summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/sfc/nic.c
blob: eaa8e874a3cb0580cbe68ca40ba5004942a91e5f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
 * Copyright 2006-2011 Solarflare Communications Inc.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/seq_file.h>
#include "net_driver.h"
#include "bitfield.h"
#include "efx.h"
#include "nic.h"
#include "regs.h"
#include "io.h"
#include "workarounds.h"

/**************************************************************************
 *
 * Configurable values
 *
 **************************************************************************
 */

/* This is set to 16 for a good reason.  In summary, if larger than
 * 16, the descriptor cache holds more than a default socket
 * buffer's worth of packets (for UDP we can only have at most one
 * socket buffer's worth outstanding).  This combined with the fact
 * that we only get 1 TX event per descriptor cache means the NIC
 * goes idle.
 */
#define TX_DC_ENTRIES 16
#define TX_DC_ENTRIES_ORDER 1

#define RX_DC_ENTRIES 64
#define RX_DC_ENTRIES_ORDER 3

/* If EFX_MAX_INT_ERRORS internal errors occur within
 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
 * disable it.
 */
#define EFX_INT_ERROR_EXPIRE 3600
#define EFX_MAX_INT_ERRORS 5

/* Depth of RX flush request fifo */
#define EFX_RX_FLUSH_COUNT 4

/* Driver generated events */
#define _EFX_CHANNEL_MAGIC_TEST		0x000101
#define _EFX_CHANNEL_MAGIC_FILL		0x000102
#define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
#define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104

#define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
#define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)

#define EFX_CHANNEL_MAGIC_TEST(_channel)				\
	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
#define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
			   efx_rx_queue_index(_rx_queue))
#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
			   efx_rx_queue_index(_rx_queue))
#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
			   (_tx_queue)->queue)

static void efx_magic_event(struct efx_channel *channel, u32 magic);

/**************************************************************************
 *
 * Solarstorm hardware access
 *
 **************************************************************************/

static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
				     unsigned int index)
{
	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
			value, index);
}

/* Read the current event from the event queue */
static inline efx_qword_t *efx_event(struct efx_channel *channel,
				     unsigned int index)
{
	return ((efx_qword_t *) (channel->eventq.addr)) +
		(index & channel->eventq_mask);
}

/* See if an event is present
 *
 * We check both the high and low dword of the event for all ones.  We
 * wrote all ones when we cleared the event, and no valid event can
 * have all ones in either its high or low dwords.  This approach is
 * robust against reordering.
 *
 * Note that using a single 64-bit comparison is incorrect; even
 * though the CPU read will be atomic, the DMA write may not be.
 */
static inline int efx_event_present(efx_qword_t *event)
{
	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
}

static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
				     const efx_oword_t *mask)
{
	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
}

int efx_nic_test_registers(struct efx_nic *efx,
			   const struct efx_nic_register_test *regs,
			   size_t n_regs)
{
	unsigned address = 0, i, j;
	efx_oword_t mask, imask, original, reg, buf;

	for (i = 0; i < n_regs; ++i) {
		address = regs[i].address;
		mask = imask = regs[i].mask;
		EFX_INVERT_OWORD(imask);

		efx_reado(efx, &original, address);

		/* bit sweep on and off */
		for (j = 0; j < 128; j++) {
			if (!EFX_EXTRACT_OWORD32(mask, j, j))
				continue;

			/* Test this testable bit can be set in isolation */
			EFX_AND_OWORD(reg, original, mask);
			EFX_SET_OWORD32(reg, j, j, 1);

			efx_writeo(efx, &reg, address);
			efx_reado(efx, &buf, address);

			if (efx_masked_compare_oword(&reg, &buf, &mask))
				goto fail;

			/* Test this testable bit can be cleared in isolation */
			EFX_OR_OWORD(reg, original, mask);
			EFX_SET_OWORD32(reg, j, j, 0);

			efx_writeo(efx, &reg, address);
			efx_reado(efx, &buf, address);

			if (efx_masked_compare_oword(&reg, &buf, &mask))
				goto fail;
		}

		efx_writeo(efx, &original, address);
	}

	return 0;

fail:
	netif_err(efx, hw, efx->net_dev,
		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
	return -EIO;
}

/**************************************************************************
 *
 * Special buffer handling
 * Special buffers are used for event queues and the TX and RX
 * descriptor rings.
 *
 *************************************************************************/

/*
 * Initialise a special buffer
 *
 * This will define a buffer (previously allocated via
 * efx_alloc_special_buffer()) in the buffer table, allowing
 * it to be used for event queues, descriptor rings etc.
 */
static void
efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
{
	efx_qword_t buf_desc;
	unsigned int index;
	dma_addr_t dma_addr;
	int i;

	EFX_BUG_ON_PARANOID(!buffer->addr);

	/* Write buffer descriptors to NIC */
	for (i = 0; i < buffer->entries; i++) {
		index = buffer->index + i;
		dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
		netif_dbg(efx, probe, efx->net_dev,
			  "mapping special buffer %d at %llx\n",
			  index, (unsigned long long)dma_addr);
		EFX_POPULATE_QWORD_3(buf_desc,
				     FRF_AZ_BUF_ADR_REGION, 0,
				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
		efx_write_buf_tbl(efx, &buf_desc, index);
	}
}

/* Unmaps a buffer and clears the buffer table entries */
static void
efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
{
	efx_oword_t buf_tbl_upd;
	unsigned int start = buffer->index;
	unsigned int end = (buffer->index + buffer->entries - 1);

	if (!buffer->entries)
		return;

	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
		  buffer->index, buffer->index + buffer->entries - 1);

	EFX_POPULATE_OWORD_4(buf_tbl_upd,
			     FRF_AZ_BUF_UPD_CMD, 0,
			     FRF_AZ_BUF_CLR_CMD, 1,
			     FRF_AZ_BUF_CLR_END_ID, end,
			     FRF_AZ_BUF_CLR_START_ID, start);
	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
}

/*
 * Allocate a new special buffer
 *
 * This allocates memory for a new buffer, clears it and allocates a
 * new buffer ID range.  It does not write into the buffer table.
 *
 * This call will allocate 4KB buffers, since 8KB buffers can't be
 * used for event queues and descriptor rings.
 */
static int efx_alloc_special_buffer(struct efx_nic *efx,
				    struct efx_special_buffer *buffer,
				    unsigned int len)
{
	len = ALIGN(len, EFX_BUF_SIZE);

	buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
					  &buffer->dma_addr, GFP_KERNEL);
	if (!buffer->addr)
		return -ENOMEM;
	buffer->len = len;
	buffer->entries = len / EFX_BUF_SIZE;
	BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));

