning and shutdown with independently
* configured threshold temperatures.
*/
static const long temp_lite_warning_map[THRESH_COUNT] = {
115000, 125000, 135000, 145000
};
static const long temp_lite_shutdown_map[THRESH_COUNT] = {
135000, 145000, 160000, 175000
};
/* Temperature in Milli Celsius reported during stage 0 if no ADC is present */
#define DEFAULT_TEMP 37000
struct qpnp_tm_chip;
struct spmi_temp_alarm_data {
const struct thermal_zone_device_ops *ops;
const long (*temp_map)[THRESH_COUNT][STAGE_COUNT];
int (*sync_thresholds)(struct qpnp_tm_chip *chip);
int (*get_temp_stage)(struct qpnp_tm_chip *chip);
int (*configure_trip_temps)(struct qpnp_tm_chip *chip);
};
struct qpnp_tm_chip {
struct regmap *map;
struct device *dev;
struct thermal_zone_device *tz_dev;
const struct spmi_temp_alarm_data *data;
unsigned int subtype;
long temp;
unsigned int stage;
unsigned int base;
unsigned int ntrips;
/* protects .thresh, .stage and chip registers */
struct mutex lock;
bool initialized;
bool require_stage2_shutdown;
long temp_thresh_map[STAGE_COUNT];
struct iio_channel *adc;
};
/* This array maps from GEN2 alarm state to GEN1 alarm stage */
static const unsigned int alarm_state_map[8] = {0, 1, 1, 2, 2, 3, 3, 3};
static int qpnp_tm_read(struct qpnp_tm_chip *chip, u16 addr, u8 *data)
{
unsigned int val;
int ret;
ret = regmap_read(chip->map, chip->base + addr, &val);
if (ret < 0)
return ret;
*data = val;
return 0;
}
static int qpnp_tm_write(struct qpnp_tm_chip *chip, u16 addr, u8 data)
{
return regmap_write(chip->map, chip->base + addr, data);
}
/**
* qpnp_tm_decode_temp() - return temperature in mC corresponding to the
* specified over-temperature stage
* @chip: Pointer to the qpnp_tm chip
* @stage: Over-temperature stage
*
* Return: temperature in mC
*/
static long qpnp_tm_decode_temp(struct qpnp_tm_chip *chip, unsigned int stage)
{
if (stage == 0 || stage > STAGE_COUNT)
return 0;
return chip->temp_thresh_map[stage - 1];
}
/**
* qpnp_tm_gen1_get_temp_stage() - return over-temperature stage
* @chip: Pointer to the qpnp_tm chip
*
* Return: stage on success, or errno on failure.
*/
static int qpnp_tm_gen1_get_temp_stage(struct qpnp_tm_chip *chip)
{
int ret;
u8 reg;
ret = qpnp_tm_read(chip, QPNP_TM_REG_STATUS, ®);
if (ret < 0)
return ret;
return FIELD_GET(STATUS_GEN1_STAGE_MASK, reg);
}
/**
* qpnp_tm_gen2_get_temp_stage() - return over-temperature stage
* @chip: Pointer to the qpnp_tm chip
*
* Return: stage on success, or errno on failure.
*/
static int qpnp_tm_gen2_get_temp_stage(struct qpnp_tm_chip *chip)
{
int ret;
u8 reg;
ret = qpnp_tm_read(chip, QPNP_TM_REG_STATUS, ®);
if (ret < 0)
return ret;
ret = FIELD_GET(STATUS_GEN2_STATE_MASK, reg);
return alarm_state_map[ret];
}
/**
* qpnp_tm_lite_get_temp_stage() - return over-temperature stage
* @chip: Pointer to the qpnp_tm chip
*
* Return: alarm interrupt state on success, or errno on failure.
