1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
|
// SPDX-License-Identifier: GPL-2.0
/*
* Real Time Clock (RTC) Driver for i.MX53
* Copyright (c) 2004-2011 Freescale Semiconductor, Inc.
* Copyright (c) 2017 Beckhoff Automation GmbH & Co. KG
*/
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/rtc.h>
#define SRTC_LPPDR_INIT 0x41736166 /* init for glitch detect */
#define SRTC_LPCR_EN_LP BIT(3) /* lp enable */
#define SRTC_LPCR_WAE BIT(4) /* lp wakeup alarm enable */
#define SRTC_LPCR_ALP BIT(7) /* lp alarm flag */
#define SRTC_LPCR_NSA BIT(11) /* lp non secure access */
#define SRTC_LPCR_NVE BIT(14) /* lp non valid state exit bit */
#define SRTC_LPCR_IE BIT(15) /* lp init state exit bit */
#define SRTC_LPSR_ALP BIT(3) /* lp alarm flag */
#define SRTC_LPSR_NVES BIT(14) /* lp non-valid state exit status */
#define SRTC_LPSR_IES BIT(15) /* lp init state exit status */
#define SRTC_LPSCMR 0x00 /* LP Secure Counter MSB Reg */
#define SRTC_LPSCLR 0x04 /* LP Secure Counter LSB Reg */
#define SRTC_LPSAR 0x08 /* LP Secure Alarm Reg */
#define SRTC_LPCR 0x10 /* LP Control Reg */
#define SRTC_LPSR 0x14 /* LP Status Reg */
#define SRTC_LPPDR 0x18 /* LP Power Supply Glitch Detector Reg */
/* max. number of retries to read registers, 120 was max during test */
#define REG_READ_TIMEOUT 2000
struct mxc_rtc_data {
struct rtc_device *rtc;
void __iomem *ioaddr;
struct clk *clk;
spinlock_t lock; /* protects register access */
int irq;
};
/*
* This function does write synchronization for writes to the lp srtc block.
* To take care of the asynchronous CKIL clock, all writes from the IP domain
* will be synchronized to the CKIL domain.
* The caller should hold the pdata->lock
*/
static void mxc_rtc_sync_lp_locked(struct device *dev, void __iomem *ioaddr)
{
unsigned int i;
/* Wait for 3 CKIL cycles */
for (i = 0; i < 3; i++) {
const u32 count = readl(ioaddr + SRTC_LPSCLR);
unsigned int timeout = REG_READ_TIMEOUT;
while ((readl(ioaddr + SRTC_LPSCLR)) == count) {
if (!--timeout) {
dev_err_once(dev, "SRTC_LPSCLR stuck! Check your hw.\n");
return;
}
}
}
}
/* This function is the RTC interrupt service routine. */
static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
{
struct device *dev = dev_id;
struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
void __iomem *ioaddr = pdata->ioaddr;
unsigned long flags;
u32 lp_status;
u32 lp_cr;
spin_lock_irqsave(&pdata->lock, flags);
if (clk_enable(pdata->clk)) {
spin_unlock_irqrestore(&pdata->lock, flags);
return IRQ_NONE;
}
lp_status = readl(ioaddr + SRTC_LPSR);
lp_cr = readl(ioaddr + SRTC_LPCR);
/* update irq data & counter */
if (lp_status & SRTC_LPSR_ALP) {
if (lp_cr & SRTC_LPCR_ALP)
rtc_update_irq(pdata->rtc, 1, RTC_AF | RTC_IRQF);
/* disable further lp alarm interrupts */
lp_cr &= ~(SRTC_LPCR_ALP | SRTC_LPCR_WAE);
}
/* Update interrupt enables */
writel(lp_cr, ioaddr + SRTC_LPCR);
/* clear interrupt status */
writel(lp_status, ioaddr + SRTC_LPSR);
mxc_rtc_sync_lp_locked(dev, ioaddr);
clk_disable(pdata->clk);
spin_unlock_irqrestore(&pdata->lock, flags);
return IRQ_HANDLED;
}
/*
* Enable clk and aquire spinlock
* @return 0 if successful; non-zero otherwise.
