1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
|
// SPDX-License-Identifier: GPL-2.0
/*
* Driver for Atmel QSPI Controller
*
* Copyright (C) 2015 Atmel Corporation
* Copyright (C) 2018 Cryptera A/S
*
* Author: Cyrille Pitchen <cyrille.pitchen@atmel.com>
* Author: Piotr Bugalski <bugalski.piotr@gmail.com>
*
* This driver is based on drivers/mtd/spi-nor/fsl-quadspi.c from Freescale.
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi-mem.h>
/* QSPI register offsets */
#define QSPI_CR 0x0000 /* Control Register */
#define QSPI_MR 0x0004 /* Mode Register */
#define QSPI_RD 0x0008 /* Receive Data Register */
#define QSPI_TD 0x000c /* Transmit Data Register */
#define QSPI_SR 0x0010 /* Status Register */
#define QSPI_IER 0x0014 /* Interrupt Enable Register */
#define QSPI_IDR 0x0018 /* Interrupt Disable Register */
#define QSPI_IMR 0x001c /* Interrupt Mask Register */
#define QSPI_SCR 0x0020 /* Serial Clock Register */
#define QSPI_SR2 0x0024 /* SAMA7G5 Status Register */
#define QSPI_IAR 0x0030 /* Instruction Address Register */
#define QSPI_ICR 0x0034 /* Instruction Code Register */
#define QSPI_WICR 0x0034 /* Write Instruction Code Register */
#define QSPI_IFR 0x0038 /* Instruction Frame Register */
#define QSPI_RICR 0x003C /* Read Instruction Code Register */
#define QSPI_SMR 0x0040 /* Scrambling Mode Register */
#define QSPI_SKR 0x0044 /* Scrambling Key Register */
#define QSPI_REFRESH 0x0050 /* Refresh Register */
#define QSPI_WRACNT 0x0054 /* Write Access Counter Register */
#define QSPI_DLLCFG 0x0058 /* DLL Configuration Register */
#define QSPI_PCALCFG 0x005C /* Pad Calibration Configuration Register */
#define QSPI_PCALBP 0x0060 /* Pad Calibration Bypass Register */
#define QSPI_TOUT 0x0064 /* Timeout Register */
#define QSPI_WPMR 0x00E4 /* Write Protection Mode Register */
#define QSPI_WPSR 0x00E8 /* Write Protection Status Register */
#define QSPI_VERSION 0x00FC /* Version Register */
#define SAMA7G5_QSPI0_MAX_SPEED_HZ 200000000
#define SAMA7G5_QSPI1_SDR_MAX_SPEED_HZ 133000000
/* Bitfields in QSPI_CR (Control Register) */
#define QSPI_CR_QSPIEN BIT(0)
#define QSPI_CR_QSPIDIS BIT(1)
#define QSPI_CR_DLLON BIT(2)
#define QSPI_CR_DLLOFF BIT(3)
#define QSPI_CR_STPCAL BIT(4)
#define QSPI_CR_SRFRSH BIT(5)
#define QSPI_CR_SWRST BIT(7)
#define QSPI_CR_UPDCFG BIT(8)
#define QSPI_CR_STTFR BIT(9)
#define QSPI_CR_RTOUT BIT(10)
#define QSPI_CR_LASTXFER BIT(24)
/* Bitfields in QSPI_MR (Mode Register) */
#define QSPI_MR_SMM BIT(0)
#define QSPI_MR_LLB BIT(1)
#define QSPI_MR_WDRBT BIT(2)
#define QSPI_MR_SMRM BIT(3)
#define QSPI_MR_DQSDLYEN BIT(3)
#define QSPI_MR_CSMODE_MASK GENMASK(5, 4)
#define QSPI_MR_CSMODE_NOT_RELOADED (0 << 4)
#define QSPI_MR_CSMODE_LASTXFER (1 << 4)
#define QSPI_MR_CSMODE_SYSTEMATICALLY (2 << 4)
#define QSPI_MR_NBBITS_MASK GENMASK(11, 8)
#define QSPI_MR_NBBITS(n) ((((n) - 8) << 8) & QSPI_MR_NBBITS_MASK)
#define QSPI_MR_OENSD BIT(15)
#define QSPI_MR_DLYBCT_MASK GENMASK(23, 16)
#define QSPI_MR_DLYBCT(n) (((n) << 16) & QSPI_MR_DLYBCT_MASK)
#define QSPI_MR_DLYCS_MASK GENMASK(31, 24)
#define QSPI_MR_DLYCS(n) (((n) << 24) & QSPI_MR_DLYCS_MASK)
/* Bitfields in QSPI_SR/QSPI_IER/QSPI_IDR/QSPI_IMR */
#define QSPI_SR_RDRF BIT(0)
#define QSPI_SR_TDRE BIT(1)
#define QSPI_SR_TXEMPTY BIT(2)
#define QSPI_SR_OVRES BIT(3)
#define QSPI_SR_CSR BIT(8)
#define QSPI_SR_CSS BIT(9)
#define QSPI_SR_INSTRE BIT(10)
#define QSPI_SR_LWRA BIT(11)
#define QSPI_SR_QITF BIT(12)
#define QSPI_SR_QITR BIT(13)
#define QSPI_SR_CSFA BIT(14)
#define QSPI_SR_CSRA BIT(15)
#define QSPI_SR_RFRSHD BIT(16)
#define QSPI_SR_TOUT BIT(17)
#define QSPI_SR_QSPIENS BIT(24)
#define QSPI_SR_CMD_COMPLETED (QSPI_SR_INSTRE | QSPI_SR_CSR)
/* Bitfields in QSPI_SCR (Serial Clock Register) */
#define QSPI_SCR_CPOL BIT(0)
#define QSPI_SCR_CPHA BIT(1)
#define QSPI_SCR_SCBR_MASK GENMASK(15, 8)
#define QSPI_SCR_SCBR(n) (((n) << 8) & QSPI_SCR_SCBR_MASK)
#define QSPI_SCR_DLYBS_MASK GENMASK(23, 16)
#define QSPI_SCR_DLYBS(n) (((n) << 16) & QSPI_SCR_DLYBS_MASK)
/* Bitfields in QSPI_SR2 (SAMA7G5 Status Register) */
#define QSPI_SR2_SYNCBSY BIT(0)
#define QSPI_SR2_QSPIENS BIT(1)
