summaryrefslogtreecommitdiff
path: root/drivers/pci/cadence/pcie-cadence-ep.c
blob: 2905e098678c2de2bb47e41a2d962e71b4780c13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2017 Cadence
// Cadence PCIe endpoint controller driver.
// Author: Cyrille Pitchen <cyrille.pitchen@free-electrons.com>

#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/pci-epc.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/sizes.h>

#include "pcie-cadence.h"

#define CDNS_PCIE_EP_MIN_APERTURE		128	/* 128 bytes */
#define CDNS_PCIE_EP_IRQ_PCI_ADDR_NONE		0x1
#define CDNS_PCIE_EP_IRQ_PCI_ADDR_LEGACY	0x3

/**
 * struct cdns_pcie_ep - private data for this PCIe endpoint controller driver
 * @pcie: Cadence PCIe controller
 * @max_regions: maximum number of regions supported by hardware
 * @ob_region_map: bitmask of mapped outbound regions
 * @ob_addr: base addresses in the AXI bus where the outbound regions start
 * @irq_phys_addr: base address on the AXI bus where the MSI/legacy IRQ
 *		   dedicated outbound regions is mapped.
 * @irq_cpu_addr: base address in the CPU space where a write access triggers
 *		  the sending of a memory write (MSI) / normal message (legacy
 *		  IRQ) TLP through the PCIe bus.
 * @irq_pci_addr: used to save the current mapping of the MSI/legacy IRQ
 *		  dedicated outbound region.
 * @irq_pci_fn: the latest PCI function that has updated the mapping of
 *		the MSI/legacy IRQ dedicated outbound region.
 * @irq_pending: bitmask of asserted legacy IRQs.
 */
struct cdns_pcie_ep {
	struct cdns_pcie		pcie;
	u32				max_regions;
	unsigned long			ob_region_map;
	phys_addr_t			*ob_addr;
	phys_addr_t			irq_phys_addr;
	void __iomem			*irq_cpu_addr;
	u64				irq_pci_addr;
	u8				irq_pci_fn;
	u8				irq_pending;
};

static int cdns_pcie_ep_write_header(struct pci_epc *epc, u8 fn,
				     struct pci_epf_header *hdr)
{
	struct cdns_pcie_ep *ep = epc_get_drvdata(epc);
	struct cdns_pcie *pcie = &ep->pcie;

	cdns_pcie_ep_fn_writew(pcie, fn, PCI_DEVICE_ID, hdr->deviceid);
	cdns_pcie_ep_fn_writeb(pcie, fn, PCI_REVISION_ID, hdr->revid);
	cdns_pcie_ep_fn_writeb(pcie, fn, PCI_CLASS_PROG, hdr->progif_code);
	cdns_pcie_ep_fn_writew(pcie, fn, PCI_CLASS_DEVICE,
			       hdr->subclass_code | hdr->baseclass_code << 8);
	cdns_pcie_ep_fn_writeb(pcie, fn, PCI_CACHE_LINE_SIZE,
			       hdr->cache_line_size);
	cdns_pcie_ep_fn_writew(pcie, fn, PCI_SUBSYSTEM_ID, hdr->subsys_id);
	cdns_pcie_ep_fn_writeb(pcie, fn, PCI_INTERRUPT_PIN, hdr->interrupt_pin);

	/*
	 * Vendor ID can only be modified from function 0, all other functions
	 * use the same vendor ID as function 0.
	 */
	if (fn == 0) {
		/* Update the vendor IDs. */
		u32 id = CDNS_PCIE_LM_ID_VENDOR(hdr->vendorid) |
			 CDNS_PCIE_LM_ID_SUBSYS(hdr->subsys_vendor_id);

		cdns_pcie_writel(pcie, CDNS_PCIE_LM_ID, id);
	}

	return 0;
}

static int cdns_pcie_ep_set_bar(struct pci_epc *epc, u8 fn,
				struct pci_epf_bar *epf_bar)
{
	struct cdns_pcie_ep *ep = epc_get_drvdata(epc);
	struct cdns_pcie *pcie = &ep->pcie;
	dma_addr_t bar_phys = epf_bar->phys_addr;
	enum pci_barno bar = epf_bar->barno;
	int flags = epf_bar->flags;
	u32 addr0, addr1, reg, cfg, b, aperture, ctrl;
	u64 sz;

