summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/qlogic/qlge/qlge_main.c
blob: e04d471acb10d8a8e9fba7b55ef703753eae6c96 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
/*
 * QLogic qlge NIC HBA Driver
 * Copyright (c)  2003-2008 QLogic Corporation
 * See LICENSE.qlge for copyright and licensing details.
 * Author:     Linux qlge network device driver by
 *                      Ron Mercer <ron.mercer@qlogic.com>
 */
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/pagemap.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/dmapool.h>
#include <linux/mempool.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <net/ipv6.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/prefetch.h>
#include <net/ip6_checksum.h>

#include "qlge.h"

char qlge_driver_name[] = DRV_NAME;
const char qlge_driver_version[] = DRV_VERSION;

MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
MODULE_DESCRIPTION(DRV_STRING " ");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

static const u32 default_msg =
    NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
/* NETIF_MSG_TIMER |	*/
    NETIF_MSG_IFDOWN |
    NETIF_MSG_IFUP |
    NETIF_MSG_RX_ERR |
    NETIF_MSG_TX_ERR |
/*  NETIF_MSG_TX_QUEUED | */
/*  NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
/* NETIF_MSG_PKTDATA | */
    NETIF_MSG_HW | NETIF_MSG_WOL | 0;

static int debug = -1;	/* defaults above */
module_param(debug, int, 0664);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

#define MSIX_IRQ 0
#define MSI_IRQ 1
#define LEG_IRQ 2
static int qlge_irq_type = MSIX_IRQ;
module_param(qlge_irq_type, int, 0664);
MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");

static int qlge_mpi_coredump;
module_param(qlge_mpi_coredump, int, 0);
MODULE_PARM_DESC(qlge_mpi_coredump,
		"Option to enable MPI firmware dump. "
		"Default is OFF - Do Not allocate memory. ");

static int qlge_force_coredump;
module_param(qlge_force_coredump, int, 0);
MODULE_PARM_DESC(qlge_force_coredump,
		"Option to allow force of firmware core dump. "
		"Default is OFF - Do not allow.");

static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
	/* required last entry */
	{0,}
};

MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);

static int ql_wol(struct ql_adapter *qdev);
static void qlge_set_multicast_list(struct net_device *ndev);

/* This hardware semaphore causes exclusive access to
 * resources shared between the NIC driver, MPI firmware,
 * FCOE firmware and the FC driver.
 */
static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
{
	u32 sem_bits = 0;

	switch (sem_mask) {
	case SEM_XGMAC0_MASK:
		sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
		break;
	case SEM_XGMAC1_MASK:
		sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
		break;
	case SEM_ICB_MASK:
		sem_bits = SEM_SET << SEM_ICB_SHIFT;
		break;
	case SEM_MAC_ADDR_MASK:
		sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
		break;
	case SEM_FLASH_MASK:
		sem_bits = SEM_SET << SEM_FLASH_SHIFT;
		break;
	case SEM_PROBE_MASK:
		sem_bits = SEM_SET << SEM_PROBE_SHIFT;
		break;
	case SEM_RT_IDX_MASK:
		sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
		break;
	case SEM_PROC_REG_MASK:
		sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
		break;
	default:
		netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
		return -EINVAL;
	}

	ql_write32(qdev, SEM, sem_bits | sem_mask);
	return !(ql_read32(qdev, SEM) & sem_bits);
}

int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
{
	unsigned int wait_count = 30;
	do {
		if (!ql_sem_trylock(qdev, sem_mask))
			return 0;
		udelay(100);
	} while (--wait_count);
	return -ETIMEDOUT;
}

void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
{
	ql_write32(qdev, SEM, sem_mask);
	ql_read32(qdev, SEM);	/* flush */
}

/* This function waits for a specific bit to come ready
 * in a given register.  It is used mostly by the initialize
 * process, but is also used in kernel thread API such as
 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
 */
int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
{
	u32 temp;
	int count = UDELAY_COUNT;

	while (count) {
		temp = ql_read32(qdev, reg);

		/* check for errors */
		if (temp & err_bit) {
			netif_alert(qdev, probe, qdev->ndev,
				    "register 0x%.08x access error, value = 0x%.08x!.\n",
				    reg, temp);
			return -EIO;
		} else if (temp & bit)
			return 0;
		udelay(UDELAY_DELAY);
		count--;
	}
	netif_alert(qdev, probe, qdev->ndev,
		    "Timed out waiting for reg %x to come ready.\n", reg);
	return -ETIMEDOUT;
}

/* The CFG register is used to download TX and RX control blocks
 * to the chip. This function waits for an operation to complete.
 */
static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
{
	int count = UDELAY_COUNT;
	u32 temp;

	while (count) {
		temp = ql_read32(qdev, CFG);
		if (temp & CFG_LE)
			return -EIO;
		if (!(temp & bit))
			return 0;
		udelay(UDELAY_DELAY);
		count--;
	}
	return -ETIMEDOUT;
}


/* Used to issue init control blocks to hw. Maps control block,
 * sets address, triggers download, waits for completion.
 */
int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
		 u16 q_id)
{
	u64 map;
	int status = 0;
	int direction;
	u32 mask;
	u32 value;

	direction =
	    (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
	    PCI_DMA_FROMDEVICE;

	map = pci_map_single(qdev->pdev, ptr, size, direction);
	if (pci_dma_mapping_error(qdev->pdev, map)) {
		netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
		return -ENOMEM;
	}

	status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
	if (status)
		return status;

	status = ql_wait_cfg(qdev, bit);
	if (status) {
		netif_err(qdev, ifup, qdev->ndev,
			  "Timed out waiting for CFG to come ready.\n");
		goto exit;
	}

	ql_write32(qdev, ICB_L, (u32) map);
	ql_write32(qdev, ICB_H, (u32) (map >> 32));

	mask = CFG_Q_MASK | (bit << 16);
	value = bit | (q_id << CFG_Q_SHIFT);
	ql_write32(qdev, CFG, (mask | value));

	/*
	 * Wait for the bit to clear after signaling hw.
	 */
	status = ql_wait_cfg(qdev, bit);
exit:
	ql_sem_unlock(qdev, SEM_ICB_MASK);	/* does flush too */
	pci_unmap_single(qdev->pdev, map, size, direction);
	return status;
}

/* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
			u32 *value)
{
	u32 offset = 0;
	int status;

	switch (type) {
	case MAC_ADDR_TYPE_MULTI_MAC:
	case MAC_ADDR_TYPE_CAM_MAC:
		{
			status =
			    ql_wait_reg_rdy(qdev,
				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
			if (status)
				goto exit;
			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
				   MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
			status =
			    ql_wait_reg_rdy(qdev,
				MAC_ADDR_IDX, MAC_ADDR_MR, 0);
			if (status)
				goto exit;
			*value++ = ql_read32(qdev, MAC_ADDR_DATA);
			status =
			    ql_wait_reg_rdy(qdev,
				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
			if (status)
				goto exit;
			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
				   MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
			status =
			    ql_wait_reg_rdy(qdev,
				MAC_ADDR_IDX, MAC_ADDR_MR, 0);
			if (status)
				goto exit;
			*value++ = ql_read32(qdev, MAC_ADDR_DATA);
			if (type == MAC_ADDR_TYPE_CAM_MAC) {
				status =
				    ql_wait_reg_rdy(qdev,
					MAC_ADDR_IDX, MAC_ADDR_MW, 0);
				if (status)
					goto exit;
				ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
					   (index << MAC_ADDR_IDX_SHIFT) | /* index */
					   MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
				status =
				    ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
						    MAC_ADDR_MR, 0);
				if (status)
					goto exit;
				*value++ = ql_read32(qdev, MAC_ADDR_DATA);
			}
			break;
		}
	case MAC_ADDR_TYPE_VLAN:
	case MAC_ADDR_TYPE_MULTI_FLTR:
	default:
		netif_crit(qdev, ifup, qdev->ndev,
			   "Address type %d not yet supported.\n", type);
		status = -EPERM;
	}
exit:
	return status;
}

/* Set up a MAC, multicast or VLAN address for the
 * inbound frame matching.
 */
static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
			       u16 index)
{
	u32 offset = 0;
	int status = 0;

	switch (type) {
	case MAC_ADDR_TYPE_MULTI_MAC:
		{
			u32 upper = (addr[0] << 8) | addr[1];
			u32 lower = (addr[2] << 24) | (addr[3] << 16) |
					(addr[4] << 8) | (addr[5]);

			status =
				ql_wait_reg_rdy(qdev,
				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
			if (status)
				goto exit;
			ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
				(index << MAC_ADDR_IDX_SHIFT) |
				type | MAC_ADDR_E);
			ql_write32(qdev, MAC_ADDR_DATA, lower);
			status =
				ql_wait_reg_rdy(qdev,
				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
			if (status)
				goto exit;
			ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
				(index << MAC_ADDR_IDX_SHIFT) |
				type | MAC_ADDR_E);

			ql_write32(qdev, MAC_ADDR_DATA, upper);
			status =
				ql_wait_reg_rdy(qdev,
				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
			if (status)
				goto exit;
			break;
		}
	case MAC_ADDR_TYPE_CAM_MAC:
		{
			u32 cam_output;
			u32 upper = (addr[0] << 8) | addr[1];
			u32 lower =
			    (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
			    (addr[5]);
			status =
			    ql_wait_reg_rdy(qdev,
				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
			if (status)
				goto exit;
			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
				   type);	/* type */
			ql_write32(qdev, MAC_ADDR_DATA, lower);
			status =
			    ql_wait_reg_rdy(qdev,
				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
			if (status)
				goto exit;
			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
				   type);	/* type */
			ql_write32(qdev, MAC_ADDR_DATA, upper);
			status =
			    ql_wait_reg_rdy(qdev,
				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
			if (status)
				goto exit;
			ql_write32(qdev, MAC_ADDR_IDX, (offset) |	/* offset */
				   (index << MAC_ADDR_IDX_SHIFT) |	/* index */
				   type);	/* type */
			/* This field should also include the queue id
			   and possibly the function id.  Right now we hardcode
			   the route field to NIC core.
			 */
			cam_output = (CAM_OUT_ROUTE_NIC |
				      (qdev->
				       func << CAM_OUT_FUNC_SHIFT) |
					(0 << CAM_OUT_CQ_ID_SHIFT));
			if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
				cam_output |= CAM_OUT_RV;
			/* route to NIC core */
			ql_write32(qdev, MAC_ADDR_DATA, cam_output);
			break;
		}
	case MAC_ADDR_TYPE_VLAN:
		{
			u32 enable_bit = *((u32 *) &addr[0]);
			/* For VLAN, the addr actually holds a bit that
			 * either enables or disables the vlan id we are
			 * addressing. It's either MAC_ADDR_E on or off.
			 * That's bit-27 we're talking about.
			 */
			status =
			    ql_wait_reg_rdy(qdev,
				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
			if (status)
				goto exit;
			ql_write32(qdev, MAC_ADDR_IDX, offset |	/* offset */
				   (index << MAC_ADDR_IDX_SHIFT) |	/* index */
				   type |	/* type */
				   enable_bit);	/* enable/disable */
			break;
		}
	case MAC_ADDR_TYPE_MULTI_FLTR:
	default:
		netif_crit(qdev, ifup, qdev->ndev,
			   "Address type %d not yet supported.\n", type);
		status = -EPERM;
	}
exit:
	return status;
}

/* Set or clear MAC address in hardware. We sometimes
 * have to clear it to prevent wrong frame routing
 * especially in a bonding environment.
 */
static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
{
	int status;
	char zero_mac_addr[ETH_ALEN];
	char *addr;

	if (set) {
		addr = &qdev->current_mac_addr[0];
		netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
			     "Set Mac addr %pM\n", addr);
	} else {
		memset(zero_mac_addr, 0, ETH_ALEN);
		addr = &zero_mac_addr[0];
		netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
			     "Clearing MAC address\n");
	}
	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
	if (status)
		return status;
	status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
			MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
	if (status)
		netif_err(qdev, ifup, qdev->ndev,
			  "Failed to init mac address.\n");
	return status;
}

void ql_link_on(struct ql_adapter *qdev)
{
	netif_err(qdev, link, qdev->ndev, "Link is up.\n");
	netif_carrier_on(qdev->ndev);
	ql_set_mac_addr(qdev, 1);
}

void ql_link_off(struct ql_adapter *qdev)
{
	netif_err(qdev, link, qdev->ndev, "Link is down.\n");
	netif_carrier_off(qdev->ndev);
	ql_set_mac_addr(qdev, 0);
}

/* Get a specific frame routing value from the CAM.
 * Used for debug and reg dump.
 */
int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
{
	int status = 0;

	status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
	if (status)
		goto exit;

	ql_write32(qdev, RT_IDX,
		   RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
	status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
	if (status)
		goto exit;
	*value = ql_read32(qdev, RT_DATA);
exit:
	return status;
}

/* The NIC function for this chip has 16 routing indexes.  Each one can be used
 * to route different frame types to various inbound queues.  We send broadcast/
 * multicast/error frames to the default queue for slow handling,
 * and CAM hit/RSS frames to the fast handling queues.
 */
static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
			      int enable)
{
	int status = -EINVAL; /* Return error if no mask match. */
	u32 value = 0;

	switch (mask) {
	case RT_IDX_CAM_HIT:
		{
			value = RT_IDX_DST_CAM_Q |	/* dest */
			    RT_IDX_TYPE_NICQ |	/* type */
			    (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
			break;
		}
	case RT_IDX_VALID:	/* Promiscuous Mode frames. */
		{
			value = RT_IDX_DST_DFLT_Q |	/* dest */
			    RT_IDX_TYPE_NICQ |	/* type */
			    (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
			break;
		}
	case RT_IDX_ERR:	/* Pass up MAC,IP,TCP/UDP error frames. */
		{
			value = RT_IDX_DST_DFLT_Q |	/* dest */
			    RT_IDX_TYPE_NICQ |	/* type */
			    (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
			break;
		}
	case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
		{
			value = RT_IDX_DST_DFLT_Q | /* dest */
				RT_IDX_TYPE_NICQ | /* type */
				(RT_IDX_IP_CSUM_ERR_SLOT <<
				RT_IDX_IDX_SHIFT); /* index */
			break;
		}
	case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
		{
			value = RT_IDX_DST_DFLT_Q | /* dest */
				RT_IDX_TYPE_NICQ | /* type */
				(RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
				RT_IDX_IDX_SHIFT); /* index */
			break;
		}
	case RT_IDX_BCAST:	/* Pass up Broadcast frames to default Q. */
		{
			value = RT_IDX_DST_DFLT_Q |	/* dest */
			    RT_IDX_TYPE_NICQ |	/* type */
			    (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
			break;
		}
	case RT_IDX_MCAST:	/* Pass up All Multicast frames. */
		{
			value = RT_IDX_DST_DFLT_Q |	/* dest */
			    RT_IDX_TYPE_NICQ |	/* type */
			    (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
			break;
		}
	case RT_IDX_MCAST_MATCH:	/* Pass up matched Multicast frames. */
		{
			value = RT_IDX_DST_DFLT_Q |	/* dest */
			    RT_IDX_TYPE_NICQ |	/* type */
			    (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
			break;
		}
	case RT_IDX_RSS_MATCH:	/* Pass up matched RSS frames. */
		{
			value = RT_IDX_DST_RSS |	/* dest */
			    RT_IDX_TYPE_NICQ |	/* type */
			    (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
			break;
		}
	case 0:		/* Clear the E-bit on an entry. */
		{
			value = RT_IDX_DST_DFLT_Q |	/* dest */
			    RT_IDX_TYPE_NICQ |	/* type */
			    (index << RT_IDX_IDX_SHIFT);/* index */
			break;
		}
	default:
		netif_err(qdev, ifup, qdev->ndev,
			  "Mask type %d not yet supported.\n", mask);
		status = -EPERM;
		goto exit;
	}

	if (value) {
		status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
		if (status)
			goto exit;
		value |= (enable ? RT_IDX_E : 0);
		ql_write32(qdev, RT_IDX, value);
		ql_write32(qdev, RT_DATA, enable ? mask : 0);
	}
exit:
	return status;
}

static void ql_enable_interrupts(struct ql_adapter *qdev)
{
	ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
}

static void ql_disable_interrupts(struct ql_adapter *qdev)
{
	ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
}

/* If we're running with multiple MSI-X vectors then we enable on the fly.
 * Otherwise, we may have multiple outstanding workers and don't want to
 * enable until the last one finishes. In this case, the irq_cnt gets
 * incremented every time we queue a worker and decremented every time
 * a worker finishes.  Once it hits zero we enable the interrupt.
 */
u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
{
	u32 var = 0;
	unsigned long hw_flags = 0;
	struct intr_context *ctx = qdev->intr_context + intr;

	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
		/* Always enable if we're MSIX multi interrupts and
		 * it's not the default (zeroeth) interrupt.
		 */
		ql_write32(qdev, INTR_EN,
			   ctx->intr_en_mask);
		var = ql_read32(qdev, STS);
		return var;
	}

	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
	if (atomic_dec_and_test(&ctx->irq_cnt)) {
		ql_write32(qdev, INTR_EN,
			   ctx->intr_en_mask);
		var = ql_read32(qdev, STS);
	}
	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
	return var;
}

static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
{
	u32 var = 0;
	struct intr_context *ctx;

