1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) KEBA Industrial Automation Gmbh 2024
*
* Driver for KEBA SPI host controller type 2 FPGA IP core
*/
#include <linux/iopoll.h>
#include <linux/misc/keba.h>
#include <linux/spi/spi.h>
#define KSPI2 "kspi2"
#define KSPI2_CLK_FREQ_REG 0x03
#define KSPI2_CLK_FREQ_MASK 0x0f
#define KSPI2_CLK_FREQ_62_5M 0x0
#define KSPI2_CLK_FREQ_33_3M 0x1
#define KSPI2_CLK_FREQ_125M 0x2
#define KSPI2_CLK_FREQ_50M 0x3
#define KSPI2_CLK_FREQ_100M 0x4
#define KSPI2_CONTROL_REG 0x04
#define KSPI2_CONTROL_CLK_DIV_MAX 0x0f
#define KSPI2_CONTROL_CLK_DIV_MASK 0x0f
#define KSPI2_CONTROL_CPHA 0x10
#define KSPI2_CONTROL_CPOL 0x20
#define KSPI2_CONTROL_CLK_MODE_MASK 0x30
#define KSPI2_CONTROL_INIT KSPI2_CONTROL_CLK_DIV_MAX
#define KSPI2_STATUS_REG 0x08
#define KSPI2_STATUS_IN_USE 0x01
#define KSPI2_STATUS_BUSY 0x02
#define KSPI2_DATA_REG 0x0c
#define KSPI2_CS_NR_REG 0x10
#define KSPI2_CS_NR_NONE 0xff
#define KSPI2_MODE_BITS (SPI_CPHA | SPI_CPOL)
#define KSPI2_NUM_CS 255
#define KSPI2_SPEED_HZ_MIN(kspi) (kspi->base_speed_hz / 65536)
#define KSPI2_SPEED_HZ_MAX(kspi) (kspi->base_speed_hz / 2)
/* timeout is 10 times the time to transfer one byte at slowest clock */
#define KSPI2_XFER_TIMEOUT_US(kspi) (USEC_PER_SEC / \
KSPI2_SPEED_HZ_MIN(kspi) * 8 * 10)
#define KSPI2_INUSE_SLEEP_US (2 * USEC_PER_MSEC)
#define KSPI2_INUSE_TIMEOUT_US (10 * USEC_PER_SEC)
struct kspi2 {
struct keba_spi_auxdev *auxdev;
void __iomem *base;
struct spi_controller *host;
u32 base_speed_hz; /* SPI base clock frequency in HZ */
u8 control_shadow;
struct spi_device **device;
int device_size;
};
static int kspi2_inuse_lock(struct kspi2 *kspi)
{
u8 sts;
int ret;
/*
* The SPI controller has an IN_USE bit for locking access to the
* controller. This enables the use of the SPI controller by other none
* Linux processors.
*
* If the SPI controller is free, then the first read returns
* IN_USE == 0. After that the SPI controller is locked and further
* reads of IN_USE return 1.
*
* The SPI controller is unlocked by writing 1 into IN_USE.
*
* The IN_USE bit acts as a hardware semaphore for the SPI controller.
* Poll for semaphore, but sleep while polling to free the CPU.
*/
ret = readb_poll_timeout(kspi->base + KSPI2_STATUS_REG,
sts, (sts & KSPI2_STATUS_IN_USE) == 0,
KSPI2_INUSE_SLEEP_US, KSPI2_INUSE_TIMEOUT_US);
if (ret != 0)
dev_warn(&kspi->auxdev->auxdev.dev, "%s err!\n", __func__);
return ret;
}
static void kspi2_inuse_unlock(struct kspi2 *kspi)
{
/* unlock the controller by writing 1 into IN_USE */
iowrite8(KSPI2_STATUS_IN_USE, kspi->base + KSPI2_STATUS_REG);
}
static int kspi2_prepare_hardware(struct spi_controller *host)
{
struct kspi2 *kspi = spi_controller_get_devdata(host);
/* lock hardware semaphore before actual use of controller */
return kspi2_inuse_lock(kspi);
}
static int kspi2_unprepare_hardware(struct spi_controller *host)
{
struct kspi2 *kspi = spi_controller_get_devdata(host);
/* unlock hardware semaphore after actual use of controller */
kspi2_inuse_unlock(kspi);
return 0;
}
static u8 kspi2_calc_minimal_divider(struct kspi2 *kspi, u32 max_speed_hz)
{
u8 div;
/*
* Divider values 2, 4, 8, 16, ..., 65536 are possible. They are coded
* as 0, 1, 2, 3, ..., 15 in the CONTROL_CLK_DIV bit.
