summaryrefslogtreecommitdiff
path: root/drivers/spi/spi-rzv2m-csi.c
blob: 741e0f44c49cc3fe0105b170b7cdc27514834088 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Renesas RZ/V2M Clocked Serial Interface (CSI) driver
 *
 * Copyright (C) 2023 Renesas Electronics Corporation
 */

#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/count_zeros.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/log2.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/reset.h>
#include <linux/spi/spi.h>
#include <linux/units.h>

/* Registers */
#define CSI_MODE		0x00	/* CSI mode control */
#define CSI_CLKSEL		0x04	/* CSI clock select */
#define CSI_CNT			0x08	/* CSI control */
#define CSI_INT			0x0C	/* CSI interrupt status */
#define CSI_IFIFOL		0x10	/* CSI receive FIFO level display */
#define CSI_OFIFOL		0x14	/* CSI transmit FIFO level display */
#define CSI_IFIFO		0x18	/* CSI receive window */
#define CSI_OFIFO		0x1C	/* CSI transmit window */
#define CSI_FIFOTRG		0x20	/* CSI FIFO trigger level */

/* CSI_MODE */
#define CSI_MODE_CSIE		BIT(7)
#define CSI_MODE_TRMD		BIT(6)
#define CSI_MODE_CCL		BIT(5)
#define CSI_MODE_DIR		BIT(4)
#define CSI_MODE_CSOT		BIT(0)

#define CSI_MODE_SETUP		0x00000040

/* CSI_CLKSEL */
#define CSI_CLKSEL_SS_ENA	BIT(19)
#define CSI_CLKSEL_SS_POL	BIT(18)
#define CSI_CLKSEL_SS		(CSI_CLKSEL_SS_ENA | CSI_CLKSEL_SS_POL)
#define CSI_CLKSEL_CKP		BIT(17)
#define CSI_CLKSEL_DAP		BIT(16)
#define CSI_CLKSEL_MODE		(CSI_CLKSEL_CKP|CSI_CLKSEL_DAP)
#define CSI_CLKSEL_SLAVE	BIT(15)
#define CSI_CLKSEL_CKS		GENMASK(14, 1)

/* CSI_CNT */
#define CSI_CNT_CSIRST		BIT(28)
#define CSI_CNT_R_TRGEN		BIT(19)
#define CSI_CNT_UNDER_E		BIT(13)
#define CSI_CNT_OVERF_E		BIT(12)
#define CSI_CNT_TREND_E		BIT(9)
#define CSI_CNT_CSIEND_E	BIT(8)
#define CSI_CNT_T_TRGR_E	BIT(4)
#define CSI_CNT_R_TRGR_E	BIT(0)

/* CSI_INT */
#define CSI_INT_UNDER		BIT(13)
#define CSI_INT_OVERF		BIT(12)
#define CSI_INT_TREND		BIT(9)
#define CSI_INT_CSIEND		BIT(8)
#define CSI_INT_T_TRGR		BIT(4)
#define CSI_INT_R_TRGR		BIT(0)

/* CSI_FIFOTRG */
#define CSI_FIFOTRG_R_TRG       GENMASK(2, 0)

#define CSI_FIFO_SIZE_BYTES	32U
#define CSI_FIFO_HALF_SIZE	16U
#define CSI_EN_DIS_TIMEOUT_US	100
/*
 * Clock "csiclk" gets divided by 2 * CSI_CLKSEL_CKS in order to generate the
 * serial clock (output from master), with CSI_CLKSEL_CKS ranging from 0x1 (that
 * means "csiclk" is divided by 2) to 0x3FFF ("csiclk" is divided by 32766).
 */
#define CSI_CKS_MAX		GENMASK(13, 0)

#define UNDERRUN_ERROR		BIT(0)
#define OVERFLOW_ERROR		BIT(1)
#define TX_TIMEOUT_ERROR	BIT(2)
#define RX_TIMEOUT_ERROR	BIT(3)

#define CSI_MAX_SPI_SCKO	(8 * HZ_PER_MHZ)