*/
static int qpnp_tm_lite_get_temp_stage(struct qpnp_tm_chip *chip)
{
u8 reg = 0;
int ret;
ret = qpnp_tm_read(chip, QPNP_TM_REG_IRQ_STATUS, ®);
if (ret < 0)
return ret;
return FIELD_GET(IRQ_STATUS_MASK, reg);
}
/*
* This function updates the internal temp value based on the
* current thermal stage and threshold as well as the previous stage
*/
static int qpnp_tm_update_temp_no_adc(struct qpnp_tm_chip *chip)
{
unsigned int stage_new, stage_old;
int ret;
WARN_ON(!mutex_is_locked(&chip->lock));
ret = chip->data->get_temp_stage(chip);
if (ret < 0)
return ret;
stage_new = ret;
stage_old = chip->stage;
if (stage_new > stage_old) {
/* increasing stage, use lower bound */
chip->temp = qpnp_tm_decode_temp(chip, stage_new)
+ TEMP_STAGE_HYSTERESIS;
} else if (stage_new < stage_old) {
/* decreasing stage, use upper bound */
chip->temp = qpnp_tm_decode_temp(chip, stage_new + 1)
- TEMP_STAGE_HYSTERESIS;
}
chip->stage = stage_new;
return 0;
}
static int qpnp_tm_get_temp(struct thermal_zone_device *tz, int *temp)
{
struct qpnp_tm_chip *chip = thermal_zone_device_priv(tz);
int ret, mili_celsius;
if (!temp)
return -EINVAL;
if (!chip->initialized) {
*temp = DEFAULT_TEMP;
return 0;
}
if (!chip->adc) {
mutex_lock(&chip->lock);
ret = qpnp_tm_update_temp_no_adc(chip);
mutex_unlock(&chip->lock);
if (ret < 0)
return ret;
} else {
ret = iio_read_channel_processed(chip->adc, &mili_celsius);
if (ret < 0)
return ret;
chip->temp = mili_celsius;
}
*temp = chip->temp;
return 0;
}
static int qpnp_tm_update_critical_trip_temp(struct qpnp_tm_chip *chip,
int temp)
{
long stage2_threshold_min = (*chip->data->temp_map)[THRESH_MIN][STAGE2];
long stage2_threshold_max = (*chip->data->temp_map)[THRESH_MAX][STAGE2];
bool disable_stage2_shutdown = false;
u8 reg, threshold;
WARN_ON(!mutex_is_locked(&chip->lock));
/*
* Default: Stage 2 and Stage 3 shutdown enabled, thresholds at
* lowest threshold set, monitoring at 25Hz
*/
reg = SHUTDOWN_CTRL1_RATE_25HZ;
if (temp == THERMAL_TEMP_INVALID ||
temp < stage2_threshold_min) {
threshold = THRESH_MIN;
goto skip;
}
if (temp <= stage2_threshold_max) {
threshold = THRESH_MAX -
((stage2_threshold_max - temp) /
TEMP_THRESH_STEP);
disable_stage2_shutdown = true;
} else {
threshold = THRESH_MAX;
if (chip->adc)
disable_stage2_shutdown = true;
else
dev_warn(chip->dev,
"No ADC is configured and critical temperature %d mC is above the maximum stage 2 threshold of %ld mC! Configuring stage 2 shutdown at %ld mC.\n",
temp, stage2_threshold_max, stage2_threshold_max);
}
skip:
memcpy(chip->temp_thresh_map, chip->data->temp_map[threshold],
sizeof(chip->temp_thresh_map));
reg |= threshold;
if (disable_stage2_shutdown && !chip->require_stage2_shutdown)
reg |= SHUTDOWN_CTRL1_OVERRIDE_STAGE2;
return qpnp_tm_write(chip, QPNP_TM_REG_SHUTDOWN_CTRL1, reg);
}
static int qpnp_tm_set_trip_temp(struct thermal_zone_device *tz,
const struct thermal_trip *trip, int temp)
{
struct qpnp_tm_chip *chip = thermal_zone_device_priv(tz);
int ret;
if (trip->type != THERMAL_TRIP_CRITICAL)
return 0;
mutex_lock(&chip->lock);
ret = qpnp_tm_update_critical_trip_temp(chip, temp);
mutex_unlock(&chip->lock);
return ret;
}
static const struct thermal_zone_device_ops qpnp_tm_sensor_ops = {
.get_temp = qpnp_tm_get_temp,
.set_trip_temp = qpnp_tm_set_trip_temp,
};
static int qpnp_tm_gen2_rev2_set_temp_thresh(struct qpnp_tm_chip *chip, unsigned int trip, int temp)
