1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* An rtc driver for the Dallas DS1511
*
* Copyright (C) 2006 Atsushi Nemoto <anemo@mba.ocn.ne.jp>
* Copyright (C) 2007 Andrew Sharp <andy.sharp@lsi.com>
*
* Real time clock driver for the Dallas 1511 chip, which also
* contains a watchdog timer. There is a tiny amount of code that
* platform code could use to mess with the watchdog device a little
* bit, but not a full watchdog driver.
*/
#include <linux/bcd.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/gfp.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/rtc.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/module.h>
#define DS1511_SEC 0x0
#define DS1511_MIN 0x1
#define DS1511_HOUR 0x2
#define DS1511_DOW 0x3
#define DS1511_DOM 0x4
#define DS1511_MONTH 0x5
#define DS1511_YEAR 0x6
#define DS1511_CENTURY 0x7
#define DS1511_AM1_SEC 0x8
#define DS1511_AM2_MIN 0x9
#define DS1511_AM3_HOUR 0xa
#define DS1511_AM4_DATE 0xb
#define DS1511_WD_MSEC 0xc
#define DS1511_WD_SEC 0xd
#define DS1511_CONTROL_A 0xe
#define DS1511_CONTROL_B 0xf
#define DS1511_RAMADDR_LSB 0x10
#define DS1511_RAMDATA 0x13
#define DS1511_BLF1 0x80
#define DS1511_BLF2 0x40
#define DS1511_PRS 0x20
#define DS1511_PAB 0x10
#define DS1511_TDF 0x08
#define DS1511_KSF 0x04
#define DS1511_WDF 0x02
#define DS1511_IRQF 0x01
#define DS1511_TE 0x80
#define DS1511_CS 0x40
#define DS1511_BME 0x20
#define DS1511_TPE 0x10
#define DS1511_TIE 0x08
#define DS1511_KIE 0x04
#define DS1511_WDE 0x02
#define DS1511_WDS 0x01
#define DS1511_RAM_MAX 0x100
struct rtc_plat_data {
struct rtc_device *rtc;
void __iomem *ioaddr; /* virtual base address */
int irq;
unsigned int irqen;
int alrm_sec;
int alrm_min;
int alrm_hour;
int alrm_mday;
spinlock_t lock;
};
static DEFINE_SPINLOCK(ds1511_lock);
static __iomem char *ds1511_base;
static u32 reg_spacing = 1;
static noinline void rtc_write(uint8_t val, uint32_t reg)
{
writeb(val, ds1511_base + (reg * reg_spacing));
}
static noinline uint8_t rtc_read(uint32_t reg)
{
return readb(ds1511_base + (reg * reg_spacing));
}
static inline void rtc_disable_update(void)
{
rtc_write((rtc_read(DS1511_CONTROL_B) & ~DS1511_TE), DS1511_CONTROL_B);
}
static void rtc_enable_update(void)
{
rtc_write((rtc_read(DS1511_CONTROL_B) | DS1511_TE), DS1511_CONTROL_B);
}
static int ds1511_rtc_set_time(struct device *dev, struct rtc_time *rtc_tm)
{
u8 mon, day, dow, hrs, min, sec, yrs, cen;
unsigned long flags;
yrs = rtc_tm->tm_year % 100;
cen = 19 + rtc_tm->tm_year / 100;
mon = rtc_tm->tm_mon + 1; /* tm_mon starts at zero */
day = rtc_tm->tm_mday;
dow = rtc_tm->tm_wday & 0x7; /* automatic BCD */
hrs = rtc_tm->tm_hour;
min = rtc_tm->tm_min;
sec = rtc_tm->tm_sec;
/*
* each register is a different number of valid bits
*/
sec = bin2bcd(sec) & 0x7f;
min = bin2bcd(min) & 0x7f;
hrs = bin2bcd(hrs) & 0x3f;
day = bin2bcd(day) & 0x3f;
mon = bin2bcd(mon) & 0x1f;
yrs = bin2bcd(yrs) & 0xff;
cen = bin2bcd(cen) & 0xff;
spin_lock_irqsave(&ds1511_lock, flags);
rtc_disable_update();
rtc_write(cen, DS1511_CENTURY);
rtc_write(yrs, DS1511_YEAR);
rtc_write((rtc_read(DS1511_MONTH) & 0xe0) | mon, DS1511_MONTH);