#define CSI_CLKSEL_SS_DISABLED			0
#define CSI_CLKSEL_SS_ENABLED_ACTIVE_LOW	BIT(1)
#define CSI_CLKSEL_SS_ENABLED_ACTIVE_HIGH	GENMASK(1, 0)

struct rzv2m_csi_priv {
	void __iomem *base;
	struct clk *csiclk;
	struct clk *pclk;
	struct device *dev;
	struct spi_controller *controller;
	const void *txbuf;
	void *rxbuf;
	unsigned int buffer_len;
	unsigned int bytes_sent;
	unsigned int bytes_received;
	unsigned int bytes_to_transfer;
	unsigned int words_to_transfer;
	unsigned int bytes_per_word;
	wait_queue_head_t wait;
	u32 errors;
	u32 status;
	bool target_aborted;
	bool use_ss_pin;
};

static void rzv2m_csi_reg_write_bit(const struct rzv2m_csi_priv *csi,
				    int reg_offs, int bit_mask, u32 value)
{
	int nr_zeros;
	u32 tmp;

	nr_zeros = count_trailing_zeros(bit_mask);
	value <<= nr_zeros;

	tmp = (readl(csi->base + reg_offs) & ~bit_mask) | value;
	writel(tmp, csi->base + reg_offs);
}

static int rzv2m_csi_sw_reset(struct rzv2m_csi_priv *csi, int assert)
{
	u32 reg;

	rzv2m_csi_reg_write_bit(csi, CSI_CNT, CSI_CNT_CSIRST, assert);

	if (!assert)
		return 0;

	return readl_poll_timeout(csi->base + CSI_MODE, reg,
				  !(reg & CSI_MODE_CSOT), 0,
				  CSI_EN_DIS_TIMEOUT_US);
}

static int rzv2m_csi_start_stop_operation(const struct rzv2m_csi_priv *csi,
					  int enable, bool wait)
{
	u32 reg;

	rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_CSIE, enable);

	if (enable || !wait)
		return 0;

	return readl_poll_timeout(csi->base + CSI_MODE, reg,
				  !(reg & CSI_MODE_CSOT), 0,
				  CSI_EN_DIS_TIMEOUT_US);
}

static int rzv2m_csi_fill_txfifo(struct rzv2m_csi_priv *csi)
{
	unsigned int i;

	if (readl(csi->base + CSI_OFIFOL))
		return -EIO;

	if (csi->bytes_per_word == 2) {
		const u16 *buf = csi->txbuf;

		for (i = 0; i < csi->words_to_transfer; i++)
			writel(buf[i], csi->base + CSI_OFIFO);
	} else {
		const u8 *buf = csi->txbuf;

		for (i = 0; i < csi->words_to_transfer; i++)
			writel(buf[i], csi->base + CSI_OFIFO);
	}

	csi->txbuf += csi->bytes_to_transfer;
	csi->bytes_sent += csi->bytes_to_transfer;

	return 0;
}

static int rzv2m_csi_read_rxfifo(struct rzv2m_csi_priv *csi)
{
	unsigned int i;

	if (readl(csi->base + CSI_IFIFOL) != csi->bytes_to_transfer)
		return -EIO;

	if (csi->bytes_per_word == 2) {
		u16 *buf = csi->rxbuf;

		for (i = 0; i < csi->words_to_transfer; i++)
			buf[i] = (u16)readl(csi->base + CSI_IFIFO);
	} else {
		u8 *buf = csi->rxbuf;

		for (i = 0; i < csi->words_to_transfer; i++)
			buf[i] = (u8)readl(csi->base + CSI_IFIFO);
	}

	csi->rxbuf += csi->bytes_to_transfer;
	csi->bytes_received += csi->bytes_to_transfer;

	return 0;
}

static inline void rzv2m_csi_empty_rxfifo(struct rzv2m_csi_priv *csi)
{
	unsigned int i;

	for (i = 0; i < csi->words_to_transfer; i++)
		readl(csi->base + CSI_IFIFO);
}

static inline void rzv2m_csi_calc_current_transfer(struct rzv2m_csi_priv *csi)
{
	unsigned int bytes_transferred = max(csi->bytes_received, csi->bytes_sent);
	unsigned int bytes_remaining = csi->buffer_len - bytes_transferred;
	unsigned int to_transfer;

	if (csi->txbuf)
		/*
		 * Leaving a little bit of headroom in the FIFOs makes it very
		 * hard to raise an overflow error (which is only possible
		 * when IP transmits and receives at the same time).
		 */
		to_transfer = min(CSI_FIFO_HALF_SIZE, bytes_remaining);
	else
		to_transfer = min(CSI_FIFO_SIZE_BYTES, bytes_remaining);

	if (csi->bytes_per_word == 2)
		to_transfer >>= 1;