	/* Select new buffer ID */
	buffer->index = efx->next_buffer_table;
	efx->next_buffer_table += buffer->entries;
#ifdef CONFIG_SFC_SRIOV
	BUG_ON(efx_sriov_enabled(efx) &&
	       efx->vf_buftbl_base < efx->next_buffer_table);
#endif

	netif_dbg(efx, probe, efx->net_dev,
		  "allocating special buffers %d-%d at %llx+%x "
		  "(virt %p phys %llx)\n", buffer->index,
		  buffer->index + buffer->entries - 1,
		  (u64)buffer->dma_addr, len,
		  buffer->addr, (u64)virt_to_phys(buffer->addr));

	return 0;
}

static void
efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
{
	if (!buffer->addr)
		return;

	netif_dbg(efx, hw, efx->net_dev,
		  "deallocating special buffers %d-%d at %llx+%x "
		  "(virt %p phys %llx)\n", buffer->index,
		  buffer->index + buffer->entries - 1,
		  (u64)buffer->dma_addr, buffer->len,
		  buffer->addr, (u64)virt_to_phys(buffer->addr));

	dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
			  buffer->dma_addr);
	buffer->addr = NULL;
	buffer->entries = 0;
}

/**************************************************************************
 *
 * Generic buffer handling
 * These buffers are used for interrupt status, MAC stats, etc.
 *
 **************************************************************************/

int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
			 unsigned int len)
{
	buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
					  &buffer->dma_addr, GFP_ATOMIC);
	if (!buffer->addr)
		return -ENOMEM;
	buffer->len = len;
	memset(buffer->addr, 0, len);
	return 0;
}

void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
{
	if (buffer->addr) {
		dma_free_coherent(&efx->pci_dev->dev, buffer->len,
				  buffer->addr, buffer->dma_addr);
		buffer->addr = NULL;
	}
}

/**************************************************************************
 *
 * TX path
 *
 **************************************************************************/

/* Returns a pointer to the specified transmit descriptor in the TX
 * descriptor queue belonging to the specified channel.
 */
static inline efx_qword_t *
efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
{
	return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
}

/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
	unsigned write_ptr;
	efx_dword_t reg;

	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
	efx_writed_page(tx_queue->efx, &reg,
			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
}

/* Write pointer and first descriptor for TX descriptor ring */
static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
				    const efx_qword_t *txd)
{
	unsigned write_ptr;
	efx_oword_t reg;

	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);

	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
			     FRF_AZ_TX_DESC_WPTR, write_ptr);
	reg.qword[0] = *txd;
	efx_writeo_page(tx_queue->efx, &reg,
			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
}

static inline bool
efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
{
	unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);

	if (empty_read_count == 0)
		return false;

	tx_queue->empty_read_count = 0;
	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0
		&& tx_queue->write_count - write_count == 1;
}

/* For each entry inserted into the software descriptor ring, create a
 * descriptor in the hardware TX descriptor ring (in host memory), and
 * write a doorbell.
 */
void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
{

	struct efx_tx_buffer *buffer;
	efx_qword_t *txd;
	unsigned write_ptr;
	unsigned old_write_count = tx_queue->write_count;

	BUG_ON(tx_queue->write_count == tx_queue->insert_count);

	do {
		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
		buffer = &tx_queue->buffer[write_ptr];
		txd = efx_tx_desc(tx_queue, write_ptr);
		++tx_queue->write_count;

		/* Create TX descriptor ring entry */
		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
		EFX_POPULATE_QWORD_4(*txd,
				     FSF_AZ_TX_KER_CONT,
				     buffer->flags & EFX_TX_BUF_CONT,
				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
				     FSF_AZ_TX_KER_BUF_REGION, 0,
				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
	} while (tx_queue->write_count != tx_queue->insert_count);

	wmb(); /* Ensure descriptors are written before they are fetched */

	if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
		txd = efx_tx_desc(tx_queue,
				  old_write_count & tx_queue->ptr_mask);
		efx_push_tx_desc(tx_queue, txd);
		++tx_queue->pushes;
	} else {
		efx_notify_tx_desc(tx_queue);
	}
}

/* Allocate hardware resources for a TX queue */
int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
	unsigned entries;

	entries = tx_queue->ptr_mask + 1;
	return efx_alloc_special_buffer(efx, &tx_queue->txd,
					entries * sizeof(efx_qword_t));
}

void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
	efx_oword_t reg;

	/* Pin TX descriptor ring */
	efx_init_special_buffer(efx, &tx_queue->txd);

	/* Push TX descriptor ring to card */
	EFX_POPULATE_OWORD_10(reg,
			      FRF_AZ_TX_DESCQ_EN, 1,
			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
			      FRF_AZ_TX_DESCQ_EVQ_ID,
			      tx_queue->channel->channel,
			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
			      FRF_AZ_TX_DESCQ_SIZE,
			      __ffs(tx_queue->txd.entries),
			      FRF_AZ_TX_DESCQ_TYPE, 0,
			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);

	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
		int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
				    !csum);
	}

	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
			 tx_queue->queue);

	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
		/* Only 128 bits in this register */
		BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);

		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
		if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
			__clear_bit_le(tx_queue->queue, &reg);
		else
			__set_bit_le(tx_queue->queue, &reg);
		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
	}

	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
		EFX_POPULATE_OWORD_1(reg,
				     FRF_BZ_TX_PACE,
				     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
				     FFE_BZ_TX_PACE_OFF :
				     FFE_BZ_TX_PACE_RESERVED);
		efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
				 tx_queue->queue);
	}
}

static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
	efx_oword_t tx_flush_descq;

	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
	atomic_set(&tx_queue->flush_outstanding, 1);

	EFX_POPULATE_OWORD_2(tx_flush_descq,
			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
}

void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
	efx_oword_t tx_desc_ptr;

	/* Remove TX descriptor ring from card */
	EFX_ZERO_OWORD(tx_desc_ptr);
	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
			 tx_queue->queue);

	/* Unpin TX descriptor ring */
	efx_fini_special_buffer(efx, &tx_queue->txd);
}

/* Free buffers backing TX queue */
void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
{
	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
}

/**************************************************************************
 *
 * RX path
 *
 **************************************************************************/

/* Returns a pointer to the specified descriptor in the RX descriptor queue */
static inline efx_qword_t *
efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
{
	return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
}

/* This creates an entry in the RX descriptor queue */
static inline void
efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
{
	struct efx_rx_buffer *rx_buf;
	efx_qword_t *rxd;

	rxd = efx_rx_desc(rx_queue, index);
	rx_buf = efx_rx_buffer(rx_queue, index);
	EFX_POPULATE_QWORD_3(*rxd,
			     FSF_AZ_RX_KER_BUF_SIZE,
			     rx_buf->len -
			     rx_queue->efx->type->rx_buffer_padding,
			     FSF_AZ_RX_KER_BUF_REGION, 0,
			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
}

/* This writes to the RX_DESC_WPTR register for the specified receive
 * descriptor ring.
 */
void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
{
	struct efx_nic *efx = rx_queue->efx;
	efx_dword_t reg;
	unsigned write_ptr;

	while (rx_queue->notified_count != rx_queue->added_count) {
		efx_build_rx_desc(
			rx_queue,
			rx_queue->notified_count & rx_queue->ptr_mask);
		++rx_queue->notified_count;
	}

	wmb();
	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
			efx_rx_queue_index(rx_queue));
}

int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
{
	struct efx_nic *efx = rx_queue->efx;
	unsigned entries;

	entries = rx_queue->ptr_mask + 1;
	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
					entries * sizeof(efx_qword_t));
}

void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
{
	efx_oword_t rx_desc_ptr;
	struct efx_nic *efx = rx_queue->efx;
	bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
	bool iscsi_digest_en = is_b0;

	netif_dbg(efx, hw, efx->net_dev,
		  "RX queue %d ring in special buffers %d-%d\n",
		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);