	/* HW disables for us if we're MSIX multi interrupts and
	 * it's not the default (zeroeth) interrupt.
	 */
	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
		return 0;

	ctx = qdev->intr_context + intr;
	spin_lock(&qdev->hw_lock);
	if (!atomic_read(&ctx->irq_cnt)) {
		ql_write32(qdev, INTR_EN,
		ctx->intr_dis_mask);
		var = ql_read32(qdev, STS);
	}
	atomic_inc(&ctx->irq_cnt);
	spin_unlock(&qdev->hw_lock);
	return var;
}

static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
{
	int i;
	for (i = 0; i < qdev->intr_count; i++) {
		/* The enable call does a atomic_dec_and_test
		 * and enables only if the result is zero.
		 * So we precharge it here.
		 */
		if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
			i == 0))
			atomic_set(&qdev->intr_context[i].irq_cnt, 1);
		ql_enable_completion_interrupt(qdev, i);
	}

}

static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
{
	int status, i;
	u16 csum = 0;
	__le16 *flash = (__le16 *)&qdev->flash;

	status = strncmp((char *)&qdev->flash, str, 4);
	if (status) {
		netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
		return	status;
	}

	for (i = 0; i < size; i++)
		csum += le16_to_cpu(*flash++);

	if (csum)
		netif_err(qdev, ifup, qdev->ndev,
			  "Invalid flash checksum, csum = 0x%.04x.\n", csum);

	return csum;
}

static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
{
	int status = 0;
	/* wait for reg to come ready */
	status = ql_wait_reg_rdy(qdev,
			FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
	if (status)
		goto exit;
	/* set up for reg read */
	ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
	/* wait for reg to come ready */
	status = ql_wait_reg_rdy(qdev,
			FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
	if (status)
		goto exit;
	 /* This data is stored on flash as an array of
	 * __le32.  Since ql_read32() returns cpu endian
	 * we need to swap it back.
	 */
	*data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
exit:
	return status;
}

static int ql_get_8000_flash_params(struct ql_adapter *qdev)
{
	u32 i, size;
	int status;
	__le32 *p = (__le32 *)&qdev->flash;
	u32 offset;
	u8 mac_addr[6];

	/* Get flash offset for function and adjust
	 * for dword access.
	 */
	if (!qdev->port)
		offset = FUNC0_FLASH_OFFSET / sizeof(u32);
	else
		offset = FUNC1_FLASH_OFFSET / sizeof(u32);

	if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
		return -ETIMEDOUT;

	size = sizeof(struct flash_params_8000) / sizeof(u32);
	for (i = 0; i < size; i++, p++) {
		status = ql_read_flash_word(qdev, i+offset, p);
		if (status) {
			netif_err(qdev, ifup, qdev->ndev,
				  "Error reading flash.\n");
			goto exit;
		}
	}

	status = ql_validate_flash(qdev,
			sizeof(struct flash_params_8000) / sizeof(u16),
			"8000");
	if (status) {
		netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
		status = -EINVAL;
		goto exit;
	}

	/* Extract either manufacturer or BOFM modified
	 * MAC address.
	 */
	if (qdev->flash.flash_params_8000.data_type1 == 2)
		memcpy(mac_addr,
			qdev->flash.flash_params_8000.mac_addr1,
			qdev->ndev->addr_len);
	else
		memcpy(mac_addr,
			qdev->flash.flash_params_8000.mac_addr,
			qdev->ndev->addr_len);

	if (!is_valid_ether_addr(mac_addr)) {
		netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
		status = -EINVAL;
		goto exit;
	}

	memcpy(qdev->ndev->dev_addr,
		mac_addr,
		qdev->ndev->addr_len);

exit:
	ql_sem_unlock(qdev, SEM_FLASH_MASK);
	return status;
}

static int ql_get_8012_flash_params(struct ql_adapter *qdev)
{
	int i;
	int status;
	__le32 *p = (__le32 *)&qdev->flash;
	u32 offset = 0;
	u32 size = sizeof(struct flash_params_8012) / sizeof(u32);

	/* Second function's parameters follow the first
	 * function's.
	 */
	if (qdev->port)
		offset = size;

	if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
		return -ETIMEDOUT;

	for (i = 0; i < size; i++, p++) {
		status = ql_read_flash_word(qdev, i+offset, p);
		if (status) {
			netif_err(qdev, ifup, qdev->ndev,
				  "Error reading flash.\n");
			goto exit;
		}

	}

	status = ql_validate_flash(qdev,
			sizeof(struct flash_params_8012) / sizeof(u16),
			"8012");
	if (status) {
		netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
		status = -EINVAL;
		goto exit;
	}

	if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
		status = -EINVAL;
		goto exit;
	}

	memcpy(qdev->ndev->dev_addr,
		qdev->flash.flash_params_8012.mac_addr,
		qdev->ndev->addr_len);

exit:
	ql_sem_unlock(qdev, SEM_FLASH_MASK);
	return status;
}

/* xgmac register are located behind the xgmac_addr and xgmac_data
 * register pair.  Each read/write requires us to wait for the ready
 * bit before reading/writing the data.
 */
static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
{
	int status;
	/* wait for reg to come ready */
	status = ql_wait_reg_rdy(qdev,
			XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
	if (status)
		return status;
	/* write the data to the data reg */
	ql_write32(qdev, XGMAC_DATA, data);
	/* trigger the write */
	ql_write32(qdev, XGMAC_ADDR, reg);
	return status;
}

/* xgmac register are located behind the xgmac_addr and xgmac_data
 * register pair.  Each read/write requires us to wait for the ready
 * bit before reading/writing the data.
 */
int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
{
	int status = 0;
	/* wait for reg to come ready */
	status = ql_wait_reg_rdy(qdev,
			XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
	if (status)
		goto exit;
	/* set up for reg read */
	ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
	/* wait for reg to come ready */
	status = ql_wait_reg_rdy(qdev,
			XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
	if (status)
		goto exit;
	/* get the data */
	*data = ql_read32(qdev, XGMAC_DATA);
exit:
	return status;
}

/* This is used for reading the 64-bit statistics regs. */
int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
{
	int status = 0;
	u32 hi = 0;
	u32 lo = 0;

	status = ql_read_xgmac_reg(qdev, reg, &lo);
	if (status)
		goto exit;

	status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
	if (status)
		goto exit;

	*data = (u64) lo | ((u64) hi << 32);

exit:
	return status;
}

static int ql_8000_port_initialize(struct ql_adapter *qdev)
{
	int status;
	/*
	 * Get MPI firmware version for driver banner
	 * and ethool info.
	 */
	status = ql_mb_about_fw(qdev);
	if (status)
		goto exit;
	status = ql_mb_get_fw_state(qdev);
	if (status)
		goto exit;
	/* Wake up a worker to get/set the TX/RX frame sizes. */
	queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
exit:
	return status;
}

/* Take the MAC Core out of reset.
 * Enable statistics counting.
 * Take the transmitter/receiver out of reset.
 * This functionality may be done in the MPI firmware at a
 * later date.
 */
static int ql_8012_port_initialize(struct ql_adapter *qdev)
{
	int status = 0;
	u32 data;

	if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
		/* Another function has the semaphore, so
		 * wait for the port init bit to come ready.
		 */
		netif_info(qdev, link, qdev->ndev,
			   "Another function has the semaphore, so wait for the port init bit to come ready.\n");
		status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
		if (status) {
			netif_crit(qdev, link, qdev->ndev,
				   "Port initialize timed out.\n");
		}
		return status;
	}

	netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
	/* Set the core reset. */
	status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
	if (status)
		goto end;
	data |= GLOBAL_CFG_RESET;
	status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
	if (status)
		goto end;

	/* Clear the core reset and turn on jumbo for receiver. */
	data &= ~GLOBAL_CFG_RESET;	/* Clear core reset. */
	data |= GLOBAL_CFG_JUMBO;	/* Turn on jumbo. */
	data |= GLOBAL_CFG_TX_STAT_EN;
	data |= GLOBAL_CFG_RX_STAT_EN;
	status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
	if (status)
		goto end;

	/* Enable transmitter, and clear it's reset. */
	status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
	if (status)
		goto end;
	data &= ~TX_CFG_RESET;	/* Clear the TX MAC reset. */
	data |= TX_CFG_EN;	/* Enable the transmitter. */
	status = ql_write_xgmac_reg(qdev, TX_CFG, data);
	if (status)
		goto end;

	/* Enable receiver and clear it's reset. */
	status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
	if (status)
		goto end;
	data &= ~RX_CFG_RESET;	/* Clear the RX MAC reset. */
	data |= RX_CFG_EN;	/* Enable the receiver. */
	status = ql_write_xgmac_reg(qdev, RX_CFG, data);
	if (status)
		goto end;

	/* Turn on jumbo. */
	status =
	    ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
	if (status)
		goto end;
	status =
	    ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
	if (status)
		goto end;

	/* Signal to the world that the port is enabled.        */
	ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
end:
	ql_sem_unlock(qdev, qdev->xg_sem_mask);
	return status;
}

static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
{
	return PAGE_SIZE << qdev->lbq_buf_order;
}

/* Get the next large buffer. */
static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
{
	struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
	rx_ring->lbq_curr_idx++;
	if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
		rx_ring->lbq_curr_idx = 0;
	rx_ring->lbq_free_cnt++;
	return lbq_desc;
}

static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
		struct rx_ring *rx_ring)
{
	struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);

	pci_dma_sync_single_for_cpu(qdev->pdev,
					dma_unmap_addr(lbq_desc, mapaddr),
				    rx_ring->lbq_buf_size,
					PCI_DMA_FROMDEVICE);

	/* If it's the last chunk of our master page then
	 * we unmap it.
	 */
	if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
					== ql_lbq_block_size(qdev))
		pci_unmap_page(qdev->pdev,
				lbq_desc->p.pg_chunk.map,
				ql_lbq_block_size(qdev),
				PCI_DMA_FROMDEVICE);
	return lbq_desc;
}

/* Get the next small buffer. */
static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
{
	struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
	rx_ring->sbq_curr_idx++;
	if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
		rx_ring->sbq_curr_idx = 0;
	rx_ring->sbq_free_cnt++;
	return sbq_desc;
}

/* Update an rx ring index. */
static void ql_update_cq(struct rx_ring *rx_ring)
{
	rx_ring->cnsmr_idx++;
	rx_ring->curr_entry++;
	if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
		rx_ring->cnsmr_idx = 0;
		rx_ring->curr_entry = rx_ring->cq_base;
	}
}

static void ql_write_cq_idx(struct rx_ring *rx_ring)
{
	ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
}

static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
						struct bq_desc *lbq_desc)
{
	if (!rx_ring->pg_chunk.page) {
		u64 map;
		rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
						GFP_ATOMIC,
						qdev->lbq_buf_order);
		if (unlikely(!rx_ring->pg_chunk.page)) {
			netif_err(qdev, drv, qdev->ndev,
				  "page allocation failed.\n");
			return -ENOMEM;
		}
		rx_ring->pg_chunk.offset = 0;
		map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
					0, ql_lbq_block_size(qdev),
					PCI_DMA_FROMDEVICE);
		if (pci_dma_mapping_error(qdev->pdev, map)) {
			__free_pages(rx_ring->pg_chunk.page,
					qdev->lbq_buf_order);
			rx_ring->pg_chunk.page = NULL;
			netif_err(qdev, drv, qdev->ndev,
				  "PCI mapping failed.\n");
			return -ENOMEM;
		}
		rx_ring->pg_chunk.map = map;
		rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
	}

	/* Copy the current master pg_chunk info
	 * to the current descriptor.
	 */
	lbq_desc->p.pg_chunk = rx_ring->pg_chunk;

	/* Adjust the master page chunk for next
	 * buffer get.
	 */
	rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
	if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
		rx_ring->pg_chunk.page = NULL;
		lbq_desc->p.pg_chunk.last_flag = 1;
	} else {
		rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
		get_page(rx_ring->pg_chunk.page);
		lbq_desc->p.pg_chunk.last_flag = 0;
	}
	return 0;
}
/* Process (refill) a large buffer queue. */
static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
	u32 clean_idx = rx_ring->lbq_clean_idx;
	u32 start_idx = clean_idx;
	struct bq_desc *lbq_desc;
	u64 map;
	int i;

	while (rx_ring->lbq_free_cnt > 32) {
		for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
				     "lbq: try cleaning clean_idx = %d.\n",
				     clean_idx);
			lbq_desc = &rx_ring->lbq[clean_idx];
			if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
				rx_ring->lbq_clean_idx = clean_idx;
				netif_err(qdev, ifup, qdev->ndev,
						"Could not get a page chunk, i=%d, clean_idx =%d .\n",
						i, clean_idx);
				return;
			}

			map = lbq_desc->p.pg_chunk.map +
				lbq_desc->p.pg_chunk.offset;
				dma_unmap_addr_set(lbq_desc, mapaddr, map);
			dma_unmap_len_set(lbq_desc, maplen,
					rx_ring->lbq_buf_size);
				*lbq_desc->addr = cpu_to_le64(map);

			pci_dma_sync_single_for_device(qdev->pdev, map,
						rx_ring->lbq_buf_size,
						PCI_DMA_FROMDEVICE);
			clean_idx++;
			if (clean_idx == rx_ring->lbq_len)
				clean_idx = 0;
		}

		rx_ring->lbq_clean_idx = clean_idx;
		rx_ring->lbq_prod_idx += 16;
		if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
			rx_ring->lbq_prod_idx = 0;
		rx_ring->lbq_free_cnt -= 16;
	}

	if (start_idx != clean_idx) {
		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
			     "lbq: updating prod idx = %d.\n",
			     rx_ring->lbq_prod_idx);
		ql_write_db_reg(rx_ring->lbq_prod_idx,
				rx_ring->lbq_prod_idx_db_reg);
	}
}

/* Process (refill) a small buffer queue. */
static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
	u32 clean_idx = rx_ring->sbq_clean_idx;
	u32 start_idx = clean_idx;
	struct bq_desc *sbq_desc;
	u64 map;
	int i;

	while (rx_ring->sbq_free_cnt > 16) {
		for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
			sbq_desc = &rx_ring->sbq[clean_idx];
			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
				     "sbq: try cleaning clean_idx = %d.\n",
				     clean_idx);
			if (sbq_desc->p.skb == NULL) {
				netif_printk(qdev, rx_status, KERN_DEBUG,
					     qdev->ndev,
					     "sbq: getting new skb for index %d.\n",
					     sbq_desc->index);
				sbq_desc->p.skb =
				    netdev_alloc_skb(qdev->ndev,
						     SMALL_BUFFER_SIZE);
				if (sbq_desc->p.skb == NULL) {
					rx_ring->sbq_clean_idx = clean_idx;
					return;
				}
				skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
				map = pci_map_single(qdev->pdev,
						     sbq_desc->p.skb->data,
						     rx_ring->sbq_buf_size,
						     PCI_DMA_FROMDEVICE);
				if (pci_dma_mapping_error(qdev->pdev, map)) {
					netif_err(qdev, ifup, qdev->ndev,
						  "PCI mapping failed.\n");
					rx_ring->sbq_clean_idx = clean_idx;
					dev_kfree_skb_any(sbq_desc->p.skb);
					sbq_desc->p.skb = NULL;
					return;
				}
				dma_unmap_addr_set(sbq_desc, mapaddr, map);
				dma_unmap_len_set(sbq_desc, maplen,
						  rx_ring->sbq_buf_size);
				*sbq_desc->addr = cpu_to_le64(map);
			}

			clean_idx++;
			if (clean_idx == rx_ring->sbq_len)
				clean_idx = 0;
		}
		rx_ring->sbq_clean_idx = clean_idx;
		rx_ring->sbq_prod_idx += 16;
		if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
			rx_ring->sbq_prod_idx = 0;
		rx_ring->sbq_free_cnt -= 16;
	}

	if (start_idx != clean_idx) {
		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
			     "sbq: updating prod idx = %d.\n",
			     rx_ring->sbq_prod_idx);
		ql_write_db_reg(rx_ring->sbq_prod_idx,
				rx_ring->sbq_prod_idx_db_reg);
	}
}

static void ql_update_buffer_queues(struct ql_adapter *qdev,
				    struct rx_ring *rx_ring)
{
	ql_update_sbq(qdev, rx_ring);
	ql_update_lbq(qdev, rx_ring);
}

/* Unmaps tx buffers.  Can be called from send() if a pci mapping
 * fails at some stage, or from the interrupt when a tx completes.
 */
static void ql_unmap_send(struct ql_adapter *qdev,
			  struct tx_ring_desc *tx_ring_desc, int mapped)
{
	int i;
	for (i = 0; i < mapped; i++) {
		if (i == 0 || (i == 7 && mapped > 7)) {
			/*
			 * Unmap the skb->data area, or the
			 * external sglist (AKA the Outbound
			 * Address List (OAL)).
			 * If its the zeroeth element, then it's
			 * the skb->data area.  If it's the 7th
			 * element and there is more than 6 frags,
			 * then its an OAL.
			 */
			if (i == 7) {
				netif_printk(qdev, tx_done, KERN_DEBUG,
					     qdev->ndev,
					     "unmapping OAL area.\n");
			}
			pci_unmap_single(qdev->pdev,
					 dma_unmap_addr(&tx_ring_desc->map[i],
							mapaddr),
					 dma_unmap_len(&tx_ring_desc->map[i],
						       maplen),
					 PCI_DMA_TODEVICE);
		} else {
			netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
				     "unmapping frag %d.\n", i);
			pci_unmap_page(qdev->pdev,
				       dma_unmap_addr(&tx_ring_desc->map[i],
						      mapaddr),
				       dma_unmap_len(&tx_ring_desc->map[i],
						     maplen), PCI_DMA_TODEVICE);
		}
	}

