1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
|
// SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0
/* Copyright (c) 2019 Mellanox Technologies. All rights reserved */
#include <linux/ptp_clock_kernel.h>
#include <linux/clocksource.h>
#include <linux/timecounter.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/rhashtable.h>
#include <linux/ptp_classify.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/net_tstamp.h>
#include "spectrum.h"
#include "spectrum_ptp.h"
#include "core.h"
#define MLXSW_SP1_PTP_CLOCK_CYCLES_SHIFT 29
#define MLXSW_SP1_PTP_CLOCK_FREQ_KHZ 156257 /* 6.4nSec */
#define MLXSW_SP1_PTP_CLOCK_MASK 64
#define MLXSW_SP1_PTP_HT_GC_INTERVAL 500 /* ms */
/* How long, approximately, should the unmatched entries stay in the hash table
* before they are collected. Should be evenly divisible by the GC interval.
*/
#define MLXSW_SP1_PTP_HT_GC_TIMEOUT 1000 /* ms */
struct mlxsw_sp_ptp_state {
struct mlxsw_sp *mlxsw_sp;
struct rhashtable unmatched_ht;
spinlock_t unmatched_lock; /* protects the HT */
struct delayed_work ht_gc_dw;
u32 gc_cycle;
};
struct mlxsw_sp1_ptp_key {
u8 local_port;
u8 message_type;
u16 sequence_id;
u8 domain_number;
bool ingress;
};
struct mlxsw_sp1_ptp_unmatched {
struct mlxsw_sp1_ptp_key key;
struct rhash_head ht_node;
struct rcu_head rcu;
struct sk_buff *skb;
u64 timestamp;
u32 gc_cycle;
};
static const struct rhashtable_params mlxsw_sp1_ptp_unmatched_ht_params = {
.key_len = sizeof_field(struct mlxsw_sp1_ptp_unmatched, key),
.key_offset = offsetof(struct mlxsw_sp1_ptp_unmatched, key),
.head_offset = offsetof(struct mlxsw_sp1_ptp_unmatched, ht_node),
};
struct mlxsw_sp_ptp_clock {
struct mlxsw_core *core;
spinlock_t lock; /* protect this structure */
struct cyclecounter cycles;
struct timecounter tc;
u32 nominal_c_mult;
struct ptp_clock *ptp;
struct ptp_clock_info ptp_info;
unsigned long overflow_period;
struct delayed_work overflow_work;
};
static u64 __mlxsw_sp1_ptp_read_frc(struct mlxsw_sp_ptp_clock *clock,
struct ptp_system_timestamp *sts)
{
struct mlxsw_core *mlxsw_core = clock->core;
u32 frc_h1, frc_h2, frc_l;
frc_h1 = mlxsw_core_read_frc_h(mlxsw_core);
ptp_read_system_prets(sts);
frc_l = mlxsw_core_read_frc_l(mlxsw_core);
ptp_read_system_postts(sts);
frc_h2 = mlxsw_core_read_frc_h(mlxsw_core);
if (frc_h1 != frc_h2) {
/* wrap around */
ptp_read_system_prets(sts);
frc_l = mlxsw_core_read_frc_l(mlxsw_core);
ptp_read_system_postts(sts);
}
return (u64) frc_l | (u64) frc_h2 << 32;
}
static u64 mlxsw_sp1_ptp_read_frc(const struct cyclecounter *cc)
{
struct mlxsw_sp_ptp_clock *clock =
container_of(cc, struct mlxsw_sp_ptp_clock, cycles);
return __mlxsw_sp1_ptp_read_frc(clock, NULL) & cc->mask;
}
static int
mlxsw_sp1_ptp_phc_adjfreq(struct mlxsw_sp_ptp_clock *clock, int freq_adj)
{
struct mlxsw_core *mlxsw_core = clock->core;
char mtutc_pl[MLXSW_REG_MTUTC_LEN];
mlxsw_reg_mtutc_pack(mtutc_pl, MLXSW_REG_MTUTC_OPERATION_ADJUST_FREQ,
freq_adj, 0);
return mlxsw_reg_write(mlxsw_core, MLXSW_REG(mtutc), mtutc_pl);
}
static u64 mlxsw_sp1_ptp_ns2cycles(const struct timecounter *tc, u64 nsec)
{
u64 cycles = (u64) nsec;
