summaryrefslogtreecommitdiff
path: root/drivers/remoteproc/pru_rproc.c
blob: b13ff4283232b39f332b6d51b2da05cef6ed386b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
// SPDX-License-Identifier: GPL-2.0-only
/*
 * PRU-ICSS remoteproc driver for various TI SoCs
 *
 * Copyright (C) 2014-2020 Texas Instruments Incorporated - https://www.ti.com/
 *
 * Author(s):
 *	Suman Anna <s-anna@ti.com>
 *	Andrew F. Davis <afd@ti.com>
 *	Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> for Texas Instruments
 */

#include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/irqdomain.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of_irq.h>
#include <linux/pruss_driver.h>
#include <linux/remoteproc.h>

#include "remoteproc_internal.h"
#include "remoteproc_elf_helpers.h"
#include "pru_rproc.h"

/* PRU_ICSS_PRU_CTRL registers */
#define PRU_CTRL_CTRL		0x0000
#define PRU_CTRL_STS		0x0004
#define PRU_CTRL_WAKEUP_EN	0x0008
#define PRU_CTRL_CYCLE		0x000C
#define PRU_CTRL_STALL		0x0010
#define PRU_CTRL_CTBIR0		0x0020
#define PRU_CTRL_CTBIR1		0x0024
#define PRU_CTRL_CTPPR0		0x0028
#define PRU_CTRL_CTPPR1		0x002C

/* CTRL register bit-fields */
#define CTRL_CTRL_SOFT_RST_N	BIT(0)
#define CTRL_CTRL_EN		BIT(1)
#define CTRL_CTRL_SLEEPING	BIT(2)
#define CTRL_CTRL_CTR_EN	BIT(3)
#define CTRL_CTRL_SINGLE_STEP	BIT(8)
#define CTRL_CTRL_RUNSTATE	BIT(15)

/* PRU_ICSS_PRU_DEBUG registers */
#define PRU_DEBUG_GPREG(x)	(0x0000 + (x) * 4)
#define PRU_DEBUG_CT_REG(x)	(0x0080 + (x) * 4)

/* PRU/RTU/Tx_PRU Core IRAM address masks */
#define PRU_IRAM_ADDR_MASK	0x3ffff
#define PRU0_IRAM_ADDR_MASK	0x34000
#define PRU1_IRAM_ADDR_MASK	0x38000
#define RTU0_IRAM_ADDR_MASK	0x4000
#define RTU1_IRAM_ADDR_MASK	0x6000
#define TX_PRU0_IRAM_ADDR_MASK	0xa000
#define TX_PRU1_IRAM_ADDR_MASK	0xc000

/* PRU device addresses for various type of PRU RAMs */
#define PRU_IRAM_DA	0	/* Instruction RAM */
#define PRU_PDRAM_DA	0	/* Primary Data RAM */
#define PRU_SDRAM_DA	0x2000	/* Secondary Data RAM */
#define PRU_SHRDRAM_DA	0x10000 /* Shared Data RAM */

#define MAX_PRU_SYS_EVENTS 160

/**
 * enum pru_iomem - PRU core memory/register range identifiers
 *
 * @PRU_IOMEM_IRAM: PRU Instruction RAM range
 * @PRU_IOMEM_CTRL: PRU Control register range
 * @PRU_IOMEM_DEBUG: PRU Debug register range
 * @PRU_IOMEM_MAX: just keep this one at the end
 */
enum pru_iomem {
	PRU_IOMEM_IRAM = 0,
	PRU_IOMEM_CTRL,
	PRU_IOMEM_DEBUG,
	PRU_IOMEM_MAX,
};

/**
 * enum pru_type - PRU core type identifier
 *
 * @PRU_TYPE_PRU: Programmable Real-time Unit
 * @PRU_TYPE_RTU: Auxiliary Programmable Real-Time Unit
 * @PRU_TYPE_TX_PRU: Transmit Programmable Real-Time Unit
 * @PRU_TYPE_MAX: just keep this one at the end
 */
enum pru_type {
	PRU_TYPE_PRU = 0,
	PRU_TYPE_RTU,
	PRU_TYPE_TX_PRU,
	PRU_TYPE_MAX,
};