}

/* Map the buffers for this transmit.  This will return
 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
 */
static int ql_map_send(struct ql_adapter *qdev,
		       struct ob_mac_iocb_req *mac_iocb_ptr,
		       struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
{
	int len = skb_headlen(skb);
	dma_addr_t map;
	int frag_idx, err, map_idx = 0;
	struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
	int frag_cnt = skb_shinfo(skb)->nr_frags;

	if (frag_cnt) {
		netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
			     "frag_cnt = %d.\n", frag_cnt);
	}
	/*
	 * Map the skb buffer first.
	 */
	map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);

	err = pci_dma_mapping_error(qdev->pdev, map);
	if (err) {
		netif_err(qdev, tx_queued, qdev->ndev,
			  "PCI mapping failed with error: %d\n", err);

		return NETDEV_TX_BUSY;
	}

	tbd->len = cpu_to_le32(len);
	tbd->addr = cpu_to_le64(map);
	dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
	dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
	map_idx++;

	/*
	 * This loop fills the remainder of the 8 address descriptors
	 * in the IOCB.  If there are more than 7 fragments, then the
	 * eighth address desc will point to an external list (OAL).
	 * When this happens, the remainder of the frags will be stored
	 * in this list.
	 */
	for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
		skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
		tbd++;
		if (frag_idx == 6 && frag_cnt > 7) {
			/* Let's tack on an sglist.
			 * Our control block will now
			 * look like this:
			 * iocb->seg[0] = skb->data
			 * iocb->seg[1] = frag[0]
			 * iocb->seg[2] = frag[1]
			 * iocb->seg[3] = frag[2]
			 * iocb->seg[4] = frag[3]
			 * iocb->seg[5] = frag[4]
			 * iocb->seg[6] = frag[5]
			 * iocb->seg[7] = ptr to OAL (external sglist)
			 * oal->seg[0] = frag[6]
			 * oal->seg[1] = frag[7]
			 * oal->seg[2] = frag[8]
			 * oal->seg[3] = frag[9]
			 * oal->seg[4] = frag[10]
			 *      etc...
			 */
			/* Tack on the OAL in the eighth segment of IOCB. */
			map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
					     sizeof(struct oal),
					     PCI_DMA_TODEVICE);
			err = pci_dma_mapping_error(qdev->pdev, map);
			if (err) {
				netif_err(qdev, tx_queued, qdev->ndev,
					  "PCI mapping outbound address list with error: %d\n",
					  err);
				goto map_error;
			}

			tbd->addr = cpu_to_le64(map);
			/*
			 * The length is the number of fragments
			 * that remain to be mapped times the length
			 * of our sglist (OAL).
			 */
			tbd->len =
			    cpu_to_le32((sizeof(struct tx_buf_desc) *
					 (frag_cnt - frag_idx)) | TX_DESC_C);
			dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
					   map);
			dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
					  sizeof(struct oal));
			tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
			map_idx++;
		}

		map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
				       DMA_TO_DEVICE);

		err = dma_mapping_error(&qdev->pdev->dev, map);
		if (err) {
			netif_err(qdev, tx_queued, qdev->ndev,
				  "PCI mapping frags failed with error: %d.\n",
				  err);
			goto map_error;
		}

		tbd->addr = cpu_to_le64(map);
		tbd->len = cpu_to_le32(skb_frag_size(frag));
		dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
		dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
				  skb_frag_size(frag));

	}
	/* Save the number of segments we've mapped. */
	tx_ring_desc->map_cnt = map_idx;
	/* Terminate the last segment. */
	tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
	return NETDEV_TX_OK;

map_error:
	/*
	 * If the first frag mapping failed, then i will be zero.
	 * This causes the unmap of the skb->data area.  Otherwise
	 * we pass in the number of frags that mapped successfully
	 * so they can be umapped.
	 */
	ql_unmap_send(qdev, tx_ring_desc, map_idx);
	return NETDEV_TX_BUSY;
}

/* Categorizing receive firmware frame errors */
static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
				 struct rx_ring *rx_ring)
{
	struct nic_stats *stats = &qdev->nic_stats;

	stats->rx_err_count++;
	rx_ring->rx_errors++;

	switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
	case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
		stats->rx_code_err++;
		break;
	case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
		stats->rx_oversize_err++;
		break;
	case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
		stats->rx_undersize_err++;
		break;
	case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
		stats->rx_preamble_err++;
		break;
	case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
		stats->rx_frame_len_err++;
		break;
	case IB_MAC_IOCB_RSP_ERR_CRC:
		stats->rx_crc_err++;
	default:
		break;
	}
}

/* Process an inbound completion from an rx ring. */
static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
					struct rx_ring *rx_ring,
					struct ib_mac_iocb_rsp *ib_mac_rsp,
					u32 length,
					u16 vlan_id)
{
	struct sk_buff *skb;
	struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
	struct napi_struct *napi = &rx_ring->napi;

	/* Frame error, so drop the packet. */
	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
		ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
		put_page(lbq_desc->p.pg_chunk.page);
		return;
	}
	napi->dev = qdev->ndev;

	skb = napi_get_frags(napi);
	if (!skb) {
		netif_err(qdev, drv, qdev->ndev,
			  "Couldn't get an skb, exiting.\n");
		rx_ring->rx_dropped++;
		put_page(lbq_desc->p.pg_chunk.page);
		return;
	}
	prefetch(lbq_desc->p.pg_chunk.va);
	__skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
			     lbq_desc->p.pg_chunk.page,
			     lbq_desc->p.pg_chunk.offset,
			     length);

	skb->len += length;
	skb->data_len += length;
	skb->truesize += length;
	skb_shinfo(skb)->nr_frags++;

	rx_ring->rx_packets++;
	rx_ring->rx_bytes += length;
	skb->ip_summed = CHECKSUM_UNNECESSARY;
	skb_record_rx_queue(skb, rx_ring->cq_id);
	if (vlan_id != 0xffff)
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
	napi_gro_frags(napi);
}

/* Process an inbound completion from an rx ring. */
static void ql_process_mac_rx_page(struct ql_adapter *qdev,
					struct rx_ring *rx_ring,
					struct ib_mac_iocb_rsp *ib_mac_rsp,
					u32 length,
					u16 vlan_id)
{
	struct net_device *ndev = qdev->ndev;
	struct sk_buff *skb = NULL;
	void *addr;
	struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
	struct napi_struct *napi = &rx_ring->napi;

	skb = netdev_alloc_skb(ndev, length);
	if (!skb) {
		rx_ring->rx_dropped++;
		put_page(lbq_desc->p.pg_chunk.page);
		return;
	}

	addr = lbq_desc->p.pg_chunk.va;
	prefetch(addr);

	/* Frame error, so drop the packet. */
	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
		ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
		goto err_out;
	}

	/* The max framesize filter on this chip is set higher than
	 * MTU since FCoE uses 2k frames.
	 */
	if (skb->len > ndev->mtu + ETH_HLEN) {
		netif_err(qdev, drv, qdev->ndev,
			  "Segment too small, dropping.\n");
		rx_ring->rx_dropped++;
		goto err_out;
	}
	memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
	netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
		     "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
		     length);
	skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
				lbq_desc->p.pg_chunk.offset+ETH_HLEN,
				length-ETH_HLEN);
	skb->len += length-ETH_HLEN;
	skb->data_len += length-ETH_HLEN;
	skb->truesize += length-ETH_HLEN;

	rx_ring->rx_packets++;
	rx_ring->rx_bytes += skb->len;
	skb->protocol = eth_type_trans(skb, ndev);
	skb_checksum_none_assert(skb);

	if ((ndev->features & NETIF_F_RXCSUM) &&
		!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
		/* TCP frame. */
		if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
				     "TCP checksum done!\n");
			skb->ip_summed = CHECKSUM_UNNECESSARY;
		} else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
				(ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
			/* Unfragmented ipv4 UDP frame. */
			struct iphdr *iph =
				(struct iphdr *) ((u8 *)addr + ETH_HLEN);
			if (!(iph->frag_off &
				htons(IP_MF|IP_OFFSET))) {
				skb->ip_summed = CHECKSUM_UNNECESSARY;
				netif_printk(qdev, rx_status, KERN_DEBUG,
					     qdev->ndev,
					     "UDP checksum done!\n");
			}
		}
	}

	skb_record_rx_queue(skb, rx_ring->cq_id);
	if (vlan_id != 0xffff)
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
	if (skb->ip_summed == CHECKSUM_UNNECESSARY)
		napi_gro_receive(napi, skb);
	else
		netif_receive_skb(skb);
	return;
err_out:
	dev_kfree_skb_any(skb);
	put_page(lbq_desc->p.pg_chunk.page);
}

/* Process an inbound completion from an rx ring. */
static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
					struct rx_ring *rx_ring,
					struct ib_mac_iocb_rsp *ib_mac_rsp,
					u32 length,
					u16 vlan_id)
{
	struct net_device *ndev = qdev->ndev;
	struct sk_buff *skb = NULL;
	struct sk_buff *new_skb = NULL;
	struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);

	skb = sbq_desc->p.skb;
	/* Allocate new_skb and copy */
	new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
	if (new_skb == NULL) {
		rx_ring->rx_dropped++;
		return;
	}
	skb_reserve(new_skb, NET_IP_ALIGN);
	memcpy(skb_put(new_skb, length), skb->data, length);
	skb = new_skb;

	/* Frame error, so drop the packet. */
	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
		ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
		dev_kfree_skb_any(skb);
		return;
	}

	/* loopback self test for ethtool */
	if (test_bit(QL_SELFTEST, &qdev->flags)) {
		ql_check_lb_frame(qdev, skb);
		dev_kfree_skb_any(skb);
		return;
	}

	/* The max framesize filter on this chip is set higher than
	 * MTU since FCoE uses 2k frames.
	 */
	if (skb->len > ndev->mtu + ETH_HLEN) {
		dev_kfree_skb_any(skb);
		rx_ring->rx_dropped++;
		return;
	}

	prefetch(skb->data);
	if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
			     "%s Multicast.\n",
			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
			     IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
			     IB_MAC_IOCB_RSP_M_REG ? "Registered" :
			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
			     IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
	}
	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
			     "Promiscuous Packet.\n");

	rx_ring->rx_packets++;
	rx_ring->rx_bytes += skb->len;
	skb->protocol = eth_type_trans(skb, ndev);
	skb_checksum_none_assert(skb);

	/* If rx checksum is on, and there are no
	 * csum or frame errors.
	 */
	if ((ndev->features & NETIF_F_RXCSUM) &&
		!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
		/* TCP frame. */
		if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
				     "TCP checksum done!\n");
			skb->ip_summed = CHECKSUM_UNNECESSARY;
		} else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
				(ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
			/* Unfragmented ipv4 UDP frame. */
			struct iphdr *iph = (struct iphdr *) skb->data;
			if (!(iph->frag_off &
				htons(IP_MF|IP_OFFSET))) {
				skb->ip_summed = CHECKSUM_UNNECESSARY;
				netif_printk(qdev, rx_status, KERN_DEBUG,
					     qdev->ndev,
					     "UDP checksum done!\n");
			}
		}
	}

	skb_record_rx_queue(skb, rx_ring->cq_id);
	if (vlan_id != 0xffff)
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
	if (skb->ip_summed == CHECKSUM_UNNECESSARY)
		napi_gro_receive(&rx_ring->napi, skb);
	else
		netif_receive_skb(skb);
}

static void ql_realign_skb(struct sk_buff *skb, int len)
{
	void *temp_addr = skb->data;

	/* Undo the skb_reserve(skb,32) we did before
	 * giving to hardware, and realign data on
	 * a 2-byte boundary.
	 */
	skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
	skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
	skb_copy_to_linear_data(skb, temp_addr,
		(unsigned int)len);
}

/*
 * This function builds an skb for the given inbound
 * completion.  It will be rewritten for readability in the near
 * future, but for not it works well.
 */
static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
				       struct rx_ring *rx_ring,
				       struct ib_mac_iocb_rsp *ib_mac_rsp)
{
	struct bq_desc *lbq_desc;
	struct bq_desc *sbq_desc;
	struct sk_buff *skb = NULL;
	u32 length = le32_to_cpu(ib_mac_rsp->data_len);
       u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);

	/*
	 * Handle the header buffer if present.
	 */
	if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
	    ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
			     "Header of %d bytes in small buffer.\n", hdr_len);
		/*
		 * Headers fit nicely into a small buffer.
		 */
		sbq_desc = ql_get_curr_sbuf(rx_ring);
		pci_unmap_single(qdev->pdev,
				dma_unmap_addr(sbq_desc, mapaddr),
				dma_unmap_len(sbq_desc, maplen),
				PCI_DMA_FROMDEVICE);
		skb = sbq_desc->p.skb;
		ql_realign_skb(skb, hdr_len);
		skb_put(skb, hdr_len);
		sbq_desc->p.skb = NULL;
	}

	/*
	 * Handle the data buffer(s).
	 */
	if (unlikely(!length)) {	/* Is there data too? */
		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
			     "No Data buffer in this packet.\n");
		return skb;
	}

	if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
		if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
				     "Headers in small, data of %d bytes in small, combine them.\n",
				     length);
			/*
			 * Data is less than small buffer size so it's
			 * stuffed in a small buffer.
			 * For this case we append the data
			 * from the "data" small buffer to the "header" small
			 * buffer.
			 */
			sbq_desc = ql_get_curr_sbuf(rx_ring);
			pci_dma_sync_single_for_cpu(qdev->pdev,
						    dma_unmap_addr
						    (sbq_desc, mapaddr),
						    dma_unmap_len
						    (sbq_desc, maplen),
						    PCI_DMA_FROMDEVICE);
			memcpy(skb_put(skb, length),
			       sbq_desc->p.skb->data, length);
			pci_dma_sync_single_for_device(qdev->pdev,
						       dma_unmap_addr
						       (sbq_desc,
							mapaddr),
						       dma_unmap_len
						       (sbq_desc,
							maplen),
						       PCI_DMA_FROMDEVICE);
		} else {
			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
				     "%d bytes in a single small buffer.\n",
				     length);
			sbq_desc = ql_get_curr_sbuf(rx_ring);
			skb = sbq_desc->p.skb;
			ql_realign_skb(skb, length);
			skb_put(skb, length);
			pci_unmap_single(qdev->pdev,
					 dma_unmap_addr(sbq_desc,
							mapaddr),
					 dma_unmap_len(sbq_desc,
						       maplen),
					 PCI_DMA_FROMDEVICE);
			sbq_desc->p.skb = NULL;
		}
	} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
		if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
				     "Header in small, %d bytes in large. Chain large to small!\n",
				     length);
			/*
			 * The data is in a single large buffer.  We
			 * chain it to the header buffer's skb and let
			 * it rip.
			 */
			lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
				     "Chaining page at offset = %d, for %d bytes  to skb.\n",
				     lbq_desc->p.pg_chunk.offset, length);
			skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
						lbq_desc->p.pg_chunk.offset,
						length);
			skb->len += length;
			skb->data_len += length;
			skb->truesize += length;
		} else {
			/*
			 * The headers and data are in a single large buffer. We
			 * copy it to a new skb and let it go. This can happen with
			 * jumbo mtu on a non-TCP/UDP frame.
			 */
			lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
			skb = netdev_alloc_skb(qdev->ndev, length);
			if (skb == NULL) {
				netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
					     "No skb available, drop the packet.\n");
				return NULL;
			}
			pci_unmap_page(qdev->pdev,
				       dma_unmap_addr(lbq_desc,
						      mapaddr),
				       dma_unmap_len(lbq_desc, maplen),
				       PCI_DMA_FROMDEVICE);
			skb_reserve(skb, NET_IP_ALIGN);
			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
				     "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
				     length);
			skb_fill_page_desc(skb, 0,
						lbq_desc->p.pg_chunk.page,
						lbq_desc->p.pg_chunk.offset,
						length);
			skb->len += length;
			skb->data_len += length;
			skb->truesize += length;
			length -= length;
			__pskb_pull_tail(skb,
				(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
				VLAN_ETH_HLEN : ETH_HLEN);
		}
	} else {
		/*
		 * The data is in a chain of large buffers
		 * pointed to by a small buffer.  We loop
		 * thru and chain them to the our small header
		 * buffer's skb.
		 * frags:  There are 18 max frags and our small
		 *         buffer will hold 32 of them. The thing is,
		 *         we'll use 3 max for our 9000 byte jumbo
		 *         frames.  If the MTU goes up we could
		 *          eventually be in trouble.
		 */
		int size, i = 0;
		sbq_desc = ql_get_curr_sbuf(rx_ring);
		pci_unmap_single(qdev->pdev,
				 dma_unmap_addr(sbq_desc, mapaddr),
				 dma_unmap_len(sbq_desc, maplen),
				 PCI_DMA_FROMDEVICE);
		if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
			/*
			 * This is an non TCP/UDP IP frame, so
			 * the headers aren't split into a small
			 * buffer.  We have to use the small buffer
			 * that contains our sg list as our skb to
			 * send upstairs. Copy the sg list here to
			 * a local buffer and use it to find the
			 * pages to chain.
			 */
			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
				     "%d bytes of headers & data in chain of large.\n",
				     length);
			skb = sbq_desc->p.skb;
			sbq_desc->p.skb = NULL;
			skb_reserve(skb, NET_IP_ALIGN);
		}
		while (length > 0) {
			lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
			size = (length < rx_ring->lbq_buf_size) ? length :
				rx_ring->lbq_buf_size;