	/* Pin RX descriptor ring */
	efx_init_special_buffer(efx, &rx_queue->rxd);

	/* Push RX descriptor ring to card */
	EFX_POPULATE_OWORD_10(rx_desc_ptr,
			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
			      FRF_AZ_RX_DESCQ_EVQ_ID,
			      efx_rx_queue_channel(rx_queue)->channel,
			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
			      FRF_AZ_RX_DESCQ_LABEL,
			      efx_rx_queue_index(rx_queue),
			      FRF_AZ_RX_DESCQ_SIZE,
			      __ffs(rx_queue->rxd.entries),
			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
			      /* For >=B0 this is scatter so disable */
			      FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
			      FRF_AZ_RX_DESCQ_EN, 1);
	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
			 efx_rx_queue_index(rx_queue));
}

static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
{
	struct efx_nic *efx = rx_queue->efx;
	efx_oword_t rx_flush_descq;

	EFX_POPULATE_OWORD_2(rx_flush_descq,
			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
			     FRF_AZ_RX_FLUSH_DESCQ,
			     efx_rx_queue_index(rx_queue));
	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
}

void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
{
	efx_oword_t rx_desc_ptr;
	struct efx_nic *efx = rx_queue->efx;

	/* Remove RX descriptor ring from card */
	EFX_ZERO_OWORD(rx_desc_ptr);
	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
			 efx_rx_queue_index(rx_queue));

	/* Unpin RX descriptor ring */
	efx_fini_special_buffer(efx, &rx_queue->rxd);
}

/* Free buffers backing RX queue */
void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
{
	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
}

/**************************************************************************
 *
 * Flush handling
 *
 **************************************************************************/

/* efx_nic_flush_queues() must be woken up when all flushes are completed,
 * or more RX flushes can be kicked off.
 */
static bool efx_flush_wake(struct efx_nic *efx)
{
	/* Ensure that all updates are visible to efx_nic_flush_queues() */
	smp_mb();

	return (atomic_read(&efx->drain_pending) == 0 ||
		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
		 && atomic_read(&efx->rxq_flush_pending) > 0));
}

static bool efx_check_tx_flush_complete(struct efx_nic *efx)
{
	bool i = true;
	efx_oword_t txd_ptr_tbl;
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel) {
			efx_reado_table(efx, &txd_ptr_tbl,
					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
			if (EFX_OWORD_FIELD(txd_ptr_tbl,
					    FRF_AZ_TX_DESCQ_FLUSH) ||
			    EFX_OWORD_FIELD(txd_ptr_tbl,
					    FRF_AZ_TX_DESCQ_EN)) {
				netif_dbg(efx, hw, efx->net_dev,
					  "flush did not complete on TXQ %d\n",
					  tx_queue->queue);
				i = false;
			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
						  1, 0)) {
				/* The flush is complete, but we didn't
				 * receive a flush completion event
				 */
				netif_dbg(efx, hw, efx->net_dev,
					  "flush complete on TXQ %d, so drain "
					  "the queue\n", tx_queue->queue);
				/* Don't need to increment drain_pending as it
				 * has already been incremented for the queues
				 * which did not drain
				 */
				efx_magic_event(channel,
						EFX_CHANNEL_MAGIC_TX_DRAIN(
							tx_queue));
			}
		}
	}

	return i;
}

/* Flush all the transmit queues, and continue flushing receive queues until
 * they're all flushed. Wait for the DRAIN events to be recieved so that there
 * are no more RX and TX events left on any channel. */
int efx_nic_flush_queues(struct efx_nic *efx)
{
	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int rc = 0;

	efx->type->prepare_flush(efx);

	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel) {
			atomic_inc(&efx->drain_pending);
			efx_flush_tx_queue(tx_queue);
		}
		efx_for_each_channel_rx_queue(rx_queue, channel) {
			atomic_inc(&efx->drain_pending);
			rx_queue->flush_pending = true;
			atomic_inc(&efx->rxq_flush_pending);
		}
	}

	while (timeout && atomic_read(&efx->drain_pending) > 0) {
		/* If SRIOV is enabled, then offload receive queue flushing to
		 * the firmware (though we will still have to poll for
		 * completion). If that fails, fall back to the old scheme.
		 */
		if (efx_sriov_enabled(efx)) {
			rc = efx_mcdi_flush_rxqs(efx);
			if (!rc)
				goto wait;
		}

		/* The hardware supports four concurrent rx flushes, each of
		 * which may need to be retried if there is an outstanding
		 * descriptor fetch
		 */
		efx_for_each_channel(channel, efx) {
			efx_for_each_channel_rx_queue(rx_queue, channel) {
				if (atomic_read(&efx->rxq_flush_outstanding) >=
				    EFX_RX_FLUSH_COUNT)
					break;

				if (rx_queue->flush_pending) {
					rx_queue->flush_pending = false;
					atomic_dec(&efx->rxq_flush_pending);
					atomic_inc(&efx->rxq_flush_outstanding);
					efx_flush_rx_queue(rx_queue);
				}
			}
		}

	wait:
		timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
					     timeout);
	}

	if (atomic_read(&efx->drain_pending) &&
	    !efx_check_tx_flush_complete(efx)) {
		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
			  "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
			  atomic_read(&efx->rxq_flush_outstanding),
			  atomic_read(&efx->rxq_flush_pending));
		rc = -ETIMEDOUT;

		atomic_set(&efx->drain_pending, 0);
		atomic_set(&efx->rxq_flush_pending, 0);
		atomic_set(&efx->rxq_flush_outstanding, 0);
	}

	efx->type->finish_flush(efx);

	return rc;
}

/**************************************************************************
 *
 * Event queue processing
 * Event queues are processed by per-channel tasklets.
 *
 **************************************************************************/

/* Update a channel's event queue's read pointer (RPTR) register
 *
 * This writes the EVQ_RPTR_REG register for the specified channel's
 * event queue.
 */
void efx_nic_eventq_read_ack(struct efx_channel *channel)
{
	efx_dword_t reg;
	struct efx_nic *efx = channel->efx;

	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
			     channel->eventq_read_ptr & channel->eventq_mask);

	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
	 * of 4 bytes, but it is really 16 bytes just like later revisions.
	 */
	efx_writed(efx, &reg,
		   efx->type->evq_rptr_tbl_base +
		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
}

/* Use HW to insert a SW defined event */
void efx_generate_event(struct efx_nic *efx, unsigned int evq,
			efx_qword_t *event)
{
	efx_oword_t drv_ev_reg;

	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
	drv_ev_reg.u32[0] = event->u32[0];
	drv_ev_reg.u32[1] = event->u32[1];
	drv_ev_reg.u32[2] = 0;
	drv_ev_reg.u32[3] = 0;
	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
}

static void efx_magic_event(struct efx_channel *channel, u32 magic)
{
	efx_qword_t event;

	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
			     FSE_AZ_EV_CODE_DRV_GEN_EV,
			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
	efx_generate_event(channel->efx, channel->channel, &event);
}