cycles <<= tc->cc->shift;
cycles = div_u64(cycles, tc->cc->mult);
return cycles;
}
static int
mlxsw_sp1_ptp_phc_settime(struct mlxsw_sp_ptp_clock *clock, u64 nsec)
{
struct mlxsw_core *mlxsw_core = clock->core;
u64 next_sec, next_sec_in_nsec, cycles;
char mtutc_pl[MLXSW_REG_MTUTC_LEN];
char mtpps_pl[MLXSW_REG_MTPPS_LEN];
int err;
next_sec = div_u64(nsec, NSEC_PER_SEC) + 1;
next_sec_in_nsec = next_sec * NSEC_PER_SEC;
spin_lock_bh(&clock->lock);
cycles = mlxsw_sp1_ptp_ns2cycles(&clock->tc, next_sec_in_nsec);
spin_unlock_bh(&clock->lock);
mlxsw_reg_mtpps_vpin_pack(mtpps_pl, cycles);
err = mlxsw_reg_write(mlxsw_core, MLXSW_REG(mtpps), mtpps_pl);
if (err)
return err;
mlxsw_reg_mtutc_pack(mtutc_pl,
MLXSW_REG_MTUTC_OPERATION_SET_TIME_AT_NEXT_SEC,
0, next_sec);
return mlxsw_reg_write(mlxsw_core, MLXSW_REG(mtutc), mtutc_pl);
}
static int mlxsw_sp1_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct mlxsw_sp_ptp_clock *clock =
container_of(ptp, struct mlxsw_sp_ptp_clock, ptp_info);
int neg_adj = 0;
u32 diff;
u64 adj;
s32 ppb;
ppb = scaled_ppm_to_ppb(scaled_ppm);
if (ppb < 0) {
neg_adj = 1;
ppb = -ppb;
}
adj = clock->nominal_c_mult;
adj *= ppb;
diff = div_u64(adj, NSEC_PER_SEC);
spin_lock_bh(&clock->lock);
timecounter_read(&clock->tc);
clock->cycles.mult = neg_adj ? clock->nominal_c_mult - diff :
clock->nominal_c_mult + diff;
spin_unlock_bh(&clock->lock);
return mlxsw_sp1_ptp_phc_adjfreq(clock, neg_adj ? -ppb : ppb);
}
static int mlxsw_sp1_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct mlxsw_sp_ptp_clock *clock =
container_of(ptp, struct mlxsw_sp_ptp_clock, ptp_info);
u64 nsec;
spin_lock_bh(&clock->lock);
timecounter_adjtime(&clock->tc, delta);
nsec = timecounter_read(&clock->tc);
spin_unlock_bh(&clock->lock);
return mlxsw_sp1_ptp_phc_settime(clock, nsec);
}
static int mlxsw_sp1_ptp_gettimex(struct ptp_clock_info *ptp,
struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
struct mlxsw_sp_ptp_clock *clock =
container_of(ptp, struct mlxsw_sp_ptp_clock, ptp_info);
u64 cycles, nsec;
spin_lock_bh(&clock->lock);
cycles = __mlxsw_sp1_ptp_read_frc(clock, sts);
nsec = timecounter_cyc2time(&clock->tc, cycles);
spin_unlock_bh(&clock->lock);
*ts = ns_to_timespec64(nsec);
return 0;
}
static int mlxsw_sp1_ptp_settime(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct mlxsw_sp_ptp_clock *clock =
container_of(ptp, struct mlxsw_sp_ptp_clock, ptp_info);
u64 nsec = timespec64_to_ns(ts);
spin_lock_bh(&clock->lock);
timecounter_init(&clock->tc, &clock->cycles, nsec);
nsec = timecounter_read(&clock->tc);
spin_unlock_bh(&clock->lock);
return mlxsw_sp1_ptp_phc_settime(clock, nsec);
}
static const struct ptp_clock_info mlxsw_sp1_ptp_clock_info = {
.owner = THIS_MODULE,
.name = "mlxsw_sp_clock",
.max_adj = 100000000,
.adjfine = mlxsw_sp1_ptp_adjfine,
.adjtime = mlxsw_sp1_ptp_adjtime,
.gettimex64 = mlxsw_sp1_ptp_gettimex,
.settime64 = mlxsw_sp1_ptp_settime,
};
static void mlxsw_sp1_ptp_clock_overflow(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct mlxsw_sp_ptp_clock *clock;
clock = container_of(dwork, struct mlxsw_sp_ptp_clock, overflow_work);