	/*
	 * We can only choose a trigger level from a predefined set of values.
	 * This will pick a value that is the greatest possible integer that's
	 * less than or equal to the number of bytes we need to transfer.
	 * This may result in multiple smaller transfers.
	 */
	csi->words_to_transfer = rounddown_pow_of_two(to_transfer);

	if (csi->bytes_per_word == 2)
		csi->bytes_to_transfer = csi->words_to_transfer << 1;
	else
		csi->bytes_to_transfer = csi->words_to_transfer;
}

static inline void rzv2m_csi_set_rx_fifo_trigger_level(struct rzv2m_csi_priv *csi)
{
	rzv2m_csi_reg_write_bit(csi, CSI_FIFOTRG, CSI_FIFOTRG_R_TRG,
				ilog2(csi->words_to_transfer));
}

static inline void rzv2m_csi_enable_rx_trigger(struct rzv2m_csi_priv *csi,
					       bool enable)
{
	rzv2m_csi_reg_write_bit(csi, CSI_CNT, CSI_CNT_R_TRGEN, enable);
}

static void rzv2m_csi_disable_irqs(const struct rzv2m_csi_priv *csi,
				   u32 enable_bits)
{
	u32 cnt = readl(csi->base + CSI_CNT);

	writel(cnt & ~enable_bits, csi->base + CSI_CNT);
}

static void rzv2m_csi_disable_all_irqs(struct rzv2m_csi_priv *csi)
{
	rzv2m_csi_disable_irqs(csi, CSI_CNT_R_TRGR_E | CSI_CNT_T_TRGR_E |
			       CSI_CNT_CSIEND_E | CSI_CNT_TREND_E |
			       CSI_CNT_OVERF_E | CSI_CNT_UNDER_E);
}

static inline void rzv2m_csi_clear_irqs(struct rzv2m_csi_priv *csi, u32 irqs)
{
	writel(irqs, csi->base + CSI_INT);
}

static void rzv2m_csi_clear_all_irqs(struct rzv2m_csi_priv *csi)
{
	rzv2m_csi_clear_irqs(csi, CSI_INT_UNDER | CSI_INT_OVERF |
			     CSI_INT_TREND | CSI_INT_CSIEND |  CSI_INT_T_TRGR |
			     CSI_INT_R_TRGR);
}

static void rzv2m_csi_enable_irqs(struct rzv2m_csi_priv *csi, u32 enable_bits)
{
	u32 cnt = readl(csi->base + CSI_CNT);

	writel(cnt | enable_bits, csi->base + CSI_CNT);
}

static int rzv2m_csi_wait_for_interrupt(struct rzv2m_csi_priv *csi,
					u32 wait_mask, u32 enable_bits)
{
	int ret;

	rzv2m_csi_enable_irqs(csi, enable_bits);

	if (spi_controller_is_target(csi->controller)) {
		ret = wait_event_interruptible(csi->wait,
				((csi->status & wait_mask) == wait_mask) ||
				csi->errors || csi->target_aborted);
		if (ret || csi->target_aborted)
			ret = -EINTR;
	} else {
		ret = wait_event_timeout(csi->wait,
				((csi->status & wait_mask) == wait_mask) ||
				csi->errors, HZ) == 0 ? -ETIMEDOUT : 0;
	}

	rzv2m_csi_disable_irqs(csi, enable_bits);

	if (csi->errors)
		return -EIO;

	return ret;
}

static inline int rzv2m_csi_wait_for_rx_ready(struct rzv2m_csi_priv *csi)
{
	int ret;

	if (readl(csi->base + CSI_IFIFOL) >= csi->bytes_to_transfer)
		return 0;

	ret = rzv2m_csi_wait_for_interrupt(csi, CSI_INT_R_TRGR,
					   CSI_CNT_R_TRGR_E);
	if (ret == -ETIMEDOUT)
		csi->errors |= RX_TIMEOUT_ERROR;