/* Handle a transmit completion event
 *
 * The NIC batches TX completion events; the message we receive is of
 * the form "complete all TX events up to this index".
 */
static int
efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
{
	unsigned int tx_ev_desc_ptr;
	unsigned int tx_ev_q_label;
	struct efx_tx_queue *tx_queue;
	struct efx_nic *efx = channel->efx;
	int tx_packets = 0;

	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
		return 0;

	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
		/* Transmit completion */
		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
		tx_queue = efx_channel_get_tx_queue(
			channel, tx_ev_q_label % EFX_TXQ_TYPES);
		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
			      tx_queue->ptr_mask);
		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
		/* Rewrite the FIFO write pointer */
		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
		tx_queue = efx_channel_get_tx_queue(
			channel, tx_ev_q_label % EFX_TXQ_TYPES);

		netif_tx_lock(efx->net_dev);
		efx_notify_tx_desc(tx_queue);
		netif_tx_unlock(efx->net_dev);
	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
		   EFX_WORKAROUND_10727(efx)) {
		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
	} else {
		netif_err(efx, tx_err, efx->net_dev,
			  "channel %d unexpected TX event "
			  EFX_QWORD_FMT"\n", channel->channel,
			  EFX_QWORD_VAL(*event));
	}

	return tx_packets;
}

/* Detect errors included in the rx_evt_pkt_ok bit. */
static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
				const efx_qword_t *event)
{
	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
	struct efx_nic *efx = rx_queue->efx;
	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
	bool rx_ev_other_err, rx_ev_pause_frm;
	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
	unsigned rx_ev_pkt_type;

	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
	rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);

	/* Every error apart from tobe_disc and pause_frm */
	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);

	/* Count errors that are not in MAC stats.  Ignore expected
	 * checksum errors during self-test. */
	if (rx_ev_frm_trunc)
		++channel->n_rx_frm_trunc;
	else if (rx_ev_tobe_disc)
		++channel->n_rx_tobe_disc;
	else if (!efx->loopback_selftest) {
		if (rx_ev_ip_hdr_chksum_err)
			++channel->n_rx_ip_hdr_chksum_err;
		else if (rx_ev_tcp_udp_chksum_err)
			++channel->n_rx_tcp_udp_chksum_err;
	}

	/* TOBE_DISC is expected on unicast mismatches; don't print out an
	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
	 * to a FIFO overflow.
	 */
#ifdef DEBUG
	if (rx_ev_other_err && net_ratelimit()) {
		netif_dbg(efx, rx_err, efx->net_dev,
			  " RX queue %d unexpected RX event "
			  EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
			  rx_ev_ip_hdr_chksum_err ?
			  " [IP_HDR_CHKSUM_ERR]" : "",
			  rx_ev_tcp_udp_chksum_err ?
			  " [TCP_UDP_CHKSUM_ERR]" : "",
			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
			  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
			  rx_ev_pause_frm ? " [PAUSE]" : "");
	}
#endif

	/* The frame must be discarded if any of these are true. */
	return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
		rx_ev_tobe_disc | rx_ev_pause_frm) ?
		EFX_RX_PKT_DISCARD : 0;
}

/* Handle receive events that are not in-order. */
static void
efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
{
	struct efx_nic *efx = rx_queue->efx;
	unsigned expected, dropped;

	expected = rx_queue->removed_count & rx_queue->ptr_mask;
	dropped = (index - expected) & rx_queue->ptr_mask;
	netif_info(efx, rx_err, efx->net_dev,
		   "dropped %d events (index=%d expected=%d)\n",
		   dropped, index, expected);

	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
}

/* Handle a packet received event
 *
 * The NIC gives a "discard" flag if it's a unicast packet with the
 * wrong destination address
 * Also "is multicast" and "matches multicast filter" flags can be used to
 * discard non-matching multicast packets.
 */
static void
efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
{
	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
	unsigned expected_ptr;
	bool rx_ev_pkt_ok;
	u16 flags;
	struct efx_rx_queue *rx_queue;
	struct efx_nic *efx = channel->efx;

	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
		return;

	/* Basic packet information */
	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
		channel->channel);

	rx_queue = efx_channel_get_rx_queue(channel);

	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
	expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
	if (unlikely(rx_ev_desc_ptr != expected_ptr))
		efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);

	if (likely(rx_ev_pkt_ok)) {
		/* If packet is marked as OK and packet type is TCP/IP or
		 * UDP/IP, then we can rely on the hardware checksum.
		 */
		flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
			 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
			EFX_RX_PKT_CSUMMED : 0;
	} else {
		flags = efx_handle_rx_not_ok(rx_queue, event);
	}

	/* Detect multicast packets that didn't match the filter */
	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
	if (rx_ev_mcast_pkt) {
		unsigned int rx_ev_mcast_hash_match =
			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);

		if (unlikely(!rx_ev_mcast_hash_match)) {
			++channel->n_rx_mcast_mismatch;
			flags |= EFX_RX_PKT_DISCARD;
		}
	}

	channel->irq_mod_score += 2;

	/* Handle received packet */
	efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags);
}

/* If this flush done event corresponds to a &struct efx_tx_queue, then
 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
 * of all transmit completions.
 */
static void
efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
{
	struct efx_tx_queue *tx_queue;
	int qid;

	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
	if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
					    qid % EFX_TXQ_TYPES);
		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
			efx_magic_event(tx_queue->channel,
					EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
		}
	}
}

/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
 * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
 * the RX queue back to the mask of RX queues in need of flushing.
 */
static void
efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
{
	struct efx_channel *channel;
	struct efx_rx_queue *rx_queue;
	int qid;
	bool failed;

	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
	if (qid >= efx->n_channels)
		return;
	channel = efx_get_channel(efx, qid);
	if (!efx_channel_has_rx_queue(channel))
		return;
	rx_queue = efx_channel_get_rx_queue(channel);

	if (failed) {
		netif_info(efx, hw, efx->net_dev,
			   "RXQ %d flush retry\n", qid);
		rx_queue->flush_pending = true;
		atomic_inc(&efx->rxq_flush_pending);
	} else {
		efx_magic_event(efx_rx_queue_channel(rx_queue),
				EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
	}
	atomic_dec(&efx->rxq_flush_outstanding);
	if (efx_flush_wake(efx))
		wake_up(&efx->flush_wq);
}

static void
efx_handle_drain_event(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;

	WARN_ON(atomic_read(&efx->drain_pending) == 0);
	atomic_dec(&efx->drain_pending);
	if (efx_flush_wake(efx))
		wake_up(&efx->flush_wq);
}

static void
efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	struct efx_rx_queue *rx_queue =
		efx_channel_has_rx_queue(channel) ?
		efx_channel_get_rx_queue(channel) : NULL;
	unsigned magic, code;

	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
	code = _EFX_CHANNEL_MAGIC_CODE(magic);

	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
		channel->event_test_cpu = raw_smp_processor_id();
	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
		/* The queue must be empty, so we won't receive any rx
		 * events, so efx_process_channel() won't refill the
		 * queue. Refill it here */
		efx_fast_push_rx_descriptors(rx_queue);
	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
		rx_queue->enabled = false;
		efx_handle_drain_event(channel);
	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
		efx_handle_drain_event(channel);
	} else {
		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
			  "generated event "EFX_QWORD_FMT"\n",
			  channel->channel, EFX_QWORD_VAL(*event));
	}
}

static void
efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	unsigned int ev_sub_code;
	unsigned int ev_sub_data;