spin_lock_bh(&clock->lock);
timecounter_read(&clock->tc);
spin_unlock_bh(&clock->lock);
mlxsw_core_schedule_dw(&clock->overflow_work, clock->overflow_period);
}
struct mlxsw_sp_ptp_clock *
mlxsw_sp1_ptp_clock_init(struct mlxsw_sp *mlxsw_sp, struct device *dev)
{
u64 overflow_cycles, nsec, frac = 0;
struct mlxsw_sp_ptp_clock *clock;
int err;
clock = kzalloc(sizeof(*clock), GFP_KERNEL);
if (!clock)
return ERR_PTR(-ENOMEM);
spin_lock_init(&clock->lock);
clock->cycles.read = mlxsw_sp1_ptp_read_frc;
clock->cycles.shift = MLXSW_SP1_PTP_CLOCK_CYCLES_SHIFT;
clock->cycles.mult = clocksource_khz2mult(MLXSW_SP1_PTP_CLOCK_FREQ_KHZ,
clock->cycles.shift);
clock->nominal_c_mult = clock->cycles.mult;
clock->cycles.mask = CLOCKSOURCE_MASK(MLXSW_SP1_PTP_CLOCK_MASK);
clock->core = mlxsw_sp->core;
timecounter_init(&clock->tc, &clock->cycles,
ktime_to_ns(ktime_get_real()));
/* Calculate period in seconds to call the overflow watchdog - to make
* sure counter is checked at least twice every wrap around.
* The period is calculated as the minimum between max HW cycles count
* (The clock source mask) and max amount of cycles that can be
* multiplied by clock multiplier where the result doesn't exceed
* 64bits.
*/
overflow_cycles = div64_u64(~0ULL >> 1, clock->cycles.mult);
overflow_cycles = min(overflow_cycles, div_u64(clock->cycles.mask, 3));
nsec = cyclecounter_cyc2ns(&clock->cycles, overflow_cycles, 0, &frac);
clock->overflow_period = nsecs_to_jiffies(nsec);
INIT_DELAYED_WORK(&clock->overflow_work, mlxsw_sp1_ptp_clock_overflow);
mlxsw_core_schedule_dw(&clock->overflow_work, 0);
clock->ptp_info = mlxsw_sp1_ptp_clock_info;
clock->ptp = ptp_clock_register(&clock->ptp_info, dev);
if (IS_ERR(clock->ptp)) {
err = PTR_ERR(clock->ptp);
dev_err(dev, "ptp_clock_register failed %d\n", err);
goto err_ptp_clock_register;
}
return clock;
err_ptp_clock_register:
cancel_delayed_work_sync(&clock->overflow_work);
kfree(clock);
return ERR_PTR(err);
}
void mlxsw_sp1_ptp_clock_fini(struct mlxsw_sp_ptp_clock *clock)
{
ptp_clock_unregister(clock->ptp);
cancel_delayed_work_sync(&clock->overflow_work);
kfree(clock);
}
static int mlxsw_sp_ptp_parse(struct sk_buff *skb,
u8 *p_domain_number,
u8 *p_message_type,
u16 *p_sequence_id)
{
unsigned int offset = 0;
unsigned int ptp_class;
u8 *data;
data = skb_mac_header(skb);
ptp_class = ptp_classify_raw(skb);
switch (ptp_class & PTP_CLASS_VMASK) {
case PTP_CLASS_V1:
case PTP_CLASS_V2:
break;
default:
return -ERANGE;
}
if (ptp_class & PTP_CLASS_VLAN)
offset += VLAN_HLEN;
switch (ptp_class & PTP_CLASS_PMASK) {
case PTP_CLASS_IPV4:
offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
break;
case PTP_CLASS_IPV6:
offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
break;
case PTP_CLASS_L2:
offset += ETH_HLEN;
break;
default:
return -ERANGE;
}
/* PTP header is 34 bytes. */
if (skb->len < offset + 34)
return -EINVAL;
*p_message_type = data[offset] & 0x0f;
*p_domain_number = data[offset + 4];
*p_sequence_id = (u16)(data[offset + 30]) << 8 | data[offset + 31];
return 0;
}
/* Returns NULL on successful insertion, a pointer on conflict, or an ERR_PTR on
* error.