*/
static int mxc_rtc_lock(struct mxc_rtc_data *const pdata)
{
int ret;
spin_lock_irq(&pdata->lock);
ret = clk_enable(pdata->clk);
if (ret) {
spin_unlock_irq(&pdata->lock);
return ret;
}
return 0;
}
static int mxc_rtc_unlock(struct mxc_rtc_data *const pdata)
{
clk_disable(pdata->clk);
spin_unlock_irq(&pdata->lock);
return 0;
}
/*
* This function reads the current RTC time into tm in Gregorian date.
*
* @param tm contains the RTC time value upon return
*
* @return 0 if successful; non-zero otherwise.
*/
static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
const int clk_failed = clk_enable(pdata->clk);
if (!clk_failed) {
const time64_t now = readl(pdata->ioaddr + SRTC_LPSCMR);
rtc_time64_to_tm(now, tm);
clk_disable(pdata->clk);
return 0;
}
return clk_failed;
}
/*
* This function sets the internal RTC time based on tm in Gregorian date.
*
* @param tm the time value to be set in the RTC
*
* @return 0 if successful; non-zero otherwise.
*/
static int mxc_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
time64_t time = rtc_tm_to_time64(tm);
int ret;
if (time > U32_MAX) {
dev_err(dev, "RTC exceeded by %llus\n", time - U32_MAX);
return -EINVAL;
}
ret = mxc_rtc_lock(pdata);
if (ret)
return ret;
writel(time, pdata->ioaddr + SRTC_LPSCMR);
mxc_rtc_sync_lp_locked(dev, pdata->ioaddr);
return mxc_rtc_unlock(pdata);
}
/*
* This function reads the current alarm value into the passed in \b alrm
* argument. It updates the \b alrm's pending field value based on the whether
* an alarm interrupt occurs or not.
*
* @param alrm contains the RTC alarm value upon return
*
* @return 0 if successful; non-zero otherwise.
*/
static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
void __iomem *ioaddr = pdata->ioaddr;
int ret;
ret = mxc_rtc_lock(pdata);
if (ret)
return ret;
rtc_time_to_tm(readl(ioaddr + SRTC_LPSAR), &alrm->time);
alrm->pending = !!(readl(ioaddr + SRTC_LPSR) & SRTC_LPSR_ALP);
return mxc_rtc_unlock(pdata);
}
/*
* Enable/Disable alarm interrupt
* The caller should hold the pdata->lock
*/
static void mxc_rtc_alarm_irq_enable_locked(struct mxc_rtc_data *pdata,
unsigned int enable)
{
u32 lp_cr = readl(pdata->ioaddr + SRTC_LPCR);
if (enable)
lp_cr |= (SRTC_LPCR_ALP | SRTC_LPCR_WAE);
else
lp_cr &= ~(SRTC_LPCR_ALP | SRTC_LPCR_WAE);
writel(lp_cr, pdata->ioaddr + SRTC_LPCR);
}
static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
{
struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
int ret = mxc_rtc_lock(pdata);
if (ret)
return ret;
mxc_rtc_alarm_irq_enable_locked(pdata, enable);
return mxc_rtc_unlock(pdata);
}
/*
* This function sets the RTC alarm based on passed in alrm.
*
* @param alrm the alarm value to be set in the RTC
*
* @return 0 if successful; non-zero otherwise.