	return ret;
}

static irqreturn_t rzv2m_csi_irq_handler(int irq, void *data)
{
	struct rzv2m_csi_priv *csi = data;

	csi->status = readl(csi->base + CSI_INT);
	rzv2m_csi_disable_irqs(csi, csi->status);

	if (csi->status & CSI_INT_OVERF)
		csi->errors |= OVERFLOW_ERROR;
	if (csi->status & CSI_INT_UNDER)
		csi->errors |= UNDERRUN_ERROR;

	wake_up(&csi->wait);

	return IRQ_HANDLED;
}

static void rzv2m_csi_setup_clock(struct rzv2m_csi_priv *csi, u32 spi_hz)
{
	unsigned long csiclk_rate = clk_get_rate(csi->csiclk);
	unsigned long pclk_rate = clk_get_rate(csi->pclk);
	unsigned long csiclk_rate_limit = pclk_rate >> 1;
	u32 cks;

	/*
	 * There is a restriction on the frequency of CSICLK, it has to be <=
	 * PCLK / 2.
	 */
	if (csiclk_rate > csiclk_rate_limit) {
		clk_set_rate(csi->csiclk, csiclk_rate >> 1);
		csiclk_rate = clk_get_rate(csi->csiclk);
	} else if ((csiclk_rate << 1) <= csiclk_rate_limit) {
		clk_set_rate(csi->csiclk, csiclk_rate << 1);
		csiclk_rate = clk_get_rate(csi->csiclk);
	}

	spi_hz = spi_hz > CSI_MAX_SPI_SCKO ? CSI_MAX_SPI_SCKO : spi_hz;

	cks = DIV_ROUND_UP(csiclk_rate, spi_hz << 1);
	if (cks > CSI_CKS_MAX)
		cks = CSI_CKS_MAX;

	dev_dbg(csi->dev, "SPI clk rate is %ldHz\n", csiclk_rate / (cks << 1));

	rzv2m_csi_reg_write_bit(csi, CSI_CLKSEL, CSI_CLKSEL_CKS, cks);
}

static void rzv2m_csi_setup_operating_mode(struct rzv2m_csi_priv *csi,
					   struct spi_transfer *t)
{
	if (t->rx_buf && !t->tx_buf)
		/* Reception-only mode */
		rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_TRMD, 0);
	else
		/* Send and receive mode */
		rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_TRMD, 1);

	csi->bytes_per_word = t->bits_per_word / 8;
	rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_CCL,
				csi->bytes_per_word == 2);
}

static int rzv2m_csi_setup(struct spi_device *spi)
{
	struct rzv2m_csi_priv *csi = spi_controller_get_devdata(spi->controller);
	u32 slave_selection = CSI_CLKSEL_SS_DISABLED;
	int ret;

	rzv2m_csi_sw_reset(csi, 0);

	writel(CSI_MODE_SETUP, csi->base + CSI_MODE);

	/* Setup clock polarity and phase timing */
	rzv2m_csi_reg_write_bit(csi, CSI_CLKSEL, CSI_CLKSEL_MODE,
				~spi->mode & SPI_MODE_X_MASK);

	/* Setup serial data order */
	rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_DIR,
				!!(spi->mode & SPI_LSB_FIRST));

	/* Set the role, 1 for target and 0 for host */
	rzv2m_csi_reg_write_bit(csi, CSI_CLKSEL, CSI_CLKSEL_SLAVE,
				!!spi_controller_is_target(csi->controller));

	if (csi->use_ss_pin)
		slave_selection = spi->mode & SPI_CS_HIGH ?
			CSI_CLKSEL_SS_ENABLED_ACTIVE_HIGH :
			CSI_CLKSEL_SS_ENABLED_ACTIVE_LOW;

	/* Configure the slave selection (SS) pin */
	rzv2m_csi_reg_write_bit(csi, CSI_CLKSEL, CSI_CLKSEL_SS, slave_selection);

	/* Give the IP a SW reset */
	ret = rzv2m_csi_sw_reset(csi, 1);
	if (ret)
		return ret;
	rzv2m_csi_sw_reset(csi, 0);