*/
static struct mlxsw_sp1_ptp_unmatched *
mlxsw_sp1_ptp_unmatched_save(struct mlxsw_sp *mlxsw_sp,
struct mlxsw_sp1_ptp_key key,
struct sk_buff *skb,
u64 timestamp)
{
int cycles = MLXSW_SP1_PTP_HT_GC_TIMEOUT / MLXSW_SP1_PTP_HT_GC_INTERVAL;
struct mlxsw_sp_ptp_state *ptp_state = mlxsw_sp->ptp_state;
struct mlxsw_sp1_ptp_unmatched *unmatched;
struct mlxsw_sp1_ptp_unmatched *conflict;
unmatched = kzalloc(sizeof(*unmatched), GFP_ATOMIC);
if (!unmatched)
return ERR_PTR(-ENOMEM);
unmatched->key = key;
unmatched->skb = skb;
unmatched->timestamp = timestamp;
unmatched->gc_cycle = mlxsw_sp->ptp_state->gc_cycle + cycles;
conflict = rhashtable_lookup_get_insert_fast(&ptp_state->unmatched_ht,
&unmatched->ht_node,
mlxsw_sp1_ptp_unmatched_ht_params);
if (conflict)
kfree(unmatched);
return conflict;
}
static struct mlxsw_sp1_ptp_unmatched *
mlxsw_sp1_ptp_unmatched_lookup(struct mlxsw_sp *mlxsw_sp,
struct mlxsw_sp1_ptp_key key)
{
return rhashtable_lookup(&mlxsw_sp->ptp_state->unmatched_ht, &key,
mlxsw_sp1_ptp_unmatched_ht_params);
}
static int
mlxsw_sp1_ptp_unmatched_remove(struct mlxsw_sp *mlxsw_sp,
struct mlxsw_sp1_ptp_unmatched *unmatched)
{
return rhashtable_remove_fast(&mlxsw_sp->ptp_state->unmatched_ht,
&unmatched->ht_node,
mlxsw_sp1_ptp_unmatched_ht_params);
}
/* This function is called in the following scenarios:
*
* 1) When a packet is matched with its timestamp.
* 2) In several situation when it is necessary to immediately pass on
* an SKB without a timestamp.
* 3) From GC indirectly through mlxsw_sp1_ptp_unmatched_finish().
* This case is similar to 2) above.
*/
static void mlxsw_sp1_ptp_packet_finish(struct mlxsw_sp *mlxsw_sp,
struct sk_buff *skb, u8 local_port,
bool ingress,
struct skb_shared_hwtstamps *hwtstamps)
{
struct mlxsw_sp_port *mlxsw_sp_port;
/* Between capturing the packet and finishing it, there is a window of
* opportunity for the originating port to go away (e.g. due to a
* split). Also make sure the SKB device reference is still valid.
*/
mlxsw_sp_port = mlxsw_sp->ports[local_port];
if (!(mlxsw_sp_port && (!skb->dev || skb->dev == mlxsw_sp_port->dev))) {
dev_kfree_skb_any(skb);
return;
}
if (ingress) {
if (hwtstamps)
*skb_hwtstamps(skb) = *hwtstamps;
mlxsw_sp_rx_listener_no_mark_func(skb, local_port, mlxsw_sp);
} else {
/* skb_tstamp_tx() allows hwtstamps to be NULL. */
skb_tstamp_tx(skb, hwtstamps);
dev_kfree_skb_any(skb);
}
}
static void mlxsw_sp1_packet_timestamp(struct mlxsw_sp *mlxsw_sp,
struct mlxsw_sp1_ptp_key key,
struct sk_buff *skb,
u64 timestamp)
{
struct skb_shared_hwtstamps hwtstamps;
u64 nsec;
spin_lock_bh(&mlxsw_sp->clock->lock);
nsec = timecounter_cyc2time(&mlxsw_sp->clock->tc, timestamp);
spin_unlock_bh(&mlxsw_sp->clock->lock);
hwtstamps.hwtstamp = ns_to_ktime(nsec);
mlxsw_sp1_ptp_packet_finish(mlxsw_sp, skb,
key.local_port, key.ingress, &hwtstamps);
}
static void
mlxsw_sp1_ptp_unmatched_finish(struct mlxsw_sp *mlxsw_sp,
struct mlxsw_sp1_ptp_unmatched *unmatched)
{
if (unmatched->skb && unmatched->timestamp)
mlxsw_sp1_packet_timestamp(mlxsw_sp, unmatched->key,
unmatched->skb,
unmatched->timestamp);
else if (unmatched->skb)
mlxsw_sp1_ptp_packet_finish(mlxsw_sp, unmatched->skb,
unmatched->key.local_port,
unmatched->key.ingress, NULL);
kfree_rcu(unmatched, rcu);
}
static void mlxsw_sp1_ptp_unmatched_free_fn(void *ptr, void *arg)
{
struct mlxsw_sp1_ptp_unmatched *unmatched = ptr;
/* This is invoked at a point where the ports are gone already. Nothing
* to do with whatever is left in the HT but to free it.