rtc_write(day, DS1511_DOM);
rtc_write(hrs, DS1511_HOUR);
rtc_write(min, DS1511_MIN);
rtc_write(sec, DS1511_SEC);
rtc_write(dow, DS1511_DOW);
rtc_enable_update();
spin_unlock_irqrestore(&ds1511_lock, flags);
return 0;
}
static int ds1511_rtc_read_time(struct device *dev, struct rtc_time *rtc_tm)
{
unsigned int century;
unsigned long flags;
spin_lock_irqsave(&ds1511_lock, flags);
rtc_disable_update();
rtc_tm->tm_sec = rtc_read(DS1511_SEC) & 0x7f;
rtc_tm->tm_min = rtc_read(DS1511_MIN) & 0x7f;
rtc_tm->tm_hour = rtc_read(DS1511_HOUR) & 0x3f;
rtc_tm->tm_mday = rtc_read(DS1511_DOM) & 0x3f;
rtc_tm->tm_wday = rtc_read(DS1511_DOW) & 0x7;
rtc_tm->tm_mon = rtc_read(DS1511_MONTH) & 0x1f;
rtc_tm->tm_year = rtc_read(DS1511_YEAR) & 0x7f;
century = rtc_read(DS1511_CENTURY);
rtc_enable_update();
spin_unlock_irqrestore(&ds1511_lock, flags);
rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
century = bcd2bin(century) * 100;
/*
* Account for differences between how the RTC uses the values
* and how they are defined in a struct rtc_time;
*/
century += rtc_tm->tm_year;
rtc_tm->tm_year = century - 1900;
rtc_tm->tm_mon--;
return 0;
}
/*
* write the alarm register settings
*
* we only have the use to interrupt every second, otherwise
* known as the update interrupt, or the interrupt if the whole
* date/hours/mins/secs matches. the ds1511 has many more
* permutations, but the kernel doesn't.
*/
static void ds1511_rtc_update_alarm(struct rtc_plat_data *pdata)
{
unsigned long flags;
spin_lock_irqsave(&pdata->lock, flags);
rtc_write(pdata->alrm_mday < 0 ? 0x80 : bin2bcd(pdata->alrm_mday) & 0x3f,
DS1511_AM4_DATE);
rtc_write(pdata->alrm_hour < 0 ? 0x80 : bin2bcd(pdata->alrm_hour) & 0x3f,
DS1511_AM3_HOUR);
rtc_write(pdata->alrm_min < 0 ? 0x80 : bin2bcd(pdata->alrm_min) & 0x7f,
DS1511_AM2_MIN);
rtc_write(pdata->alrm_sec < 0 ? 0x80 : bin2bcd(pdata->alrm_sec) & 0x7f,
DS1511_AM1_SEC);
rtc_write(rtc_read(DS1511_CONTROL_B) | (pdata->irqen ? DS1511_TIE : 0), DS1511_CONTROL_B);
rtc_read(DS1511_CONTROL_A); /* clear interrupts */
spin_unlock_irqrestore(&pdata->lock, flags);
}
static int ds1511_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct rtc_plat_data *pdata = dev_get_drvdata(dev);
if (pdata->irq <= 0)
return -EINVAL;
pdata->alrm_mday = alrm->time.tm_mday;
pdata->alrm_hour = alrm->time.tm_hour;
pdata->alrm_min = alrm->time.tm_min;
pdata->alrm_sec = alrm->time.tm_sec;
if (alrm->enabled)
pdata->irqen |= RTC_AF;
ds1511_rtc_update_alarm(pdata);
return 0;
}
static int ds1511_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct rtc_plat_data *pdata = dev_get_drvdata(dev);
if (pdata->irq <= 0)
return -EINVAL;
alrm->time.tm_mday = pdata->alrm_mday < 0 ? 0 : pdata->alrm_mday;
alrm->time.tm_hour = pdata->alrm_hour < 0 ? 0 : pdata->alrm_hour;
alrm->time.tm_min = pdata->alrm_min < 0 ? 0 : pdata->alrm_min;
alrm->time.tm_sec = pdata->alrm_sec < 0 ? 0 : pdata->alrm_sec;
alrm->enabled = (pdata->irqen & RTC_AF) ? 1 : 0;
return 0;
}
static irqreturn_t ds1511_interrupt(int irq, void *dev_id)
{
struct platform_device *pdev = dev_id;
struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
unsigned long events = 0;