			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
				     "Adding page %d to skb for %d bytes.\n",
				     i, size);
			skb_fill_page_desc(skb, i,
						lbq_desc->p.pg_chunk.page,
						lbq_desc->p.pg_chunk.offset,
						size);
			skb->len += size;
			skb->data_len += size;
			skb->truesize += size;
			length -= size;
			i++;
		}
		__pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
				VLAN_ETH_HLEN : ETH_HLEN);
	}
	return skb;
}

/* Process an inbound completion from an rx ring. */
static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
				   struct rx_ring *rx_ring,
				   struct ib_mac_iocb_rsp *ib_mac_rsp,
				   u16 vlan_id)
{
	struct net_device *ndev = qdev->ndev;
	struct sk_buff *skb = NULL;

	QL_DUMP_IB_MAC_RSP(ib_mac_rsp);

	skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
	if (unlikely(!skb)) {
		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
			     "No skb available, drop packet.\n");
		rx_ring->rx_dropped++;
		return;
	}

	/* Frame error, so drop the packet. */
	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
		ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
		dev_kfree_skb_any(skb);
		return;
	}

	/* The max framesize filter on this chip is set higher than
	 * MTU since FCoE uses 2k frames.
	 */
	if (skb->len > ndev->mtu + ETH_HLEN) {
		dev_kfree_skb_any(skb);
		rx_ring->rx_dropped++;
		return;
	}

	/* loopback self test for ethtool */
	if (test_bit(QL_SELFTEST, &qdev->flags)) {
		ql_check_lb_frame(qdev, skb);
		dev_kfree_skb_any(skb);
		return;
	}

	prefetch(skb->data);
	if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
			     IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
			     IB_MAC_IOCB_RSP_M_REG ? "Registered" :
			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
			     IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
		rx_ring->rx_multicast++;
	}
	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
			     "Promiscuous Packet.\n");
	}

	skb->protocol = eth_type_trans(skb, ndev);
	skb_checksum_none_assert(skb);

	/* If rx checksum is on, and there are no
	 * csum or frame errors.
	 */
	if ((ndev->features & NETIF_F_RXCSUM) &&
		!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
		/* TCP frame. */
		if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
				     "TCP checksum done!\n");
			skb->ip_summed = CHECKSUM_UNNECESSARY;
		} else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
				(ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
		/* Unfragmented ipv4 UDP frame. */
			struct iphdr *iph = (struct iphdr *) skb->data;
			if (!(iph->frag_off &
				htons(IP_MF|IP_OFFSET))) {
				skb->ip_summed = CHECKSUM_UNNECESSARY;
				netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
					     "TCP checksum done!\n");
			}
		}
	}

	rx_ring->rx_packets++;
	rx_ring->rx_bytes += skb->len;
	skb_record_rx_queue(skb, rx_ring->cq_id);
	if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) && (vlan_id != 0))
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
	if (skb->ip_summed == CHECKSUM_UNNECESSARY)
		napi_gro_receive(&rx_ring->napi, skb);
	else
		netif_receive_skb(skb);
}

/* Process an inbound completion from an rx ring. */
static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
					struct rx_ring *rx_ring,
					struct ib_mac_iocb_rsp *ib_mac_rsp)
{
	u32 length = le32_to_cpu(ib_mac_rsp->data_len);
	u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
			((le16_to_cpu(ib_mac_rsp->vlan_id) &
			IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;

	QL_DUMP_IB_MAC_RSP(ib_mac_rsp);

	if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
		/* The data and headers are split into
		 * separate buffers.
		 */
		ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
						vlan_id);
	} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
		/* The data fit in a single small buffer.
		 * Allocate a new skb, copy the data and
		 * return the buffer to the free pool.
		 */
		ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
						length, vlan_id);
	} else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
		!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
		(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
		/* TCP packet in a page chunk that's been checksummed.
		 * Tack it on to our GRO skb and let it go.
		 */
		ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
						length, vlan_id);
	} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
		/* Non-TCP packet in a page chunk. Allocate an
		 * skb, tack it on frags, and send it up.
		 */
		ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
						length, vlan_id);
	} else {
		/* Non-TCP/UDP large frames that span multiple buffers
		 * can be processed corrrectly by the split frame logic.
		 */
		ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
						vlan_id);
	}

	return (unsigned long)length;
}

/* Process an outbound completion from an rx ring. */
static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
				   struct ob_mac_iocb_rsp *mac_rsp)
{
	struct tx_ring *tx_ring;
	struct tx_ring_desc *tx_ring_desc;

	QL_DUMP_OB_MAC_RSP(mac_rsp);
	tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
	tx_ring_desc = &tx_ring->q[mac_rsp->tid];
	ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
	tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
	tx_ring->tx_packets++;
	dev_kfree_skb(tx_ring_desc->skb);
	tx_ring_desc->skb = NULL;

	if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
					OB_MAC_IOCB_RSP_S |
					OB_MAC_IOCB_RSP_L |
					OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
			netif_warn(qdev, tx_done, qdev->ndev,
				   "Total descriptor length did not match transfer length.\n");
		}
		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
			netif_warn(qdev, tx_done, qdev->ndev,
				   "Frame too short to be valid, not sent.\n");
		}
		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
			netif_warn(qdev, tx_done, qdev->ndev,
				   "Frame too long, but sent anyway.\n");
		}
		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
			netif_warn(qdev, tx_done, qdev->ndev,
				   "PCI backplane error. Frame not sent.\n");
		}
	}
	atomic_inc(&tx_ring->tx_count);
}

/* Fire up a handler to reset the MPI processor. */
void ql_queue_fw_error(struct ql_adapter *qdev)
{
	ql_link_off(qdev);
	queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
}

void ql_queue_asic_error(struct ql_adapter *qdev)
{
	ql_link_off(qdev);
	ql_disable_interrupts(qdev);
	/* Clear adapter up bit to signal the recovery
	 * process that it shouldn't kill the reset worker
	 * thread
	 */
	clear_bit(QL_ADAPTER_UP, &qdev->flags);
	/* Set asic recovery bit to indicate reset process that we are
	 * in fatal error recovery process rather than normal close
	 */
	set_bit(QL_ASIC_RECOVERY, &qdev->flags);
	queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
}

static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
				    struct ib_ae_iocb_rsp *ib_ae_rsp)
{
	switch (ib_ae_rsp->event) {
	case MGMT_ERR_EVENT:
		netif_err(qdev, rx_err, qdev->ndev,
			  "Management Processor Fatal Error.\n");
		ql_queue_fw_error(qdev);
		return;

	case CAM_LOOKUP_ERR_EVENT:
		netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
		netdev_err(qdev->ndev, "This event shouldn't occur.\n");
		ql_queue_asic_error(qdev);
		return;

	case SOFT_ECC_ERROR_EVENT:
		netdev_err(qdev->ndev, "Soft ECC error detected.\n");
		ql_queue_asic_error(qdev);
		break;

	case PCI_ERR_ANON_BUF_RD:
		netdev_err(qdev->ndev, "PCI error occurred when reading "
					"anonymous buffers from rx_ring %d.\n",
					ib_ae_rsp->q_id);
		ql_queue_asic_error(qdev);
		break;

	default:
		netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
			  ib_ae_rsp->event);
		ql_queue_asic_error(qdev);
		break;
	}
}

static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
{
	struct ql_adapter *qdev = rx_ring->qdev;
	u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
	struct ob_mac_iocb_rsp *net_rsp = NULL;
	int count = 0;

	struct tx_ring *tx_ring;
	/* While there are entries in the completion queue. */
	while (prod != rx_ring->cnsmr_idx) {

		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
			     "cq_id = %d, prod = %d, cnsmr = %d.\n.",
			     rx_ring->cq_id, prod, rx_ring->cnsmr_idx);

		net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
		rmb();
		switch (net_rsp->opcode) {

		case OPCODE_OB_MAC_TSO_IOCB:
		case OPCODE_OB_MAC_IOCB:
			ql_process_mac_tx_intr(qdev, net_rsp);
			break;
		default:
			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
				     "Hit default case, not handled! dropping the packet, opcode = %x.\n",
				     net_rsp->opcode);
		}
		count++;
		ql_update_cq(rx_ring);
		prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
	}
	if (!net_rsp)
		return 0;
	ql_write_cq_idx(rx_ring);
	tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
	if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
		if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
			/*
			 * The queue got stopped because the tx_ring was full.
			 * Wake it up, because it's now at least 25% empty.
			 */
			netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
	}

	return count;
}

static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
{
	struct ql_adapter *qdev = rx_ring->qdev;
	u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
	struct ql_net_rsp_iocb *net_rsp;
	int count = 0;

	/* While there are entries in the completion queue. */
	while (prod != rx_ring->cnsmr_idx) {

		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
			     "cq_id = %d, prod = %d, cnsmr = %d.\n.",
			     rx_ring->cq_id, prod, rx_ring->cnsmr_idx);

		net_rsp = rx_ring->curr_entry;
		rmb();
		switch (net_rsp->opcode) {
		case OPCODE_IB_MAC_IOCB:
			ql_process_mac_rx_intr(qdev, rx_ring,
					       (struct ib_mac_iocb_rsp *)
					       net_rsp);
			break;

		case OPCODE_IB_AE_IOCB:
			ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
						net_rsp);
			break;
		default:
			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
				     "Hit default case, not handled! dropping the packet, opcode = %x.\n",
				     net_rsp->opcode);
			break;
		}
		count++;
		ql_update_cq(rx_ring);
		prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
		if (count == budget)
			break;
	}
	ql_update_buffer_queues(qdev, rx_ring);
	ql_write_cq_idx(rx_ring);
	return count;
}

static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
{
	struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
	struct ql_adapter *qdev = rx_ring->qdev;
	struct rx_ring *trx_ring;
	int i, work_done = 0;
	struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];

	netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
		     "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);

	/* Service the TX rings first.  They start
	 * right after the RSS rings. */
	for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
		trx_ring = &qdev->rx_ring[i];
		/* If this TX completion ring belongs to this vector and
		 * it's not empty then service it.
		 */
		if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
			(ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
					trx_ring->cnsmr_idx)) {
			netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
				     "%s: Servicing TX completion ring %d.\n",
				     __func__, trx_ring->cq_id);
			ql_clean_outbound_rx_ring(trx_ring);
		}
	}

	/*
	 * Now service the RSS ring if it's active.
	 */
	if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
					rx_ring->cnsmr_idx) {
		netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
			     "%s: Servicing RX completion ring %d.\n",
			     __func__, rx_ring->cq_id);
		work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
	}

	if (work_done < budget) {
		napi_complete(napi);
		ql_enable_completion_interrupt(qdev, rx_ring->irq);
	}
	return work_done;
}

static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
{
	struct ql_adapter *qdev = netdev_priv(ndev);

	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
		ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
				 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
	} else {
		ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
	}
}

static netdev_features_t qlge_fix_features(struct net_device *ndev,
	netdev_features_t features)
{
	/*
	 * Since there is no support for separate rx/tx vlan accel
	 * enable/disable make sure tx flag is always in same state as rx.
	 */
	if (features & NETIF_F_HW_VLAN_CTAG_RX)
		features |= NETIF_F_HW_VLAN_CTAG_TX;
	else
		features &= ~NETIF_F_HW_VLAN_CTAG_TX;

	return features;
}

static int qlge_set_features(struct net_device *ndev,
	netdev_features_t features)
{
	netdev_features_t changed = ndev->features ^ features;

	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
		qlge_vlan_mode(ndev, features);

	return 0;
}

static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
{
	u32 enable_bit = MAC_ADDR_E;
	int err;

	err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
				  MAC_ADDR_TYPE_VLAN, vid);
	if (err)
		netif_err(qdev, ifup, qdev->ndev,
			  "Failed to init vlan address.\n");
	return err;
}

static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
{
	struct ql_adapter *qdev = netdev_priv(ndev);
	int status;
	int err;

	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
	if (status)
		return status;

	err = __qlge_vlan_rx_add_vid(qdev, vid);
	set_bit(vid, qdev->active_vlans);

	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);

	return err;
}

static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
{
	u32 enable_bit = 0;
	int err;

	err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
				  MAC_ADDR_TYPE_VLAN, vid);
	if (err)
		netif_err(qdev, ifup, qdev->ndev,
			  "Failed to clear vlan address.\n");
	return err;
}

static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
{
	struct ql_adapter *qdev = netdev_priv(ndev);
	int status;
	int err;

	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
	if (status)
		return status;

	err = __qlge_vlan_rx_kill_vid(qdev, vid);
	clear_bit(vid, qdev->active_vlans);

	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);

	return err;
}

static void qlge_restore_vlan(struct ql_adapter *qdev)
{
	int status;
	u16 vid;

	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
	if (status)
		return;

	for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
		__qlge_vlan_rx_add_vid(qdev, vid);

	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
}

/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
{
	struct rx_ring *rx_ring = dev_id;
	napi_schedule(&rx_ring->napi);
	return IRQ_HANDLED;
}

/* This handles a fatal error, MPI activity, and the default
 * rx_ring in an MSI-X multiple vector environment.
 * In MSI/Legacy environment it also process the rest of
 * the rx_rings.
 */
static irqreturn_t qlge_isr(int irq, void *dev_id)
{
	struct rx_ring *rx_ring = dev_id;
	struct ql_adapter *qdev = rx_ring->qdev;
	struct intr_context *intr_context = &qdev->intr_context[0];
	u32 var;
	int work_done = 0;

	spin_lock(&qdev->hw_lock);
	if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
		netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
			     "Shared Interrupt, Not ours!\n");
		spin_unlock(&qdev->hw_lock);
		return IRQ_NONE;
	}
	spin_unlock(&qdev->hw_lock);

	var = ql_disable_completion_interrupt(qdev, intr_context->intr);

	/*
	 * Check for fatal error.
	 */
	if (var & STS_FE) {
		ql_queue_asic_error(qdev);
		netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
		var = ql_read32(qdev, ERR_STS);
		netdev_err(qdev->ndev, "Resetting chip. "
					"Error Status Register = 0x%x\n", var);
		return IRQ_HANDLED;
	}

	/*
	 * Check MPI processor activity.
	 */
	if ((var & STS_PI) &&
		(ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
		/*
		 * We've got an async event or mailbox completion.
		 * Handle it and clear the source of the interrupt.
		 */
		netif_err(qdev, intr, qdev->ndev,
			  "Got MPI processor interrupt.\n");
		ql_disable_completion_interrupt(qdev, intr_context->intr);
		ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
		queue_delayed_work_on(smp_processor_id(),
				qdev->workqueue, &qdev->mpi_work, 0);
		work_done++;
	}