	/* BAR size is 2^(aperture + 7) */
	sz = max_t(size_t, epf_bar->size, CDNS_PCIE_EP_MIN_APERTURE);
	/*
	 * roundup_pow_of_two() returns an unsigned long, which is not suited
	 * for 64bit values.
	 */
	sz = 1ULL << fls64(sz - 1);
	aperture = ilog2(sz) - 7; /* 128B -> 0, 256B -> 1, 512B -> 2, ... */

	if ((flags & PCI_BASE_ADDRESS_SPACE) == PCI_BASE_ADDRESS_SPACE_IO) {
		ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_IO_32BITS;
	} else {
		bool is_prefetch = !!(flags & PCI_BASE_ADDRESS_MEM_PREFETCH);
		bool is_64bits = sz > SZ_2G;

		if (is_64bits && (bar & 1))
			return -EINVAL;

		if (is_64bits && !(flags & PCI_BASE_ADDRESS_MEM_TYPE_64))
			epf_bar->flags |= PCI_BASE_ADDRESS_MEM_TYPE_64;

		if (is_64bits && is_prefetch)
			ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_PREFETCH_MEM_64BITS;
		else if (is_prefetch)
			ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_PREFETCH_MEM_32BITS;
		else if (is_64bits)
			ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_MEM_64BITS;
		else
			ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_MEM_32BITS;
	}

	addr0 = lower_32_bits(bar_phys);
	addr1 = upper_32_bits(bar_phys);
	cdns_pcie_writel(pcie, CDNS_PCIE_AT_IB_EP_FUNC_BAR_ADDR0(fn, bar),
			 addr0);
	cdns_pcie_writel(pcie, CDNS_PCIE_AT_IB_EP_FUNC_BAR_ADDR1(fn, bar),
			 addr1);

	if (bar < BAR_4) {
		reg = CDNS_PCIE_LM_EP_FUNC_BAR_CFG0(fn);
		b = bar;
	} else {
		reg = CDNS_PCIE_LM_EP_FUNC_BAR_CFG1(fn);
		b = bar - BAR_4;
	}

	cfg = cdns_pcie_readl(pcie, reg);
	cfg &= ~(CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_APERTURE_MASK(b) |
		 CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_CTRL_MASK(b));
	cfg |= (CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_APERTURE(b, aperture) |
		CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_CTRL(b, ctrl));
	cdns_pcie_writel(pcie, reg, cfg);

	return 0;
}

static void cdns_pcie_ep_clear_bar(struct pci_epc *epc, u8 fn,
				   enum pci_barno bar)
{
	struct cdns_pcie_ep *ep = epc_get_drvdata(epc);
	struct cdns_pcie *pcie = &ep->pcie;
	u32 reg, cfg, b, ctrl;

	if (bar < BAR_4) {
		reg = CDNS_PCIE_LM_EP_FUNC_BAR_CFG0(fn);
		b = bar;
	} else {
		reg = CDNS_PCIE_LM_EP_FUNC_BAR_CFG1(fn);
		b = bar - BAR_4;
	}

	ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_DISABLED;
	cfg = cdns_pcie_readl(pcie, reg);
	cfg &= ~(CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_APERTURE_MASK(b) |
		 CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_CTRL_MASK(b));
	cfg |= CDNS_PCIE_LM_EP_FUNC_BAR_CFG_BAR_CTRL(b, ctrl);
	cdns_pcie_writel(pcie, reg, cfg);

	cdns_pcie_writel(pcie, CDNS_PCIE_AT_IB_EP_FUNC_BAR_ADDR0(fn, bar), 0);
	cdns_pcie_writel(pcie, CDNS_PCIE_AT_IB_EP_FUNC_BAR_ADDR1(fn, bar), 0);
}

static int cdns_pcie_ep_map_addr(struct pci_epc *epc, u8 fn, phys_addr_t addr,
				 u64 pci_addr, size_t size)
{
	struct cdns_pcie_ep *ep = epc_get_drvdata(epc);
	struct cdns_pcie *pcie = &ep->pcie;
	u32 r;

	r = find_first_zero_bit(&ep->ob_region_map,
				sizeof(ep->ob_region_map) * BITS_PER_LONG);
	if (r >= ep->max_regions - 1) {
		dev_err(&epc->dev, "no free outbound region\n");
		return -EINVAL;
	}

	cdns_pcie_set_outbound_region(pcie, fn, r, false, addr, pci_addr, size);

	set_bit(r, &ep->ob_region_map);
	ep->ob_addr[r] = addr;

	return 0;
}

static void cdns_pcie_ep_unmap_addr(struct pci_epc *epc, u8 fn,
				    phys_addr_t addr)
{
	struct cdns_pcie_ep *ep = epc_get_drvdata(epc);
	struct cdns_pcie *pcie = &ep->pcie;
	u32 r;