#define QSPI_SR2_CSS BIT(2)
#define QSPI_SR2_RBUSY BIT(3)
#define QSPI_SR2_HIDLE BIT(4)
#define QSPI_SR2_DLOCK BIT(5)
#define QSPI_SR2_CALBSY BIT(6)
/* Bitfields in QSPI_IAR (Instruction Address Register) */
#define QSPI_IAR_ADDR GENMASK(31, 0)
/* Bitfields in QSPI_ICR (Read/Write Instruction Code Register) */
#define QSPI_ICR_INST_MASK GENMASK(7, 0)
#define QSPI_ICR_INST(inst) (((inst) << 0) & QSPI_ICR_INST_MASK)
#define QSPI_ICR_INST_MASK_SAMA7G5 GENMASK(15, 0)
#define QSPI_ICR_OPT_MASK GENMASK(23, 16)
#define QSPI_ICR_OPT(opt) (((opt) << 16) & QSPI_ICR_OPT_MASK)
/* Bitfields in QSPI_IFR (Instruction Frame Register) */
#define QSPI_IFR_WIDTH_MASK GENMASK(2, 0)
#define QSPI_IFR_WIDTH_SINGLE_BIT_SPI (0 << 0)
#define QSPI_IFR_WIDTH_DUAL_OUTPUT (1 << 0)
#define QSPI_IFR_WIDTH_QUAD_OUTPUT (2 << 0)
#define QSPI_IFR_WIDTH_DUAL_IO (3 << 0)
#define QSPI_IFR_WIDTH_QUAD_IO (4 << 0)
#define QSPI_IFR_WIDTH_DUAL_CMD (5 << 0)
#define QSPI_IFR_WIDTH_QUAD_CMD (6 << 0)
#define QSPI_IFR_WIDTH_OCT_OUTPUT (7 << 0)
#define QSPI_IFR_WIDTH_OCT_IO (8 << 0)
#define QSPI_IFR_WIDTH_OCT_CMD (9 << 0)
#define QSPI_IFR_INSTEN BIT(4)
#define QSPI_IFR_ADDREN BIT(5)
#define QSPI_IFR_OPTEN BIT(6)
#define QSPI_IFR_DATAEN BIT(7)
#define QSPI_IFR_OPTL_MASK GENMASK(9, 8)
#define QSPI_IFR_OPTL_1BIT (0 << 8)
#define QSPI_IFR_OPTL_2BIT (1 << 8)
#define QSPI_IFR_OPTL_4BIT (2 << 8)
#define QSPI_IFR_OPTL_8BIT (3 << 8)
#define QSPI_IFR_ADDRL BIT(10)
#define QSPI_IFR_ADDRL_SAMA7G5 GENMASK(11, 10)
#define QSPI_IFR_TFRTYP_MEM BIT(12)
#define QSPI_IFR_SAMA5D2_WRITE_TRSFR BIT(13)
#define QSPI_IFR_CRM BIT(14)
#define QSPI_IFR_DDREN BIT(15)
#define QSPI_IFR_NBDUM_MASK GENMASK(20, 16)
#define QSPI_IFR_NBDUM(n) (((n) << 16) & QSPI_IFR_NBDUM_MASK)
#define QSPI_IFR_END BIT(22)
#define QSPI_IFR_SMRM BIT(23)
#define QSPI_IFR_APBTFRTYP_READ BIT(24) /* Defined in SAM9X60 */
#define QSPI_IFR_DQSEN BIT(25)
#define QSPI_IFR_DDRCMDEN BIT(26)
#define QSPI_IFR_HFWBEN BIT(27)
#define QSPI_IFR_PROTTYP GENMASK(29, 28)
#define QSPI_IFR_PROTTYP_STD_SPI 0
#define QSPI_IFR_PROTTYP_TWIN_QUAD 1
#define QSPI_IFR_PROTTYP_OCTAFLASH 2
#define QSPI_IFR_PROTTYP_HYPERFLASH 3
/* Bitfields in QSPI_SMR (Scrambling Mode Register) */
#define QSPI_SMR_SCREN BIT(0)
#define QSPI_SMR_RVDIS BIT(1)
#define QSPI_SMR_SCRKL BIT(2)
/* Bitfields in QSPI_REFRESH (Refresh Register) */
#define QSPI_REFRESH_DELAY_COUNTER GENMASK(31, 0)
/* Bitfields in QSPI_WRACNT (Write Access Counter Register) */
#define QSPI_WRACNT_NBWRA GENMASK(31, 0)
/* Bitfields in QSPI_DLLCFG (DLL Configuration Register) */
#define QSPI_DLLCFG_RANGE BIT(0)
/* Bitfields in QSPI_PCALCFG (DLL Pad Calibration Configuration Register) */
#define QSPI_PCALCFG_AAON BIT(0)
#define QSPI_PCALCFG_DAPCAL BIT(1)
#define QSPI_PCALCFG_DIFFPM BIT(2)
#define QSPI_PCALCFG_CLKDIV GENMASK(6, 4)
#define QSPI_PCALCFG_CALCNT GENMASK(16, 8)
#define QSPI_PCALCFG_CALP GENMASK(27, 24)
#define QSPI_PCALCFG_CALN GENMASK(31, 28)
/* Bitfields in QSPI_PCALBP (DLL Pad Calibration Bypass Register) */
#define QSPI_PCALBP_BPEN BIT(0)
#define QSPI_PCALBP_CALPBP GENMASK(11, 8)
#define QSPI_PCALBP_CALNBP GENMASK(19, 16)
/* Bitfields in QSPI_TOUT (Timeout Register) */
#define QSPI_TOUT_TCNTM GENMASK(15, 0)
/* Bitfields in QSPI_WPMR (Write Protection Mode Register) */
#define QSPI_WPMR_WPEN BIT(0)
#define QSPI_WPMR_WPITEN BIT(1)
#define QSPI_WPMR_WPCREN BIT(2)
#define QSPI_WPMR_WPKEY_MASK GENMASK(31, 8)
#define QSPI_WPMR_WPKEY(wpkey) (((wpkey) << 8) & QSPI_WPMR_WPKEY_MASK)
/* Bitfields in QSPI_WPSR (Write Protection Status Register) */
#define QSPI_WPSR_WPVS BIT(0)
#define QSPI_WPSR_WPVSRC_MASK GENMASK(15, 8)
#define QSPI_WPSR_WPVSRC(src) (((src) << 8) & QSPI_WPSR_WPVSRC)
#define ATMEL_QSPI_TIMEOUT 1000 /* ms */
#define ATMEL_QSPI_SYNC_TIMEOUT 300 /* ms */
#define QSPI_DLLCFG_THRESHOLD_FREQ 90000000U
#define QSPI_CALIB_TIME 2000 /* 2 us */
/* Use PIO for small transfers. */
#define ATMEL_QSPI_DMA_MIN_BYTES 16
/**
* struct atmel_qspi_pcal - Pad Calibration Clock Division
* @pclk_rate: peripheral clock rate.
* @pclk_div: calibration clock division. The clock applied to the calibration
* cell is divided by pclk_div + 1.
