1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* processor thermal device platform temperature controls
* Copyright (c) 2025, Intel Corporation.
*/
/*
* Platform temperature controls hardware interface
*
* The hardware control interface is via MMIO offsets in the processor
* thermal device MMIO space. There are three instances of MMIO registers.
* All registers are 64 bit wide with RW access.
*
* Name: PLATFORM_TEMPERATURE_CONTROL
* Offsets: 0x5B20, 0x5B28, 0x5B30
*
* Bits Description
* 7:0 TARGET_TEMP : Target temperature limit to which the control
* mechanism is regulating. Units: 0.5C.
* 8:8 ENABLE: Read current enable status of the feature or enable
* feature.
* 11:9 GAIN: Sets the aggressiveness of control loop from 0 to 7
* 7 graceful, favors performance at the expense of temperature
* overshoots
* 0 aggressive, favors tight regulation over performance
* 12:12 TEMPERATURE_OVERRIDE_EN
* When set, hardware will use TEMPERATURE_OVERRIDE values instead
* of reading from corresponding sensor.
* 15:13 RESERVED
* 23:16 MIN_PERFORMANCE_LEVEL: Minimum Performance level below which the
* there will be no throttling. 0 - all levels of throttling allowed
* including survivability actions. 255 - no throttling allowed.
* 31:24 TEMPERATURE_OVERRIDE: Allows SW to override the input temperature.
* hardware will use this value instead of the sensor temperature.
* Units: 0.5C.
* 63:32 RESERVED
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include "processor_thermal_device.h"
struct mmio_reg {
int bits;
u16 mask;
u16 shift;
u16 units;
};
#define MAX_ATTR_GROUP_NAME_LEN 32
#define PTC_MAX_ATTRS 3
struct ptc_data {
u32 offset;
struct attribute_group ptc_attr_group;
struct attribute *ptc_attrs[PTC_MAX_ATTRS];
struct device_attribute temperature_target_attr;
struct device_attribute enable_attr;
char group_name[MAX_ATTR_GROUP_NAME_LEN];
};
static const struct mmio_reg ptc_mmio_regs[] = {
{ 8, 0xFF, 0, 500}, /* temperature_target, units 0.5C*/
{ 1, 0x01, 8, 0}, /* enable */
{ 3, 0x7, 9, 0}, /* gain */
{ 8, 0xFF, 16, 0}, /* min_performance_level */
{ 1, 0x1, 12, 0}, /* temperature_override_enable */
{ 8, 0xFF, 24, 500}, /* temperature_override, units 0.5C */
};
#define PTC_MAX_INSTANCES 3
/* Unique offset for each PTC instance */
static u32 ptc_offsets[PTC_MAX_INSTANCES] = {0x5B20, 0x5B28, 0x5B30};
/* These will represent sysfs attribute names */
static const char * const ptc_strings[] = {
"temperature_target",
"enable",
NULL
};
/* Lock to protect concurrent read/write and read-modify-write */
static DEFINE_MUTEX(ptc_lock);
static ssize_t ptc_mmio_show(struct ptc_data *data, struct device *dev,
struct device_attribute *attr, char *buf)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct proc_thermal_device *proc_priv;
const struct mmio_reg *mmio_regs;
int ret, units;
u64 reg_val;
proc_priv = pci_get_drvdata(pdev);
mmio_regs = ptc_mmio_regs;
ret = match_string(ptc_strings, -1, attr->attr.name);
if (ret < 0)
return ret;
units = mmio_regs[ret].units;
guard(mutex)(&ptc_lock);
reg_val = readq((void __iomem *) (proc_priv->mmio_base + data->offset));
ret = (reg_val >> mmio_regs[ret].shift) & mmio_regs[ret].mask;
if (units)
ret *= units;
return sysfs_emit(buf, "%d\n", ret);
}
#define PTC_SHOW(suffix)\