*/
if (unmatched->skb)
dev_kfree_skb_any(unmatched->skb);
kfree_rcu(unmatched, rcu);
}
static void mlxsw_sp1_ptp_got_piece(struct mlxsw_sp *mlxsw_sp,
struct mlxsw_sp1_ptp_key key,
struct sk_buff *skb, u64 timestamp)
{
struct mlxsw_sp1_ptp_unmatched *unmatched, *conflict;
int err;
rcu_read_lock();
unmatched = mlxsw_sp1_ptp_unmatched_lookup(mlxsw_sp, key);
spin_lock(&mlxsw_sp->ptp_state->unmatched_lock);
if (unmatched) {
/* There was an unmatched entry when we looked, but it may have
* been removed before we took the lock.
*/
err = mlxsw_sp1_ptp_unmatched_remove(mlxsw_sp, unmatched);
if (err)
unmatched = NULL;
}
if (!unmatched) {
/* We have no unmatched entry, but one may have been added after
* we looked, but before we took the lock.
*/
unmatched = mlxsw_sp1_ptp_unmatched_save(mlxsw_sp, key,
skb, timestamp);
if (IS_ERR(unmatched)) {
if (skb)
mlxsw_sp1_ptp_packet_finish(mlxsw_sp, skb,
key.local_port,
key.ingress, NULL);
unmatched = NULL;
} else if (unmatched) {
/* Save just told us, under lock, that the entry is
* there, so this has to work.
*/
err = mlxsw_sp1_ptp_unmatched_remove(mlxsw_sp,
unmatched);
WARN_ON_ONCE(err);
}
}
/* If unmatched is non-NULL here, it comes either from the lookup, or
* from the save attempt above. In either case the entry was removed
* from the hash table. If unmatched is NULL, a new unmatched entry was
* added to the hash table, and there was no conflict.
*/
if (skb && unmatched && unmatched->timestamp) {
unmatched->skb = skb;
} else if (timestamp && unmatched && unmatched->skb) {
unmatched->timestamp = timestamp;
} else if (unmatched) {
/* unmatched holds an older entry of the same type: either an
* skb if we are handling skb, or a timestamp if we are handling
* timestamp. We can't match that up, so save what we have.
*/
conflict = mlxsw_sp1_ptp_unmatched_save(mlxsw_sp, key,
skb, timestamp);
if (IS_ERR(conflict)) {
if (skb)
mlxsw_sp1_ptp_packet_finish(mlxsw_sp, skb,
key.local_port,
key.ingress, NULL);
} else {
/* Above, we removed an object with this key from the
* hash table, under lock, so conflict can not be a
* valid pointer.
*/
WARN_ON_ONCE(conflict);
}
}
spin_unlock(&mlxsw_sp->ptp_state->unmatched_lock);
if (unmatched)
mlxsw_sp1_ptp_unmatched_finish(mlxsw_sp, unmatched);
rcu_read_unlock();
}
static void mlxsw_sp1_ptp_got_packet(struct mlxsw_sp *mlxsw_sp,
struct sk_buff *skb, u8 local_port,
bool ingress)
{
struct mlxsw_sp_port *mlxsw_sp_port;
struct mlxsw_sp1_ptp_key key;
u8 types;
int err;
mlxsw_sp_port = mlxsw_sp->ports[local_port];
if (!mlxsw_sp_port)
goto immediate;
types = ingress ? mlxsw_sp_port->ptp.ing_types :
mlxsw_sp_port->ptp.egr_types;
if (!types)
goto immediate;
memset(&key, 0, sizeof(key));
key.local_port = local_port;
key.ingress = ingress;
err = mlxsw_sp_ptp_parse(skb, &key.domain_number, &key.message_type,
&key.sequence_id);
if (err)
goto immediate;
/* For packets whose timestamping was not enabled on this port, don't
* bother trying to match the timestamp.