/**
 * struct pru_private_data - device data for a PRU core
 * @type: type of the PRU core (PRU, RTU, Tx_PRU)
 * @is_k3: flag used to identify the need for special load handling
 */
struct pru_private_data {
	enum pru_type type;
	unsigned int is_k3 : 1;
};

/**
 * struct pru_rproc - PRU remoteproc structure
 * @id: id of the PRU core within the PRUSS
 * @dev: PRU core device pointer
 * @pruss: back-reference to parent PRUSS structure
 * @rproc: remoteproc pointer for this PRU core
 * @data: PRU core specific data
 * @mem_regions: data for each of the PRU memory regions
 * @fw_name: name of firmware image used during loading
 * @mapped_irq: virtual interrupt numbers of created fw specific mapping
 * @pru_interrupt_map: pointer to interrupt mapping description (firmware)
 * @pru_interrupt_map_sz: pru_interrupt_map size
 * @dbg_single_step: debug state variable to set PRU into single step mode
 * @dbg_continuous: debug state variable to restore PRU execution mode
 * @evt_count: number of mapped events
 */
struct pru_rproc {
	int id;
	struct device *dev;
	struct pruss *pruss;
	struct rproc *rproc;
	const struct pru_private_data *data;
	struct pruss_mem_region mem_regions[PRU_IOMEM_MAX];
	const char *fw_name;
	unsigned int *mapped_irq;
	struct pru_irq_rsc *pru_interrupt_map;
	size_t pru_interrupt_map_sz;
	u32 dbg_single_step;
	u32 dbg_continuous;
	u8 evt_count;
};

static inline u32 pru_control_read_reg(struct pru_rproc *pru, unsigned int reg)
{
	return readl_relaxed(pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
}

static inline
void pru_control_write_reg(struct pru_rproc *pru, unsigned int reg, u32 val)
{
	writel_relaxed(val, pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
}

static inline u32 pru_debug_read_reg(struct pru_rproc *pru, unsigned int reg)
{
	return readl_relaxed(pru->mem_regions[PRU_IOMEM_DEBUG].va + reg);
}

static int regs_show(struct seq_file *s, void *data)
{
	struct rproc *rproc = s->private;
	struct pru_rproc *pru = rproc->priv;
	int i, nregs = 32;
	u32 pru_sts;
	int pru_is_running;

	seq_puts(s, "============== Control Registers ==============\n");
	seq_printf(s, "CTRL      := 0x%08x\n",
		   pru_control_read_reg(pru, PRU_CTRL_CTRL));
	pru_sts = pru_control_read_reg(pru, PRU_CTRL_STS);
	seq_printf(s, "STS (PC)  := 0x%08x (0x%08x)\n", pru_sts, pru_sts << 2);
	seq_printf(s, "WAKEUP_EN := 0x%08x\n",
		   pru_control_read_reg(pru, PRU_CTRL_WAKEUP_EN));
	seq_printf(s, "CYCLE     := 0x%08x\n",
		   pru_control_read_reg(pru, PRU_CTRL_CYCLE));
	seq_printf(s, "STALL     := 0x%08x\n",
		   pru_control_read_reg(pru, PRU_CTRL_STALL));
	seq_printf(s, "CTBIR0    := 0x%08x\n",
		   pru_control_read_reg(pru, PRU_CTRL_CTBIR0));
	seq_printf(s, "CTBIR1    := 0x%08x\n",
		   pru_control_read_reg(pru, PRU_CTRL_CTBIR1));
	seq_printf(s, "CTPPR0    := 0x%08x\n",
		   pru_control_read_reg(pru, PRU_CTRL_CTPPR0));
	seq_printf(s, "CTPPR1    := 0x%08x\n",
		   pru_control_read_reg(pru, PRU_CTRL_CTPPR1));