*/
struct atmel_qspi_pcal {
u32 pclk_rate;
u8 pclk_div;
};
#define ATMEL_QSPI_PCAL_ARRAY_SIZE 8
static const struct atmel_qspi_pcal pcal[ATMEL_QSPI_PCAL_ARRAY_SIZE] = {
{25000000, 0},
{50000000, 1},
{75000000, 2},
{100000000, 3},
{125000000, 4},
{150000000, 5},
{175000000, 6},
{200000000, 7},
};
struct atmel_qspi_caps {
u32 max_speed_hz;
bool has_qspick;
bool has_gclk;
bool has_ricr;
bool octal;
bool has_dma;
};
struct atmel_qspi_ops;
struct atmel_qspi {
void __iomem *regs;
void __iomem *mem;
struct clk *pclk;
struct clk *qspick;
struct clk *gclk;
struct platform_device *pdev;
const struct atmel_qspi_caps *caps;
const struct atmel_qspi_ops *ops;
resource_size_t mmap_size;
u32 pending;
u32 irq_mask;
u32 mr;
u32 scr;
u32 target_max_speed_hz;
struct completion cmd_completion;
struct completion dma_completion;
dma_addr_t mmap_phys_base;
struct dma_chan *rx_chan;
struct dma_chan *tx_chan;
};
struct atmel_qspi_ops {
int (*set_cfg)(struct atmel_qspi *aq, const struct spi_mem_op *op,
u32 *offset);
int (*transfer)(struct spi_mem *mem, const struct spi_mem_op *op,
u32 offset);
};
struct atmel_qspi_mode {
u8 cmd_buswidth;
u8 addr_buswidth;
u8 data_buswidth;
u32 config;
};
static const struct atmel_qspi_mode atmel_qspi_modes[] = {
{ 1, 1, 1, QSPI_IFR_WIDTH_SINGLE_BIT_SPI },
{ 1, 1, 2, QSPI_IFR_WIDTH_DUAL_OUTPUT },
{ 1, 1, 4, QSPI_IFR_WIDTH_QUAD_OUTPUT },
{ 1, 2, 2, QSPI_IFR_WIDTH_DUAL_IO },
{ 1, 4, 4, QSPI_IFR_WIDTH_QUAD_IO },
{ 2, 2, 2, QSPI_IFR_WIDTH_DUAL_CMD },
{ 4, 4, 4, QSPI_IFR_WIDTH_QUAD_CMD },
};
static const struct atmel_qspi_mode atmel_qspi_sama7g5_modes[] = {
{ 1, 1, 1, QSPI_IFR_WIDTH_SINGLE_BIT_SPI },
{ 1, 1, 2, QSPI_IFR_WIDTH_DUAL_OUTPUT },
{ 1, 1, 4, QSPI_IFR_WIDTH_QUAD_OUTPUT },
{ 1, 2, 2, QSPI_IFR_WIDTH_DUAL_IO },
{ 1, 4, 4, QSPI_IFR_WIDTH_QUAD_IO },
{ 2, 2, 2, QSPI_IFR_WIDTH_DUAL_CMD },
{ 4, 4, 4, QSPI_IFR_WIDTH_QUAD_CMD },
{ 1, 1, 8, QSPI_IFR_WIDTH_OCT_OUTPUT },
{ 1, 8, 8, QSPI_IFR_WIDTH_OCT_IO },
{ 8, 8, 8, QSPI_IFR_WIDTH_OCT_CMD },
};
#ifdef VERBOSE_DEBUG
static const char *atmel_qspi_reg_name(u32 offset, char *tmp, size_t sz)
{
switch (offset) {
case QSPI_CR:
return "CR";
case QSPI_MR:
return "MR";
case QSPI_RD:
return "RD";
case QSPI_TD:
return "TD";
case QSPI_SR:
return "SR";
case QSPI_IER:
return "IER";
case QSPI_IDR:
return "IDR";
case QSPI_IMR:
return "IMR";
case QSPI_SCR:
return "SCR";
case QSPI_SR2:
return "SR2";
case QSPI_IAR:
return "IAR";
case QSPI_ICR:
return "ICR/WICR";
case QSPI_IFR:
return "IFR";
case QSPI_RICR:
return "RICR";
case QSPI_SMR:
return "SMR";
case QSPI_SKR:
return "SKR";
case QSPI_REFRESH:
return "REFRESH";
case QSPI_WRACNT:
return "WRACNT";
case QSPI_DLLCFG:
return "DLLCFG";
case QSPI_PCALCFG:
return "PCALCFG";
case QSPI_PCALBP:
return "PCALBP";
case QSPI_TOUT:
return "TOUT";
case QSPI_WPMR:
return "WPMR";
case QSPI_WPSR:
return "WPSR";
case QSPI_VERSION:
return "VERSION";
default:
snprintf(tmp, sz, "0x%02x", offset);
break;
}
return tmp;
}
#endif /* VERBOSE_DEBUG */
static u32 atmel_qspi_read(struct atmel_qspi *aq, u32 offset)
{
u32 value = readl_relaxed(aq->regs + offset);
#ifdef VERBOSE_DEBUG
char tmp[8];
dev_vdbg(&aq->pdev->dev, "read 0x%08x from %s\n", value,
atmel_qspi_reg_name(offset, tmp, sizeof(tmp)));
#endif /* VERBOSE_DEBUG */
return value;
}
static void atmel_qspi_write(u32 value, struct atmel_qspi *aq, u32 offset)
{
#ifdef VERBOSE_DEBUG
char tmp[8];
dev_vdbg(&aq->pdev->dev, "write 0x%08x into %s\n", value,
atmel_qspi_reg_name(offset, tmp, sizeof(tmp)));
#endif /* VERBOSE_DEBUG */
writel_relaxed(value, aq->regs + offset);
}
static int atmel_qspi_reg_sync(struct atmel_qspi *aq)
{
u32 val;
int ret;
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
!(val & QSPI_SR2_SYNCBSY), 40,
ATMEL_QSPI_SYNC_TIMEOUT);
return ret;
}
static int atmel_qspi_update_config(struct atmel_qspi *aq)
{
int ret;
ret = atmel_qspi_reg_sync(aq);
if (ret)
return ret;
atmel_qspi_write(QSPI_CR_UPDCFG, aq, QSPI_CR);
return atmel_qspi_reg_sync(aq);
}
static inline bool atmel_qspi_is_compatible(const struct spi_mem_op *op,
const struct atmel_qspi_mode *mode)
{
if (op->cmd.buswidth != mode->cmd_buswidth)
return false;
if (op->addr.nbytes && op->addr.buswidth != mode->addr_buswidth)
return false;
if (op->data.nbytes && op->data.buswidth != mode->data_buswidth)
return false;
return true;
}
static int atmel_qspi_find_mode(const struct spi_mem_op *op)
{
u32 i;
for (i = 0; i < ARRAY_SIZE(atmel_qspi_modes); i++)
if (atmel_qspi_is_compatible(op, &atmel_qspi_modes[i]))
return i;
return -EOPNOTSUPP;
}
static int atmel_qspi_sama7g5_find_mode(const struct spi_mem_op *op)
{
u32 i;
for (i = 0; i < ARRAY_SIZE(atmel_qspi_sama7g5_modes); i++)
if (atmel_qspi_is_compatible(op, &atmel_qspi_sama7g5_modes[i]))
return i;
return -EOPNOTSUPP;
}
static bool atmel_qspi_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct atmel_qspi *aq = spi_controller_get_devdata(mem->spi->controller);
if (!spi_mem_default_supports_op(mem, op))
return false;
if (aq->caps->octal) {
if (atmel_qspi_sama7g5_find_mode(op) < 0)
return false;
else
return true;
}
if (atmel_qspi_find_mode(op) < 0)
return false;
/* special case not supported by hardware */
if (op->addr.nbytes == 2 && op->cmd.buswidth != op->addr.buswidth &&
op->dummy.nbytes == 0)
return false;
return true;
}
/*
* If the QSPI controller is set in regular SPI mode, set it in
* Serial Memory Mode (SMM).