*/
static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
const time64_t time = rtc_tm_to_time64(&alrm->time);
struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
int ret = mxc_rtc_lock(pdata);
if (ret)
return ret;
if (time > U32_MAX) {
dev_err(dev, "Hopefully I am out of service by then :-(\n");
return -EINVAL;
}
writel((u32)time, pdata->ioaddr + SRTC_LPSAR);
/* clear alarm interrupt status bit */
writel(SRTC_LPSR_ALP, pdata->ioaddr + SRTC_LPSR);
mxc_rtc_sync_lp_locked(dev, pdata->ioaddr);
mxc_rtc_alarm_irq_enable_locked(pdata, alrm->enabled);
mxc_rtc_sync_lp_locked(dev, pdata->ioaddr);
mxc_rtc_unlock(pdata);
return ret;
}
static const struct rtc_class_ops mxc_rtc_ops = {
.read_time = mxc_rtc_read_time,
.set_time = mxc_rtc_set_time,
.read_alarm = mxc_rtc_read_alarm,
.set_alarm = mxc_rtc_set_alarm,
.alarm_irq_enable = mxc_rtc_alarm_irq_enable,
};
static int mxc_rtc_wait_for_flag(void __iomem *ioaddr, int flag)
{
unsigned int timeout = REG_READ_TIMEOUT;
while (!(readl(ioaddr) & flag)) {
if (!--timeout)
return -EBUSY;
}
return 0;
}
static int mxc_rtc_probe(struct platform_device *pdev)
{
struct mxc_rtc_data *pdata;
struct resource *res;
void __iomem *ioaddr;
int ret = 0;
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(pdata->ioaddr))
return PTR_ERR(pdata->ioaddr);
ioaddr = pdata->ioaddr;
pdata->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(pdata->clk)) {
dev_err(&pdev->dev, "unable to get rtc clock!\n");
return PTR_ERR(pdata->clk);
}
spin_lock_init(&pdata->lock);
pdata->irq = platform_get_irq(pdev, 0);
if (pdata->irq < 0)
return pdata->irq;
device_init_wakeup(&pdev->dev, 1);
ret = clk_prepare_enable(pdata->clk);
if (ret)
return ret;
/* initialize glitch detect */
writel(SRTC_LPPDR_INIT, ioaddr + SRTC_LPPDR);
/* clear lp interrupt status */
writel(0xFFFFFFFF, ioaddr + SRTC_LPSR);
/* move out of init state */
writel((SRTC_LPCR_IE | SRTC_LPCR_NSA), ioaddr + SRTC_LPCR);
ret = mxc_rtc_wait_for_flag(ioaddr + SRTC_LPSR, SRTC_LPSR_IES);
if (ret) {
dev_err(&pdev->dev, "Timeout waiting for SRTC_LPSR_IES\n");
clk_disable_unprepare(pdata->clk);
return ret;
}
/* move out of non-valid state */
writel((SRTC_LPCR_IE | SRTC_LPCR_NVE | SRTC_LPCR_NSA |
SRTC_LPCR_EN_LP), ioaddr + SRTC_LPCR);
ret = mxc_rtc_wait_for_flag(ioaddr + SRTC_LPSR, SRTC_LPSR_NVES);
if (ret) {
dev_err(&pdev->dev, "Timeout waiting for SRTC_LPSR_NVES\n");
clk_disable_unprepare(pdata->clk);
return ret;
}
clk_disable(pdata->clk);
platform_set_drvdata(pdev, pdata);
ret =
devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt, 0,
pdev->name, &pdev->dev);
if (ret < 0) {
dev_err(&pdev->dev, "interrupt not available.\n");
clk_unprepare(pdata->clk);
return ret;
}
pdata->rtc =
devm_rtc_device_register(&pdev->dev, pdev->name, &mxc_rtc_ops,
THIS_MODULE);
if (IS_ERR(pdata->rtc)) {
clk_unprepare(pdata->clk);
return PTR_ERR(pdata->rtc);
}
return 0;
}
static int mxc_rtc_remove(struct platform_device *pdev)
{
struct mxc_rtc_data *pdata = platform_get_drvdata(pdev);
clk_disable_unprepare(pdata->clk);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int mxc_rtc_suspend(struct device *dev)
{
struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
enable_irq_wake(pdata->irq);
return 0;
}
static int mxc_rtc_resume(struct device *dev)
{
struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
disable_irq_wake(pdata->irq);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops, mxc_rtc_suspend, mxc_rtc_resume);
static const struct of_device_id mxc_ids[] = {
{ .compatible = "fsl,imx53-rtc", },
{}
};
static struct platform_driver mxc_rtc_driver = {
.driver = {
.name = "mxc_rtc_v2",
.of_match_table = mxc_ids,
.pm = &mxc_rtc_pm_ops,
},
.probe = mxc_rtc_probe,
.remove = mxc_rtc_remove,
};
module_platform_driver(mxc_rtc_driver);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("Real Time Clock (RTC) Driver for i.MX53");
MODULE_LICENSE("GPL");
|