	seq_puts(s, "=============== Debug Registers ===============\n");
	pru_is_running = pru_control_read_reg(pru, PRU_CTRL_CTRL) &
				CTRL_CTRL_RUNSTATE;
	if (pru_is_running) {
		seq_puts(s, "PRU is executing, cannot print/access debug registers.\n");
		return 0;
	}

	for (i = 0; i < nregs; i++) {
		seq_printf(s, "GPREG%-2d := 0x%08x\tCT_REG%-2d := 0x%08x\n",
			   i, pru_debug_read_reg(pru, PRU_DEBUG_GPREG(i)),
			   i, pru_debug_read_reg(pru, PRU_DEBUG_CT_REG(i)));
	}

	return 0;
}
DEFINE_SHOW_ATTRIBUTE(regs);

/*
 * Control PRU single-step mode
 *
 * This is a debug helper function used for controlling the single-step
 * mode of the PRU. The PRU Debug registers are not accessible when the
 * PRU is in RUNNING state.
 *
 * Writing a non-zero value sets the PRU into single-step mode irrespective
 * of its previous state. The PRU mode is saved only on the first set into
 * a single-step mode. Writing a zero value will restore the PRU into its
 * original mode.
 */
static int pru_rproc_debug_ss_set(void *data, u64 val)
{
	struct rproc *rproc = data;
	struct pru_rproc *pru = rproc->priv;
	u32 reg_val;

	val = val ? 1 : 0;
	if (!val && !pru->dbg_single_step)
		return 0;

	reg_val = pru_control_read_reg(pru, PRU_CTRL_CTRL);

	if (val && !pru->dbg_single_step)
		pru->dbg_continuous = reg_val;

	if (val)
		reg_val |= CTRL_CTRL_SINGLE_STEP | CTRL_CTRL_EN;
	else
		reg_val = pru->dbg_continuous;

	pru->dbg_single_step = val;
	pru_control_write_reg(pru, PRU_CTRL_CTRL, reg_val);

	return 0;
}

static int pru_rproc_debug_ss_get(void *data, u64 *val)
{
	struct rproc *rproc = data;
	struct pru_rproc *pru = rproc->priv;

	*val = pru->dbg_single_step;

	return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(pru_rproc_debug_ss_fops, pru_rproc_debug_ss_get,
			 pru_rproc_debug_ss_set, "%llu\n");

/*
 * Create PRU-specific debugfs entries
 *
 * The entries are created only if the parent remoteproc debugfs directory
 * exists, and will be cleaned up by the remoteproc core.
 */
static void pru_rproc_create_debug_entries(struct rproc *rproc)
{
	if (!rproc->dbg_dir)
		return;

	debugfs_create_file("regs", 0400, rproc->dbg_dir,
			    rproc, &regs_fops);
	debugfs_create_file("single_step", 0600, rproc->dbg_dir,
			    rproc, &pru_rproc_debug_ss_fops);
}

static void pru_dispose_irq_mapping(struct pru_rproc *pru)
{
	if (!pru->mapped_irq)
		return;

	while (pru->evt_count) {
		pru->evt_count--;
		if (pru->mapped_irq[pru->evt_count] > 0)
			irq_dispose_mapping(pru->mapped_irq[pru->evt_count]);
	}

	kfree(pru->mapped_irq);
	pru->mapped_irq = NULL;
}

/*
 * Parse the custom PRU interrupt map resource and configure the INTC
 * appropriately.
 */
static int pru_handle_intrmap(struct rproc *rproc)
{
	struct device *dev = rproc->dev.parent;
	struct pru_rproc *pru = rproc->priv;
	struct pru_irq_rsc *rsc = pru->pru_interrupt_map;
	struct irq_fwspec fwspec;
	struct device_node *parent, *irq_parent;
	int i, ret = 0;