static ssize_t suffix##_show(struct device *dev,\
struct device_attribute *attr,\
char *buf)\
{\
struct ptc_data *data = container_of(attr, struct ptc_data, suffix##_attr);\
return ptc_mmio_show(data, dev, attr, buf);\
}
static void ptc_mmio_write(struct pci_dev *pdev, u32 offset, int index, u32 value)
{
struct proc_thermal_device *proc_priv;
u64 mask, reg_val;
proc_priv = pci_get_drvdata(pdev);
mask = GENMASK_ULL(ptc_mmio_regs[index].shift + ptc_mmio_regs[index].bits - 1,
ptc_mmio_regs[index].shift);
guard(mutex)(&ptc_lock);
reg_val = readq((void __iomem *) (proc_priv->mmio_base + offset));
reg_val &= ~mask;
reg_val |= (value << ptc_mmio_regs[index].shift);
writeq(reg_val, (void __iomem *) (proc_priv->mmio_base + offset));
}
static int ptc_store(struct ptc_data *data, struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct pci_dev *pdev = to_pci_dev(dev);
unsigned int input;
int ret;
ret = kstrtouint(buf, 10, &input);
if (ret)
return ret;
ret = match_string(ptc_strings, -1, attr->attr.name);
if (ret < 0)
return ret;
if (ptc_mmio_regs[ret].units)
input /= ptc_mmio_regs[ret].units;
if (input > ptc_mmio_regs[ret].mask)
return -EINVAL;
ptc_mmio_write(pdev, data->offset, ret, input);
return count;
}
#define PTC_STORE(suffix)\
static ssize_t suffix##_store(struct device *dev,\
struct device_attribute *attr,\
const char *buf, size_t count)\
{\
struct ptc_data *data = container_of(attr, struct ptc_data, suffix##_attr);\
return ptc_store(data, dev, attr, buf, count);\
}
PTC_SHOW(temperature_target);
PTC_STORE(temperature_target);
PTC_SHOW(enable);
PTC_STORE(enable);
#define ptc_init_attribute(_name)\
do {\
sysfs_attr_init(&data->_name##_attr.attr);\
data->_name##_attr.show = _name##_show;\
data->_name##_attr.store = _name##_store;\
data->_name##_attr.attr.name = #_name;\
data->_name##_attr.attr.mode = 0644;\
} while (0)
static int ptc_create_groups(struct pci_dev *pdev, int instance, struct ptc_data *data)
{
int ret, index = 0;
ptc_init_attribute(temperature_target);
ptc_init_attribute(enable);
data->ptc_attrs[index++] = &data->temperature_target_attr.attr;
data->ptc_attrs[index++] = &data->enable_attr.attr;
data->ptc_attrs[index] = NULL;
snprintf(data->group_name, MAX_ATTR_GROUP_NAME_LEN,
"ptc_%d_control", instance);
data->ptc_attr_group.name = data->group_name;
data->ptc_attr_group.attrs = data->ptc_attrs;
ret = sysfs_create_group(&pdev->dev.kobj, &data->ptc_attr_group);
return ret;
}
static struct ptc_data ptc_instance[PTC_MAX_INSTANCES];
int proc_thermal_ptc_add(struct pci_dev *pdev, struct proc_thermal_device *proc_priv)
{
if (proc_priv->mmio_feature_mask & PROC_THERMAL_FEATURE_PTC) {
int i;
for (i = 0; i < PTC_MAX_INSTANCES; i++) {
ptc_instance[i].offset = ptc_offsets[i];
ptc_create_groups(pdev, i, &ptc_instance[i]);
}
}
return 0;
}
EXPORT_SYMBOL_GPL(proc_thermal_ptc_add);
void proc_thermal_ptc_remove(struct pci_dev *pdev)
{
struct proc_thermal_device *proc_priv = pci_get_drvdata(pdev);
if (proc_priv->mmio_feature_mask & PROC_THERMAL_FEATURE_PTC) {
int i;
for (i = 0; i < PTC_MAX_INSTANCES; i++)
sysfs_remove_group(&pdev->dev.kobj, &ptc_instance[i].ptc_attr_group);
}
}
EXPORT_SYMBOL_GPL(proc_thermal_ptc_remove);
MODULE_IMPORT_NS("INT340X_THERMAL");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Processor Thermal PTC Interface");
|