	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);

	switch (ev_sub_code) {
	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
			   channel->channel, ev_sub_data);
		efx_handle_tx_flush_done(efx, event);
		efx_sriov_tx_flush_done(efx, event);
		break;
	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
			   channel->channel, ev_sub_data);
		efx_handle_rx_flush_done(efx, event);
		efx_sriov_rx_flush_done(efx, event);
		break;
	case FSE_AZ_EVQ_INIT_DONE_EV:
		netif_dbg(efx, hw, efx->net_dev,
			  "channel %d EVQ %d initialised\n",
			  channel->channel, ev_sub_data);
		break;
	case FSE_AZ_SRM_UPD_DONE_EV:
		netif_vdbg(efx, hw, efx->net_dev,
			   "channel %d SRAM update done\n", channel->channel);
		break;
	case FSE_AZ_WAKE_UP_EV:
		netif_vdbg(efx, hw, efx->net_dev,
			   "channel %d RXQ %d wakeup event\n",
			   channel->channel, ev_sub_data);
		break;
	case FSE_AZ_TIMER_EV:
		netif_vdbg(efx, hw, efx->net_dev,
			   "channel %d RX queue %d timer expired\n",
			   channel->channel, ev_sub_data);
		break;
	case FSE_AA_RX_RECOVER_EV:
		netif_err(efx, rx_err, efx->net_dev,
			  "channel %d seen DRIVER RX_RESET event. "
			"Resetting.\n", channel->channel);
		atomic_inc(&efx->rx_reset);
		efx_schedule_reset(efx,
				   EFX_WORKAROUND_6555(efx) ?
				   RESET_TYPE_RX_RECOVERY :
				   RESET_TYPE_DISABLE);
		break;
	case FSE_BZ_RX_DSC_ERROR_EV:
		if (ev_sub_data < EFX_VI_BASE) {
			netif_err(efx, rx_err, efx->net_dev,
				  "RX DMA Q %d reports descriptor fetch error."
				  " RX Q %d is disabled.\n", ev_sub_data,
				  ev_sub_data);
			efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
		} else
			efx_sriov_desc_fetch_err(efx, ev_sub_data);
		break;
	case FSE_BZ_TX_DSC_ERROR_EV:
		if (ev_sub_data < EFX_VI_BASE) {
			netif_err(efx, tx_err, efx->net_dev,
				  "TX DMA Q %d reports descriptor fetch error."
				  " TX Q %d is disabled.\n", ev_sub_data,
				  ev_sub_data);
			efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
		} else
			efx_sriov_desc_fetch_err(efx, ev_sub_data);
		break;
	default:
		netif_vdbg(efx, hw, efx->net_dev,
			   "channel %d unknown driver event code %d "
			   "data %04x\n", channel->channel, ev_sub_code,
			   ev_sub_data);
		break;
	}
}

int efx_nic_process_eventq(struct efx_channel *channel, int budget)
{
	struct efx_nic *efx = channel->efx;
	unsigned int read_ptr;
	efx_qword_t event, *p_event;
	int ev_code;
	int tx_packets = 0;
	int spent = 0;

	read_ptr = channel->eventq_read_ptr;

	for (;;) {
		p_event = efx_event(channel, read_ptr);
		event = *p_event;

		if (!efx_event_present(&event))
			/* End of events */
			break;

		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
			   "channel %d event is "EFX_QWORD_FMT"\n",
			   channel->channel, EFX_QWORD_VAL(event));

		/* Clear this event by marking it all ones */
		EFX_SET_QWORD(*p_event);

		++read_ptr;

		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);

		switch (ev_code) {
		case FSE_AZ_EV_CODE_RX_EV:
			efx_handle_rx_event(channel, &event);
			if (++spent == budget)
				goto out;
			break;
		case FSE_AZ_EV_CODE_TX_EV:
			tx_packets += efx_handle_tx_event(channel, &event);
			if (tx_packets > efx->txq_entries) {
				spent = budget;
				goto out;
			}
			break;
		case FSE_AZ_EV_CODE_DRV_GEN_EV:
			efx_handle_generated_event(channel, &event);
			break;
		case FSE_AZ_EV_CODE_DRIVER_EV:
			efx_handle_driver_event(channel, &event);
			break;
		case FSE_CZ_EV_CODE_USER_EV:
			efx_sriov_event(channel, &event);
			break;
		case FSE_CZ_EV_CODE_MCDI_EV:
			efx_mcdi_process_event(channel, &event);
			break;
		case FSE_AZ_EV_CODE_GLOBAL_EV:
			if (efx->type->handle_global_event &&
			    efx->type->handle_global_event(channel, &event))
				break;
			/* else fall through */
		default:
			netif_err(channel->efx, hw, channel->efx->net_dev,
				  "channel %d unknown event type %d (data "
				  EFX_QWORD_FMT ")\n", channel->channel,
				  ev_code, EFX_QWORD_VAL(event));
		}
	}

out:
	channel->eventq_read_ptr = read_ptr;
	return spent;
}

/* Check whether an event is present in the eventq at the current
 * read pointer.  Only useful for self-test.
 */
bool efx_nic_event_present(struct efx_channel *channel)
{
	return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
}

/* Allocate buffer table entries for event queue */
int efx_nic_probe_eventq(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;
	unsigned entries;

	entries = channel->eventq_mask + 1;
	return efx_alloc_special_buffer(efx, &channel->eventq,
					entries * sizeof(efx_qword_t));
}

void efx_nic_init_eventq(struct efx_channel *channel)
{
	efx_oword_t reg;
	struct efx_nic *efx = channel->efx;

	netif_dbg(efx, hw, efx->net_dev,
		  "channel %d event queue in special buffers %d-%d\n",
		  channel->channel, channel->eventq.index,
		  channel->eventq.index + channel->eventq.entries - 1);

	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
		EFX_POPULATE_OWORD_3(reg,
				     FRF_CZ_TIMER_Q_EN, 1,
				     FRF_CZ_HOST_NOTIFY_MODE, 0,
				     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
	}

	/* Pin event queue buffer */
	efx_init_special_buffer(efx, &channel->eventq);

	/* Fill event queue with all ones (i.e. empty events) */
	memset(channel->eventq.addr, 0xff, channel->eventq.len);

	/* Push event queue to card */
	EFX_POPULATE_OWORD_3(reg,
			     FRF_AZ_EVQ_EN, 1,
			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
			 channel->channel);

	efx->type->push_irq_moderation(channel);
}

void efx_nic_fini_eventq(struct efx_channel *channel)
{
	efx_oword_t reg;
	struct efx_nic *efx = channel->efx;

	/* Remove event queue from card */
	EFX_ZERO_OWORD(reg);
	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
			 channel->channel);
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);

	/* Unpin event queue */
	efx_fini_special_buffer(efx, &channel->eventq);
}

/* Free buffers backing event queue */
void efx_nic_remove_eventq(struct efx_channel *channel)
{
	efx_free_special_buffer(channel->efx, &channel->eventq);
}


void efx_nic_event_test_start(struct efx_channel *channel)
{
	channel->event_test_cpu = -1;
	smp_wmb();
	efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
}

void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
{
	efx_magic_event(efx_rx_queue_channel(rx_queue),
			EFX_CHANNEL_MAGIC_FILL(rx_queue));
}