	/* not having pru_interrupt_map is not an error */
	if (!rsc)
		return 0;

	/* currently supporting only type 0 */
	if (rsc->type != 0) {
		dev_err(dev, "unsupported rsc type: %d\n", rsc->type);
		return -EINVAL;
	}

	if (rsc->num_evts > MAX_PRU_SYS_EVENTS)
		return -EINVAL;

	if (sizeof(*rsc) + rsc->num_evts * sizeof(struct pruss_int_map) !=
	    pru->pru_interrupt_map_sz)
		return -EINVAL;

	pru->evt_count = rsc->num_evts;
	pru->mapped_irq = kcalloc(pru->evt_count, sizeof(unsigned int),
				  GFP_KERNEL);
	if (!pru->mapped_irq) {
		pru->evt_count = 0;
		return -ENOMEM;
	}

	/*
	 * parse and fill in system event to interrupt channel and
	 * channel-to-host mapping. The interrupt controller to be used
	 * for these mappings for a given PRU remoteproc is always its
	 * corresponding sibling PRUSS INTC node.
	 */
	parent = of_get_parent(dev_of_node(pru->dev));
	if (!parent) {
		kfree(pru->mapped_irq);
		pru->mapped_irq = NULL;
		pru->evt_count = 0;
		return -ENODEV;
	}

	irq_parent = of_get_child_by_name(parent, "interrupt-controller");
	of_node_put(parent);
	if (!irq_parent) {
		kfree(pru->mapped_irq);
		pru->mapped_irq = NULL;
		pru->evt_count = 0;
		return -ENODEV;
	}

	fwspec.fwnode = of_node_to_fwnode(irq_parent);
	fwspec.param_count = 3;
	for (i = 0; i < pru->evt_count; i++) {
		fwspec.param[0] = rsc->pru_intc_map[i].event;
		fwspec.param[1] = rsc->pru_intc_map[i].chnl;
		fwspec.param[2] = rsc->pru_intc_map[i].host;

		dev_dbg(dev, "mapping%d: event %d, chnl %d, host %d\n",
			i, fwspec.param[0], fwspec.param[1], fwspec.param[2]);

		pru->mapped_irq[i] = irq_create_fwspec_mapping(&fwspec);
		if (!pru->mapped_irq[i]) {
			dev_err(dev, "failed to get virq for fw mapping %d: event %d chnl %d host %d\n",
				i, fwspec.param[0], fwspec.param[1],
				fwspec.param[2]);
			ret = -EINVAL;
			goto map_fail;
		}
	}
	of_node_put(irq_parent);

	return ret;

map_fail:
	pru_dispose_irq_mapping(pru);
	of_node_put(irq_parent);

	return ret;
}

static int pru_rproc_start(struct rproc *rproc)
{
	struct device *dev = &rproc->dev;
	struct pru_rproc *pru = rproc->priv;
	const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
	u32 val;
	int ret;

	dev_dbg(dev, "starting %s%d: entry-point = 0x%llx\n",
		names[pru->data->type], pru->id, (rproc->bootaddr >> 2));

	ret = pru_handle_intrmap(rproc);
	/*
	 * reset references to pru interrupt map - they will stop being valid
	 * after rproc_start returns
	 */
	pru->pru_interrupt_map = NULL;
	pru->pru_interrupt_map_sz = 0;
	if (ret)
		return ret;

	val = CTRL_CTRL_EN | ((rproc->bootaddr >> 2) << 16);
	pru_control_write_reg(pru, PRU_CTRL_CTRL, val);

	return 0;
}

static int pru_rproc_stop(struct rproc *rproc)
{
	struct device *dev = &rproc->dev;
	struct pru_rproc *pru = rproc->priv;
	const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
	u32 val;

	dev_dbg(dev, "stopping %s%d\n", names[pru->data->type], pru->id);

	val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
	val &= ~CTRL_CTRL_EN;
	pru_control_write_reg(pru, PRU_CTRL_CTRL, val);