{
int ret, temp_cfg;
u8 reg;
WARN_ON(!mutex_is_locked(&chip->lock));
if (trip >= STAGE_COUNT) {
dev_err(chip->dev, "invalid TEMP_DAC trip = %d\n", trip);
return -EINVAL;
} else if (temp < TEMP_DAC_MIN || temp > temp_dac_max[trip]) {
dev_err(chip->dev, "invalid TEMP_DAC temp = %d\n", temp);
return -EINVAL;
}
reg = TEMP_DAC_TEMP_TO_REG(temp);
temp_cfg = TEMP_DAC_REG_TO_TEMP(reg);
ret = qpnp_tm_write(chip, QPNP_TM_REG_TEMP_DAC_STG1 + trip, reg);
if (ret < 0) {
dev_err(chip->dev, "TEMP_DAC_STG write failed, ret=%d\n", ret);
return ret;
}
chip->temp_thresh_map[trip] = temp_cfg;
return 0;
}
static int qpnp_tm_gen2_rev2_set_trip_temp(struct thermal_zone_device *tz,
const struct thermal_trip *trip, int temp)
{
unsigned int trip_index = THERMAL_TRIP_PRIV_TO_INT(trip->priv);
struct qpnp_tm_chip *chip = thermal_zone_device_priv(tz);
int ret;
mutex_lock(&chip->lock);
ret = qpnp_tm_gen2_rev2_set_temp_thresh(chip, trip_index, temp);
mutex_unlock(&chip->lock);
return ret;
}
static const struct thermal_zone_device_ops qpnp_tm_gen2_rev2_sensor_ops = {
.get_temp = qpnp_tm_get_temp,
.set_trip_temp = qpnp_tm_gen2_rev2_set_trip_temp,
};
static int qpnp_tm_lite_set_temp_thresh(struct qpnp_tm_chip *chip, unsigned int trip, int temp)
{
int ret, temp_cfg, i;
const long *temp_map;
u8 reg, thresh;
u16 addr;
WARN_ON(!mutex_is_locked(&chip->lock));
if (trip >= STAGE_COUNT) {
dev_err(chip->dev, "invalid TEMP_LITE trip = %d\n", trip);
return -EINVAL;
}
switch (trip) {
case 0:
temp_map = temp_lite_warning_map;
addr = QPNP_TM_REG_LITE_TEMP_CFG1;
break;
case 1:
/*
* The second trip point is purely in software to facilitate
* a controlled shutdown after the warning threshold is crossed
* but before the automatic hardware shutdown threshold is
* crossed.
*/
return 0;
case 2:
temp_map = temp_lite_shutdown_map;
addr = QPNP_TM_REG_LITE_TEMP_CFG2;
break;
default:
return 0;
}
if (temp < temp_map[THRESH_MIN] || temp > temp_map[THRESH_MAX]) {
dev_err(chip->dev, "invalid TEMP_LITE temp = %d\n", temp);
return -EINVAL;
}
thresh = 0;
temp_cfg = temp_map[thresh];
for (i = THRESH_MAX; i >= THRESH_MIN; i--) {
if (temp >= temp_map[i]) {
thresh = i;
temp_cfg = temp_map[i];
break;
}
}
if (temp_cfg == chip->temp_thresh_map[trip])
return 0;
ret = qpnp_tm_read(chip, addr, ®);
if (ret < 0) {
dev_err(chip->dev, "LITE_TEMP_CFG read failed, ret=%d\n", ret);
return ret;
}
reg &= ~LITE_TEMP_CFG_THRESHOLD_MASK;
reg |= FIELD_PREP(LITE_TEMP_CFG_THRESHOLD_MASK, thresh);
ret = qpnp_tm_write(chip, addr, reg);
if (ret < 0) {
dev_err(chip->dev, "LITE_TEMP_CFG write failed, ret=%d\n", ret);
return ret;
}
chip->temp_thresh_map[trip] = temp_cfg;
return 0;
}
static int qpnp_tm_lite_set_trip_temp(struct thermal_zone_device *tz,
const struct thermal_trip *trip, int temp)
{
unsigned int trip_index = THERMAL_TRIP_PRIV_TO_INT(trip->priv);
struct qpnp_tm_chip *chip = thermal_zone_device_priv(tz);
int ret;
mutex_lock(&chip->lock);
ret = qpnp_tm_lite_set_temp_thresh(chip, trip_index, temp);
mutex_unlock(&chip->lock);
return ret;
}
static const struct thermal_zone_device_ops qpnp_tm_lite_sensor_ops = {
.get_temp = qpnp_tm_get_temp,
.set_trip_temp = qpnp_tm_lite_set_trip_temp,
};
static irqreturn_t qpnp_tm_isr(int irq, void *data)
{
struct qpnp_tm_chip *chip = data;
thermal_zone_device_update(chip->tz_dev, THERMAL_EVENT_UNSPECIFIED);
return IRQ_HANDLED;
}