*/
if (!((1 << key.message_type) & types))
goto immediate;
mlxsw_sp1_ptp_got_piece(mlxsw_sp, key, skb, 0);
return;
immediate:
mlxsw_sp1_ptp_packet_finish(mlxsw_sp, skb, local_port, ingress, NULL);
}
void mlxsw_sp1_ptp_got_timestamp(struct mlxsw_sp *mlxsw_sp, bool ingress,
u8 local_port, u8 message_type,
u8 domain_number, u16 sequence_id,
u64 timestamp)
{
struct mlxsw_sp_port *mlxsw_sp_port;
struct mlxsw_sp1_ptp_key key;
u8 types;
mlxsw_sp_port = mlxsw_sp->ports[local_port];
if (!mlxsw_sp_port)
return;
types = ingress ? mlxsw_sp_port->ptp.ing_types :
mlxsw_sp_port->ptp.egr_types;
/* For message types whose timestamping was not enabled on this port,
* don't bother with the timestamp.
*/
if (!((1 << message_type) & types))
return;
memset(&key, 0, sizeof(key));
key.local_port = local_port;
key.domain_number = domain_number;
key.message_type = message_type;
key.sequence_id = sequence_id;
key.ingress = ingress;
mlxsw_sp1_ptp_got_piece(mlxsw_sp, key, NULL, timestamp);
}
void mlxsw_sp1_ptp_receive(struct mlxsw_sp *mlxsw_sp, struct sk_buff *skb,
u8 local_port)
{
skb_reset_mac_header(skb);
mlxsw_sp1_ptp_got_packet(mlxsw_sp, skb, local_port, true);
}
void mlxsw_sp1_ptp_transmitted(struct mlxsw_sp *mlxsw_sp,
struct sk_buff *skb, u8 local_port)
{
mlxsw_sp1_ptp_got_packet(mlxsw_sp, skb, local_port, false);
}
static void
mlxsw_sp1_ptp_ht_gc_collect(struct mlxsw_sp_ptp_state *ptp_state,
struct mlxsw_sp1_ptp_unmatched *unmatched)
{
int err;
/* If an unmatched entry has an SKB, it has to be handed over to the
* networking stack. This is usually done from a trap handler, which is
* invoked in a softirq context. Here we are going to do it in process
* context. If that were to be interrupted by a softirq, it could cause
* a deadlock when an attempt is made to take an already-taken lock
* somewhere along the sending path. Disable softirqs to prevent this.
*/
local_bh_disable();
spin_lock(&ptp_state->unmatched_lock);
err = rhashtable_remove_fast(&ptp_state->unmatched_ht,
&unmatched->ht_node,
mlxsw_sp1_ptp_unmatched_ht_params);
spin_unlock(&ptp_state->unmatched_lock);
if (err)
/* The packet was matched with timestamp during the walk. */
goto out;
/* mlxsw_sp1_ptp_unmatched_finish() invokes netif_receive_skb(). While
* the comment at that function states that it can only be called in
* soft IRQ context, this pattern of local_bh_disable() +
* netif_receive_skb(), in process context, is seen elsewhere in the
* kernel, notably in pktgen.
*/
mlxsw_sp1_ptp_unmatched_finish(ptp_state->mlxsw_sp, unmatched);
out:
local_bh_enable();
}
static void mlxsw_sp1_ptp_ht_gc(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct mlxsw_sp1_ptp_unmatched *unmatched;
struct mlxsw_sp_ptp_state *ptp_state;
struct rhashtable_iter iter;
u32 gc_cycle;
void *obj;
ptp_state = container_of(dwork, struct mlxsw_sp_ptp_state, ht_gc_dw);
gc_cycle = ptp_state->gc_cycle++;
rhashtable_walk_enter(&ptp_state->unmatched_ht, &iter);
rhashtable_walk_start(&iter);