	/*
	 * Get the bit-mask that shows the active queues for this
	 * pass.  Compare it to the queues that this irq services
	 * and call napi if there's a match.
	 */
	var = ql_read32(qdev, ISR1);
	if (var & intr_context->irq_mask) {
		netif_info(qdev, intr, qdev->ndev,
			   "Waking handler for rx_ring[0].\n");
		ql_disable_completion_interrupt(qdev, intr_context->intr);
		napi_schedule(&rx_ring->napi);
		work_done++;
	}
	ql_enable_completion_interrupt(qdev, intr_context->intr);
	return work_done ? IRQ_HANDLED : IRQ_NONE;
}

static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
{

	if (skb_is_gso(skb)) {
		int err;
		if (skb_header_cloned(skb)) {
			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
			if (err)
				return err;
		}

		mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
		mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
		mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
		mac_iocb_ptr->total_hdrs_len =
		    cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
		mac_iocb_ptr->net_trans_offset =
		    cpu_to_le16(skb_network_offset(skb) |
				skb_transport_offset(skb)
				<< OB_MAC_TRANSPORT_HDR_SHIFT);
		mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
		mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
		if (likely(skb->protocol == htons(ETH_P_IP))) {
			struct iphdr *iph = ip_hdr(skb);
			iph->check = 0;
			mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
								 iph->daddr, 0,
								 IPPROTO_TCP,
								 0);
		} else if (skb->protocol == htons(ETH_P_IPV6)) {
			mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
			tcp_hdr(skb)->check =
			    ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
					     &ipv6_hdr(skb)->daddr,
					     0, IPPROTO_TCP, 0);
		}
		return 1;
	}
	return 0;
}

static void ql_hw_csum_setup(struct sk_buff *skb,
			     struct ob_mac_tso_iocb_req *mac_iocb_ptr)
{
	int len;
	struct iphdr *iph = ip_hdr(skb);
	__sum16 *check;
	mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
	mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
	mac_iocb_ptr->net_trans_offset =
		cpu_to_le16(skb_network_offset(skb) |
		skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);

	mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
	len = (ntohs(iph->tot_len) - (iph->ihl << 2));
	if (likely(iph->protocol == IPPROTO_TCP)) {
		check = &(tcp_hdr(skb)->check);
		mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
		mac_iocb_ptr->total_hdrs_len =
		    cpu_to_le16(skb_transport_offset(skb) +
				(tcp_hdr(skb)->doff << 2));
	} else {
		check = &(udp_hdr(skb)->check);
		mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
		mac_iocb_ptr->total_hdrs_len =
		    cpu_to_le16(skb_transport_offset(skb) +
				sizeof(struct udphdr));
	}
	*check = ~csum_tcpudp_magic(iph->saddr,
				    iph->daddr, len, iph->protocol, 0);
}

static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
{
	struct tx_ring_desc *tx_ring_desc;
	struct ob_mac_iocb_req *mac_iocb_ptr;
	struct ql_adapter *qdev = netdev_priv(ndev);
	int tso;
	struct tx_ring *tx_ring;
	u32 tx_ring_idx = (u32) skb->queue_mapping;

	tx_ring = &qdev->tx_ring[tx_ring_idx];

	if (skb_padto(skb, ETH_ZLEN))
		return NETDEV_TX_OK;

	if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
		netif_info(qdev, tx_queued, qdev->ndev,
			   "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
			   __func__, tx_ring_idx);
		netif_stop_subqueue(ndev, tx_ring->wq_id);
		tx_ring->tx_errors++;
		return NETDEV_TX_BUSY;
	}
	tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
	mac_iocb_ptr = tx_ring_desc->queue_entry;
	memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));

	mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
	mac_iocb_ptr->tid = tx_ring_desc->index;
	/* We use the upper 32-bits to store the tx queue for this IO.
	 * When we get the completion we can use it to establish the context.
	 */
	mac_iocb_ptr->txq_idx = tx_ring_idx;
	tx_ring_desc->skb = skb;

	mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);

	if (vlan_tx_tag_present(skb)) {
		netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
			     "Adding a vlan tag %d.\n", vlan_tx_tag_get(skb));
		mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
		mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
	}
	tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
	if (tso < 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	} else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
		ql_hw_csum_setup(skb,
				 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
	}
	if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
			NETDEV_TX_OK) {
		netif_err(qdev, tx_queued, qdev->ndev,
			  "Could not map the segments.\n");
		tx_ring->tx_errors++;
		return NETDEV_TX_BUSY;
	}
	QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
	tx_ring->prod_idx++;
	if (tx_ring->prod_idx == tx_ring->wq_len)
		tx_ring->prod_idx = 0;
	wmb();

	ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
	netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
		     "tx queued, slot %d, len %d\n",
		     tx_ring->prod_idx, skb->len);

	atomic_dec(&tx_ring->tx_count);

	if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
		netif_stop_subqueue(ndev, tx_ring->wq_id);
		if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
			/*
			 * The queue got stopped because the tx_ring was full.
			 * Wake it up, because it's now at least 25% empty.
			 */
			netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
	}
	return NETDEV_TX_OK;
}


static void ql_free_shadow_space(struct ql_adapter *qdev)
{
	if (qdev->rx_ring_shadow_reg_area) {
		pci_free_consistent(qdev->pdev,
				    PAGE_SIZE,
				    qdev->rx_ring_shadow_reg_area,
				    qdev->rx_ring_shadow_reg_dma);
		qdev->rx_ring_shadow_reg_area = NULL;
	}
	if (qdev->tx_ring_shadow_reg_area) {
		pci_free_consistent(qdev->pdev,
				    PAGE_SIZE,
				    qdev->tx_ring_shadow_reg_area,
				    qdev->tx_ring_shadow_reg_dma);
		qdev->tx_ring_shadow_reg_area = NULL;
	}
}

static int ql_alloc_shadow_space(struct ql_adapter *qdev)
{
	qdev->rx_ring_shadow_reg_area =
	    pci_alloc_consistent(qdev->pdev,
				 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
	if (qdev->rx_ring_shadow_reg_area == NULL) {
		netif_err(qdev, ifup, qdev->ndev,
			  "Allocation of RX shadow space failed.\n");
		return -ENOMEM;
	}
	memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
	qdev->tx_ring_shadow_reg_area =
	    pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
				 &qdev->tx_ring_shadow_reg_dma);
	if (qdev->tx_ring_shadow_reg_area == NULL) {
		netif_err(qdev, ifup, qdev->ndev,
			  "Allocation of TX shadow space failed.\n");
		goto err_wqp_sh_area;
	}
	memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
	return 0;

err_wqp_sh_area:
	pci_free_consistent(qdev->pdev,
			    PAGE_SIZE,
			    qdev->rx_ring_shadow_reg_area,
			    qdev->rx_ring_shadow_reg_dma);
	return -ENOMEM;
}

static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
{
	struct tx_ring_desc *tx_ring_desc;
	int i;
	struct ob_mac_iocb_req *mac_iocb_ptr;

	mac_iocb_ptr = tx_ring->wq_base;
	tx_ring_desc = tx_ring->q;
	for (i = 0; i < tx_ring->wq_len; i++) {
		tx_ring_desc->index = i;
		tx_ring_desc->skb = NULL;
		tx_ring_desc->queue_entry = mac_iocb_ptr;
		mac_iocb_ptr++;
		tx_ring_desc++;
	}
	atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
}

static void ql_free_tx_resources(struct ql_adapter *qdev,
				 struct tx_ring *tx_ring)
{
	if (tx_ring->wq_base) {
		pci_free_consistent(qdev->pdev, tx_ring->wq_size,
				    tx_ring->wq_base, tx_ring->wq_base_dma);
		tx_ring->wq_base = NULL;
	}
	kfree(tx_ring->q);
	tx_ring->q = NULL;
}

static int ql_alloc_tx_resources(struct ql_adapter *qdev,
				 struct tx_ring *tx_ring)
{
	tx_ring->wq_base =
	    pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
				 &tx_ring->wq_base_dma);

	if ((tx_ring->wq_base == NULL) ||
	    tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
		goto pci_alloc_err;

	tx_ring->q =
	    kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
	if (tx_ring->q == NULL)
		goto err;

	return 0;
err:
	pci_free_consistent(qdev->pdev, tx_ring->wq_size,
			    tx_ring->wq_base, tx_ring->wq_base_dma);
	tx_ring->wq_base = NULL;
pci_alloc_err:
	netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
	return -ENOMEM;
}

static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
	struct bq_desc *lbq_desc;

	uint32_t  curr_idx, clean_idx;

	curr_idx = rx_ring->lbq_curr_idx;
	clean_idx = rx_ring->lbq_clean_idx;
	while (curr_idx != clean_idx) {
		lbq_desc = &rx_ring->lbq[curr_idx];

		if (lbq_desc->p.pg_chunk.last_flag) {
			pci_unmap_page(qdev->pdev,
				lbq_desc->p.pg_chunk.map,
				ql_lbq_block_size(qdev),
				       PCI_DMA_FROMDEVICE);
			lbq_desc->p.pg_chunk.last_flag = 0;
		}

		put_page(lbq_desc->p.pg_chunk.page);
		lbq_desc->p.pg_chunk.page = NULL;

		if (++curr_idx == rx_ring->lbq_len)
			curr_idx = 0;

	}
	if (rx_ring->pg_chunk.page) {
		pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
			ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
		put_page(rx_ring->pg_chunk.page);
		rx_ring->pg_chunk.page = NULL;
	}
}

static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
	int i;
	struct bq_desc *sbq_desc;

	for (i = 0; i < rx_ring->sbq_len; i++) {
		sbq_desc = &rx_ring->sbq[i];
		if (sbq_desc == NULL) {
			netif_err(qdev, ifup, qdev->ndev,
				  "sbq_desc %d is NULL.\n", i);
			return;
		}
		if (sbq_desc->p.skb) {
			pci_unmap_single(qdev->pdev,
					 dma_unmap_addr(sbq_desc, mapaddr),
					 dma_unmap_len(sbq_desc, maplen),
					 PCI_DMA_FROMDEVICE);
			dev_kfree_skb(sbq_desc->p.skb);
			sbq_desc->p.skb = NULL;
		}
	}
}

/* Free all large and small rx buffers associated
 * with the completion queues for this device.
 */
static void ql_free_rx_buffers(struct ql_adapter *qdev)
{
	int i;
	struct rx_ring *rx_ring;

	for (i = 0; i < qdev->rx_ring_count; i++) {
		rx_ring = &qdev->rx_ring[i];
		if (rx_ring->lbq)
			ql_free_lbq_buffers(qdev, rx_ring);
		if (rx_ring->sbq)
			ql_free_sbq_buffers(qdev, rx_ring);
	}
}

static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
{
	struct rx_ring *rx_ring;
	int i;

	for (i = 0; i < qdev->rx_ring_count; i++) {
		rx_ring = &qdev->rx_ring[i];
		if (rx_ring->type != TX_Q)
			ql_update_buffer_queues(qdev, rx_ring);
	}
}

static void ql_init_lbq_ring(struct ql_adapter *qdev,
				struct rx_ring *rx_ring)
{
	int i;
	struct bq_desc *lbq_desc;
	__le64 *bq = rx_ring->lbq_base;

	memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
	for (i = 0; i < rx_ring->lbq_len; i++) {
		lbq_desc = &rx_ring->lbq[i];
		memset(lbq_desc, 0, sizeof(*lbq_desc));
		lbq_desc->index = i;
		lbq_desc->addr = bq;
		bq++;
	}
}

static void ql_init_sbq_ring(struct ql_adapter *qdev,
				struct rx_ring *rx_ring)
{
	int i;
	struct bq_desc *sbq_desc;
	__le64 *bq = rx_ring->sbq_base;

	memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
	for (i = 0; i < rx_ring->sbq_len; i++) {
		sbq_desc = &rx_ring->sbq[i];
		memset(sbq_desc, 0, sizeof(*sbq_desc));
		sbq_desc->index = i;
		sbq_desc->addr = bq;
		bq++;
	}
}

static void ql_free_rx_resources(struct ql_adapter *qdev,
				 struct rx_ring *rx_ring)
{
	/* Free the small buffer queue. */
	if (rx_ring->sbq_base) {
		pci_free_consistent(qdev->pdev,
				    rx_ring->sbq_size,
				    rx_ring->sbq_base, rx_ring->sbq_base_dma);
		rx_ring->sbq_base = NULL;
	}

	/* Free the small buffer queue control blocks. */
	kfree(rx_ring->sbq);
	rx_ring->sbq = NULL;

	/* Free the large buffer queue. */
	if (rx_ring->lbq_base) {
		pci_free_consistent(qdev->pdev,
				    rx_ring->lbq_size,
				    rx_ring->lbq_base, rx_ring->lbq_base_dma);
		rx_ring->lbq_base = NULL;
	}

	/* Free the large buffer queue control blocks. */
	kfree(rx_ring->lbq);
	rx_ring->lbq = NULL;

	/* Free the rx queue. */
	if (rx_ring->cq_base) {
		pci_free_consistent(qdev->pdev,
				    rx_ring->cq_size,
				    rx_ring->cq_base, rx_ring->cq_base_dma);
		rx_ring->cq_base = NULL;
	}
}

/* Allocate queues and buffers for this completions queue based
 * on the values in the parameter structure. */
static int ql_alloc_rx_resources(struct ql_adapter *qdev,
				 struct rx_ring *rx_ring)
{

	/*
	 * Allocate the completion queue for this rx_ring.
	 */
	rx_ring->cq_base =
	    pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
				 &rx_ring->cq_base_dma);

	if (rx_ring->cq_base == NULL) {
		netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
		return -ENOMEM;
	}

	if (rx_ring->sbq_len) {
		/*
		 * Allocate small buffer queue.
		 */
		rx_ring->sbq_base =
		    pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
					 &rx_ring->sbq_base_dma);

		if (rx_ring->sbq_base == NULL) {
			netif_err(qdev, ifup, qdev->ndev,
				  "Small buffer queue allocation failed.\n");
			goto err_mem;
		}

		/*
		 * Allocate small buffer queue control blocks.
		 */
		rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
					     sizeof(struct bq_desc),
					     GFP_KERNEL);
		if (rx_ring->sbq == NULL)
			goto err_mem;

		ql_init_sbq_ring(qdev, rx_ring);
	}

	if (rx_ring->lbq_len) {
		/*
		 * Allocate large buffer queue.
		 */
		rx_ring->lbq_base =
		    pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
					 &rx_ring->lbq_base_dma);

		if (rx_ring->lbq_base == NULL) {
			netif_err(qdev, ifup, qdev->ndev,
				  "Large buffer queue allocation failed.\n");
			goto err_mem;
		}
		/*
		 * Allocate large buffer queue control blocks.
		 */
		rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
					     sizeof(struct bq_desc),
					     GFP_KERNEL);
		if (rx_ring->lbq == NULL)
			goto err_mem;

		ql_init_lbq_ring(qdev, rx_ring);
	}

	return 0;

err_mem:
	ql_free_rx_resources(qdev, rx_ring);
	return -ENOMEM;
}

static void ql_tx_ring_clean(struct ql_adapter *qdev)
{
	struct tx_ring *tx_ring;
	struct tx_ring_desc *tx_ring_desc;
	int i, j;

	/*
	 * Loop through all queues and free
	 * any resources.
	 */
	for (j = 0; j < qdev->tx_ring_count; j++) {
		tx_ring = &qdev->tx_ring[j];
		for (i = 0; i < tx_ring->wq_len; i++) {
			tx_ring_desc = &tx_ring->q[i];
			if (tx_ring_desc && tx_ring_desc->skb) {
				netif_err(qdev, ifdown, qdev->ndev,
					  "Freeing lost SKB %p, from queue %d, index %d.\n",
					  tx_ring_desc->skb, j,
					  tx_ring_desc->index);
				ql_unmap_send(qdev, tx_ring_desc,
					      tx_ring_desc->map_cnt);
				dev_kfree_skb(tx_ring_desc->skb);
				tx_ring_desc->skb = NULL;
			}
		}
	}
}

static void ql_free_mem_resources(struct ql_adapter *qdev)
{
	int i;

	for (i = 0; i < qdev->tx_ring_count; i++)
		ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
	for (i = 0; i < qdev->rx_ring_count; i++)
		ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
	ql_free_shadow_space(qdev);
}

static int ql_alloc_mem_resources(struct ql_adapter *qdev)
{
	int i;

	/* Allocate space for our shadow registers and such. */
	if (ql_alloc_shadow_space(qdev))
		return -ENOMEM;

	for (i = 0; i < qdev->rx_ring_count; i++) {
		if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
			netif_err(qdev, ifup, qdev->ndev,
				  "RX resource allocation failed.\n");
			goto err_mem;
		}
	}
	/* Allocate tx queue resources */
	for (i = 0; i < qdev->tx_ring_count; i++) {
		if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
			netif_err(qdev, ifup, qdev->ndev,
				  "TX resource allocation failed.\n");
			goto err_mem;
		}
	}
	return 0;

err_mem:
	ql_free_mem_resources(qdev);
	return -ENOMEM;
}

/* Set up the rx ring control block and pass it to the chip.
 * The control block is defined as
 * "Completion Queue Initialization Control Block", or cqicb.
 */
static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
{
	struct cqicb *cqicb = &rx_ring->cqicb;
	void *shadow_reg = qdev->rx_ring_shadow_reg_area +
		(rx_ring->cq_id * RX_RING_SHADOW_SPACE);
	u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
		(rx_ring->cq_id * RX_RING_SHADOW_SPACE);
	void __iomem *doorbell_area =
	    qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
	int err = 0;
	u16 bq_len;
	u64 tmp;
	__le64 *base_indirect_ptr;
	int page_entries;

	/* Set up the shadow registers for this ring. */
	rx_ring->prod_idx_sh_reg = shadow_reg;
	rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
	*rx_ring->prod_idx_sh_reg = 0;
	shadow_reg += sizeof(u64);
	shadow_reg_dma += sizeof(u64);
	rx_ring->lbq_base_indirect = shadow_reg;
	rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
	shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
	shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
	rx_ring->sbq_base_indirect = shadow_reg;
	rx_ring->sbq_base_indirect_dma = shadow_reg_dma;

	/* PCI doorbell mem area + 0x00 for consumer index register */
	rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
	rx_ring->cnsmr_idx = 0;
	rx_ring->curr_entry = rx_ring->cq_base;

	/* PCI doorbell mem area + 0x04 for valid register */
	rx_ring->valid_db_reg = doorbell_area + 0x04;

	/* PCI doorbell mem area + 0x18 for large buffer consumer */
	rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);

	/* PCI doorbell mem area + 0x1c */
	rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);

	memset((void *)cqicb, 0, sizeof(struct cqicb));
	cqicb->msix_vect = rx_ring->irq;

	bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
	cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);

	cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);

	cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);