/* Read the hardware default stage threshold temperatures */
static int qpnp_tm_sync_thresholds(struct qpnp_tm_chip *chip)
{
u8 reg, threshold;
int ret;
ret = qpnp_tm_read(chip, QPNP_TM_REG_SHUTDOWN_CTRL1, ®);
if (ret < 0)
return ret;
threshold = reg & SHUTDOWN_CTRL1_THRESHOLD_MASK;
memcpy(chip->temp_thresh_map, chip->data->temp_map[threshold],
sizeof(chip->temp_thresh_map));
return ret;
}
static int qpnp_tm_configure_trip_temp(struct qpnp_tm_chip *chip)
{
int crit_temp, ret;
ret = thermal_zone_get_crit_temp(chip->tz_dev, &crit_temp);
if (ret)
crit_temp = THERMAL_TEMP_INVALID;
mutex_lock(&chip->lock);
ret = qpnp_tm_update_critical_trip_temp(chip, crit_temp);
mutex_unlock(&chip->lock);
return ret;
}
/* Configure TEMP_DAC registers based on DT thermal_zone trips */
static int qpnp_tm_gen2_rev2_configure_trip_temps_cb(struct thermal_trip *trip, void *data)
{
struct qpnp_tm_chip *chip = data;
int ret;
mutex_lock(&chip->lock);
trip->priv = THERMAL_INT_TO_TRIP_PRIV(chip->ntrips);
ret = qpnp_tm_gen2_rev2_set_temp_thresh(chip, chip->ntrips, trip->temperature);
chip->ntrips++;
mutex_unlock(&chip->lock);
return ret;
}
static int qpnp_tm_gen2_rev2_configure_trip_temps(struct qpnp_tm_chip *chip)
{
int ret, i;
ret = thermal_zone_for_each_trip(chip->tz_dev,
qpnp_tm_gen2_rev2_configure_trip_temps_cb, chip);
if (ret < 0)
return ret;
/* Verify that trips are strictly increasing. */
for (i = 1; i < STAGE_COUNT; i++) {
if (chip->temp_thresh_map[i] <= chip->temp_thresh_map[i - 1]) {
dev_err(chip->dev, "Threshold %d=%ld <= threshold %d=%ld\n",
i, chip->temp_thresh_map[i], i - 1,
chip->temp_thresh_map[i - 1]);
return -EINVAL;
}
}
return 0;
}
/* Read the hardware default TEMP_DAC stage threshold temperatures */
static int qpnp_tm_gen2_rev2_sync_thresholds(struct qpnp_tm_chip *chip)
{
int ret, i;
u8 reg = 0;
for (i = 0; i < STAGE_COUNT; i++) {
ret = qpnp_tm_read(chip, QPNP_TM_REG_TEMP_DAC_STG1 + i, ®);
if (ret < 0)
return ret;
chip->temp_thresh_map[i] = TEMP_DAC_REG_TO_TEMP(reg);
}
return 0;
}
/* Configure TEMP_LITE registers based on DT thermal_zone trips */
static int qpnp_tm_lite_configure_trip_temps_cb(struct thermal_trip *trip, void *data)
{
struct qpnp_tm_chip *chip = data;
int ret;
mutex_lock(&chip->lock);
trip->priv = THERMAL_INT_TO_TRIP_PRIV(chip->ntrips);
ret = qpnp_tm_lite_set_temp_thresh(chip, chip->ntrips, trip->temperature);
chip->ntrips++;
mutex_unlock(&chip->lock);
return ret;
}
static int qpnp_tm_lite_configure_trip_temps(struct qpnp_tm_chip *chip)
{
int ret;
ret = thermal_zone_for_each_trip(chip->tz_dev, qpnp_tm_lite_configure_trip_temps_cb, chip);
if (ret < 0)
return ret;
/* Verify that trips are strictly increasing. */
if (chip->temp_thresh_map[2] <= chip->temp_thresh_map[0]) {
dev_err(chip->dev, "Threshold 2=%ld <= threshold 0=%ld\n",
chip->temp_thresh_map[2], chip->temp_thresh_map[0]);
return -EINVAL;
}
return 0;
}
/* Read the hardware default TEMP_LITE stage threshold temperatures */
static int qpnp_tm_lite_sync_thresholds(struct qpnp_tm_chip *chip)
{
int ret, thresh;
u8 reg = 0;
/*
* Store the warning trip temp in temp_thresh_map[0] and the shutdown trip
* temp in temp_thresh_map[2]. The second trip point is purely in software
* to facilitate a controlled shutdown after the warning threshold is
* crossed but before the automatic hardware shutdown threshold is
* crossed. Thus, there is no register to read for the second trip
* point.