/**************************************************************************
 *
 * Hardware interrupts
 * The hardware interrupt handler does very little work; all the event
 * queue processing is carried out by per-channel tasklets.
 *
 **************************************************************************/

/* Enable/disable/generate interrupts */
static inline void efx_nic_interrupts(struct efx_nic *efx,
				      bool enabled, bool force)
{
	efx_oword_t int_en_reg_ker;

	EFX_POPULATE_OWORD_3(int_en_reg_ker,
			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
			     FRF_AZ_KER_INT_KER, force,
			     FRF_AZ_DRV_INT_EN_KER, enabled);
	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
}

void efx_nic_enable_interrupts(struct efx_nic *efx)
{
	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */

	efx_nic_interrupts(efx, true, false);
}

void efx_nic_disable_interrupts(struct efx_nic *efx)
{
	/* Disable interrupts */
	efx_nic_interrupts(efx, false, false);
}

/* Generate a test interrupt
 * Interrupt must already have been enabled, otherwise nasty things
 * may happen.
 */
void efx_nic_irq_test_start(struct efx_nic *efx)
{
	efx->last_irq_cpu = -1;
	smp_wmb();
	efx_nic_interrupts(efx, true, true);
}

/* Process a fatal interrupt
 * Disable bus mastering ASAP and schedule a reset
 */
irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data = efx->nic_data;
	efx_oword_t *int_ker = efx->irq_status.addr;
	efx_oword_t fatal_intr;
	int error, mem_perr;

	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);

	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
		  EFX_OWORD_VAL(fatal_intr),
		  error ? "disabling bus mastering" : "no recognised error");

	/* If this is a memory parity error dump which blocks are offending */
	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
	if (mem_perr) {
		efx_oword_t reg;
		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
		netif_err(efx, hw, efx->net_dev,
			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
			  EFX_OWORD_VAL(reg));
	}

	/* Disable both devices */
	pci_clear_master(efx->pci_dev);
	if (efx_nic_is_dual_func(efx))
		pci_clear_master(nic_data->pci_dev2);
	efx_nic_disable_interrupts(efx);

	/* Count errors and reset or disable the NIC accordingly */
	if (efx->int_error_count == 0 ||
	    time_after(jiffies, efx->int_error_expire)) {
		efx->int_error_count = 0;
		efx->int_error_expire =
			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
	}
	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
		netif_err(efx, hw, efx->net_dev,
			  "SYSTEM ERROR - reset scheduled\n");
		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
	} else {
		netif_err(efx, hw, efx->net_dev,
			  "SYSTEM ERROR - max number of errors seen."
			  "NIC will be disabled\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	}

	return IRQ_HANDLED;
}

/* Handle a legacy interrupt
 * Acknowledges the interrupt and schedule event queue processing.
 */
static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
{
	struct efx_nic *efx = dev_id;
	efx_oword_t *int_ker = efx->irq_status.addr;
	irqreturn_t result = IRQ_NONE;
	struct efx_channel *channel;
	efx_dword_t reg;
	u32 queues;
	int syserr;

	/* Could this be ours?  If interrupts are disabled then the
	 * channel state may not be valid.
	 */
	if (!efx->legacy_irq_enabled)
		return result;

	/* Read the ISR which also ACKs the interrupts */
	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
	queues = EFX_EXTRACT_DWORD(reg, 0, 31);

	/* Handle non-event-queue sources */
	if (queues & (1U << efx->irq_level)) {
		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
		if (unlikely(syserr))
			return efx_nic_fatal_interrupt(efx);
		efx->last_irq_cpu = raw_smp_processor_id();
	}

	if (queues != 0) {
		if (EFX_WORKAROUND_15783(efx))
			efx->irq_zero_count = 0;

		/* Schedule processing of any interrupting queues */
		efx_for_each_channel(channel, efx) {
			if (queues & 1)
				efx_schedule_channel_irq(channel);
			queues >>= 1;
		}
		result = IRQ_HANDLED;

	} else if (EFX_WORKAROUND_15783(efx)) {
		efx_qword_t *event;

		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
		 * because this might be a shared interrupt. */
		if (efx->irq_zero_count++ == 0)
			result = IRQ_HANDLED;

		/* Ensure we schedule or rearm all event queues */
		efx_for_each_channel(channel, efx) {
			event = efx_event(channel, channel->eventq_read_ptr);
			if (efx_event_present(event))
				efx_schedule_channel_irq(channel);
			else
				efx_nic_eventq_read_ack(channel);
		}
	}

	if (result == IRQ_HANDLED)
		netif_vdbg(efx, intr, efx->net_dev,
			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));

	return result;
}

/* Handle an MSI interrupt
 *
 * Handle an MSI hardware interrupt.  This routine schedules event
 * queue processing.  No interrupt acknowledgement cycle is necessary.
 * Also, we never need to check that the interrupt is for us, since
 * MSI interrupts cannot be shared.
 */
static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
{
	struct efx_channel *channel = *(struct efx_channel **)dev_id;
	struct efx_nic *efx = channel->efx;
	efx_oword_t *int_ker = efx->irq_status.addr;
	int syserr;

	netif_vdbg(efx, intr, efx->net_dev,
		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));

	/* Handle non-event-queue sources */
	if (channel->channel == efx->irq_level) {
		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
		if (unlikely(syserr))
			return efx_nic_fatal_interrupt(efx);
		efx->last_irq_cpu = raw_smp_processor_id();
	}

	/* Schedule processing of the channel */
	efx_schedule_channel_irq(channel);

	return IRQ_HANDLED;
}


/* Setup RSS indirection table.
 * This maps from the hash value of the packet to RXQ
 */
void efx_nic_push_rx_indir_table(struct efx_nic *efx)
{
	size_t i = 0;
	efx_dword_t dword;

	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
		return;

	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
		     FR_BZ_RX_INDIRECTION_TBL_ROWS);

	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
				     efx->rx_indir_table[i]);
		efx_writed(efx, &dword,
			   FR_BZ_RX_INDIRECTION_TBL +
			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
	}
}

/* Hook interrupt handler(s)
 * Try MSI and then legacy interrupts.
 */
int efx_nic_init_interrupt(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	if (!EFX_INT_MODE_USE_MSI(efx)) {
		irq_handler_t handler;
		if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
			handler = efx_legacy_interrupt;
		else
			handler = falcon_legacy_interrupt_a1;

		rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
				 efx->name, efx);
		if (rc) {
			netif_err(efx, drv, efx->net_dev,
				  "failed to hook legacy IRQ %d\n",
				  efx->pci_dev->irq);
			goto fail1;
		}
		return 0;
	}

	/* Hook MSI or MSI-X interrupt */
	efx_for_each_channel(channel, efx) {
		rc = request_irq(channel->irq, efx_msi_interrupt,
				 IRQF_PROBE_SHARED, /* Not shared */
				 efx->channel_name[channel->channel],
				 &efx->channel[channel->channel]);
		if (rc) {
			netif_err(efx, drv, efx->net_dev,
				  "failed to hook IRQ %d\n", channel->irq);
			goto fail2;
		}
	}

	return 0;

 fail2:
	efx_for_each_channel(channel, efx)
		free_irq(channel->irq, &efx->channel[channel->channel]);
 fail1:
	return rc;
}

void efx_nic_fini_interrupt(struct efx_nic *efx)
{
	struct efx_channel *channel;
	efx_oword_t reg;