while ((obj = rhashtable_walk_next(&iter))) {
if (IS_ERR(obj))
continue;
unmatched = obj;
if (unmatched->gc_cycle <= gc_cycle)
mlxsw_sp1_ptp_ht_gc_collect(ptp_state, unmatched);
}
rhashtable_walk_stop(&iter);
rhashtable_walk_exit(&iter);
mlxsw_core_schedule_dw(&ptp_state->ht_gc_dw,
MLXSW_SP1_PTP_HT_GC_INTERVAL);
}
static int mlxsw_sp_ptp_mtptpt_set(struct mlxsw_sp *mlxsw_sp,
enum mlxsw_reg_mtptpt_trap_id trap_id,
u16 message_type)
{
char mtptpt_pl[MLXSW_REG_MTPTPT_LEN];
mlxsw_reg_mtptptp_pack(mtptpt_pl, trap_id, message_type);
return mlxsw_reg_write(mlxsw_sp->core, MLXSW_REG(mtptpt), mtptpt_pl);
}
static int mlxsw_sp1_ptp_set_fifo_clr_on_trap(struct mlxsw_sp *mlxsw_sp,
bool clr)
{
char mogcr_pl[MLXSW_REG_MOGCR_LEN] = {0};
int err;
err = mlxsw_reg_query(mlxsw_sp->core, MLXSW_REG(mogcr), mogcr_pl);
if (err)
return err;
mlxsw_reg_mogcr_ptp_iftc_set(mogcr_pl, clr);
mlxsw_reg_mogcr_ptp_eftc_set(mogcr_pl, clr);
return mlxsw_reg_write(mlxsw_sp->core, MLXSW_REG(mogcr), mogcr_pl);
}
static int mlxsw_sp1_ptp_mtpppc_set(struct mlxsw_sp *mlxsw_sp,
u16 ing_types, u16 egr_types)
{
char mtpppc_pl[MLXSW_REG_MTPPPC_LEN];
mlxsw_reg_mtpppc_pack(mtpppc_pl, ing_types, egr_types);
return mlxsw_reg_write(mlxsw_sp->core, MLXSW_REG(mtpppc), mtpppc_pl);
}
struct mlxsw_sp_ptp_state *mlxsw_sp1_ptp_init(struct mlxsw_sp *mlxsw_sp)
{
struct mlxsw_sp_ptp_state *ptp_state;
u16 message_type;
int err;
ptp_state = kzalloc(sizeof(*ptp_state), GFP_KERNEL);
if (!ptp_state)
return ERR_PTR(-ENOMEM);
ptp_state->mlxsw_sp = mlxsw_sp;
spin_lock_init(&ptp_state->unmatched_lock);
err = rhashtable_init(&ptp_state->unmatched_ht,
&mlxsw_sp1_ptp_unmatched_ht_params);
if (err)
goto err_hashtable_init;
/* Delive these message types as PTP0. */
message_type = BIT(MLXSW_SP_PTP_MESSAGE_TYPE_SYNC) |
BIT(MLXSW_SP_PTP_MESSAGE_TYPE_DELAY_REQ) |
BIT(MLXSW_SP_PTP_MESSAGE_TYPE_PDELAY_REQ) |
BIT(MLXSW_SP_PTP_MESSAGE_TYPE_PDELAY_RESP);
err = mlxsw_sp_ptp_mtptpt_set(mlxsw_sp, MLXSW_REG_MTPTPT_TRAP_ID_PTP0,
message_type);
if (err)
goto err_mtptpt_set;
/* Everything else is PTP1. */
message_type = ~message_type;
err = mlxsw_sp_ptp_mtptpt_set(mlxsw_sp, MLXSW_REG_MTPTPT_TRAP_ID_PTP1,
message_type);
if (err)
goto err_mtptpt1_set;
err = mlxsw_sp1_ptp_set_fifo_clr_on_trap(mlxsw_sp, true);
if (err)
goto err_fifo_clr;
INIT_DELAYED_WORK(&ptp_state->ht_gc_dw, mlxsw_sp1_ptp_ht_gc);
mlxsw_core_schedule_dw(&ptp_state->ht_gc_dw,
MLXSW_SP1_PTP_HT_GC_INTERVAL);
return ptp_state;
err_fifo_clr:
mlxsw_sp_ptp_mtptpt_set(mlxsw_sp, MLXSW_REG_MTPTPT_TRAP_ID_PTP1, 0);
err_mtptpt1_set:
mlxsw_sp_ptp_mtptpt_set(mlxsw_sp, MLXSW_REG_MTPTPT_TRAP_ID_PTP0, 0);
err_mtptpt_set:
rhashtable_destroy(&ptp_state->unmatched_ht);
err_hashtable_init:
kfree(ptp_state);
return ERR_PTR(err);
}
void mlxsw_sp1_ptp_fini(struct mlxsw_sp_ptp_state *ptp_state)
{
struct mlxsw_sp *mlxsw_sp = ptp_state->mlxsw_sp;
cancel_delayed_work_sync(&ptp_state->ht_gc_dw);
mlxsw_sp1_ptp_mtpppc_set(mlxsw_sp, 0, 0);
mlxsw_sp1_ptp_set_fifo_clr_on_trap(mlxsw_sp, false);