*/
static int atmel_qspi_set_serial_memory_mode(struct atmel_qspi *aq)
{
int ret = 0;
if (!(aq->mr & QSPI_MR_SMM)) {
aq->mr |= QSPI_MR_SMM;
atmel_qspi_write(aq->mr, aq, QSPI_MR);
if (aq->caps->has_gclk)
ret = atmel_qspi_update_config(aq);
}
return ret;
}
static int atmel_qspi_set_cfg(struct atmel_qspi *aq,
const struct spi_mem_op *op, u32 *offset)
{
u32 iar, icr, ifr;
u32 dummy_cycles = 0;
int mode;
iar = 0;
icr = QSPI_ICR_INST(op->cmd.opcode);
ifr = QSPI_IFR_INSTEN;
mode = atmel_qspi_find_mode(op);
if (mode < 0)
return mode;
ifr |= atmel_qspi_modes[mode].config;
if (op->dummy.nbytes)
dummy_cycles = op->dummy.nbytes * 8 / op->dummy.buswidth;
/*
* The controller allows 24 and 32-bit addressing while NAND-flash
* requires 16-bit long. Handling 8-bit long addresses is done using
* the option field. For the 16-bit addresses, the workaround depends
* of the number of requested dummy bits. If there are 8 or more dummy
* cycles, the address is shifted and sent with the first dummy byte.
* Otherwise opcode is disabled and the first byte of the address
* contains the command opcode (works only if the opcode and address
* use the same buswidth). The limitation is when the 16-bit address is
* used without enough dummy cycles and the opcode is using a different
* buswidth than the address.
*/
if (op->addr.buswidth) {
switch (op->addr.nbytes) {
case 0:
break;
case 1:
ifr |= QSPI_IFR_OPTEN | QSPI_IFR_OPTL_8BIT;
icr |= QSPI_ICR_OPT(op->addr.val & 0xff);
break;
case 2:
if (dummy_cycles < 8 / op->addr.buswidth) {
ifr &= ~QSPI_IFR_INSTEN;
ifr |= QSPI_IFR_ADDREN;
iar = (op->cmd.opcode << 16) |
(op->addr.val & 0xffff);
} else {
ifr |= QSPI_IFR_ADDREN;
iar = (op->addr.val << 8) & 0xffffff;
dummy_cycles -= 8 / op->addr.buswidth;
}
break;
case 3:
ifr |= QSPI_IFR_ADDREN;
iar = op->addr.val & 0xffffff;
break;
case 4:
ifr |= QSPI_IFR_ADDREN | QSPI_IFR_ADDRL;
iar = op->addr.val & 0x7ffffff;
break;
default:
return -ENOTSUPP;
}
}
/* offset of the data access in the QSPI memory space */
*offset = iar;
/* Set number of dummy cycles */
if (dummy_cycles)
ifr |= QSPI_IFR_NBDUM(dummy_cycles);
/* Set data enable and data transfer type. */
if (op->data.nbytes) {
ifr |= QSPI_IFR_DATAEN;
if (op->addr.nbytes)
ifr |= QSPI_IFR_TFRTYP_MEM;
}
mode = atmel_qspi_set_serial_memory_mode(aq);
if (mode < 0)
return mode;
/* Clear pending interrupts */
(void)atmel_qspi_read(aq, QSPI_SR);
/* Set QSPI Instruction Frame registers. */
if (op->addr.nbytes && !op->data.nbytes)
atmel_qspi_write(iar, aq, QSPI_IAR);
if (aq->caps->has_ricr) {
if (op->data.dir == SPI_MEM_DATA_IN)
atmel_qspi_write(icr, aq, QSPI_RICR);
else
atmel_qspi_write(icr, aq, QSPI_WICR);
} else {
if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
ifr |= QSPI_IFR_SAMA5D2_WRITE_TRSFR;
atmel_qspi_write(icr, aq, QSPI_ICR);
}
atmel_qspi_write(ifr, aq, QSPI_IFR);
return 0;
}
static int atmel_qspi_wait_for_completion(struct atmel_qspi *aq, u32 irq_mask)
{
int err = 0;
u32 sr;
/* Poll INSTRuction End status */
sr = atmel_qspi_read(aq, QSPI_SR);
if ((sr & irq_mask) == irq_mask)
return 0;
/* Wait for INSTRuction End interrupt */
reinit_completion(&aq->cmd_completion);
aq->pending = sr & irq_mask;
aq->irq_mask = irq_mask;
atmel_qspi_write(irq_mask, aq, QSPI_IER);
if (!wait_for_completion_timeout(&aq->cmd_completion,
msecs_to_jiffies(ATMEL_QSPI_TIMEOUT)))
err = -ETIMEDOUT;
atmel_qspi_write(irq_mask, aq, QSPI_IDR);
return err;
}
static int atmel_qspi_transfer(struct spi_mem *mem,
const struct spi_mem_op *op, u32 offset)
{
struct atmel_qspi *aq = spi_controller_get_devdata(mem->spi->controller);
/* Skip to the final steps if there is no data */
if (!op->data.nbytes)
return atmel_qspi_wait_for_completion(aq,
QSPI_SR_CMD_COMPLETED);
/* Dummy read of QSPI_IFR to synchronize APB and AHB accesses */
(void)atmel_qspi_read(aq, QSPI_IFR);
/* Send/Receive data */
if (op->data.dir == SPI_MEM_DATA_IN) {
memcpy_fromio(op->data.buf.in, aq->mem + offset,
op->data.nbytes);
/* Synchronize AHB and APB accesses again */
rmb();
} else {
memcpy_toio(aq->mem + offset, op->data.buf.out,
op->data.nbytes);
/* Synchronize AHB and APB accesses again */
wmb();
}
/* Release the chip-select */
atmel_qspi_write(QSPI_CR_LASTXFER, aq, QSPI_CR);
return atmel_qspi_wait_for_completion(aq, QSPI_SR_CMD_COMPLETED);
}
static int atmel_qspi_sama7g5_set_cfg(struct atmel_qspi *aq,
const struct spi_mem_op *op, u32 *offset)
{
u32 iar, icr, ifr;
int mode, ret;
iar = 0;
icr = FIELD_PREP(QSPI_ICR_INST_MASK_SAMA7G5, op->cmd.opcode);
ifr = QSPI_IFR_INSTEN;
mode = atmel_qspi_sama7g5_find_mode(op);
if (mode < 0)
return mode;
ifr |= atmel_qspi_sama7g5_modes[mode].config;
if (op->dummy.buswidth && op->dummy.nbytes) {
if (op->addr.dtr && op->dummy.dtr && op->data.dtr)
ifr |= QSPI_IFR_NBDUM(op->dummy.nbytes * 8 /
(2 * op->dummy.buswidth));
else
ifr |= QSPI_IFR_NBDUM(op->dummy.nbytes * 8 /
op->dummy.buswidth);
}
if (op->addr.buswidth && op->addr.nbytes) {
ifr |= FIELD_PREP(QSPI_IFR_ADDRL_SAMA7G5, op->addr.nbytes - 1) |
QSPI_IFR_ADDREN;
iar = FIELD_PREP(QSPI_IAR_ADDR, op->addr.val);
}
if (op->addr.dtr && op->dummy.dtr && op->data.dtr) {
ifr |= QSPI_IFR_DDREN;
if (op->cmd.dtr)