	/* dispose irq mapping - new firmware can provide new mapping */
	pru_dispose_irq_mapping(pru);

	return 0;
}

/*
 * Convert PRU device address (data spaces only) to kernel virtual address.
 *
 * Each PRU has access to all data memories within the PRUSS, accessible at
 * different ranges. So, look through both its primary and secondary Data
 * RAMs as well as any shared Data RAM to convert a PRU device address to
 * kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data
 * RAM1 is primary Data RAM for PRU1.
 */
static void *pru_d_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
{
	struct pruss_mem_region dram0, dram1, shrd_ram;
	struct pruss *pruss = pru->pruss;
	u32 offset;
	void *va = NULL;

	if (len == 0)
		return NULL;

	dram0 = pruss->mem_regions[PRUSS_MEM_DRAM0];
	dram1 = pruss->mem_regions[PRUSS_MEM_DRAM1];
	/* PRU1 has its local RAM addresses reversed */
	if (pru->id == 1)
		swap(dram0, dram1);
	shrd_ram = pruss->mem_regions[PRUSS_MEM_SHRD_RAM2];

	if (da >= PRU_PDRAM_DA && da + len <= PRU_PDRAM_DA + dram0.size) {
		offset = da - PRU_PDRAM_DA;
		va = (__force void *)(dram0.va + offset);
	} else if (da >= PRU_SDRAM_DA &&
		   da + len <= PRU_SDRAM_DA + dram1.size) {
		offset = da - PRU_SDRAM_DA;
		va = (__force void *)(dram1.va + offset);
	} else if (da >= PRU_SHRDRAM_DA &&
		   da + len <= PRU_SHRDRAM_DA + shrd_ram.size) {
		offset = da - PRU_SHRDRAM_DA;
		va = (__force void *)(shrd_ram.va + offset);
	}

	return va;
}

/*
 * Convert PRU device address (instruction space) to kernel virtual address.
 *
 * A PRU does not have an unified address space. Each PRU has its very own
 * private Instruction RAM, and its device address is identical to that of
 * its primary Data RAM device address.
 */
static void *pru_i_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
{
	u32 offset;
	void *va = NULL;

	if (len == 0)
		return NULL;

	if (da >= PRU_IRAM_DA &&
	    da + len <= PRU_IRAM_DA + pru->mem_regions[PRU_IOMEM_IRAM].size) {
		offset = da - PRU_IRAM_DA;
		va = (__force void *)(pru->mem_regions[PRU_IOMEM_IRAM].va +
				      offset);
	}

	return va;
}

/*
 * Provide address translations for only PRU Data RAMs through the remoteproc
 * core for any PRU client drivers. The PRU Instruction RAM access is restricted
 * only to the PRU loader code.
 */
static void *pru_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
{
	struct pru_rproc *pru = rproc->priv;

	return pru_d_da_to_va(pru, da, len);
}

/* PRU-specific address translator used by PRU loader. */
static void *pru_da_to_va(struct rproc *rproc, u64 da, size_t len, bool is_iram)
{
	struct pru_rproc *pru = rproc->priv;
	void *va;

	if (is_iram)
		va = pru_i_da_to_va(pru, da, len);
	else
		va = pru_d_da_to_va(pru, da, len);

	return va;
}

static struct rproc_ops pru_rproc_ops = {
	.start		= pru_rproc_start,
	.stop		= pru_rproc_stop,
	.da_to_va	= pru_rproc_da_to_va,
};