*/
ret = qpnp_tm_read(chip, QPNP_TM_REG_LITE_TEMP_CFG1, ®);
if (ret < 0)
return ret;
thresh = FIELD_GET(LITE_TEMP_CFG_THRESHOLD_MASK, reg);
chip->temp_thresh_map[0] = temp_lite_warning_map[thresh];
ret = qpnp_tm_read(chip, QPNP_TM_REG_LITE_TEMP_CFG2, ®);
if (ret < 0)
return ret;
thresh = FIELD_GET(LITE_TEMP_CFG_THRESHOLD_MASK, reg);
chip->temp_thresh_map[2] = temp_lite_shutdown_map[thresh];
return 0;
}
static const struct spmi_temp_alarm_data spmi_temp_alarm_data = {
.ops = &qpnp_tm_sensor_ops,
.temp_map = &temp_map_gen1,
.sync_thresholds = qpnp_tm_sync_thresholds,
.configure_trip_temps = qpnp_tm_configure_trip_temp,
.get_temp_stage = qpnp_tm_gen1_get_temp_stage,
};
static const struct spmi_temp_alarm_data spmi_temp_alarm_gen2_data = {
.ops = &qpnp_tm_sensor_ops,
.temp_map = &temp_map_gen1,
.sync_thresholds = qpnp_tm_sync_thresholds,
.configure_trip_temps = qpnp_tm_configure_trip_temp,
.get_temp_stage = qpnp_tm_gen2_get_temp_stage,
};
static const struct spmi_temp_alarm_data spmi_temp_alarm_gen2_rev1_data = {
.ops = &qpnp_tm_sensor_ops,
.temp_map = &temp_map_gen2_v1,
.sync_thresholds = qpnp_tm_sync_thresholds,
.configure_trip_temps = qpnp_tm_configure_trip_temp,
.get_temp_stage = qpnp_tm_gen2_get_temp_stage,
};
static const struct spmi_temp_alarm_data spmi_temp_alarm_gen2_rev2_data = {
.ops = &qpnp_tm_gen2_rev2_sensor_ops,
.sync_thresholds = qpnp_tm_gen2_rev2_sync_thresholds,
.configure_trip_temps = qpnp_tm_gen2_rev2_configure_trip_temps,
.get_temp_stage = qpnp_tm_gen2_get_temp_stage,
};
static const struct spmi_temp_alarm_data spmi_temp_alarm_lite_data = {
.ops = &qpnp_tm_lite_sensor_ops,
.sync_thresholds = qpnp_tm_lite_sync_thresholds,
.configure_trip_temps = qpnp_tm_lite_configure_trip_temps,
.get_temp_stage = qpnp_tm_lite_get_temp_stage,
};
/*
* This function initializes the internal temp value based on only the
* current thermal stage and threshold.
*/
static int qpnp_tm_threshold_init(struct qpnp_tm_chip *chip)
{
int ret;
ret = chip->data->sync_thresholds(chip);
if (ret < 0)
return ret;
ret = chip->data->get_temp_stage(chip);
if (ret < 0)
return ret;
chip->stage = ret;
chip->temp = DEFAULT_TEMP;
if (chip->stage)
chip->temp = qpnp_tm_decode_temp(chip, chip->stage);
return ret;
}
/* This function initializes threshold control and disables shutdown override. */
static int qpnp_tm_init(struct qpnp_tm_chip *chip)
{
int ret;
u8 reg;
ret = chip->data->configure_trip_temps(chip);
if (ret < 0)
return ret;
/* Enable the thermal alarm PMIC module in always-on mode. */
reg = ALARM_CTRL_FORCE_ENABLE;
ret = qpnp_tm_write(chip, QPNP_TM_REG_ALARM_CTRL, reg);
chip->initialized = true;
return ret;
}
static int qpnp_tm_probe(struct platform_device *pdev)
{
struct qpnp_tm_chip *chip;
struct device_node *node;
u8 type, subtype, dig_major, dig_minor;
u32 res, dig_revision;
int ret, irq;
node = pdev->dev.of_node;
chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
if (!chip)
return -ENOMEM;
chip->dev = &pdev->dev;
mutex_init(&chip->lock);
chip->map = dev_get_regmap(pdev->dev.parent, NULL);
if (!chip->map)
return -ENXIO;
ret = of_property_read_u32(node, "reg", &res);
if (ret < 0)
return ret;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
/* ADC based measurements are optional */