ifr |= QSPI_IFR_DDRCMDEN;
ifr |= QSPI_IFR_DQSEN;
}
if (op->cmd.buswidth == 8 || op->addr.buswidth == 8 ||
op->data.buswidth == 8)
ifr |= FIELD_PREP(QSPI_IFR_PROTTYP, QSPI_IFR_PROTTYP_OCTAFLASH);
/* offset of the data access in the QSPI memory space */
*offset = iar;
/* Set data enable */
if (op->data.nbytes) {
ifr |= QSPI_IFR_DATAEN;
if (op->addr.nbytes)
ifr |= QSPI_IFR_TFRTYP_MEM;
}
ret = atmel_qspi_set_serial_memory_mode(aq);
if (ret < 0)
return ret;
/* Clear pending interrupts */
(void)atmel_qspi_read(aq, QSPI_SR);
/* Set QSPI Instruction Frame registers */
if (op->addr.nbytes && !op->data.nbytes)
atmel_qspi_write(iar, aq, QSPI_IAR);
if (op->data.dir == SPI_MEM_DATA_IN) {
atmel_qspi_write(icr, aq, QSPI_RICR);
} else {
atmel_qspi_write(icr, aq, QSPI_WICR);
if (op->data.nbytes)
atmel_qspi_write(FIELD_PREP(QSPI_WRACNT_NBWRA,
op->data.nbytes),
aq, QSPI_WRACNT);
}
atmel_qspi_write(ifr, aq, QSPI_IFR);
return atmel_qspi_update_config(aq);
}
static void atmel_qspi_dma_callback(void *param)
{
struct atmel_qspi *aq = param;
complete(&aq->dma_completion);
}
static int atmel_qspi_dma_xfer(struct atmel_qspi *aq, struct dma_chan *chan,
dma_addr_t dma_dst, dma_addr_t dma_src,
unsigned int len)
{
struct dma_async_tx_descriptor *tx;
dma_cookie_t cookie;
int ret;
tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tx) {
dev_err(&aq->pdev->dev, "device_prep_dma_memcpy error\n");
return -EIO;
}
reinit_completion(&aq->dma_completion);
tx->callback = atmel_qspi_dma_callback;
tx->callback_param = aq;
cookie = tx->tx_submit(tx);
ret = dma_submit_error(cookie);
if (ret) {
dev_err(&aq->pdev->dev, "dma_submit_error %d\n", cookie);
return ret;
}
dma_async_issue_pending(chan);
ret = wait_for_completion_timeout(&aq->dma_completion,
msecs_to_jiffies(20 * ATMEL_QSPI_TIMEOUT));
if (ret == 0) {
dmaengine_terminate_sync(chan);
dev_err(&aq->pdev->dev, "DMA wait_for_completion_timeout\n");
return -ETIMEDOUT;
}
return 0;
}
static int atmel_qspi_dma_rx_xfer(struct spi_mem *mem,
const struct spi_mem_op *op,
struct sg_table *sgt, loff_t loff)
{
struct atmel_qspi *aq =
spi_controller_get_devdata(mem->spi->controller);
struct scatterlist *sg;
dma_addr_t dma_src;
unsigned int i, len;
int ret;
dma_src = aq->mmap_phys_base + loff;
for_each_sg(sgt->sgl, sg, sgt->nents, i) {
len = sg_dma_len(sg);
ret = atmel_qspi_dma_xfer(aq, aq->rx_chan, sg_dma_address(sg),
dma_src, len);
if (ret)
return ret;
dma_src += len;
}
return 0;
}
static int atmel_qspi_dma_tx_xfer(struct spi_mem *mem,
const struct spi_mem_op *op,
struct sg_table *sgt, loff_t loff)
{
struct atmel_qspi *aq =
spi_controller_get_devdata(mem->spi->controller);
struct scatterlist *sg;
dma_addr_t dma_dst;
unsigned int i, len;
int ret;
dma_dst = aq->mmap_phys_base + loff;
for_each_sg(sgt->sgl, sg, sgt->nents, i) {
len = sg_dma_len(sg);
ret = atmel_qspi_dma_xfer(aq, aq->tx_chan, dma_dst,
sg_dma_address(sg), len);
if (ret)
return ret;
dma_dst += len;
}
return 0;
}
static int atmel_qspi_dma_transfer(struct spi_mem *mem,
const struct spi_mem_op *op, loff_t loff)
{
struct sg_table sgt;
int ret;
ret = spi_controller_dma_map_mem_op_data(mem->spi->controller, op,
&sgt);
if (ret)
return ret;
if (op->data.dir == SPI_MEM_DATA_IN)
ret = atmel_qspi_dma_rx_xfer(mem, op, &sgt, loff);
else
ret = atmel_qspi_dma_tx_xfer(mem, op, &sgt, loff);
spi_controller_dma_unmap_mem_op_data(mem->spi->controller, op, &sgt);
return ret;
}
static int atmel_qspi_sama7g5_transfer(struct spi_mem *mem,
const struct spi_mem_op *op, u32 offset)
{
struct atmel_qspi *aq =
spi_controller_get_devdata(mem->spi->controller);
u32 val;
int ret;
if (!op->data.nbytes) {
/* Start the transfer. */
ret = atmel_qspi_reg_sync(aq);
if (ret)
return ret;
atmel_qspi_write(QSPI_CR_STTFR, aq, QSPI_CR);
return atmel_qspi_wait_for_completion(aq, QSPI_SR_CSRA);
}
/* Send/Receive data. */
if (op->data.dir == SPI_MEM_DATA_IN) {
if (aq->rx_chan && op->addr.nbytes &&
op->data.nbytes > ATMEL_QSPI_DMA_MIN_BYTES) {
ret = atmel_qspi_dma_transfer(mem, op, offset);
if (ret)
return ret;
} else {
memcpy_fromio(op->data.buf.in, aq->mem + offset,
op->data.nbytes);
}
if (op->addr.nbytes) {
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
!(val & QSPI_SR2_RBUSY), 40,
ATMEL_QSPI_SYNC_TIMEOUT);
if (ret)
return ret;
}
} else {
if (aq->tx_chan && op->addr.nbytes &&
op->data.nbytes > ATMEL_QSPI_DMA_MIN_BYTES) {
ret = atmel_qspi_dma_transfer(mem, op, offset);
if (ret)
return ret;
} else {
memcpy_toio(aq->mem + offset, op->data.buf.out,
op->data.nbytes);
}
ret = atmel_qspi_wait_for_completion(aq, QSPI_SR_LWRA);
if (ret)
return ret;
}
/* Release the chip-select. */
ret = atmel_qspi_reg_sync(aq);
if (ret)
return ret;
atmel_qspi_write(QSPI_CR_LASTXFER, aq, QSPI_CR);
return atmel_qspi_wait_for_completion(aq, QSPI_SR_CSRA);
}
static int atmel_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct atmel_qspi *aq = spi_controller_get_devdata(mem->spi->controller);
u32 offset;
int err;
/*
* Check if the address exceeds the MMIO window size. An improvement
* would be to add support for regular SPI mode and fall back to it
* when the flash memories overrun the controller's memory space.