	for (r = 0; r < ep->max_regions - 1; r++)
		if (ep->ob_addr[r] == addr)
			break;

	if (r == ep->max_regions - 1)
		return;

	cdns_pcie_reset_outbound_region(pcie, r);

	ep->ob_addr[r] = 0;
	clear_bit(r, &ep->ob_region_map);
}

static int cdns_pcie_ep_set_msi(struct pci_epc *epc, u8 fn, u8 mmc)
{
	struct cdns_pcie_ep *ep = epc_get_drvdata(epc);
	struct cdns_pcie *pcie = &ep->pcie;
	u32 cap = CDNS_PCIE_EP_FUNC_MSI_CAP_OFFSET;
	u16 flags;

	/*
	 * Set the Multiple Message Capable bitfield into the Message Control
	 * register.
	 */
	flags = cdns_pcie_ep_fn_readw(pcie, fn, cap + PCI_MSI_FLAGS);
	flags = (flags & ~PCI_MSI_FLAGS_QMASK) | (mmc << 1);
	flags |= PCI_MSI_FLAGS_64BIT;
	flags &= ~PCI_MSI_FLAGS_MASKBIT;
	cdns_pcie_ep_fn_writew(pcie, fn, cap + PCI_MSI_FLAGS, flags);

	return 0;
}

static int cdns_pcie_ep_get_msi(struct pci_epc *epc, u8 fn)
{
	struct cdns_pcie_ep *ep = epc_get_drvdata(epc);
	struct cdns_pcie *pcie = &ep->pcie;
	u32 cap = CDNS_PCIE_EP_FUNC_MSI_CAP_OFFSET;
	u16 flags, mmc, mme;

	/* Validate that the MSI feature is actually enabled. */
	flags = cdns_pcie_ep_fn_readw(pcie, fn, cap + PCI_MSI_FLAGS);
	if (!(flags & PCI_MSI_FLAGS_ENABLE))
		return -EINVAL;

	/*
	 * Get the Multiple Message Enable bitfield from the Message Control
	 * register.
	 */
	mmc = (flags & PCI_MSI_FLAGS_QMASK) >> 1;
	mme = (flags & PCI_MSI_FLAGS_QSIZE) >> 4;

	return mme;
}

static void cdns_pcie_ep_assert_intx(struct cdns_pcie_ep *ep, u8 fn,
				     u8 intx, bool is_asserted)
{
	struct cdns_pcie *pcie = &ep->pcie;
	u32 r = ep->max_regions - 1;
	u32 offset;
	u16 status;
	u8 msg_code;

	intx &= 3;

	/* Set the outbound region if needed. */
	if (unlikely(ep->irq_pci_addr != CDNS_PCIE_EP_IRQ_PCI_ADDR_LEGACY ||
		     ep->irq_pci_fn != fn)) {
		/* Last region was reserved for IRQ writes. */
		cdns_pcie_set_outbound_region_for_normal_msg(pcie, fn, r,
							     ep->irq_phys_addr);
		ep->irq_pci_addr = CDNS_PCIE_EP_IRQ_PCI_ADDR_LEGACY;
		ep->irq_pci_fn = fn;
	}

	if (is_asserted) {
		ep->irq_pending |= BIT(intx);
		msg_code = MSG_CODE_ASSERT_INTA + intx;
	} else {
		ep->irq_pending &= ~BIT(intx);
		msg_code = MSG_CODE_DEASSERT_INTA + intx;
	}

	status = cdns_pcie_ep_fn_readw(pcie, fn, PCI_STATUS);
	if (((status & PCI_STATUS_INTERRUPT) != 0) ^ (ep->irq_pending != 0)) {
		status ^= PCI_STATUS_INTERRUPT;
		cdns_pcie_ep_fn_writew(pcie, fn, PCI_STATUS, status);
	}

	offset = CDNS_PCIE_NORMAL_MSG_ROUTING(MSG_ROUTING_LOCAL) |
		 CDNS_PCIE_NORMAL_MSG_CODE(msg_code) |
		 CDNS_PCIE_MSG_NO_DATA;
	writel(0, ep->irq_cpu_addr + offset);
}

static int cdns_pcie_ep_send_legacy_irq(struct cdns_pcie_ep *ep, u8 fn, u8 intx)
{
	u16 cmd;