	/*
	 * We need to enable the communication so that the clock will settle
	 * for the right polarity before enabling the CS.
	 */
	rzv2m_csi_start_stop_operation(csi, 1, false);
	udelay(10);
	rzv2m_csi_start_stop_operation(csi, 0, false);

	return 0;
}

static int rzv2m_csi_pio_transfer(struct rzv2m_csi_priv *csi)
{
	bool tx_completed = !csi->txbuf;
	bool rx_completed = !csi->rxbuf;
	int ret = 0;

	/* Make sure the TX FIFO is empty */
	writel(0, csi->base + CSI_OFIFOL);

	/* Make sure the RX FIFO is empty */
	writel(0, csi->base + CSI_IFIFOL);

	csi->bytes_sent = 0;
	csi->bytes_received = 0;
	csi->errors = 0;
	csi->target_aborted = false;

	rzv2m_csi_disable_all_irqs(csi);
	rzv2m_csi_clear_all_irqs(csi);
	rzv2m_csi_enable_rx_trigger(csi, true);

	while (!tx_completed || !rx_completed) {
		/*
		 * Decide how many words we are going to transfer during
		 * this cycle (for both TX and RX), then set the RX FIFO trigger
		 * level accordingly. No need to set a trigger level for the
		 * TX FIFO, as this IP comes with an interrupt that fires when
		 * the TX FIFO is empty.
		 */
		rzv2m_csi_calc_current_transfer(csi);
		rzv2m_csi_set_rx_fifo_trigger_level(csi);

		rzv2m_csi_enable_irqs(csi, CSI_INT_OVERF | CSI_INT_UNDER);

		writel(readl(csi->base + CSI_INT), csi->base + CSI_INT);
		csi->status = 0;

		/* TX */
		if (csi->txbuf) {
			ret = rzv2m_csi_fill_txfifo(csi);
			if (ret)
				break;

			if (csi->bytes_sent == csi->buffer_len)
				tx_completed = true;
		}

		rzv2m_csi_start_stop_operation(csi, 1, false);

		/*
		 * Make sure the RX FIFO contains the desired number of words.
		 * We then either flush its content, or we copy it onto
		 * csi->rxbuf.
		 */
		ret = rzv2m_csi_wait_for_rx_ready(csi);
		if (ret)
			break;

		if (!spi_controller_is_target(csi->controller))
			rzv2m_csi_start_stop_operation(csi, 0, false);

		/* RX */
		if (csi->rxbuf) {
			ret = rzv2m_csi_read_rxfifo(csi);
			if (ret)
				break;

			if (csi->bytes_received == csi->buffer_len)
				rx_completed = true;
		} else {
			rzv2m_csi_empty_rxfifo(csi);
		}

		if (csi->errors) {
			ret = -EIO;
			break;
		}
	}

	rzv2m_csi_start_stop_operation(csi, 0, true);
	rzv2m_csi_disable_all_irqs(csi);
	rzv2m_csi_enable_rx_trigger(csi, false);
	rzv2m_csi_clear_all_irqs(csi);

	return ret;
}

static int rzv2m_csi_transfer_one(struct spi_controller *controller,
				  struct spi_device *spi,
				  struct spi_transfer *transfer)
{
	struct rzv2m_csi_priv *csi = spi_controller_get_devdata(controller);
	struct device *dev = csi->dev;
	int ret;

	csi->txbuf = transfer->tx_buf;
	csi->rxbuf = transfer->rx_buf;
	csi->buffer_len = transfer->len;

	rzv2m_csi_setup_operating_mode(csi, transfer);

	if (!spi_controller_is_target(csi->controller))
		rzv2m_csi_setup_clock(csi, transfer->speed_hz);

	ret = rzv2m_csi_pio_transfer(csi);
	if (ret) {
		if (csi->errors & UNDERRUN_ERROR)
			dev_err(dev, "Underrun error\n");
		if (csi->errors & OVERFLOW_ERROR)
			dev_err(dev, "Overflow error\n");
		if (csi->errors & TX_TIMEOUT_ERROR)
			dev_err(dev, "TX timeout error\n");
		if (csi->errors & RX_TIMEOUT_ERROR)
			dev_err(dev, "RX timeout error\n");
	}