/*
 * Custom memory copy implementation for ICSSG PRU/RTU/Tx_PRU Cores
 *
 * The ICSSG PRU/RTU/Tx_PRU cores have a memory copying issue with IRAM
 * memories, that is not seen on previous generation SoCs. The data is reflected
 * properly in the IRAM memories only for integer (4-byte) copies. Any unaligned
 * copies result in all the other pre-existing bytes zeroed out within that
 * 4-byte boundary, thereby resulting in wrong text/code in the IRAMs. Also, the
 * IRAM memory port interface does not allow any 8-byte copies (as commonly used
 * by ARM64 memcpy implementation) and throws an exception. The DRAM memory
 * ports do not show this behavior.
 */
static int pru_rproc_memcpy(void *dest, const void *src, size_t count)
{
	const u32 *s = src;
	u32 *d = dest;
	size_t size = count / 4;
	u32 *tmp_src = NULL;

	/*
	 * TODO: relax limitation of 4-byte aligned dest addresses and copy
	 * sizes
	 */
	if ((long)dest % 4 || count % 4)
		return -EINVAL;

	/* src offsets in ELF firmware image can be non-aligned */
	if ((long)src % 4) {
		tmp_src = kmemdup(src, count, GFP_KERNEL);
		if (!tmp_src)
			return -ENOMEM;
		s = tmp_src;
	}

	while (size--)
		*d++ = *s++;

	kfree(tmp_src);

	return 0;
}

static int
pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw)
{
	struct pru_rproc *pru = rproc->priv;
	struct device *dev = &rproc->dev;
	struct elf32_hdr *ehdr;
	struct elf32_phdr *phdr;
	int i, ret = 0;
	const u8 *elf_data = fw->data;

	ehdr = (struct elf32_hdr *)elf_data;
	phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);

	/* go through the available ELF segments */
	for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
		u32 da = phdr->p_paddr;
		u32 memsz = phdr->p_memsz;
		u32 filesz = phdr->p_filesz;
		u32 offset = phdr->p_offset;
		bool is_iram;
		void *ptr;

		if (phdr->p_type != PT_LOAD || !filesz)
			continue;

		dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
			phdr->p_type, da, memsz, filesz);

		if (filesz > memsz) {
			dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
				filesz, memsz);
			ret = -EINVAL;
			break;
		}

		if (offset + filesz > fw->size) {
			dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n",
				offset + filesz, fw->size);
			ret = -EINVAL;
			break;
		}

		/* grab the kernel address for this device address */
		is_iram = phdr->p_flags & PF_X;
		ptr = pru_da_to_va(rproc, da, memsz, is_iram);
		if (!ptr) {
			dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
			ret = -EINVAL;
			break;
		}

		if (pru->data->is_k3 && is_iram) {
			ret = pru_rproc_memcpy(ptr, elf_data + phdr->p_offset,
					       filesz);
			if (ret) {
				dev_err(dev, "PRU memory copy failed for da 0x%x memsz 0x%x\n",
					da, memsz);
				break;
			}
		} else {
			memcpy(ptr, elf_data + phdr->p_offset, filesz);
		}

		/* skip the memzero logic performed by remoteproc ELF loader */
	}

	return ret;
}

static const void *
pru_rproc_find_interrupt_map(struct device *dev, const struct firmware *fw)
{
	struct elf32_shdr *shdr, *name_table_shdr;
	const char *name_table;
	const u8 *elf_data = fw->data;
	struct elf32_hdr *ehdr = (struct elf32_hdr *)elf_data;
	u16 shnum = ehdr->e_shnum;
	u16 shstrndx = ehdr->e_shstrndx;
	int i;

	/* first, get the section header */
	shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
	/* compute name table section header entry in shdr array */
	name_table_shdr = shdr + shstrndx;
	/* finally, compute the name table section address in elf */
	name_table = elf_data + name_table_shdr->sh_offset;

	for (i = 0; i < shnum; i++, shdr++) {
		u32 size = shdr->sh_size;
		u32 offset = shdr->sh_offset;
		u32 name = shdr->sh_name;

		if (strcmp(name_table + name, ".pru_irq_map"))
			continue;

		/* make sure we have the entire irq map */
		if (offset + size > fw->size || offset + size < size) {
			dev_err(dev, ".pru_irq_map section truncated\n");
			return ERR_PTR(-EINVAL);
		}