	cmd = cdns_pcie_ep_fn_readw(&ep->pcie, fn, PCI_COMMAND);
	if (cmd & PCI_COMMAND_INTX_DISABLE)
		return -EINVAL;

	cdns_pcie_ep_assert_intx(ep, fn, intx, true);
	/*
	 * The mdelay() value was taken from dra7xx_pcie_raise_legacy_irq()
	 * from drivers/pci/dwc/pci-dra7xx.c
	 */
	mdelay(1);
	cdns_pcie_ep_assert_intx(ep, fn, intx, false);
	return 0;
}

static int cdns_pcie_ep_send_msi_irq(struct cdns_pcie_ep *ep, u8 fn,
				     u8 interrupt_num)
{
	struct cdns_pcie *pcie = &ep->pcie;
	u32 cap = CDNS_PCIE_EP_FUNC_MSI_CAP_OFFSET;
	u16 flags, mme, data, data_mask;
	u8 msi_count;
	u64 pci_addr, pci_addr_mask = 0xff;

	/* Check whether the MSI feature has been enabled by the PCI host. */
	flags = cdns_pcie_ep_fn_readw(pcie, fn, cap + PCI_MSI_FLAGS);
	if (!(flags & PCI_MSI_FLAGS_ENABLE))
		return -EINVAL;

	/* Get the number of enabled MSIs */
	mme = (flags & PCI_MSI_FLAGS_QSIZE) >> 4;
	msi_count = 1 << mme;
	if (!interrupt_num || interrupt_num > msi_count)
		return -EINVAL;

	/* Compute the data value to be written. */
	data_mask = msi_count - 1;
	data = cdns_pcie_ep_fn_readw(pcie, fn, cap + PCI_MSI_DATA_64);
	data = (data & ~data_mask) | ((interrupt_num - 1) & data_mask);

	/* Get the PCI address where to write the data into. */
	pci_addr = cdns_pcie_ep_fn_readl(pcie, fn, cap + PCI_MSI_ADDRESS_HI);
	pci_addr <<= 32;
	pci_addr |= cdns_pcie_ep_fn_readl(pcie, fn, cap + PCI_MSI_ADDRESS_LO);
	pci_addr &= GENMASK_ULL(63, 2);

	/* Set the outbound region if needed. */
	if (unlikely(ep->irq_pci_addr != (pci_addr & ~pci_addr_mask) ||
		     ep->irq_pci_fn != fn)) {
		/* Last region was reserved for IRQ writes. */
		cdns_pcie_set_outbound_region(pcie, fn, ep->max_regions - 1,
					      false,
					      ep->irq_phys_addr,
					      pci_addr & ~pci_addr_mask,
					      pci_addr_mask + 1);
		ep->irq_pci_addr = (pci_addr & ~pci_addr_mask);
		ep->irq_pci_fn = fn;
	}
	writew(data, ep->irq_cpu_addr + (pci_addr & pci_addr_mask));

	return 0;
}

static int cdns_pcie_ep_raise_irq(struct pci_epc *epc, u8 fn,
				  enum pci_epc_irq_type type, u8 interrupt_num)
{
	struct cdns_pcie_ep *ep = epc_get_drvdata(epc);

	switch (type) {
	case PCI_EPC_IRQ_LEGACY:
		return cdns_pcie_ep_send_legacy_irq(ep, fn, 0);

	case PCI_EPC_IRQ_MSI:
		return cdns_pcie_ep_send_msi_irq(ep, fn, interrupt_num);

	default:
		break;
	}

	return -EINVAL;
}

static int cdns_pcie_ep_start(struct pci_epc *epc)
{
	struct cdns_pcie_ep *ep = epc_get_drvdata(epc);
	struct cdns_pcie *pcie = &ep->pcie;
	struct pci_epf *epf;
	u32 cfg;

	/*
	 * BIT(0) is hardwired to 1, hence function 0 is always enabled
	 * and can't be disabled anyway.
	 */
	cfg = BIT(0);
	list_for_each_entry(epf, &epc->pci_epf, list)
		cfg |= BIT(epf->func_no);
	cdns_pcie_writel(pcie, CDNS_PCIE_LM_EP_FUNC_CFG, cfg);