	return ret;
}

static int rzv2m_csi_target_abort(struct spi_controller *ctlr)
{
	struct rzv2m_csi_priv *csi = spi_controller_get_devdata(ctlr);

	csi->target_aborted = true;
	wake_up(&csi->wait);

	return 0;
}

static int rzv2m_csi_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct spi_controller *controller;
	struct device *dev = &pdev->dev;
	struct rzv2m_csi_priv *csi;
	struct reset_control *rstc;
	bool target_mode;
	int irq;
	int ret;

	target_mode = of_property_read_bool(np, "spi-slave");

	if (target_mode)
		controller = devm_spi_alloc_target(dev, sizeof(*csi));
	else
		controller = devm_spi_alloc_host(dev, sizeof(*csi));

	if (!controller)
		return -ENOMEM;

	csi = spi_controller_get_devdata(controller);
	platform_set_drvdata(pdev, csi);

	csi->use_ss_pin = false;
	if (spi_controller_is_target(controller) &&
	    !of_property_read_bool(np, "renesas,csi-no-ss"))
		csi->use_ss_pin = true;

	csi->dev = dev;
	csi->controller = controller;
	csi->target_aborted = false;

	csi->base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(csi->base))
		return PTR_ERR(csi->base);

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	csi->csiclk = devm_clk_get(dev, "csiclk");
	if (IS_ERR(csi->csiclk))
		return dev_err_probe(dev, PTR_ERR(csi->csiclk),
				     "could not get csiclk\n");

	csi->pclk = devm_clk_get(dev, "pclk");
	if (IS_ERR(csi->pclk))
		return dev_err_probe(dev, PTR_ERR(csi->pclk),
				     "could not get pclk\n");

	rstc = devm_reset_control_get_shared(dev, NULL);
	if (IS_ERR(rstc))
		return dev_err_probe(dev, PTR_ERR(rstc), "Missing reset ctrl\n");

	init_waitqueue_head(&csi->wait);

	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH;
	controller->bits_per_word_mask = SPI_BPW_MASK(16) | SPI_BPW_MASK(8);
	controller->setup = rzv2m_csi_setup;
	controller->transfer_one = rzv2m_csi_transfer_one;
	controller->use_gpio_descriptors = true;
	controller->target_abort = rzv2m_csi_target_abort;

	device_set_node(&controller->dev, dev_fwnode(dev));

	ret = devm_request_irq(dev, irq, rzv2m_csi_irq_handler, 0,
			       dev_name(dev), csi);
	if (ret)
		return dev_err_probe(dev, ret, "cannot request IRQ\n");

	/*
	 * The reset also affects other HW that is not under the control
	 * of Linux. Therefore, all we can do is make sure the reset is
	 * deasserted.
	 */
	reset_control_deassert(rstc);

	/* Make sure the IP is in SW reset state */
	ret = rzv2m_csi_sw_reset(csi, 1);
	if (ret)
		return ret;

	ret = clk_prepare_enable(csi->csiclk);
	if (ret)
		return dev_err_probe(dev, ret, "could not enable csiclk\n");

	ret = spi_register_controller(controller);
	if (ret) {
		clk_disable_unprepare(csi->csiclk);
		return dev_err_probe(dev, ret, "register controller failed\n");
	}

	return 0;
}

static void rzv2m_csi_remove(struct platform_device *pdev)
{
	struct rzv2m_csi_priv *csi = platform_get_drvdata(pdev);

	spi_unregister_controller(csi->controller);
	rzv2m_csi_sw_reset(csi, 1);
	clk_disable_unprepare(csi->csiclk);
}

static const struct of_device_id rzv2m_csi_match[] = {
	{ .compatible = "renesas,rzv2m-csi" },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rzv2m_csi_match);

static struct platform_driver rzv2m_csi_drv = {
	.probe = rzv2m_csi_probe,
	.remove_new = rzv2m_csi_remove,
	.driver = {
		.name = "rzv2m_csi",
		.of_match_table = rzv2m_csi_match,
	},
};
module_platform_driver(rzv2m_csi_drv);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Fabrizio Castro <castro.fabrizio.jz@renesas.com>");
MODULE_DESCRIPTION("Clocked Serial Interface Driver");