*/
if (op->addr.val + op->data.nbytes > aq->mmap_size)
return -EOPNOTSUPP;
if (op->addr.nbytes > 4)
return -EOPNOTSUPP;
err = pm_runtime_resume_and_get(&aq->pdev->dev);
if (err < 0)
return err;
err = aq->ops->set_cfg(aq, op, &offset);
if (err)
goto pm_runtime_put;
err = aq->ops->transfer(mem, op, offset);
pm_runtime_put:
pm_runtime_mark_last_busy(&aq->pdev->dev);
pm_runtime_put_autosuspend(&aq->pdev->dev);
return err;
}
static const char *atmel_qspi_get_name(struct spi_mem *spimem)
{
return dev_name(spimem->spi->dev.parent);
}
static const struct spi_controller_mem_ops atmel_qspi_mem_ops = {
.supports_op = atmel_qspi_supports_op,
.exec_op = atmel_qspi_exec_op,
.get_name = atmel_qspi_get_name
};
static int atmel_qspi_set_pad_calibration(struct atmel_qspi *aq)
{
unsigned long pclk_rate;
u32 status, val;
int i, ret;
u8 pclk_div = 0;
pclk_rate = clk_get_rate(aq->pclk);
if (!pclk_rate)
return -EINVAL;
for (i = 0; i < ATMEL_QSPI_PCAL_ARRAY_SIZE; i++) {
if (pclk_rate <= pcal[i].pclk_rate) {
pclk_div = pcal[i].pclk_div;
break;
}
}
/*
* Use the biggest divider in case the peripheral clock exceeds
* 200MHZ.
*/
if (pclk_rate > pcal[ATMEL_QSPI_PCAL_ARRAY_SIZE - 1].pclk_rate)
pclk_div = pcal[ATMEL_QSPI_PCAL_ARRAY_SIZE - 1].pclk_div;
/* Disable QSPI while configuring the pad calibration. */
status = atmel_qspi_read(aq, QSPI_SR2);
if (status & QSPI_SR2_QSPIENS) {
ret = atmel_qspi_reg_sync(aq);
if (ret)
return ret;
atmel_qspi_write(QSPI_CR_QSPIDIS, aq, QSPI_CR);
}
/*
* The analog circuitry is not shut down at the end of the calibration
* and the start-up time is only required for the first calibration
* sequence, thus increasing performance. Set the delay between the Pad
* calibration analog circuitry and the calibration request to 2us.
*/
atmel_qspi_write(QSPI_PCALCFG_AAON |
FIELD_PREP(QSPI_PCALCFG_CLKDIV, pclk_div) |
FIELD_PREP(QSPI_PCALCFG_CALCNT,
2 * (pclk_rate / 1000000)),
aq, QSPI_PCALCFG);
/* DLL On + start calibration. */
atmel_qspi_write(QSPI_CR_DLLON | QSPI_CR_STPCAL, aq, QSPI_CR);
/* Check synchronization status before updating configuration. */
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
(val & QSPI_SR2_DLOCK) &&
!(val & QSPI_SR2_CALBSY), 40,
ATMEL_QSPI_TIMEOUT);
/* Refresh analogic blocks every 1 ms.*/
atmel_qspi_write(FIELD_PREP(QSPI_REFRESH_DELAY_COUNTER,
aq->target_max_speed_hz / 1000),
aq, QSPI_REFRESH);
return ret;
}
static int atmel_qspi_set_gclk(struct atmel_qspi *aq)
{
u32 status, val;
int ret;
/* Disable DLL before setting GCLK */
status = atmel_qspi_read(aq, QSPI_SR2);
if (status & QSPI_SR2_DLOCK) {
atmel_qspi_write(QSPI_CR_DLLOFF, aq, QSPI_CR);
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
!(val & QSPI_SR2_DLOCK), 40,
ATMEL_QSPI_TIMEOUT);
if (ret)
return ret;
}
if (aq->target_max_speed_hz > QSPI_DLLCFG_THRESHOLD_FREQ)
atmel_qspi_write(QSPI_DLLCFG_RANGE, aq, QSPI_DLLCFG);
else
atmel_qspi_write(0, aq, QSPI_DLLCFG);
ret = clk_set_rate(aq->gclk, aq->target_max_speed_hz);
if (ret) {
dev_err(&aq->pdev->dev, "Failed to set generic clock rate.\n");
return ret;
}
/* Enable the QSPI generic clock */
ret = clk_prepare_enable(aq->gclk);
if (ret)
dev_err(&aq->pdev->dev, "Failed to enable generic clock.\n");
return ret;
}
static int atmel_qspi_sama7g5_init(struct atmel_qspi *aq)
{
u32 val;
int ret;
ret = atmel_qspi_set_gclk(aq);
if (ret)
return ret;
if (aq->caps->octal) {
ret = atmel_qspi_set_pad_calibration(aq);
if (ret)
return ret;
} else {
atmel_qspi_write(QSPI_CR_DLLON, aq, QSPI_CR);
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
(val & QSPI_SR2_DLOCK), 40,
ATMEL_QSPI_TIMEOUT);
}
/* Set the QSPI controller by default in Serial Memory Mode */
aq->mr |= QSPI_MR_DQSDLYEN;
ret = atmel_qspi_set_serial_memory_mode(aq);
if (ret < 0)
return ret;
/* Enable the QSPI controller. */
atmel_qspi_write(QSPI_CR_QSPIEN, aq, QSPI_CR);
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
val & QSPI_SR2_QSPIENS, 40,
ATMEL_QSPI_SYNC_TIMEOUT);
if (ret)
return ret;
if (aq->caps->octal) {
ret = readl_poll_timeout(aq->regs + QSPI_SR, val,
val & QSPI_SR_RFRSHD, 40,
ATMEL_QSPI_TIMEOUT);
}
atmel_qspi_write(QSPI_TOUT_TCNTM, aq, QSPI_TOUT);
return ret;
}
static int atmel_qspi_sama7g5_setup(struct spi_device *spi)
{
struct atmel_qspi *aq = spi_controller_get_devdata(spi->controller);
/* The controller can communicate with a single peripheral device (target). */
aq->target_max_speed_hz = spi->max_speed_hz;
return atmel_qspi_sama7g5_init(aq);
}
static int atmel_qspi_setup(struct spi_device *spi)
{
struct spi_controller *ctrl = spi->controller;
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
unsigned long src_rate;
u32 scbr;
int ret;
if (ctrl->busy)
return -EBUSY;
if (!spi->max_speed_hz)
return -EINVAL;
if (aq->caps->has_gclk)
return atmel_qspi_sama7g5_setup(spi);
src_rate = clk_get_rate(aq->pclk);
if (!src_rate)
return -EINVAL;
/* Compute the QSPI baudrate */
scbr = DIV_ROUND_UP(src_rate, spi->max_speed_hz);
if (scbr > 0)
scbr--;
ret = pm_runtime_resume_and_get(ctrl->dev.parent);
if (ret < 0)
return ret;
aq->scr &= ~QSPI_SCR_SCBR_MASK;
aq->scr |= QSPI_SCR_SCBR(scbr);
atmel_qspi_write(aq->scr, aq, QSPI_SCR);
pm_runtime_mark_last_busy(ctrl->dev.parent);
pm_runtime_put_autosuspend(ctrl->dev.parent);
return 0;
}
static int atmel_qspi_set_cs_timing(struct spi_device *spi)
{
struct spi_controller *ctrl = spi->controller;
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
unsigned long clk_rate;
u32 cs_inactive;
u32 cs_setup;
u32 cs_hold;
int delay;
int ret;
clk_rate = clk_get_rate(aq->pclk);
if (!clk_rate)
return -EINVAL;