	/* Disable MSI/MSI-X interrupts */
	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			free_irq(channel->irq, &efx->channel[channel->channel]);
	}

	/* ACK legacy interrupt */
	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
		efx_reado(efx, &reg, FR_BZ_INT_ISR0);
	else
		falcon_irq_ack_a1(efx);

	/* Disable legacy interrupt */
	if (efx->legacy_irq)
		free_irq(efx->legacy_irq, efx);
}

/* Looks at available SRAM resources and works out how many queues we
 * can support, and where things like descriptor caches should live.
 *
 * SRAM is split up as follows:
 * 0                          buftbl entries for channels
 * efx->vf_buftbl_base        buftbl entries for SR-IOV
 * efx->rx_dc_base            RX descriptor caches
 * efx->tx_dc_base            TX descriptor caches
 */
void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
{
	unsigned vi_count, buftbl_min;

	/* Account for the buffer table entries backing the datapath channels
	 * and the descriptor caches for those channels.
	 */
	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
		       efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
		       efx->n_channels * EFX_MAX_EVQ_SIZE)
		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
	vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);

#ifdef CONFIG_SFC_SRIOV
	if (efx_sriov_wanted(efx)) {
		unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;

		efx->vf_buftbl_base = buftbl_min;

		vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
		vi_count = max(vi_count, EFX_VI_BASE);
		buftbl_free = (sram_lim_qw - buftbl_min -
			       vi_count * vi_dc_entries);

		entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
				  efx_vf_size(efx));
		vf_limit = min(buftbl_free / entries_per_vf,
			       (1024U - EFX_VI_BASE) >> efx->vi_scale);

		if (efx->vf_count > vf_limit) {
			netif_err(efx, probe, efx->net_dev,
				  "Reducing VF count from from %d to %d\n",
				  efx->vf_count, vf_limit);
			efx->vf_count = vf_limit;
		}
		vi_count += efx->vf_count * efx_vf_size(efx);
	}
#endif

	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
}

u32 efx_nic_fpga_ver(struct efx_nic *efx)
{
	efx_oword_t altera_build;
	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
}

void efx_nic_init_common(struct efx_nic *efx)
{
	efx_oword_t temp;

	/* Set positions of descriptor caches in SRAM. */
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);

	/* Set TX descriptor cache size. */
	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);

	/* Set RX descriptor cache size.  Set low watermark to size-8, as
	 * this allows most efficient prefetching.
	 */
	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);

	/* Program INT_KER address */
	EFX_POPULATE_OWORD_2(temp,
			     FRF_AZ_NORM_INT_VEC_DIS_KER,
			     EFX_INT_MODE_USE_MSI(efx),
			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);

	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
		/* Use an interrupt level unused by event queues */
		efx->irq_level = 0x1f;
	else
		/* Use a valid MSI-X vector */
		efx->irq_level = 0;

	/* Enable all the genuinely fatal interrupts.  (They are still
	 * masked by the overall interrupt mask, controlled by
	 * falcon_interrupts()).
	 *
	 * Note: All other fatal interrupts are enabled
	 */
	EFX_POPULATE_OWORD_3(temp,
			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
		EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
	EFX_INVERT_OWORD(temp);
	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);

	efx_nic_push_rx_indir_table(efx);

	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
	 */
	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
	/* Enable SW_EV to inherit in char driver - assume harmless here */
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
	/* Disable hardware watchdog which can misfire */
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
	/* Squash TX of packets of 16 bytes or less */
	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);

	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
		EFX_POPULATE_OWORD_4(temp,
				     /* Default values */
				     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
				     FRF_BZ_TX_PACE_SB_AF, 0xb,
				     FRF_BZ_TX_PACE_FB_BASE, 0,
				     /* Allow large pace values in the
				      * fast bin. */
				     FRF_BZ_TX_PACE_BIN_TH,
				     FFE_BZ_TX_PACE_RESERVED);
		efx_writeo(efx, &temp, FR_BZ_TX_PACE);
	}
}

/* Register dump */

#define REGISTER_REVISION_A	1
#define REGISTER_REVISION_B	2
#define REGISTER_REVISION_C	3
#define REGISTER_REVISION_Z	3	/* latest revision */

struct efx_nic_reg {
	u32 offset:24;
	u32 min_revision:2, max_revision:2;
};

#define REGISTER(name, min_rev, max_rev) {				\
	FR_ ## min_rev ## max_rev ## _ ## name,				\
	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev	\
}
#define REGISTER_AA(name) REGISTER(name, A, A)
#define REGISTER_AB(name) REGISTER(name, A, B)
#define REGISTER_AZ(name) REGISTER(name, A, Z)
#define REGISTER_BB(name) REGISTER(name, B, B)
#define REGISTER_BZ(name) REGISTER(name, B, Z)
#define REGISTER_CZ(name) REGISTER(name, C, Z)