spin_lock(&pdata->lock);
/*
* read and clear interrupt
*/
if (rtc_read(DS1511_CONTROL_A) & DS1511_IRQF) {
events = RTC_IRQF | RTC_AF;
rtc_update_irq(pdata->rtc, 1, events);
}
spin_unlock(&pdata->lock);
return events ? IRQ_HANDLED : IRQ_NONE;
}
static int ds1511_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
struct rtc_plat_data *pdata = dev_get_drvdata(dev);
if (pdata->irq <= 0)
return -EINVAL;
if (enabled)
pdata->irqen |= RTC_AF;
else
pdata->irqen &= ~RTC_AF;
ds1511_rtc_update_alarm(pdata);
return 0;
}
static const struct rtc_class_ops ds1511_rtc_ops = {
.read_time = ds1511_rtc_read_time,
.set_time = ds1511_rtc_set_time,
.read_alarm = ds1511_rtc_read_alarm,
.set_alarm = ds1511_rtc_set_alarm,
.alarm_irq_enable = ds1511_rtc_alarm_irq_enable,
};
static int ds1511_nvram_read(void *priv, unsigned int pos, void *buf,
size_t size)
{
int i;
rtc_write(pos, DS1511_RAMADDR_LSB);
for (i = 0; i < size; i++)
*(char *)buf++ = rtc_read(DS1511_RAMDATA);
return 0;
}
static int ds1511_nvram_write(void *priv, unsigned int pos, void *buf,
size_t size)
{
int i;
rtc_write(pos, DS1511_RAMADDR_LSB);
for (i = 0; i < size; i++)
rtc_write(*(char *)buf++, DS1511_RAMDATA);
return 0;
}
static int ds1511_rtc_probe(struct platform_device *pdev)
{
struct rtc_plat_data *pdata;
int ret = 0;
struct nvmem_config ds1511_nvmem_cfg = {
.name = "ds1511_nvram",
.word_size = 1,
.stride = 1,
.size = DS1511_RAM_MAX,
.reg_read = ds1511_nvram_read,
.reg_write = ds1511_nvram_write,
.priv = &pdev->dev,
};
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
ds1511_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ds1511_base))
return PTR_ERR(ds1511_base);
pdata->ioaddr = ds1511_base;
pdata->irq = platform_get_irq(pdev, 0);
/*
* turn on the clock and the crystal, etc.
*/
rtc_write(DS1511_BME, DS1511_CONTROL_B);
rtc_write(0, DS1511_CONTROL_A);
/*
* clear the wdog counter
*/
rtc_write(0, DS1511_WD_MSEC);
rtc_write(0, DS1511_WD_SEC);
/*
* start the clock
*/
rtc_enable_update();
/*
* check for a dying bat-tree
*/
if (rtc_read(DS1511_CONTROL_A) & DS1511_BLF1)
dev_warn(&pdev->dev, "voltage-low detected.\n");
spin_lock_init(&pdata->lock);
platform_set_drvdata(pdev, pdata);
pdata->rtc = devm_rtc_allocate_device(&pdev->dev);
if (IS_ERR(pdata->rtc))
return PTR_ERR(pdata->rtc);
pdata->rtc->ops = &ds1511_rtc_ops;
ret = devm_rtc_register_device(pdata->rtc);
if (ret)
return ret;
devm_rtc_nvmem_register(pdata->rtc, &ds1511_nvmem_cfg);
/*
* if the platform has an interrupt in mind for this device,
* then by all means, set it
*/
if (pdata->irq > 0) {
rtc_read(DS1511_CONTROL_A);
if (devm_request_irq(&pdev->dev, pdata->irq, ds1511_interrupt,
IRQF_SHARED, pdev->name, pdev) < 0) {
dev_warn(&pdev->dev, "interrupt not available.\n");
pdata->irq = 0;
}
}
return 0;
}
/* work with hotplug and coldplug */
MODULE_ALIAS("platform:ds1511");
static struct platform_driver ds1511_rtc_driver = {
.probe = ds1511_rtc_probe,
.driver = {
.name = "ds1511",
},
};
module_platform_driver(ds1511_rtc_driver);
MODULE_AUTHOR("Andrew Sharp <andy.sharp@lsi.com>");
MODULE_DESCRIPTION("Dallas DS1511 RTC driver");
MODULE_LICENSE("GPL");
|