chip->adc = devm_iio_channel_get(&pdev->dev, "thermal");
if (IS_ERR(chip->adc)) {
ret = PTR_ERR(chip->adc);
chip->adc = NULL;
if (ret == -EPROBE_DEFER)
return ret;
}
chip->base = res;
ret = qpnp_tm_read(chip, QPNP_TM_REG_TYPE, &type);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret,
"could not read type\n");
ret = qpnp_tm_read(chip, QPNP_TM_REG_SUBTYPE, &subtype);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret,
"could not read subtype\n");
ret = qpnp_tm_read(chip, QPNP_TM_REG_DIG_MAJOR, &dig_major);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret,
"could not read dig_major\n");
ret = qpnp_tm_read(chip, QPNP_TM_REG_DIG_MINOR, &dig_minor);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret,
"could not read dig_minor\n");
if (type != QPNP_TM_TYPE || (subtype != QPNP_TM_SUBTYPE_GEN1
&& subtype != QPNP_TM_SUBTYPE_GEN2
&& subtype != QPNP_TM_SUBTYPE_LITE)) {
dev_err(&pdev->dev, "invalid type 0x%02x or subtype 0x%02x\n",
type, subtype);
return -ENODEV;
}
chip->subtype = subtype;
if (subtype == QPNP_TM_SUBTYPE_GEN1)
chip->data = &spmi_temp_alarm_data;
else if (subtype == QPNP_TM_SUBTYPE_GEN2 && dig_major == 0)
chip->data = &spmi_temp_alarm_gen2_data;
else if (subtype == QPNP_TM_SUBTYPE_GEN2 && dig_major == 1)
chip->data = &spmi_temp_alarm_gen2_rev1_data;
else if (subtype == QPNP_TM_SUBTYPE_GEN2 && dig_major >= 2)
chip->data = &spmi_temp_alarm_gen2_rev2_data;
else if (subtype == QPNP_TM_SUBTYPE_LITE)
chip->data = &spmi_temp_alarm_lite_data;
else
return -ENODEV;
if (chip->subtype == QPNP_TM_SUBTYPE_GEN2) {
dig_revision = (dig_major << 8) | dig_minor;
/*
* Check if stage 2 automatic partial shutdown must remain
* enabled to avoid potential repeated faults upon reaching
* over-temperature stage 3.
*/
switch (dig_revision) {
case 0x0001:
case 0x0002:
case 0x0100:
case 0x0101:
chip->require_stage2_shutdown = true;
break;
}
}
ret = qpnp_tm_threshold_init(chip);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret, "threshold init failed\n");
/*
* Register the sensor before initializing the hardware to be able to
* read the trip points. get_temp() returns the default temperature
* before the hardware initialization is completed.
*/
chip->tz_dev = devm_thermal_of_zone_register(
&pdev->dev, 0, chip, chip->data->ops);
if (IS_ERR(chip->tz_dev))
return dev_err_probe(&pdev->dev, PTR_ERR(chip->tz_dev),
"failed to register sensor\n");
ret = qpnp_tm_init(chip);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret, "init failed\n");
devm_thermal_add_hwmon_sysfs(&pdev->dev, chip->tz_dev);
ret = devm_request_threaded_irq(&pdev->dev, irq, NULL, qpnp_tm_isr,
IRQF_ONESHOT, node->name, chip);
if (ret < 0)
return ret;
thermal_zone_device_update(chip->tz_dev, THERMAL_EVENT_UNSPECIFIED);
return 0;
}
static const struct of_device_id qpnp_tm_match_table[] = {
{ .compatible = "qcom,spmi-temp-alarm" },
{ }
};
MODULE_DEVICE_TABLE(of, qpnp_tm_match_table);
static struct platform_driver qpnp_tm_driver = {
.driver = {
.name = "spmi-temp-alarm",
.of_match_table = qpnp_tm_match_table,
},
.probe = qpnp_tm_probe,
};
module_platform_driver(qpnp_tm_driver);
MODULE_ALIAS("platform:spmi-temp-alarm");
MODULE_DESCRIPTION("QPNP PMIC Temperature Alarm driver");
MODULE_LICENSE("GPL v2");
|