static const struct efx_nic_reg efx_nic_regs[] = {
	REGISTER_AZ(ADR_REGION),
	REGISTER_AZ(INT_EN_KER),
	REGISTER_BZ(INT_EN_CHAR),
	REGISTER_AZ(INT_ADR_KER),
	REGISTER_BZ(INT_ADR_CHAR),
	/* INT_ACK_KER is WO */
	/* INT_ISR0 is RC */
	REGISTER_AZ(HW_INIT),
	REGISTER_CZ(USR_EV_CFG),
	REGISTER_AB(EE_SPI_HCMD),
	REGISTER_AB(EE_SPI_HADR),
	REGISTER_AB(EE_SPI_HDATA),
	REGISTER_AB(EE_BASE_PAGE),
	REGISTER_AB(EE_VPD_CFG0),
	/* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
	/* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
	/* PCIE_CORE_INDIRECT is indirect */
	REGISTER_AB(NIC_STAT),
	REGISTER_AB(GPIO_CTL),
	REGISTER_AB(GLB_CTL),
	/* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
	REGISTER_BZ(DP_CTRL),
	REGISTER_AZ(MEM_STAT),
	REGISTER_AZ(CS_DEBUG),
	REGISTER_AZ(ALTERA_BUILD),
	REGISTER_AZ(CSR_SPARE),
	REGISTER_AB(PCIE_SD_CTL0123),
	REGISTER_AB(PCIE_SD_CTL45),
	REGISTER_AB(PCIE_PCS_CTL_STAT),
	/* DEBUG_DATA_OUT is not used */
	/* DRV_EV is WO */
	REGISTER_AZ(EVQ_CTL),
	REGISTER_AZ(EVQ_CNT1),
	REGISTER_AZ(EVQ_CNT2),
	REGISTER_AZ(BUF_TBL_CFG),
	REGISTER_AZ(SRM_RX_DC_CFG),
	REGISTER_AZ(SRM_TX_DC_CFG),
	REGISTER_AZ(SRM_CFG),
	/* BUF_TBL_UPD is WO */
	REGISTER_AZ(SRM_UPD_EVQ),
	REGISTER_AZ(SRAM_PARITY),
	REGISTER_AZ(RX_CFG),
	REGISTER_BZ(RX_FILTER_CTL),
	/* RX_FLUSH_DESCQ is WO */
	REGISTER_AZ(RX_DC_CFG),
	REGISTER_AZ(RX_DC_PF_WM),
	REGISTER_BZ(RX_RSS_TKEY),
	/* RX_NODESC_DROP is RC */
	REGISTER_AA(RX_SELF_RST),
	/* RX_DEBUG, RX_PUSH_DROP are not used */
	REGISTER_CZ(RX_RSS_IPV6_REG1),
	REGISTER_CZ(RX_RSS_IPV6_REG2),
	REGISTER_CZ(RX_RSS_IPV6_REG3),
	/* TX_FLUSH_DESCQ is WO */
	REGISTER_AZ(TX_DC_CFG),
	REGISTER_AA(TX_CHKSM_CFG),
	REGISTER_AZ(TX_CFG),
	/* TX_PUSH_DROP is not used */
	REGISTER_AZ(TX_RESERVED),
	REGISTER_BZ(TX_PACE),
	/* TX_PACE_DROP_QID is RC */
	REGISTER_BB(TX_VLAN),
	REGISTER_BZ(TX_IPFIL_PORTEN),
	REGISTER_AB(MD_TXD),
	REGISTER_AB(MD_RXD),
	REGISTER_AB(MD_CS),
	REGISTER_AB(MD_PHY_ADR),
	REGISTER_AB(MD_ID),
	/* MD_STAT is RC */
	REGISTER_AB(MAC_STAT_DMA),
	REGISTER_AB(MAC_CTRL),
	REGISTER_BB(GEN_MODE),
	REGISTER_AB(MAC_MC_HASH_REG0),
	REGISTER_AB(MAC_MC_HASH_REG1),
	REGISTER_AB(GM_CFG1),
	REGISTER_AB(GM_CFG2),
	/* GM_IPG and GM_HD are not used */
	REGISTER_AB(GM_MAX_FLEN),
	/* GM_TEST is not used */
	REGISTER_AB(GM_ADR1),
	REGISTER_AB(GM_ADR2),
	REGISTER_AB(GMF_CFG0),
	REGISTER_AB(GMF_CFG1),
	REGISTER_AB(GMF_CFG2),
	REGISTER_AB(GMF_CFG3),
	REGISTER_AB(GMF_CFG4),
	REGISTER_AB(GMF_CFG5),
	REGISTER_BB(TX_SRC_MAC_CTL),
	REGISTER_AB(XM_ADR_LO),
	REGISTER_AB(XM_ADR_HI),
	REGISTER_AB(XM_GLB_CFG),
	REGISTER_AB(XM_TX_CFG),
	REGISTER_AB(XM_RX_CFG),
	REGISTER_AB(XM_MGT_INT_MASK),
	REGISTER_AB(XM_FC),
	REGISTER_AB(XM_PAUSE_TIME),
	REGISTER_AB(XM_TX_PARAM),
	REGISTER_AB(XM_RX_PARAM),
	/* XM_MGT_INT_MSK (note no 'A') is RC */
	REGISTER_AB(XX_PWR_RST),
	REGISTER_AB(XX_SD_CTL),
	REGISTER_AB(XX_TXDRV_CTL),
	/* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
	/* XX_CORE_STAT is partly RC */
};

struct efx_nic_reg_table {
	u32 offset:24;
	u32 min_revision:2, max_revision:2;
	u32 step:6, rows:21;
};

#define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
	offset,								\
	REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev,	\
	step, rows							\
}
#define REGISTER_TABLE(name, min_rev, max_rev)				\
	REGISTER_TABLE_DIMENSIONS(					\
		name, FR_ ## min_rev ## max_rev ## _ ## name,		\
		min_rev, max_rev,					\
		FR_ ## min_rev ## max_rev ## _ ## name ## _STEP,	\
		FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
#define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
#define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
#define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
#define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
#define REGISTER_TABLE_BB_CZ(name)					\
	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B,		\
				  FR_BZ_ ## name ## _STEP,		\
				  FR_BB_ ## name ## _ROWS),		\
	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z,		\
				  FR_BZ_ ## name ## _STEP,		\
				  FR_CZ_ ## name ## _ROWS)
#define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)

static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
	/* DRIVER is not used */
	/* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
	REGISTER_TABLE_BB(TX_IPFIL_TBL),
	REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
	REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
	REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
	REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
	REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
	REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
	REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
	/* We can't reasonably read all of the buffer table (up to 8MB!).
	 * However this driver will only use a few entries.  Reading
	 * 1K entries allows for some expansion of queue count and
	 * size before we need to change the version. */
	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
				  A, A, 8, 1024),
	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
				  B, Z, 8, 1024),
	REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
	REGISTER_TABLE_BB_CZ(TIMER_TBL),
	REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
	REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
	/* TX_FILTER_TBL0 is huge and not used by this driver */
	REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
	REGISTER_TABLE_CZ(MC_TREG_SMEM),
	/* MSIX_PBA_TABLE is not mapped */
	/* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
	REGISTER_TABLE_BZ(RX_FILTER_TBL0),
};

size_t efx_nic_get_regs_len(struct efx_nic *efx)
{
	const struct efx_nic_reg *reg;
	const struct efx_nic_reg_table *table;
	size_t len = 0;

	for (reg = efx_nic_regs;
	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
	     reg++)
		if (efx->type->revision >= reg->min_revision &&
		    efx->type->revision <= reg->max_revision)
			len += sizeof(efx_oword_t);

	for (table = efx_nic_reg_tables;
	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
	     table++)
		if (efx->type->revision >= table->min_revision &&
		    efx->type->revision <= table->max_revision)
			len += table->rows * min_t(size_t, table->step, 16);

	return len;
}

void efx_nic_get_regs(struct efx_nic *efx, void *buf)
{
	const struct efx_nic_reg *reg;
	const struct efx_nic_reg_table *table;

	for (reg = efx_nic_regs;
	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
	     reg++) {
		if (efx->type->revision >= reg->min_revision &&
		    efx->type->revision <= reg->max_revision) {
			efx_reado(efx, (efx_oword_t *)buf, reg->offset);
			buf += sizeof(efx_oword_t);
		}
	}

	for (table = efx_nic_reg_tables;
	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
	     table++) {
		size_t size, i;

		if (!(efx->type->revision >= table->min_revision &&
		      efx->type->revision <= table->max_revision))
			continue;

		size = min_t(size_t, table->step, 16);

		for (i = 0; i < table->rows; i++) {
			switch (table->step) {
			case 4: /* 32-bit SRAM */
				efx_readd(efx, buf, table->offset + 4 * i);
				break;
			case 8: /* 64-bit SRAM */
				efx_sram_readq(efx,
					       efx->membase + table->offset,
					       buf, i);
				break;
			case 16: /* 128-bit-readable register */
				efx_reado_table(efx, buf, table->offset, i);
				break;
			case 32: /* 128-bit register, interleaved */
				efx_reado_table(efx, buf, table->offset, 2 * i);
				break;
			default:
				WARN_ON(1);
				return;
			}
			buf += size;
		}
	}
}