mlxsw_sp_ptp_mtptpt_set(mlxsw_sp, MLXSW_REG_MTPTPT_TRAP_ID_PTP1, 0);
mlxsw_sp_ptp_mtptpt_set(mlxsw_sp, MLXSW_REG_MTPTPT_TRAP_ID_PTP0, 0);
rhashtable_free_and_destroy(&ptp_state->unmatched_ht,
&mlxsw_sp1_ptp_unmatched_free_fn, NULL);
kfree(ptp_state);
}
int mlxsw_sp1_ptp_hwtstamp_get(struct mlxsw_sp_port *mlxsw_sp_port,
struct hwtstamp_config *config)
{
*config = mlxsw_sp_port->ptp.hwtstamp_config;
return 0;
}
static int mlxsw_sp_ptp_get_message_types(const struct hwtstamp_config *config,
u16 *p_ing_types, u16 *p_egr_types,
enum hwtstamp_rx_filters *p_rx_filter)
{
enum hwtstamp_rx_filters rx_filter = config->rx_filter;
enum hwtstamp_tx_types tx_type = config->tx_type;
u16 ing_types = 0x00;
u16 egr_types = 0x00;
switch (tx_type) {
case HWTSTAMP_TX_OFF:
egr_types = 0x00;
break;
case HWTSTAMP_TX_ON:
egr_types = 0xff;
break;
case HWTSTAMP_TX_ONESTEP_SYNC:
return -ERANGE;
}
switch (rx_filter) {
case HWTSTAMP_FILTER_NONE:
ing_types = 0x00;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
ing_types = 0x01;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
ing_types = 0x02;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_EVENT:
ing_types = 0x0f;
break;
case HWTSTAMP_FILTER_ALL:
ing_types = 0xff;
break;
case HWTSTAMP_FILTER_SOME:
case HWTSTAMP_FILTER_NTP_ALL:
return -ERANGE;
}
*p_ing_types = ing_types;
*p_egr_types = egr_types;
*p_rx_filter = rx_filter;
return 0;
}
static int mlxsw_sp1_ptp_mtpppc_update(struct mlxsw_sp_port *mlxsw_sp_port,
u16 ing_types, u16 egr_types)
{
struct mlxsw_sp *mlxsw_sp = mlxsw_sp_port->mlxsw_sp;
struct mlxsw_sp_port *tmp;
int i;
/* MTPPPC configures timestamping globally, not per port. Find the
* configuration that contains all configured timestamping requests.
*/
for (i = 1; i < mlxsw_core_max_ports(mlxsw_sp->core); i++) {
tmp = mlxsw_sp->ports[i];
if (tmp && tmp != mlxsw_sp_port) {
ing_types |= tmp->ptp.ing_types;
egr_types |= tmp->ptp.egr_types;
}
}
return mlxsw_sp1_ptp_mtpppc_set(mlxsw_sp_port->mlxsw_sp,
ing_types, egr_types);
}
int mlxsw_sp1_ptp_hwtstamp_set(struct mlxsw_sp_port *mlxsw_sp_port,
struct hwtstamp_config *config)
{
enum hwtstamp_rx_filters rx_filter;
u16 ing_types;
u16 egr_types;
int err;
err = mlxsw_sp_ptp_get_message_types(config, &ing_types, &egr_types,
&rx_filter);
if (err)
return err;
err = mlxsw_sp1_ptp_mtpppc_update(mlxsw_sp_port, ing_types, egr_types);
if (err)
return err;
mlxsw_sp_port->ptp.hwtstamp_config = *config;
mlxsw_sp_port->ptp.ing_types = ing_types;
mlxsw_sp_port->ptp.egr_types = egr_types;
/* Notify the ioctl caller what we are actually timestamping. */
config->rx_filter = rx_filter;
return 0;
}
int mlxsw_sp1_ptp_get_ts_info(struct mlxsw_sp *mlxsw_sp,
struct ethtool_ts_info *info)
{
info->phc_index = ptp_clock_index(mlxsw_sp->clock->ptp);
info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
info->tx_types = BIT(HWTSTAMP_TX_OFF) |
BIT(HWTSTAMP_TX_ON);
info->rx_filters = BIT(HWTSTAMP_FILTER_NONE) |
BIT(HWTSTAMP_FILTER_ALL);
return 0;
}
|