	/*
	 * Set up the control block load flags.
	 */
	cqicb->flags = FLAGS_LC |	/* Load queue base address */
	    FLAGS_LV |		/* Load MSI-X vector */
	    FLAGS_LI;		/* Load irq delay values */
	if (rx_ring->lbq_len) {
		cqicb->flags |= FLAGS_LL;	/* Load lbq values */
		tmp = (u64)rx_ring->lbq_base_dma;
		base_indirect_ptr = rx_ring->lbq_base_indirect;
		page_entries = 0;
		do {
			*base_indirect_ptr = cpu_to_le64(tmp);
			tmp += DB_PAGE_SIZE;
			base_indirect_ptr++;
			page_entries++;
		} while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
		cqicb->lbq_addr =
		    cpu_to_le64(rx_ring->lbq_base_indirect_dma);
		bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
			(u16) rx_ring->lbq_buf_size;
		cqicb->lbq_buf_size = cpu_to_le16(bq_len);
		bq_len = (rx_ring->lbq_len == 65536) ? 0 :
			(u16) rx_ring->lbq_len;
		cqicb->lbq_len = cpu_to_le16(bq_len);
		rx_ring->lbq_prod_idx = 0;
		rx_ring->lbq_curr_idx = 0;
		rx_ring->lbq_clean_idx = 0;
		rx_ring->lbq_free_cnt = rx_ring->lbq_len;
	}
	if (rx_ring->sbq_len) {
		cqicb->flags |= FLAGS_LS;	/* Load sbq values */
		tmp = (u64)rx_ring->sbq_base_dma;
		base_indirect_ptr = rx_ring->sbq_base_indirect;
		page_entries = 0;
		do {
			*base_indirect_ptr = cpu_to_le64(tmp);
			tmp += DB_PAGE_SIZE;
			base_indirect_ptr++;
			page_entries++;
		} while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
		cqicb->sbq_addr =
		    cpu_to_le64(rx_ring->sbq_base_indirect_dma);
		cqicb->sbq_buf_size =
		    cpu_to_le16((u16)(rx_ring->sbq_buf_size));
		bq_len = (rx_ring->sbq_len == 65536) ? 0 :
			(u16) rx_ring->sbq_len;
		cqicb->sbq_len = cpu_to_le16(bq_len);
		rx_ring->sbq_prod_idx = 0;
		rx_ring->sbq_curr_idx = 0;
		rx_ring->sbq_clean_idx = 0;
		rx_ring->sbq_free_cnt = rx_ring->sbq_len;
	}
	switch (rx_ring->type) {
	case TX_Q:
		cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
		cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
		break;
	case RX_Q:
		/* Inbound completion handling rx_rings run in
		 * separate NAPI contexts.
		 */
		netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
			       64);
		cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
		cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
		break;
	default:
		netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
			     "Invalid rx_ring->type = %d.\n", rx_ring->type);
	}
	err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
			   CFG_LCQ, rx_ring->cq_id);
	if (err) {
		netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
		return err;
	}
	return err;
}

static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
{
	struct wqicb *wqicb = (struct wqicb *)tx_ring;
	void __iomem *doorbell_area =
	    qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
	void *shadow_reg = qdev->tx_ring_shadow_reg_area +
	    (tx_ring->wq_id * sizeof(u64));
	u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
	    (tx_ring->wq_id * sizeof(u64));
	int err = 0;

	/*
	 * Assign doorbell registers for this tx_ring.
	 */
	/* TX PCI doorbell mem area for tx producer index */
	tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
	tx_ring->prod_idx = 0;
	/* TX PCI doorbell mem area + 0x04 */
	tx_ring->valid_db_reg = doorbell_area + 0x04;

	/*
	 * Assign shadow registers for this tx_ring.
	 */
	tx_ring->cnsmr_idx_sh_reg = shadow_reg;
	tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;

	wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
	wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
				   Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
	wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
	wqicb->rid = 0;
	wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);

	wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);

	ql_init_tx_ring(qdev, tx_ring);

	err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
			   (u16) tx_ring->wq_id);
	if (err) {
		netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
		return err;
	}
	return err;
}

static void ql_disable_msix(struct ql_adapter *qdev)
{
	if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
		pci_disable_msix(qdev->pdev);
		clear_bit(QL_MSIX_ENABLED, &qdev->flags);
		kfree(qdev->msi_x_entry);
		qdev->msi_x_entry = NULL;
	} else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
		pci_disable_msi(qdev->pdev);
		clear_bit(QL_MSI_ENABLED, &qdev->flags);
	}
}

/* We start by trying to get the number of vectors
 * stored in qdev->intr_count. If we don't get that
 * many then we reduce the count and try again.
 */
static void ql_enable_msix(struct ql_adapter *qdev)
{
	int i, err;

	/* Get the MSIX vectors. */
	if (qlge_irq_type == MSIX_IRQ) {
		/* Try to alloc space for the msix struct,
		 * if it fails then go to MSI/legacy.
		 */
		qdev->msi_x_entry = kcalloc(qdev->intr_count,
					    sizeof(struct msix_entry),
					    GFP_KERNEL);
		if (!qdev->msi_x_entry) {
			qlge_irq_type = MSI_IRQ;
			goto msi;
		}

		for (i = 0; i < qdev->intr_count; i++)
			qdev->msi_x_entry[i].entry = i;

		/* Loop to get our vectors.  We start with
		 * what we want and settle for what we get.
		 */
		do {
			err = pci_enable_msix(qdev->pdev,
				qdev->msi_x_entry, qdev->intr_count);
			if (err > 0)
				qdev->intr_count = err;
		} while (err > 0);

		if (err < 0) {
			kfree(qdev->msi_x_entry);
			qdev->msi_x_entry = NULL;
			netif_warn(qdev, ifup, qdev->ndev,
				   "MSI-X Enable failed, trying MSI.\n");
			qdev->intr_count = 1;
			qlge_irq_type = MSI_IRQ;
		} else if (err == 0) {
			set_bit(QL_MSIX_ENABLED, &qdev->flags);
			netif_info(qdev, ifup, qdev->ndev,
				   "MSI-X Enabled, got %d vectors.\n",
				   qdev->intr_count);
			return;
		}
	}
msi:
	qdev->intr_count = 1;
	if (qlge_irq_type == MSI_IRQ) {
		if (!pci_enable_msi(qdev->pdev)) {
			set_bit(QL_MSI_ENABLED, &qdev->flags);
			netif_info(qdev, ifup, qdev->ndev,
				   "Running with MSI interrupts.\n");
			return;
		}
	}
	qlge_irq_type = LEG_IRQ;
	netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
		     "Running with legacy interrupts.\n");
}

/* Each vector services 1 RSS ring and and 1 or more
 * TX completion rings.  This function loops through
 * the TX completion rings and assigns the vector that
 * will service it.  An example would be if there are
 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
 * This would mean that vector 0 would service RSS ring 0
 * and TX completion rings 0,1,2 and 3.  Vector 1 would
 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
 */
static void ql_set_tx_vect(struct ql_adapter *qdev)
{
	int i, j, vect;
	u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;

	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
		/* Assign irq vectors to TX rx_rings.*/
		for (vect = 0, j = 0, i = qdev->rss_ring_count;
					 i < qdev->rx_ring_count; i++) {
			if (j == tx_rings_per_vector) {
				vect++;
				j = 0;
			}
			qdev->rx_ring[i].irq = vect;
			j++;
		}
	} else {
		/* For single vector all rings have an irq
		 * of zero.
		 */
		for (i = 0; i < qdev->rx_ring_count; i++)
			qdev->rx_ring[i].irq = 0;
	}
}

/* Set the interrupt mask for this vector.  Each vector
 * will service 1 RSS ring and 1 or more TX completion
 * rings.  This function sets up a bit mask per vector
 * that indicates which rings it services.
 */
static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
{
	int j, vect = ctx->intr;
	u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;

	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
		/* Add the RSS ring serviced by this vector
		 * to the mask.
		 */
		ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
		/* Add the TX ring(s) serviced by this vector
		 * to the mask. */
		for (j = 0; j < tx_rings_per_vector; j++) {
			ctx->irq_mask |=
			(1 << qdev->rx_ring[qdev->rss_ring_count +
			(vect * tx_rings_per_vector) + j].cq_id);
		}
	} else {
		/* For single vector we just shift each queue's
		 * ID into the mask.
		 */
		for (j = 0; j < qdev->rx_ring_count; j++)
			ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
	}
}

/*
 * Here we build the intr_context structures based on
 * our rx_ring count and intr vector count.
 * The intr_context structure is used to hook each vector
 * to possibly different handlers.
 */
static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
{
	int i = 0;
	struct intr_context *intr_context = &qdev->intr_context[0];

	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
		/* Each rx_ring has it's
		 * own intr_context since we have separate
		 * vectors for each queue.
		 */
		for (i = 0; i < qdev->intr_count; i++, intr_context++) {
			qdev->rx_ring[i].irq = i;
			intr_context->intr = i;
			intr_context->qdev = qdev;
			/* Set up this vector's bit-mask that indicates
			 * which queues it services.
			 */
			ql_set_irq_mask(qdev, intr_context);
			/*
			 * We set up each vectors enable/disable/read bits so
			 * there's no bit/mask calculations in the critical path.
			 */
			intr_context->intr_en_mask =
			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
			    INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
			    | i;
			intr_context->intr_dis_mask =
			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
			    INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
			    INTR_EN_IHD | i;
			intr_context->intr_read_mask =
			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
			    INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
			    i;
			if (i == 0) {
				/* The first vector/queue handles
				 * broadcast/multicast, fatal errors,
				 * and firmware events.  This in addition
				 * to normal inbound NAPI processing.
				 */
				intr_context->handler = qlge_isr;
				sprintf(intr_context->name, "%s-rx-%d",
					qdev->ndev->name, i);
			} else {
				/*
				 * Inbound queues handle unicast frames only.
				 */
				intr_context->handler = qlge_msix_rx_isr;
				sprintf(intr_context->name, "%s-rx-%d",
					qdev->ndev->name, i);
			}
		}
	} else {
		/*
		 * All rx_rings use the same intr_context since
		 * there is only one vector.
		 */
		intr_context->intr = 0;
		intr_context->qdev = qdev;
		/*
		 * We set up each vectors enable/disable/read bits so
		 * there's no bit/mask calculations in the critical path.
		 */
		intr_context->intr_en_mask =
		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
		intr_context->intr_dis_mask =
		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
		    INTR_EN_TYPE_DISABLE;
		intr_context->intr_read_mask =
		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
		/*
		 * Single interrupt means one handler for all rings.
		 */
		intr_context->handler = qlge_isr;
		sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
		/* Set up this vector's bit-mask that indicates
		 * which queues it services. In this case there is
		 * a single vector so it will service all RSS and
		 * TX completion rings.
		 */
		ql_set_irq_mask(qdev, intr_context);
	}
	/* Tell the TX completion rings which MSIx vector
	 * they will be using.
	 */
	ql_set_tx_vect(qdev);
}

static void ql_free_irq(struct ql_adapter *qdev)
{
	int i;
	struct intr_context *intr_context = &qdev->intr_context[0];

	for (i = 0; i < qdev->intr_count; i++, intr_context++) {
		if (intr_context->hooked) {
			if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
				free_irq(qdev->msi_x_entry[i].vector,
					 &qdev->rx_ring[i]);
			} else {
				free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
			}
		}
	}
	ql_disable_msix(qdev);
}

static int ql_request_irq(struct ql_adapter *qdev)
{
	int i;
	int status = 0;
	struct pci_dev *pdev = qdev->pdev;
	struct intr_context *intr_context = &qdev->intr_context[0];

	ql_resolve_queues_to_irqs(qdev);

	for (i = 0; i < qdev->intr_count; i++, intr_context++) {
		atomic_set(&intr_context->irq_cnt, 0);
		if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
			status = request_irq(qdev->msi_x_entry[i].vector,
					     intr_context->handler,
					     0,
					     intr_context->name,
					     &qdev->rx_ring[i]);
			if (status) {
				netif_err(qdev, ifup, qdev->ndev,
					  "Failed request for MSIX interrupt %d.\n",
					  i);
				goto err_irq;
			}
		} else {
			netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
				     "trying msi or legacy interrupts.\n");
			netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
				     "%s: irq = %d.\n", __func__, pdev->irq);
			netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
				     "%s: context->name = %s.\n", __func__,
				     intr_context->name);
			netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
				     "%s: dev_id = 0x%p.\n", __func__,
				     &qdev->rx_ring[0]);
			status =
			    request_irq(pdev->irq, qlge_isr,
					test_bit(QL_MSI_ENABLED,
						 &qdev->
						 flags) ? 0 : IRQF_SHARED,
					intr_context->name, &qdev->rx_ring[0]);
			if (status)
				goto err_irq;

			netif_err(qdev, ifup, qdev->ndev,
				  "Hooked intr %d, queue type %s, with name %s.\n",
				  i,
				  qdev->rx_ring[0].type == DEFAULT_Q ?
				  "DEFAULT_Q" :
				  qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
				  qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
				  intr_context->name);
		}
		intr_context->hooked = 1;
	}
	return status;
err_irq:
	netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!/n");
	ql_free_irq(qdev);
	return status;
}

static int ql_start_rss(struct ql_adapter *qdev)
{
	static const u8 init_hash_seed[] = {
		0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
		0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
		0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
		0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
		0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
	};
	struct ricb *ricb = &qdev->ricb;
	int status = 0;
	int i;
	u8 *hash_id = (u8 *) ricb->hash_cq_id;

	memset((void *)ricb, 0, sizeof(*ricb));

	ricb->base_cq = RSS_L4K;
	ricb->flags =
		(RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
	ricb->mask = cpu_to_le16((u16)(0x3ff));

	/*
	 * Fill out the Indirection Table.
	 */
	for (i = 0; i < 1024; i++)
		hash_id[i] = (i & (qdev->rss_ring_count - 1));

	memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
	memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);

	status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
	if (status) {
		netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
		return status;
	}
	return status;
}

static int ql_clear_routing_entries(struct ql_adapter *qdev)
{
	int i, status = 0;

	status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
	if (status)
		return status;
	/* Clear all the entries in the routing table. */
	for (i = 0; i < 16; i++) {
		status = ql_set_routing_reg(qdev, i, 0, 0);
		if (status) {
			netif_err(qdev, ifup, qdev->ndev,
				  "Failed to init routing register for CAM packets.\n");
			break;
		}
	}
	ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
	return status;
}

/* Initialize the frame-to-queue routing. */
static int ql_route_initialize(struct ql_adapter *qdev)
{
	int status = 0;

	/* Clear all the entries in the routing table. */
	status = ql_clear_routing_entries(qdev);
	if (status)
		return status;

	status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
	if (status)
		return status;

	status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
						RT_IDX_IP_CSUM_ERR, 1);
	if (status) {
		netif_err(qdev, ifup, qdev->ndev,
			"Failed to init routing register "
			"for IP CSUM error packets.\n");
		goto exit;
	}
	status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
						RT_IDX_TU_CSUM_ERR, 1);
	if (status) {
		netif_err(qdev, ifup, qdev->ndev,
			"Failed to init routing register "
			"for TCP/UDP CSUM error packets.\n");
		goto exit;
	}
	status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
	if (status) {
		netif_err(qdev, ifup, qdev->ndev,
			  "Failed to init routing register for broadcast packets.\n");
		goto exit;
	}
	/* If we have more than one inbound queue, then turn on RSS in the
	 * routing block.
	 */
	if (qdev->rss_ring_count > 1) {
		status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
					RT_IDX_RSS_MATCH, 1);
		if (status) {
			netif_err(qdev, ifup, qdev->ndev,
				  "Failed to init routing register for MATCH RSS packets.\n");
			goto exit;
		}
	}

	status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
				    RT_IDX_CAM_HIT, 1);
	if (status)
		netif_err(qdev, ifup, qdev->ndev,
			  "Failed to init routing register for CAM packets.\n");
exit:
	ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
	return status;
}

int ql_cam_route_initialize(struct ql_adapter *qdev)
{
	int status, set;

	/* If check if the link is up and use to
	 * determine if we are setting or clearing
	 * the MAC address in the CAM.
	 */
	set = ql_read32(qdev, STS);
	set &= qdev->port_link_up;
	status = ql_set_mac_addr(qdev, set);
	if (status) {
		netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
		return status;
	}

	status = ql_route_initialize(qdev);
	if (status)
		netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");

	return status;
}

static int ql_adapter_initialize(struct ql_adapter *qdev)
{
	u32 value, mask;
	int i;
	int status = 0;

	/*
	 * Set up the System register to halt on errors.
	 */
	value = SYS_EFE | SYS_FAE;
	mask = value << 16;
	ql_write32(qdev, SYS, mask | value);

	/* Set the default queue, and VLAN behavior. */
	value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
	mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
	ql_write32(qdev, NIC_RCV_CFG, (mask | value));

	/* Set the MPI interrupt to enabled. */
	ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);

	/* Enable the function, set pagesize, enable error checking. */
	value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
	    FSC_EC | FSC_VM_PAGE_4K;
	value |= SPLT_SETTING;

	/* Set/clear header splitting. */
	mask = FSC_VM_PAGESIZE_MASK |
	    FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
	ql_write32(qdev, FSC, mask | value);

	ql_write32(qdev, SPLT_HDR, SPLT_LEN);