*/
for (div = 0; div < KSPI2_CONTROL_CLK_DIV_MAX; div++) {
if ((kspi->base_speed_hz >> (div + 1)) <= max_speed_hz)
return div;
}
/* return divider for slowest clock if loop fails to find one */
return KSPI2_CONTROL_CLK_DIV_MAX;
}
static void kspi2_write_control_reg(struct kspi2 *kspi, u8 val, u8 mask)
{
/* write control register only when necessary to improve performance */
if (val != (kspi->control_shadow & mask)) {
kspi->control_shadow = (kspi->control_shadow & ~mask) | val;
iowrite8(kspi->control_shadow, kspi->base + KSPI2_CONTROL_REG);
}
}
static int kspi2_txrx_byte(struct kspi2 *kspi, u8 tx, u8 *rx)
{
u8 sts;
int ret;
/* start transfer by writing TX byte */
iowrite8(tx, kspi->base + KSPI2_DATA_REG);
/* wait till finished (BUSY == 0) */
ret = readb_poll_timeout(kspi->base + KSPI2_STATUS_REG,
sts, (sts & KSPI2_STATUS_BUSY) == 0,
0, KSPI2_XFER_TIMEOUT_US(kspi));
if (ret != 0)
return ret;
/* read RX byte */
if (rx)
*rx = ioread8(kspi->base + KSPI2_DATA_REG);
return 0;
}
static int kspi2_process_transfer(struct kspi2 *kspi, struct spi_transfer *t)
{
u8 tx = 0;
u8 rx;
int i;
int ret;
for (i = 0; i < t->len; i++) {
if (t->tx_buf)
tx = ((const u8 *)t->tx_buf)[i];
ret = kspi2_txrx_byte(kspi, tx, &rx);
if (ret)
return ret;
if (t->rx_buf)
((u8 *)t->rx_buf)[i] = rx;
}
return 0;
}
static int kspi2_setup_transfer(struct kspi2 *kspi,
struct spi_device *spi,
struct spi_transfer *t)
{
u32 max_speed_hz = spi->max_speed_hz;
u8 clk_div;
/*
* spi_device (spi) has default parameters. Some of these can be
* overwritten by parameters in spi_transfer (t).
*/
if (t->bits_per_word && ((t->bits_per_word % 8) != 0)) {
dev_err(&spi->dev, "Word width %d not supported!\n",
t->bits_per_word);
return -EINVAL;
}
if (t->speed_hz && (t->speed_hz < max_speed_hz))
max_speed_hz = t->speed_hz;
clk_div = kspi2_calc_minimal_divider(kspi, max_speed_hz);
kspi2_write_control_reg(kspi, clk_div, KSPI2_CONTROL_CLK_DIV_MASK);
return 0;
}
static int kspi2_transfer_one(struct spi_controller *host,
struct spi_device *spi,
struct spi_transfer *t)
{
struct kspi2 *kspi = spi_controller_get_devdata(host);
int ret;
ret = kspi2_setup_transfer(kspi, spi, t);
if (ret != 0)
return ret;
if (t->len) {
ret = kspi2_process_transfer(kspi, t);
if (ret != 0)
return ret;
}
return 0;
}
static void kspi2_set_cs(struct spi_device *spi, bool enable)
{
struct spi_controller *host = spi->controller;
struct kspi2 *kspi = spi_controller_get_devdata(host);
/* controller is using active low chip select signals by design */
if (!enable)
iowrite8(spi_get_chipselect(spi, 0), kspi->base + KSPI2_CS_NR_REG);
else
iowrite8(KSPI2_CS_NR_NONE, kspi->base + KSPI2_CS_NR_REG);
}
static int kspi2_prepare_message(struct spi_controller *host,
struct spi_message *msg)
{
struct kspi2 *kspi = spi_controller_get_devdata(host);
struct spi_device *spi = msg->spi;
u8 mode = 0;
/* setup SPI clock phase and polarity */
if (spi->mode & SPI_CPHA)
mode |= KSPI2_CONTROL_CPHA;
if (spi->mode & SPI_CPOL)
mode |= KSPI2_CONTROL_CPOL;
kspi2_write_control_reg(kspi, mode, KSPI2_CONTROL_CLK_MODE_MASK);
return 0;
}
static int kspi2_setup(struct spi_device *spi)
{
struct kspi2 *kspi = spi_controller_get_devdata(spi->controller);
/*
* Check only parameters. Actual setup is done in kspi2_prepare_message
* and directly before the SPI transfer starts.