/* hold */
delay = spi_delay_to_ns(&spi->cs_hold, NULL);
if (aq->mr & QSPI_MR_SMM) {
if (delay > 0)
dev_warn(&aq->pdev->dev,
"Ignoring cs_hold, must be 0 in Serial Memory Mode.\n");
cs_hold = 0;
} else {
delay = spi_delay_to_ns(&spi->cs_hold, NULL);
if (delay < 0)
return delay;
cs_hold = DIV_ROUND_UP((delay * DIV_ROUND_UP(clk_rate, 1000000)), 32000);
}
/* setup */
delay = spi_delay_to_ns(&spi->cs_setup, NULL);
if (delay < 0)
return delay;
cs_setup = DIV_ROUND_UP((delay * DIV_ROUND_UP(clk_rate, 1000000)),
1000);
/* inactive */
delay = spi_delay_to_ns(&spi->cs_inactive, NULL);
if (delay < 0)
return delay;
cs_inactive = DIV_ROUND_UP((delay * DIV_ROUND_UP(clk_rate, 1000000)), 1000);
ret = pm_runtime_resume_and_get(ctrl->dev.parent);
if (ret < 0)
return ret;
aq->scr &= ~QSPI_SCR_DLYBS_MASK;
aq->scr |= QSPI_SCR_DLYBS(cs_setup);
atmel_qspi_write(aq->scr, aq, QSPI_SCR);
aq->mr &= ~(QSPI_MR_DLYBCT_MASK | QSPI_MR_DLYCS_MASK);
aq->mr |= QSPI_MR_DLYBCT(cs_hold) | QSPI_MR_DLYCS(cs_inactive);
atmel_qspi_write(aq->mr, aq, QSPI_MR);
pm_runtime_mark_last_busy(ctrl->dev.parent);
pm_runtime_put_autosuspend(ctrl->dev.parent);
return 0;
}
static int atmel_qspi_init(struct atmel_qspi *aq)
{
int ret;
if (aq->caps->has_gclk) {
ret = atmel_qspi_reg_sync(aq);
if (ret)
return ret;
atmel_qspi_write(QSPI_CR_SWRST, aq, QSPI_CR);
return 0;
}
/* Reset the QSPI controller */
atmel_qspi_write(QSPI_CR_SWRST, aq, QSPI_CR);
/* Set the QSPI controller by default in Serial Memory Mode */
ret = atmel_qspi_set_serial_memory_mode(aq);
if (ret < 0)
return ret;
/* Enable the QSPI controller */
atmel_qspi_write(QSPI_CR_QSPIEN, aq, QSPI_CR);
return 0;
}
static irqreturn_t atmel_qspi_interrupt(int irq, void *dev_id)
{
struct atmel_qspi *aq = dev_id;
u32 status, mask, pending;
status = atmel_qspi_read(aq, QSPI_SR);
mask = atmel_qspi_read(aq, QSPI_IMR);
pending = status & mask;
if (!pending)
return IRQ_NONE;
aq->pending |= pending;
if ((aq->pending & aq->irq_mask) == aq->irq_mask)
complete(&aq->cmd_completion);
return IRQ_HANDLED;
}
static int atmel_qspi_dma_init(struct spi_controller *ctrl)
{
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
int ret;
aq->rx_chan = dma_request_chan(&aq->pdev->dev, "rx");
if (IS_ERR(aq->rx_chan)) {
aq->rx_chan = NULL;
return dev_err_probe(&aq->pdev->dev, PTR_ERR(aq->rx_chan),
"RX DMA channel is not available\n");
}
aq->tx_chan = dma_request_chan(&aq->pdev->dev, "tx");
if (IS_ERR(aq->tx_chan)) {
ret = dev_err_probe(&aq->pdev->dev, PTR_ERR(aq->tx_chan),
"TX DMA channel is not available\n");
goto release_rx_chan;
}
ctrl->dma_rx = aq->rx_chan;
ctrl->dma_tx = aq->tx_chan;
init_completion(&aq->dma_completion);
dev_info(&aq->pdev->dev, "Using %s (tx) and %s (rx) for DMA transfers\n",
dma_chan_name(aq->tx_chan), dma_chan_name(aq->rx_chan));
return 0;
release_rx_chan:
dma_release_channel(aq->rx_chan);
aq->rx_chan = NULL;
aq->tx_chan = NULL;
return ret;
}
static void atmel_qspi_dma_release(struct atmel_qspi *aq)
{
if (aq->rx_chan)
dma_release_channel(aq->rx_chan);
if (aq->tx_chan)
dma_release_channel(aq->tx_chan);
}
static const struct atmel_qspi_ops atmel_qspi_ops = {
.set_cfg = atmel_qspi_set_cfg,
.transfer = atmel_qspi_transfer,
};
static const struct atmel_qspi_ops atmel_qspi_sama7g5_ops = {
.set_cfg = atmel_qspi_sama7g5_set_cfg,
.transfer = atmel_qspi_sama7g5_transfer,
};
static int atmel_qspi_probe(struct platform_device *pdev)
{
struct spi_controller *ctrl;
struct atmel_qspi *aq;
struct resource *res;
int irq, err = 0;
ctrl = devm_spi_alloc_host(&pdev->dev, sizeof(*aq));
if (!ctrl)
return -ENOMEM;
aq = spi_controller_get_devdata(ctrl);
aq->caps = of_device_get_match_data(&pdev->dev);
if (!aq->caps) {
dev_err(&pdev->dev, "Could not retrieve QSPI caps\n");
return -EINVAL;
}
init_completion(&aq->cmd_completion);
aq->pdev = pdev;
ctrl->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
if (aq->caps->octal)
ctrl->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
if (aq->caps->has_gclk)
aq->ops = &atmel_qspi_sama7g5_ops;
else
aq->ops = &atmel_qspi_ops;
ctrl->max_speed_hz = aq->caps->max_speed_hz;
ctrl->setup = atmel_qspi_setup;
ctrl->set_cs_timing = atmel_qspi_set_cs_timing;
ctrl->bus_num = -1;
ctrl->mem_ops = &atmel_qspi_mem_ops;
ctrl->num_chipselect = 1;
ctrl->dev.of_node = pdev->dev.of_node;
platform_set_drvdata(pdev, ctrl);
/* Map the registers */
aq->regs = devm_platform_ioremap_resource_byname(pdev, "qspi_base");
if (IS_ERR(aq->regs))
return dev_err_probe(&pdev->dev, PTR_ERR(aq->regs),
"missing registers\n");
/* Map the AHB memory */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mmap");
aq->mem = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(aq->mem))
return dev_err_probe(&pdev->dev, PTR_ERR(aq->mem),
"missing AHB memory\n");
aq->mmap_size = resource_size(res);
aq->mmap_phys_base = (dma_addr_t)res->start;
/* Get the peripheral clock */
aq->pclk = devm_clk_get_enabled(&pdev->dev, "pclk");
if (IS_ERR(aq->pclk))
aq->pclk = devm_clk_get_enabled(&pdev->dev, NULL);
if (IS_ERR(aq->pclk))
return dev_err_probe(&pdev->dev, PTR_ERR(aq->pclk),
"missing peripheral clock\n");
if (aq->caps->has_qspick) {
/* Get the QSPI system clock */
aq->qspick = devm_clk_get_enabled(&pdev->dev, "qspick");
if (IS_ERR(aq->qspick)) {
dev_err(&pdev->dev, "missing system clock\n");
err = PTR_ERR(aq->qspick);
return err;
}
} else if (aq->caps->has_gclk) {
/* Get the QSPI generic clock */
aq->gclk = devm_clk_get(&pdev->dev, "gclk");
if (IS_ERR(aq->gclk)) {
dev_err(&pdev->dev, "missing Generic clock\n");
err = PTR_ERR(aq->gclk);
return err;