	/* Set RX packet routing to use port/pci function on which the
	 * packet arrived on in addition to usual frame routing.
	 * This is helpful on bonding where both interfaces can have
	 * the same MAC address.
	 */
	ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
	/* Reroute all packets to our Interface.
	 * They may have been routed to MPI firmware
	 * due to WOL.
	 */
	value = ql_read32(qdev, MGMT_RCV_CFG);
	value &= ~MGMT_RCV_CFG_RM;
	mask = 0xffff0000;

	/* Sticky reg needs clearing due to WOL. */
	ql_write32(qdev, MGMT_RCV_CFG, mask);
	ql_write32(qdev, MGMT_RCV_CFG, mask | value);

	/* Default WOL is enable on Mezz cards */
	if (qdev->pdev->subsystem_device == 0x0068 ||
			qdev->pdev->subsystem_device == 0x0180)
		qdev->wol = WAKE_MAGIC;

	/* Start up the rx queues. */
	for (i = 0; i < qdev->rx_ring_count; i++) {
		status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
		if (status) {
			netif_err(qdev, ifup, qdev->ndev,
				  "Failed to start rx ring[%d].\n", i);
			return status;
		}
	}

	/* If there is more than one inbound completion queue
	 * then download a RICB to configure RSS.
	 */
	if (qdev->rss_ring_count > 1) {
		status = ql_start_rss(qdev);
		if (status) {
			netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
			return status;
		}
	}

	/* Start up the tx queues. */
	for (i = 0; i < qdev->tx_ring_count; i++) {
		status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
		if (status) {
			netif_err(qdev, ifup, qdev->ndev,
				  "Failed to start tx ring[%d].\n", i);
			return status;
		}
	}

	/* Initialize the port and set the max framesize. */
	status = qdev->nic_ops->port_initialize(qdev);
	if (status)
		netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");

	/* Set up the MAC address and frame routing filter. */
	status = ql_cam_route_initialize(qdev);
	if (status) {
		netif_err(qdev, ifup, qdev->ndev,
			  "Failed to init CAM/Routing tables.\n");
		return status;
	}

	/* Start NAPI for the RSS queues. */
	for (i = 0; i < qdev->rss_ring_count; i++)
		napi_enable(&qdev->rx_ring[i].napi);

	return status;
}

/* Issue soft reset to chip. */
static int ql_adapter_reset(struct ql_adapter *qdev)
{
	u32 value;
	int status = 0;
	unsigned long end_jiffies;

	/* Clear all the entries in the routing table. */
	status = ql_clear_routing_entries(qdev);
	if (status) {
		netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
		return status;
	}

	end_jiffies = jiffies +
		max((unsigned long)1, usecs_to_jiffies(30));

	/* Check if bit is set then skip the mailbox command and
	 * clear the bit, else we are in normal reset process.
	 */
	if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
		/* Stop management traffic. */
		ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);

		/* Wait for the NIC and MGMNT FIFOs to empty. */
		ql_wait_fifo_empty(qdev);
	} else
		clear_bit(QL_ASIC_RECOVERY, &qdev->flags);

	ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);

	do {
		value = ql_read32(qdev, RST_FO);
		if ((value & RST_FO_FR) == 0)
			break;
		cpu_relax();
	} while (time_before(jiffies, end_jiffies));

	if (value & RST_FO_FR) {
		netif_err(qdev, ifdown, qdev->ndev,
			  "ETIMEDOUT!!! errored out of resetting the chip!\n");
		status = -ETIMEDOUT;
	}

	/* Resume management traffic. */
	ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
	return status;
}

static void ql_display_dev_info(struct net_device *ndev)
{
	struct ql_adapter *qdev = netdev_priv(ndev);

	netif_info(qdev, probe, qdev->ndev,
		   "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
		   "XG Roll = %d, XG Rev = %d.\n",
		   qdev->func,
		   qdev->port,
		   qdev->chip_rev_id & 0x0000000f,
		   qdev->chip_rev_id >> 4 & 0x0000000f,
		   qdev->chip_rev_id >> 8 & 0x0000000f,
		   qdev->chip_rev_id >> 12 & 0x0000000f);
	netif_info(qdev, probe, qdev->ndev,
		   "MAC address %pM\n", ndev->dev_addr);
}

static int ql_wol(struct ql_adapter *qdev)
{
	int status = 0;
	u32 wol = MB_WOL_DISABLE;

	/* The CAM is still intact after a reset, but if we
	 * are doing WOL, then we may need to program the
	 * routing regs. We would also need to issue the mailbox
	 * commands to instruct the MPI what to do per the ethtool
	 * settings.
	 */

	if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
			WAKE_MCAST | WAKE_BCAST)) {
		netif_err(qdev, ifdown, qdev->ndev,
			  "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
			  qdev->wol);
		return -EINVAL;
	}

	if (qdev->wol & WAKE_MAGIC) {
		status = ql_mb_wol_set_magic(qdev, 1);
		if (status) {
			netif_err(qdev, ifdown, qdev->ndev,
				  "Failed to set magic packet on %s.\n",
				  qdev->ndev->name);
			return status;
		} else
			netif_info(qdev, drv, qdev->ndev,
				   "Enabled magic packet successfully on %s.\n",
				   qdev->ndev->name);

		wol |= MB_WOL_MAGIC_PKT;
	}

	if (qdev->wol) {
		wol |= MB_WOL_MODE_ON;
		status = ql_mb_wol_mode(qdev, wol);
		netif_err(qdev, drv, qdev->ndev,
			  "WOL %s (wol code 0x%x) on %s\n",
			  (status == 0) ? "Successfully set" : "Failed",
			  wol, qdev->ndev->name);
	}

	return status;
}

static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
{

	/* Don't kill the reset worker thread if we
	 * are in the process of recovery.
	 */
	if (test_bit(QL_ADAPTER_UP, &qdev->flags))
		cancel_delayed_work_sync(&qdev->asic_reset_work);
	cancel_delayed_work_sync(&qdev->mpi_reset_work);
	cancel_delayed_work_sync(&qdev->mpi_work);
	cancel_delayed_work_sync(&qdev->mpi_idc_work);
	cancel_delayed_work_sync(&qdev->mpi_core_to_log);
	cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
}

static int ql_adapter_down(struct ql_adapter *qdev)
{
	int i, status = 0;

	ql_link_off(qdev);

	ql_cancel_all_work_sync(qdev);

	for (i = 0; i < qdev->rss_ring_count; i++)
		napi_disable(&qdev->rx_ring[i].napi);

	clear_bit(QL_ADAPTER_UP, &qdev->flags);

	ql_disable_interrupts(qdev);

	ql_tx_ring_clean(qdev);

	/* Call netif_napi_del() from common point.
	 */
	for (i = 0; i < qdev->rss_ring_count; i++)
		netif_napi_del(&qdev->rx_ring[i].napi);

	status = ql_adapter_reset(qdev);
	if (status)
		netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
			  qdev->func);
	ql_free_rx_buffers(qdev);

	return status;
}

static int ql_adapter_up(struct ql_adapter *qdev)
{
	int err = 0;

	err = ql_adapter_initialize(qdev);
	if (err) {
		netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
		goto err_init;
	}
	set_bit(QL_ADAPTER_UP, &qdev->flags);
	ql_alloc_rx_buffers(qdev);
	/* If the port is initialized and the
	 * link is up the turn on the carrier.
	 */
	if ((ql_read32(qdev, STS) & qdev->port_init) &&
			(ql_read32(qdev, STS) & qdev->port_link_up))
		ql_link_on(qdev);
	/* Restore rx mode. */
	clear_bit(QL_ALLMULTI, &qdev->flags);
	clear_bit(QL_PROMISCUOUS, &qdev->flags);
	qlge_set_multicast_list(qdev->ndev);

	/* Restore vlan setting. */
	qlge_restore_vlan(qdev);

	ql_enable_interrupts(qdev);
	ql_enable_all_completion_interrupts(qdev);
	netif_tx_start_all_queues(qdev->ndev);

	return 0;
err_init:
	ql_adapter_reset(qdev);
	return err;
}

static void ql_release_adapter_resources(struct ql_adapter *qdev)
{
	ql_free_mem_resources(qdev);
	ql_free_irq(qdev);
}

static int ql_get_adapter_resources(struct ql_adapter *qdev)
{
	int status = 0;

	if (ql_alloc_mem_resources(qdev)) {
		netif_err(qdev, ifup, qdev->ndev, "Unable to  allocate memory.\n");
		return -ENOMEM;
	}
	status = ql_request_irq(qdev);
	return status;
}

static int qlge_close(struct net_device *ndev)
{
	struct ql_adapter *qdev = netdev_priv(ndev);

	/* If we hit pci_channel_io_perm_failure
	 * failure condition, then we already
	 * brought the adapter down.
	 */
	if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
		netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
		clear_bit(QL_EEH_FATAL, &qdev->flags);
		return 0;
	}

	/*
	 * Wait for device to recover from a reset.
	 * (Rarely happens, but possible.)
	 */
	while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
		msleep(1);
	ql_adapter_down(qdev);
	ql_release_adapter_resources(qdev);
	return 0;
}

static int ql_configure_rings(struct ql_adapter *qdev)
{
	int i;
	struct rx_ring *rx_ring;
	struct tx_ring *tx_ring;
	int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
	unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
		LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;

	qdev->lbq_buf_order = get_order(lbq_buf_len);

	/* In a perfect world we have one RSS ring for each CPU
	 * and each has it's own vector.  To do that we ask for
	 * cpu_cnt vectors.  ql_enable_msix() will adjust the
	 * vector count to what we actually get.  We then
	 * allocate an RSS ring for each.
	 * Essentially, we are doing min(cpu_count, msix_vector_count).
	 */
	qdev->intr_count = cpu_cnt;
	ql_enable_msix(qdev);
	/* Adjust the RSS ring count to the actual vector count. */
	qdev->rss_ring_count = qdev->intr_count;
	qdev->tx_ring_count = cpu_cnt;
	qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;

	for (i = 0; i < qdev->tx_ring_count; i++) {
		tx_ring = &qdev->tx_ring[i];
		memset((void *)tx_ring, 0, sizeof(*tx_ring));
		tx_ring->qdev = qdev;
		tx_ring->wq_id = i;
		tx_ring->wq_len = qdev->tx_ring_size;
		tx_ring->wq_size =
		    tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);

		/*
		 * The completion queue ID for the tx rings start
		 * immediately after the rss rings.
		 */
		tx_ring->cq_id = qdev->rss_ring_count + i;
	}

	for (i = 0; i < qdev->rx_ring_count; i++) {
		rx_ring = &qdev->rx_ring[i];
		memset((void *)rx_ring, 0, sizeof(*rx_ring));
		rx_ring->qdev = qdev;
		rx_ring->cq_id = i;
		rx_ring->cpu = i % cpu_cnt;	/* CPU to run handler on. */
		if (i < qdev->rss_ring_count) {
			/*
			 * Inbound (RSS) queues.
			 */
			rx_ring->cq_len = qdev->rx_ring_size;
			rx_ring->cq_size =
			    rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
			rx_ring->lbq_len = NUM_LARGE_BUFFERS;
			rx_ring->lbq_size =
			    rx_ring->lbq_len * sizeof(__le64);
			rx_ring->lbq_buf_size = (u16)lbq_buf_len;
			rx_ring->sbq_len = NUM_SMALL_BUFFERS;
			rx_ring->sbq_size =
			    rx_ring->sbq_len * sizeof(__le64);
			rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
			rx_ring->type = RX_Q;
		} else {
			/*
			 * Outbound queue handles outbound completions only.
			 */
			/* outbound cq is same size as tx_ring it services. */
			rx_ring->cq_len = qdev->tx_ring_size;
			rx_ring->cq_size =
			    rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
			rx_ring->lbq_len = 0;
			rx_ring->lbq_size = 0;
			rx_ring->lbq_buf_size = 0;
			rx_ring->sbq_len = 0;
			rx_ring->sbq_size = 0;
			rx_ring->sbq_buf_size = 0;
			rx_ring->type = TX_Q;
		}
	}
	return 0;
}

static int qlge_open(struct net_device *ndev)
{
	int err = 0;
	struct ql_adapter *qdev = netdev_priv(ndev);

	err = ql_adapter_reset(qdev);
	if (err)
		return err;

	err = ql_configure_rings(qdev);
	if (err)
		return err;

	err = ql_get_adapter_resources(qdev);
	if (err)
		goto error_up;

	err = ql_adapter_up(qdev);
	if (err)
		goto error_up;

	return err;

error_up:
	ql_release_adapter_resources(qdev);
	return err;
}

static int ql_change_rx_buffers(struct ql_adapter *qdev)
{
	struct rx_ring *rx_ring;
	int i, status;
	u32 lbq_buf_len;

	/* Wait for an outstanding reset to complete. */
	if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
		int i = 3;
		while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
			netif_err(qdev, ifup, qdev->ndev,
				  "Waiting for adapter UP...\n");
			ssleep(1);
		}

		if (!i) {
			netif_err(qdev, ifup, qdev->ndev,
				  "Timed out waiting for adapter UP\n");
			return -ETIMEDOUT;
		}
	}

	status = ql_adapter_down(qdev);
	if (status)
		goto error;

	/* Get the new rx buffer size. */
	lbq_buf_len = (qdev->ndev->mtu > 1500) ?
		LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
	qdev->lbq_buf_order = get_order(lbq_buf_len);

	for (i = 0; i < qdev->rss_ring_count; i++) {
		rx_ring = &qdev->rx_ring[i];
		/* Set the new size. */
		rx_ring->lbq_buf_size = lbq_buf_len;
	}

	status = ql_adapter_up(qdev);
	if (status)
		goto error;

	return status;
error:
	netif_alert(qdev, ifup, qdev->ndev,
		    "Driver up/down cycle failed, closing device.\n");
	set_bit(QL_ADAPTER_UP, &qdev->flags);
	dev_close(qdev->ndev);
	return status;
}

static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
{
	struct ql_adapter *qdev = netdev_priv(ndev);
	int status;

	if (ndev->mtu == 1500 && new_mtu == 9000) {
		netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
	} else if (ndev->mtu == 9000 && new_mtu == 1500) {
		netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
	} else
		return -EINVAL;

	queue_delayed_work(qdev->workqueue,
			&qdev->mpi_port_cfg_work, 3*HZ);

	ndev->mtu = new_mtu;

	if (!netif_running(qdev->ndev)) {
		return 0;
	}

	status = ql_change_rx_buffers(qdev);
	if (status) {
		netif_err(qdev, ifup, qdev->ndev,
			  "Changing MTU failed.\n");
	}

	return status;
}

static struct net_device_stats *qlge_get_stats(struct net_device
					       *ndev)
{
	struct ql_adapter *qdev = netdev_priv(ndev);
	struct rx_ring *rx_ring = &qdev->rx_ring[0];
	struct tx_ring *tx_ring = &qdev->tx_ring[0];
	unsigned long pkts, mcast, dropped, errors, bytes;
	int i;

	/* Get RX stats. */
	pkts = mcast = dropped = errors = bytes = 0;
	for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
			pkts += rx_ring->rx_packets;
			bytes += rx_ring->rx_bytes;
			dropped += rx_ring->rx_dropped;
			errors += rx_ring->rx_errors;
			mcast += rx_ring->rx_multicast;
	}
	ndev->stats.rx_packets = pkts;
	ndev->stats.rx_bytes = bytes;
	ndev->stats.rx_dropped = dropped;
	ndev->stats.rx_errors = errors;
	ndev->stats.multicast = mcast;

	/* Get TX stats. */
	pkts = errors = bytes = 0;
	for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
			pkts += tx_ring->tx_packets;
			bytes += tx_ring->tx_bytes;
			errors += tx_ring->tx_errors;
	}
	ndev->stats.tx_packets = pkts;
	ndev->stats.tx_bytes = bytes;
	ndev->stats.tx_errors = errors;
	return &ndev->stats;
}

static void qlge_set_multicast_list(struct net_device *ndev)
{
	struct ql_adapter *qdev = netdev_priv(ndev);
	struct netdev_hw_addr *ha;
	int i, status;

	status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
	if (status)
		return;
	/*
	 * Set or clear promiscuous mode if a
	 * transition is taking place.
	 */
	if (ndev->flags & IFF_PROMISC) {
		if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
			if (ql_set_routing_reg
			    (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
				netif_err(qdev, hw, qdev->ndev,
					  "Failed to set promiscuous mode.\n");
			} else {
				set_bit(QL_PROMISCUOUS, &qdev->flags);
			}
		}
	} else {
		if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
			if (ql_set_routing_reg
			    (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
				netif_err(qdev, hw, qdev->ndev,
					  "Failed to clear promiscuous mode.\n");
			} else {
				clear_bit(QL_PROMISCUOUS, &qdev->flags);
			}
		}
	}