		/* make sure irq map has at least the header */
		if (sizeof(struct pru_irq_rsc) > size) {
			dev_err(dev, "header-less .pru_irq_map section\n");
			return ERR_PTR(-EINVAL);
		}

		return shdr;
	}

	dev_dbg(dev, "no .pru_irq_map section found for this fw\n");

	return NULL;
}

/*
 * Use a custom parse_fw callback function for dealing with PRU firmware
 * specific sections.
 *
 * The firmware blob can contain optional ELF sections: .resource_table section
 * and .pru_irq_map one. The second one contains the PRUSS interrupt mapping
 * description, which needs to be setup before powering on the PRU core. To
 * avoid RAM wastage this ELF section is not mapped to any ELF segment (by the
 * firmware linker) and therefore is not loaded to PRU memory.
 */
static int pru_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw)
{
	struct device *dev = &rproc->dev;
	struct pru_rproc *pru = rproc->priv;
	const u8 *elf_data = fw->data;
	const void *shdr;
	u8 class = fw_elf_get_class(fw);
	u64 sh_offset;
	int ret;

	/* load optional rsc table */
	ret = rproc_elf_load_rsc_table(rproc, fw);
	if (ret == -EINVAL)
		dev_dbg(&rproc->dev, "no resource table found for this fw\n");
	else if (ret)
		return ret;

	/* find .pru_interrupt_map section, not having it is not an error */
	shdr = pru_rproc_find_interrupt_map(dev, fw);
	if (IS_ERR(shdr))
		return PTR_ERR(shdr);

	if (!shdr)
		return 0;

	/* preserve pointer to PRU interrupt map together with it size */
	sh_offset = elf_shdr_get_sh_offset(class, shdr);
	pru->pru_interrupt_map = (struct pru_irq_rsc *)(elf_data + sh_offset);
	pru->pru_interrupt_map_sz = elf_shdr_get_sh_size(class, shdr);

	return 0;
}

/*
 * Compute PRU id based on the IRAM addresses. The PRU IRAMs are
 * always at a particular offset within the PRUSS address space.
 */
static int pru_rproc_set_id(struct pru_rproc *pru)
{
	int ret = 0;

	switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & PRU_IRAM_ADDR_MASK) {
	case TX_PRU0_IRAM_ADDR_MASK:
		fallthrough;
	case RTU0_IRAM_ADDR_MASK:
		fallthrough;
	case PRU0_IRAM_ADDR_MASK:
		pru->id = 0;
		break;
	case TX_PRU1_IRAM_ADDR_MASK:
		fallthrough;
	case RTU1_IRAM_ADDR_MASK:
		fallthrough;
	case PRU1_IRAM_ADDR_MASK:
		pru->id = 1;
		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

static int pru_rproc_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct device_node *np = dev->of_node;
	struct platform_device *ppdev = to_platform_device(dev->parent);
	struct pru_rproc *pru;
	const char *fw_name;
	struct rproc *rproc = NULL;
	struct resource *res;
	int i, ret;
	const struct pru_private_data *data;
	const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" };

	data = of_device_get_match_data(&pdev->dev);
	if (!data)
		return -ENODEV;

	ret = of_property_read_string(np, "firmware-name", &fw_name);
	if (ret) {
		dev_err(dev, "unable to retrieve firmware-name %d\n", ret);
		return ret;
	}

	rproc = devm_rproc_alloc(dev, pdev->name, &pru_rproc_ops, fw_name,
				 sizeof(*pru));
	if (!rproc) {
		dev_err(dev, "rproc_alloc failed\n");
		return -ENOMEM;
	}
	/* use a custom load function to deal with PRU-specific quirks */
	rproc->ops->load = pru_rproc_load_elf_segments;

	/* use a custom parse function to deal with PRU-specific resources */
	rproc->ops->parse_fw = pru_rproc_parse_fw;