*/
if (spi->mode & ~KSPI2_MODE_BITS) {
dev_err(&spi->dev, "Mode %d not supported!\n", spi->mode);
return -EINVAL;
}
if ((spi->bits_per_word % 8) != 0) {
dev_err(&spi->dev, "Word width %d not supported!\n",
spi->bits_per_word);
return -EINVAL;
}
if ((spi->max_speed_hz == 0) ||
(spi->max_speed_hz > KSPI2_SPEED_HZ_MAX(kspi)))
spi->max_speed_hz = KSPI2_SPEED_HZ_MAX(kspi);
if (spi->max_speed_hz < KSPI2_SPEED_HZ_MIN(kspi)) {
dev_err(&spi->dev, "Requested speed of %d Hz is too low!\n",
spi->max_speed_hz);
return -EINVAL;
}
return 0;
}
static void kspi2_unregister_devices(struct kspi2 *kspi)
{
int i;
for (i = 0; i < kspi->device_size; i++) {
struct spi_device *device = kspi->device[i];
if (device)
spi_unregister_device(device);
}
}
static int kspi2_register_devices(struct kspi2 *kspi)
{
struct spi_board_info *info = kspi->auxdev->info;
int i;
/* register all known SPI devices */
for (i = 0; i < kspi->auxdev->info_size; i++) {
struct spi_device *device = spi_new_device(kspi->host, &info[i]);
if (!device) {
kspi2_unregister_devices(kspi);
return -ENODEV;
}
kspi->device[i] = device;
}
return 0;
}
static void kspi2_init(struct kspi2 *kspi)
{
iowrite8(KSPI2_CONTROL_INIT, kspi->base + KSPI2_CONTROL_REG);
kspi->control_shadow = KSPI2_CONTROL_INIT;
iowrite8(KSPI2_CS_NR_NONE, kspi->base + KSPI2_CS_NR_REG);
}
static int kspi2_probe(struct auxiliary_device *auxdev,
const struct auxiliary_device_id *id)
{
struct device *dev = &auxdev->dev;
struct spi_controller *host;
struct kspi2 *kspi;
u8 clk_reg;
int ret;
host = devm_spi_alloc_host(dev, sizeof(struct kspi2));
if (!host)
return -ENOMEM;
kspi = spi_controller_get_devdata(host);
kspi->auxdev = container_of(auxdev, struct keba_spi_auxdev, auxdev);
kspi->host = host;
kspi->device = devm_kcalloc(dev, kspi->auxdev->info_size,
sizeof(*kspi->device), GFP_KERNEL);
if (!kspi->device)
return -ENOMEM;
kspi->device_size = kspi->auxdev->info_size;
auxiliary_set_drvdata(auxdev, kspi);
kspi->base = devm_ioremap_resource(dev, &kspi->auxdev->io);
if (IS_ERR(kspi->base))
return PTR_ERR(kspi->base);
/* read the SPI base clock frequency */
clk_reg = ioread8(kspi->base + KSPI2_CLK_FREQ_REG);
switch (clk_reg & KSPI2_CLK_FREQ_MASK) {
case KSPI2_CLK_FREQ_62_5M:
kspi->base_speed_hz = 62500000; break;
case KSPI2_CLK_FREQ_33_3M:
kspi->base_speed_hz = 33333333; break;
case KSPI2_CLK_FREQ_125M:
kspi->base_speed_hz = 125000000; break;
case KSPI2_CLK_FREQ_50M:
kspi->base_speed_hz = 50000000; break;
case KSPI2_CLK_FREQ_100M:
kspi->base_speed_hz = 100000000; break;
default:
dev_err(dev, "Undefined SPI base clock frequency!\n");
return -ENODEV;
}
kspi2_init(kspi);
host->bus_num = -1;
host->num_chipselect = KSPI2_NUM_CS;
host->mode_bits = KSPI2_MODE_BITS;
host->setup = kspi2_setup;
host->prepare_transfer_hardware = kspi2_prepare_hardware;
host->unprepare_transfer_hardware = kspi2_unprepare_hardware;
host->prepare_message = kspi2_prepare_message;
host->set_cs = kspi2_set_cs;
host->transfer_one = kspi2_transfer_one;
ret = devm_spi_register_controller(dev, host);
if (ret) {
dev_err(dev, "Failed to register host (%d)!\n", ret);
return ret;
}
ret = kspi2_register_devices(kspi);
if (ret) {
dev_err(dev, "Failed to register devices (%d)!\n", ret);
return ret;
}
return 0;
}
static void kspi2_remove(struct auxiliary_device *auxdev)
{
struct kspi2 *kspi = auxiliary_get_drvdata(auxdev);
kspi2_unregister_devices(kspi);
}
static const struct auxiliary_device_id kspi2_devtype_aux[] = {
{ .name = "keba.spi" },
{ },
};
MODULE_DEVICE_TABLE(auxiliary, kspi2_devtype_aux);
static struct auxiliary_driver kspi2_driver_aux = {
.name = KSPI2,
.id_table = kspi2_devtype_aux,
.probe = kspi2_probe,
.remove = kspi2_remove,
};
module_auxiliary_driver(kspi2_driver_aux);
MODULE_AUTHOR("Gerhard Engleder <eg@keba.com>");
MODULE_DESCRIPTION("KEBA SPI host controller driver");
MODULE_LICENSE("GPL");
|