	/*
	 * Set or clear all multicast mode if a
	 * transition is taking place.
	 */
	if ((ndev->flags & IFF_ALLMULTI) ||
	    (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
		if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
			if (ql_set_routing_reg
			    (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
				netif_err(qdev, hw, qdev->ndev,
					  "Failed to set all-multi mode.\n");
			} else {
				set_bit(QL_ALLMULTI, &qdev->flags);
			}
		}
	} else {
		if (test_bit(QL_ALLMULTI, &qdev->flags)) {
			if (ql_set_routing_reg
			    (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
				netif_err(qdev, hw, qdev->ndev,
					  "Failed to clear all-multi mode.\n");
			} else {
				clear_bit(QL_ALLMULTI, &qdev->flags);
			}
		}
	}

	if (!netdev_mc_empty(ndev)) {
		status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
		if (status)
			goto exit;
		i = 0;
		netdev_for_each_mc_addr(ha, ndev) {
			if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
						MAC_ADDR_TYPE_MULTI_MAC, i)) {
				netif_err(qdev, hw, qdev->ndev,
					  "Failed to loadmulticast address.\n");
				ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
				goto exit;
			}
			i++;
		}
		ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
		if (ql_set_routing_reg
		    (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
			netif_err(qdev, hw, qdev->ndev,
				  "Failed to set multicast match mode.\n");
		} else {
			set_bit(QL_ALLMULTI, &qdev->flags);
		}
	}
exit:
	ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
}

static int qlge_set_mac_address(struct net_device *ndev, void *p)
{
	struct ql_adapter *qdev = netdev_priv(ndev);
	struct sockaddr *addr = p;
	int status;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;
	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
	/* Update local copy of current mac address. */
	memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);

	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
	if (status)
		return status;
	status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
			MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
	if (status)
		netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
	return status;
}

static void qlge_tx_timeout(struct net_device *ndev)
{
	struct ql_adapter *qdev = netdev_priv(ndev);
	ql_queue_asic_error(qdev);
}

static void ql_asic_reset_work(struct work_struct *work)
{
	struct ql_adapter *qdev =
	    container_of(work, struct ql_adapter, asic_reset_work.work);
	int status;
	rtnl_lock();
	status = ql_adapter_down(qdev);
	if (status)
		goto error;

	status = ql_adapter_up(qdev);
	if (status)
		goto error;

	/* Restore rx mode. */
	clear_bit(QL_ALLMULTI, &qdev->flags);
	clear_bit(QL_PROMISCUOUS, &qdev->flags);
	qlge_set_multicast_list(qdev->ndev);

	rtnl_unlock();
	return;
error:
	netif_alert(qdev, ifup, qdev->ndev,
		    "Driver up/down cycle failed, closing device\n");

	set_bit(QL_ADAPTER_UP, &qdev->flags);
	dev_close(qdev->ndev);
	rtnl_unlock();
}

static const struct nic_operations qla8012_nic_ops = {
	.get_flash		= ql_get_8012_flash_params,
	.port_initialize	= ql_8012_port_initialize,
};

static const struct nic_operations qla8000_nic_ops = {
	.get_flash		= ql_get_8000_flash_params,
	.port_initialize	= ql_8000_port_initialize,
};

/* Find the pcie function number for the other NIC
 * on this chip.  Since both NIC functions share a
 * common firmware we have the lowest enabled function
 * do any common work.  Examples would be resetting
 * after a fatal firmware error, or doing a firmware
 * coredump.
 */
static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
{
	int status = 0;
	u32 temp;
	u32 nic_func1, nic_func2;

	status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
			&temp);
	if (status)
		return status;

	nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
			MPI_TEST_NIC_FUNC_MASK);
	nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
			MPI_TEST_NIC_FUNC_MASK);

	if (qdev->func == nic_func1)
		qdev->alt_func = nic_func2;
	else if (qdev->func == nic_func2)
		qdev->alt_func = nic_func1;
	else
		status = -EIO;

	return status;
}

static int ql_get_board_info(struct ql_adapter *qdev)
{
	int status;
	qdev->func =
	    (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
	if (qdev->func > 3)
		return -EIO;

	status = ql_get_alt_pcie_func(qdev);
	if (status)
		return status;

	qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
	if (qdev->port) {
		qdev->xg_sem_mask = SEM_XGMAC1_MASK;
		qdev->port_link_up = STS_PL1;
		qdev->port_init = STS_PI1;
		qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
		qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
	} else {
		qdev->xg_sem_mask = SEM_XGMAC0_MASK;
		qdev->port_link_up = STS_PL0;
		qdev->port_init = STS_PI0;
		qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
		qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
	}
	qdev->chip_rev_id = ql_read32(qdev, REV_ID);
	qdev->device_id = qdev->pdev->device;
	if (qdev->device_id == QLGE_DEVICE_ID_8012)
		qdev->nic_ops = &qla8012_nic_ops;
	else if (qdev->device_id == QLGE_DEVICE_ID_8000)
		qdev->nic_ops = &qla8000_nic_ops;
	return status;
}

static void ql_release_all(struct pci_dev *pdev)
{
	struct net_device *ndev = pci_get_drvdata(pdev);
	struct ql_adapter *qdev = netdev_priv(ndev);

	if (qdev->workqueue) {
		destroy_workqueue(qdev->workqueue);
		qdev->workqueue = NULL;
	}

	if (qdev->reg_base)
		iounmap(qdev->reg_base);
	if (qdev->doorbell_area)
		iounmap(qdev->doorbell_area);
	vfree(qdev->mpi_coredump);
	pci_release_regions(pdev);
	pci_set_drvdata(pdev, NULL);
}

static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
			  int cards_found)
{
	struct ql_adapter *qdev = netdev_priv(ndev);
	int err = 0;

	memset((void *)qdev, 0, sizeof(*qdev));
	err = pci_enable_device(pdev);
	if (err) {
		dev_err(&pdev->dev, "PCI device enable failed.\n");
		return err;
	}

	qdev->ndev = ndev;
	qdev->pdev = pdev;
	pci_set_drvdata(pdev, ndev);

	/* Set PCIe read request size */
	err = pcie_set_readrq(pdev, 4096);
	if (err) {
		dev_err(&pdev->dev, "Set readrq failed.\n");
		goto err_out1;
	}

	err = pci_request_regions(pdev, DRV_NAME);
	if (err) {
		dev_err(&pdev->dev, "PCI region request failed.\n");
		return err;
	}

	pci_set_master(pdev);
	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
		set_bit(QL_DMA64, &qdev->flags);
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
	} else {
		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (!err)
		       err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
	}

	if (err) {
		dev_err(&pdev->dev, "No usable DMA configuration.\n");
		goto err_out2;
	}

	/* Set PCIe reset type for EEH to fundamental. */
	pdev->needs_freset = 1;
	pci_save_state(pdev);
	qdev->reg_base =
	    ioremap_nocache(pci_resource_start(pdev, 1),
			    pci_resource_len(pdev, 1));
	if (!qdev->reg_base) {
		dev_err(&pdev->dev, "Register mapping failed.\n");
		err = -ENOMEM;
		goto err_out2;
	}

	qdev->doorbell_area_size = pci_resource_len(pdev, 3);
	qdev->doorbell_area =
	    ioremap_nocache(pci_resource_start(pdev, 3),
			    pci_resource_len(pdev, 3));
	if (!qdev->doorbell_area) {
		dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
		err = -ENOMEM;
		goto err_out2;
	}

	err = ql_get_board_info(qdev);
	if (err) {
		dev_err(&pdev->dev, "Register access failed.\n");
		err = -EIO;
		goto err_out2;
	}
	qdev->msg_enable = netif_msg_init(debug, default_msg);
	spin_lock_init(&qdev->hw_lock);
	spin_lock_init(&qdev->stats_lock);

	if (qlge_mpi_coredump) {
		qdev->mpi_coredump =
			vmalloc(sizeof(struct ql_mpi_coredump));
		if (qdev->mpi_coredump == NULL) {
			err = -ENOMEM;
			goto err_out2;
		}
		if (qlge_force_coredump)
			set_bit(QL_FRC_COREDUMP, &qdev->flags);
	}
	/* make sure the EEPROM is good */
	err = qdev->nic_ops->get_flash(qdev);
	if (err) {
		dev_err(&pdev->dev, "Invalid FLASH.\n");
		goto err_out2;
	}

	/* Keep local copy of current mac address. */
	memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);

	/* Set up the default ring sizes. */
	qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
	qdev->rx_ring_size = NUM_RX_RING_ENTRIES;

	/* Set up the coalescing parameters. */
	qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
	qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
	qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
	qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;

	/*
	 * Set up the operating parameters.
	 */
	qdev->workqueue = create_singlethread_workqueue(ndev->name);
	INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
	INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
	INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
	INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
	INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
	INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
	init_completion(&qdev->ide_completion);
	mutex_init(&qdev->mpi_mutex);

	if (!cards_found) {
		dev_info(&pdev->dev, "%s\n", DRV_STRING);
		dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
			 DRV_NAME, DRV_VERSION);
	}
	return 0;
err_out2:
	ql_release_all(pdev);
err_out1:
	pci_disable_device(pdev);
	return err;
}

static const struct net_device_ops qlge_netdev_ops = {
	.ndo_open		= qlge_open,
	.ndo_stop		= qlge_close,
	.ndo_start_xmit		= qlge_send,
	.ndo_change_mtu		= qlge_change_mtu,
	.ndo_get_stats		= qlge_get_stats,
	.ndo_set_rx_mode	= qlge_set_multicast_list,
	.ndo_set_mac_address	= qlge_set_mac_address,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_tx_timeout		= qlge_tx_timeout,
	.ndo_fix_features	= qlge_fix_features,
	.ndo_set_features	= qlge_set_features,
	.ndo_vlan_rx_add_vid	= qlge_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= qlge_vlan_rx_kill_vid,
};

static void ql_timer(unsigned long data)
{
	struct ql_adapter *qdev = (struct ql_adapter *)data;
	u32 var = 0;

	var = ql_read32(qdev, STS);
	if (pci_channel_offline(qdev->pdev)) {
		netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
		return;
	}

	mod_timer(&qdev->timer, jiffies + (5*HZ));
}

static int qlge_probe(struct pci_dev *pdev,
		      const struct pci_device_id *pci_entry)
{
	struct net_device *ndev = NULL;
	struct ql_adapter *qdev = NULL;
	static int cards_found = 0;
	int err = 0;

	ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
			min(MAX_CPUS, netif_get_num_default_rss_queues()));
	if (!ndev)
		return -ENOMEM;

	err = ql_init_device(pdev, ndev, cards_found);
	if (err < 0) {
		free_netdev(ndev);
		return err;
	}

	qdev = netdev_priv(ndev);
	SET_NETDEV_DEV(ndev, &pdev->dev);
	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
		NETIF_F_TSO | NETIF_F_TSO_ECN |
		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_RXCSUM;
	ndev->features = ndev->hw_features |
		NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
	ndev->vlan_features = ndev->hw_features;

	if (test_bit(QL_DMA64, &qdev->flags))
		ndev->features |= NETIF_F_HIGHDMA;

	/*
	 * Set up net_device structure.
	 */
	ndev->tx_queue_len = qdev->tx_ring_size;
	ndev->irq = pdev->irq;

	ndev->netdev_ops = &qlge_netdev_ops;
	SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
	ndev->watchdog_timeo = 10 * HZ;

	err = register_netdev(ndev);
	if (err) {
		dev_err(&pdev->dev, "net device registration failed.\n");
		ql_release_all(pdev);
		pci_disable_device(pdev);
		return err;
	}
	/* Start up the timer to trigger EEH if
	 * the bus goes dead
	 */
	init_timer_deferrable(&qdev->timer);
	qdev->timer.data = (unsigned long)qdev;
	qdev->timer.function = ql_timer;
	qdev->timer.expires = jiffies + (5*HZ);
	add_timer(&qdev->timer);
	ql_link_off(qdev);
	ql_display_dev_info(ndev);
	atomic_set(&qdev->lb_count, 0);
	cards_found++;
	return 0;
}

netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
{
	return qlge_send(skb, ndev);
}

int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
{
	return ql_clean_inbound_rx_ring(rx_ring, budget);
}

static void qlge_remove(struct pci_dev *pdev)
{
	struct net_device *ndev = pci_get_drvdata(pdev);
	struct ql_adapter *qdev = netdev_priv(ndev);
	del_timer_sync(&qdev->timer);
	ql_cancel_all_work_sync(qdev);
	unregister_netdev(ndev);
	ql_release_all(pdev);
	pci_disable_device(pdev);
	free_netdev(ndev);
}

/* Clean up resources without touching hardware. */
static void ql_eeh_close(struct net_device *ndev)
{
	int i;
	struct ql_adapter *qdev = netdev_priv(ndev);

	if (netif_carrier_ok(ndev)) {
		netif_carrier_off(ndev);
		netif_stop_queue(ndev);
	}

	/* Disabling the timer */
	del_timer_sync(&qdev->timer);
	ql_cancel_all_work_sync(qdev);

	for (i = 0; i < qdev->rss_ring_count; i++)
		netif_napi_del(&qdev->rx_ring[i].napi);

	clear_bit(QL_ADAPTER_UP, &qdev->flags);
	ql_tx_ring_clean(qdev);
	ql_free_rx_buffers(qdev);
	ql_release_adapter_resources(qdev);
}

/*
 * This callback is called by the PCI subsystem whenever
 * a PCI bus error is detected.
 */
static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
					       enum pci_channel_state state)
{
	struct net_device *ndev = pci_get_drvdata(pdev);
	struct ql_adapter *qdev = netdev_priv(ndev);

	switch (state) {
	case pci_channel_io_normal:
		return PCI_ERS_RESULT_CAN_RECOVER;
	case pci_channel_io_frozen:
		netif_device_detach(ndev);
		if (netif_running(ndev))
			ql_eeh_close(ndev);
		pci_disable_device(pdev);
		return PCI_ERS_RESULT_NEED_RESET;
	case pci_channel_io_perm_failure:
		dev_err(&pdev->dev,
			"%s: pci_channel_io_perm_failure.\n", __func__);
		ql_eeh_close(ndev);
		set_bit(QL_EEH_FATAL, &qdev->flags);
		return PCI_ERS_RESULT_DISCONNECT;
	}

	/* Request a slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/*
 * This callback is called after the PCI buss has been reset.
 * Basically, this tries to restart the card from scratch.
 * This is a shortened version of the device probe/discovery code,
 * it resembles the first-half of the () routine.
 */
static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *ndev = pci_get_drvdata(pdev);
	struct ql_adapter *qdev = netdev_priv(ndev);

	pdev->error_state = pci_channel_io_normal;

	pci_restore_state(pdev);
	if (pci_enable_device(pdev)) {
		netif_err(qdev, ifup, qdev->ndev,
			  "Cannot re-enable PCI device after reset.\n");
		return PCI_ERS_RESULT_DISCONNECT;
	}
	pci_set_master(pdev);

	if (ql_adapter_reset(qdev)) {
		netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
		set_bit(QL_EEH_FATAL, &qdev->flags);
		return PCI_ERS_RESULT_DISCONNECT;
	}

	return PCI_ERS_RESULT_RECOVERED;
}

static void qlge_io_resume(struct pci_dev *pdev)
{
	struct net_device *ndev = pci_get_drvdata(pdev);
	struct ql_adapter *qdev = netdev_priv(ndev);
	int err = 0;

	if (netif_running(ndev)) {
		err = qlge_open(ndev);
		if (err) {
			netif_err(qdev, ifup, qdev->ndev,
				  "Device initialization failed after reset.\n");
			return;
		}
	} else {
		netif_err(qdev, ifup, qdev->ndev,
			  "Device was not running prior to EEH.\n");
	}
	mod_timer(&qdev->timer, jiffies + (5*HZ));
	netif_device_attach(ndev);
}

static const struct pci_error_handlers qlge_err_handler = {
	.error_detected = qlge_io_error_detected,
	.slot_reset = qlge_io_slot_reset,
	.resume = qlge_io_resume,
};

static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
{
	struct net_device *ndev = pci_get_drvdata(pdev);
	struct ql_adapter *qdev = netdev_priv(ndev);
	int err;

	netif_device_detach(ndev);
	del_timer_sync(&qdev->timer);

	if (netif_running(ndev)) {
		err = ql_adapter_down(qdev);
		if (!err)
			return err;
	}

	ql_wol(qdev);
	err = pci_save_state(pdev);
	if (err)
		return err;

	pci_disable_device(pdev);

	pci_set_power_state(pdev, pci_choose_state(pdev, state));

	return 0;
}

#ifdef CONFIG_PM
static int qlge_resume(struct pci_dev *pdev)
{
	struct net_device *ndev = pci_get_drvdata(pdev);
	struct ql_adapter *qdev = netdev_priv(ndev);
	int err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
	err = pci_enable_device(pdev);
	if (err) {
		netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

	if (netif_running(ndev)) {
		err = ql_adapter_up(qdev);
		if (err)
			return err;
	}

	mod_timer(&qdev->timer, jiffies + (5*HZ));
	netif_device_attach(ndev);

	return 0;
}
#endif /* CONFIG_PM */

static void qlge_shutdown(struct pci_dev *pdev)
{
	qlge_suspend(pdev, PMSG_SUSPEND);
}

static struct pci_driver qlge_driver = {
	.name = DRV_NAME,
	.id_table = qlge_pci_tbl,
	.probe = qlge_probe,
	.remove = qlge_remove,
#ifdef CONFIG_PM
	.suspend = qlge_suspend,
	.resume = qlge_resume,
#endif
	.shutdown = qlge_shutdown,
	.err_handler = &qlge_err_handler
};

module_pci_driver(qlge_driver);