	/* error recovery is not supported for PRUs */
	rproc->recovery_disabled = true;

	/*
	 * rproc_add will auto-boot the processor normally, but this is not
	 * desired with PRU client driven boot-flow methodology. A PRU
	 * application/client driver will boot the corresponding PRU
	 * remote-processor as part of its state machine either through the
	 * remoteproc sysfs interface or through the equivalent kernel API.
	 */
	rproc->auto_boot = false;

	pru = rproc->priv;
	pru->dev = dev;
	pru->data = data;
	pru->pruss = platform_get_drvdata(ppdev);
	pru->rproc = rproc;
	pru->fw_name = fw_name;

	for (i = 0; i < ARRAY_SIZE(mem_names); i++) {
		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
						   mem_names[i]);
		pru->mem_regions[i].va = devm_ioremap_resource(dev, res);
		if (IS_ERR(pru->mem_regions[i].va)) {
			dev_err(dev, "failed to parse and map memory resource %d %s\n",
				i, mem_names[i]);
			ret = PTR_ERR(pru->mem_regions[i].va);
			return ret;
		}
		pru->mem_regions[i].pa = res->start;
		pru->mem_regions[i].size = resource_size(res);

		dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n",
			mem_names[i], &pru->mem_regions[i].pa,
			pru->mem_regions[i].size, pru->mem_regions[i].va);
	}

	ret = pru_rproc_set_id(pru);
	if (ret < 0)
		return ret;

	platform_set_drvdata(pdev, rproc);

	ret = devm_rproc_add(dev, pru->rproc);
	if (ret) {
		dev_err(dev, "rproc_add failed: %d\n", ret);
		return ret;
	}

	pru_rproc_create_debug_entries(rproc);

	dev_dbg(dev, "PRU rproc node %pOF probed successfully\n", np);

	return 0;
}

static int pru_rproc_remove(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct rproc *rproc = platform_get_drvdata(pdev);

	dev_dbg(dev, "%s: removing rproc %s\n", __func__, rproc->name);

	return 0;
}

static const struct pru_private_data pru_data = {
	.type = PRU_TYPE_PRU,
};

static const struct pru_private_data k3_pru_data = {
	.type = PRU_TYPE_PRU,
	.is_k3 = 1,
};

static const struct pru_private_data k3_rtu_data = {
	.type = PRU_TYPE_RTU,
	.is_k3 = 1,
};

static const struct pru_private_data k3_tx_pru_data = {
	.type = PRU_TYPE_TX_PRU,
	.is_k3 = 1,
};

static const struct of_device_id pru_rproc_match[] = {
	{ .compatible = "ti,am3356-pru",	.data = &pru_data },
	{ .compatible = "ti,am4376-pru",	.data = &pru_data },
	{ .compatible = "ti,am5728-pru",	.data = &pru_data },
	{ .compatible = "ti,k2g-pru",		.data = &pru_data },
	{ .compatible = "ti,am654-pru",		.data = &k3_pru_data },
	{ .compatible = "ti,am654-rtu",		.data = &k3_rtu_data },
	{ .compatible = "ti,am654-tx-pru",	.data = &k3_tx_pru_data },
	{ .compatible = "ti,j721e-pru",		.data = &k3_pru_data },
	{ .compatible = "ti,j721e-rtu",		.data = &k3_rtu_data },
	{ .compatible = "ti,j721e-tx-pru",	.data = &k3_tx_pru_data },
	{},
};
MODULE_DEVICE_TABLE(of, pru_rproc_match);

static struct platform_driver pru_rproc_driver = {
	.driver = {
		.name   = "pru-rproc",
		.of_match_table = pru_rproc_match,
		.suppress_bind_attrs = true,
	},
	.probe  = pru_rproc_probe,
	.remove = pru_rproc_remove,
};
module_platform_driver(pru_rproc_driver);

MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
MODULE_AUTHOR("Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>");
MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver");
MODULE_LICENSE("GPL v2");