}
}
if (aq->caps->has_dma) {
err = atmel_qspi_dma_init(ctrl);
if (err == -EPROBE_DEFER)
return err;
}
/* Request the IRQ */
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
err = irq;
goto dma_release;
}
err = devm_request_irq(&pdev->dev, irq, atmel_qspi_interrupt,
0, dev_name(&pdev->dev), aq);
if (err)
goto dma_release;
pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
pm_runtime_get_noresume(&pdev->dev);
err = atmel_qspi_init(aq);
if (err)
goto dma_release;
err = spi_register_controller(ctrl);
if (err) {
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_dont_use_autosuspend(&pdev->dev);
goto dma_release;
}
pm_runtime_mark_last_busy(&pdev->dev);
pm_runtime_put_autosuspend(&pdev->dev);
return 0;
dma_release:
if (aq->caps->has_dma)
atmel_qspi_dma_release(aq);
return err;
}
static int atmel_qspi_sama7g5_suspend(struct atmel_qspi *aq)
{
int ret;
u32 val;
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
!(val & QSPI_SR2_RBUSY) &&
(val & QSPI_SR2_HIDLE), 40,
ATMEL_QSPI_SYNC_TIMEOUT);
if (ret)
return ret;
atmel_qspi_write(QSPI_CR_QSPIDIS, aq, QSPI_CR);
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
!(val & QSPI_SR2_QSPIENS), 40,
ATMEL_QSPI_SYNC_TIMEOUT);
if (ret)
return ret;
clk_disable_unprepare(aq->gclk);
atmel_qspi_write(QSPI_CR_DLLOFF, aq, QSPI_CR);
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
!(val & QSPI_SR2_DLOCK), 40,
ATMEL_QSPI_TIMEOUT);
if (ret)
return ret;
ret = readl_poll_timeout(aq->regs + QSPI_SR2, val,
!(val & QSPI_SR2_CALBSY), 40,
ATMEL_QSPI_TIMEOUT);
if (ret)
return ret;
return 0;
}
static void atmel_qspi_remove(struct platform_device *pdev)
{
struct spi_controller *ctrl = platform_get_drvdata(pdev);
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
int ret;
spi_unregister_controller(ctrl);
ret = pm_runtime_get_sync(&pdev->dev);
if (ret >= 0) {
if (aq->caps->has_dma)
atmel_qspi_dma_release(aq);
if (aq->caps->has_gclk) {
ret = atmel_qspi_sama7g5_suspend(aq);
if (ret)
dev_warn(&pdev->dev, "Failed to de-init device on remove: %d\n", ret);
return;
}
atmel_qspi_write(QSPI_CR_QSPIDIS, aq, QSPI_CR);
} else {
/*
* atmel_qspi_runtime_{suspend,resume} just disable and enable
* the two clks respectively. So after resume failed these are
* off, and we skip hardware access and disabling these clks again.
*/
dev_warn(&pdev->dev, "Failed to resume device on remove\n");
}
pm_runtime_disable(&pdev->dev);
pm_runtime_dont_use_autosuspend(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
}
static int __maybe_unused atmel_qspi_suspend(struct device *dev)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
int ret;
ret = pm_runtime_resume_and_get(dev);
if (ret < 0)
return ret;
if (aq->caps->has_gclk) {
ret = atmel_qspi_sama7g5_suspend(aq);
clk_disable_unprepare(aq->pclk);
return ret;
}
atmel_qspi_write(QSPI_CR_QSPIDIS, aq, QSPI_CR);
pm_runtime_mark_last_busy(dev);
pm_runtime_force_suspend(dev);
clk_unprepare(aq->qspick);
clk_unprepare(aq->pclk);
return 0;
}
static int __maybe_unused atmel_qspi_resume(struct device *dev)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
int ret;
ret = clk_prepare(aq->pclk);
if (ret)
return ret;
ret = clk_prepare(aq->qspick);
if (ret) {
clk_unprepare(aq->pclk);
return ret;
}
if (aq->caps->has_gclk)
return atmel_qspi_sama7g5_init(aq);
ret = pm_runtime_force_resume(dev);
if (ret < 0)
return ret;
atmel_qspi_init(aq);
atmel_qspi_write(aq->scr, aq, QSPI_SCR);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return 0;
}
static int __maybe_unused atmel_qspi_runtime_suspend(struct device *dev)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
clk_disable(aq->qspick);
clk_disable(aq->pclk);
return 0;
}
static int __maybe_unused atmel_qspi_runtime_resume(struct device *dev)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
int ret;
ret = clk_enable(aq->pclk);
if (ret)
return ret;
ret = clk_enable(aq->qspick);
if (ret)
clk_disable(aq->pclk);
return ret;
}
static const struct dev_pm_ops __maybe_unused atmel_qspi_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(atmel_qspi_suspend, atmel_qspi_resume)
SET_RUNTIME_PM_OPS(atmel_qspi_runtime_suspend,
atmel_qspi_runtime_resume, NULL)
};
static const struct atmel_qspi_caps atmel_sama5d2_qspi_caps = {};
static const struct atmel_qspi_caps atmel_sam9x60_qspi_caps = {
.has_qspick = true,
.has_ricr = true,
};
static const struct atmel_qspi_caps atmel_sama7g5_ospi_caps = {
.max_speed_hz = SAMA7G5_QSPI0_MAX_SPEED_HZ,
.has_gclk = true,
.octal = true,
.has_dma = true,
};
static const struct atmel_qspi_caps atmel_sama7g5_qspi_caps = {
.max_speed_hz = SAMA7G5_QSPI1_SDR_MAX_SPEED_HZ,
.has_gclk = true,
.has_dma = true,
};
static const struct of_device_id atmel_qspi_dt_ids[] = {
{
.compatible = "atmel,sama5d2-qspi",
.data = &atmel_sama5d2_qspi_caps,
},
{
.compatible = "microchip,sam9x60-qspi",
.data = &atmel_sam9x60_qspi_caps,
},
{
.compatible = "microchip,sama7g5-ospi",
.data = &atmel_sama7g5_ospi_caps,
},
{
.compatible = "microchip,sama7g5-qspi",
.data = &atmel_sama7g5_qspi_caps,
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, atmel_qspi_dt_ids);
static struct platform_driver atmel_qspi_driver = {
.driver = {
.name = "atmel_qspi",
.of_match_table = atmel_qspi_dt_ids,
.pm = pm_ptr(&atmel_qspi_pm_ops),
},
.probe = atmel_qspi_probe,
.remove = atmel_qspi_remove,
};
module_platform_driver(atmel_qspi_driver);
MODULE_AUTHOR("Cyrille Pitchen <cyrille.pitchen@atmel.com>");
MODULE_AUTHOR("Piotr Bugalski <bugalski.piotr@gmail.com");
MODULE_DESCRIPTION("Atmel QSPI Controller driver");
MODULE_LICENSE("GPL v2");
|