	/*
	 * The PCIe links are automatically established by the controller
	 * once for all at powerup: the software can neither start nor stop
	 * those links later at runtime.
	 *
	 * Then we only have to notify the EP core that our links are already
	 * established. However we don't call directly pci_epc_linkup() because
	 * we've already locked the epc->lock.
	 */
	list_for_each_entry(epf, &epc->pci_epf, list)
		pci_epf_linkup(epf);

	return 0;
}

static const struct pci_epc_ops cdns_pcie_epc_ops = {
	.write_header	= cdns_pcie_ep_write_header,
	.set_bar	= cdns_pcie_ep_set_bar,
	.clear_bar	= cdns_pcie_ep_clear_bar,
	.map_addr	= cdns_pcie_ep_map_addr,
	.unmap_addr	= cdns_pcie_ep_unmap_addr,
	.set_msi	= cdns_pcie_ep_set_msi,
	.get_msi	= cdns_pcie_ep_get_msi,
	.raise_irq	= cdns_pcie_ep_raise_irq,
	.start		= cdns_pcie_ep_start,
};

static const struct of_device_id cdns_pcie_ep_of_match[] = {
	{ .compatible = "cdns,cdns-pcie-ep" },

	{ },
};

static int cdns_pcie_ep_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct device_node *np = dev->of_node;
	struct cdns_pcie_ep *ep;
	struct cdns_pcie *pcie;
	struct pci_epc *epc;
	struct resource *res;
	int ret;

	ep = devm_kzalloc(dev, sizeof(*ep), GFP_KERNEL);
	if (!ep)
		return -ENOMEM;

	pcie = &ep->pcie;
	pcie->is_rc = false;

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "reg");
	pcie->reg_base = devm_ioremap_resource(dev, res);
	if (IS_ERR(pcie->reg_base)) {
		dev_err(dev, "missing \"reg\"\n");
		return PTR_ERR(pcie->reg_base);
	}

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mem");
	if (!res) {
		dev_err(dev, "missing \"mem\"\n");
		return -EINVAL;
	}
	pcie->mem_res = res;

	ret = of_property_read_u32(np, "cdns,max-outbound-regions",
				   &ep->max_regions);
	if (ret < 0) {
		dev_err(dev, "missing \"cdns,max-outbound-regions\"\n");
		return ret;
	}
	ep->ob_addr = devm_kzalloc(dev, ep->max_regions * sizeof(*ep->ob_addr),
				   GFP_KERNEL);
	if (!ep->ob_addr)
		return -ENOMEM;

	pm_runtime_enable(dev);
	ret = pm_runtime_get_sync(dev);
	if (ret < 0) {
		dev_err(dev, "pm_runtime_get_sync() failed\n");
		goto err_get_sync;
	}

	/* Disable all but function 0 (anyway BIT(0) is hardwired to 1). */
	cdns_pcie_writel(pcie, CDNS_PCIE_LM_EP_FUNC_CFG, BIT(0));

	epc = devm_pci_epc_create(dev, &cdns_pcie_epc_ops);
	if (IS_ERR(epc)) {
		dev_err(dev, "failed to create epc device\n");
		ret = PTR_ERR(epc);
		goto err_init;
	}

	epc_set_drvdata(epc, ep);

	if (of_property_read_u8(np, "max-functions", &epc->max_functions) < 0)
		epc->max_functions = 1;

	ret = pci_epc_mem_init(epc, pcie->mem_res->start,
			       resource_size(pcie->mem_res));
	if (ret < 0) {
		dev_err(dev, "failed to initialize the memory space\n");
		goto err_init;
	}

	ep->irq_cpu_addr = pci_epc_mem_alloc_addr(epc, &ep->irq_phys_addr,
						  SZ_128K);
	if (!ep->irq_cpu_addr) {
		dev_err(dev, "failed to reserve memory space for MSI\n");
		ret = -ENOMEM;
		goto free_epc_mem;
	}
	ep->irq_pci_addr = CDNS_PCIE_EP_IRQ_PCI_ADDR_NONE;

	return 0;

 free_epc_mem:
	pci_epc_mem_exit(epc);

 err_init:
	pm_runtime_put_sync(dev);

 err_get_sync:
	pm_runtime_disable(dev);

	return ret;
}

static void cdns_pcie_ep_shutdown(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	int ret;

	ret = pm_runtime_put_sync(dev);
	if (ret < 0)
		dev_dbg(dev, "pm_runtime_put_sync failed\n");

	pm_runtime_disable(dev);

	/* The PCIe controller can't be disabled. */
}

static struct platform_driver cdns_pcie_ep_driver = {
	.driver = {
		.name = "cdns-pcie-ep",
		.of_match_table = cdns_pcie_ep_of_match,
	},
	.probe = cdns_pcie_ep_probe,
	.shutdown = cdns_pcie_ep_shutdown,
};
builtin_platform_driver(cdns_pcie_ep_driver);