1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
|
// SPDX-License-Identifier: GPL-2.0
/* Marvell RVU Admin Function driver
*
* Copyright (C) 2024 Marvell.
*
*/
#include <linux/interrupt.h>
#include <linux/irq.h>
#include "rvu_trace.h"
#include "mbox.h"
#include "reg.h"
#include "api.h"
static irqreturn_t cn20k_afvf_mbox_intr_handler(int irq, void *rvu_irq)
{
struct rvu_irq_data *rvu_irq_data = rvu_irq;
struct rvu *rvu = rvu_irq_data->rvu;
u64 intr;
/* Sync with mbox memory region */
rmb();
/* Clear interrupts */
intr = rvupf_read64(rvu, rvu_irq_data->intr_status);
rvupf_write64(rvu, rvu_irq_data->intr_status, intr);
if (intr)
trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
rvu_irq_data->afvf_queue_work_hdlr(&rvu->afvf_wq_info, rvu_irq_data->start,
rvu_irq_data->mdevs, intr);
return IRQ_HANDLED;
}
int cn20k_register_afvf_mbox_intr(struct rvu *rvu, int pf_vec_start)
{
struct rvu_irq_data *irq_data;
int intr_vec, offset, vec = 0;
int err;
/* irq data for 4 VFPF intr vectors */
irq_data = devm_kcalloc(rvu->dev, 4,
sizeof(struct rvu_irq_data), GFP_KERNEL);
if (!irq_data)
return -ENOMEM;
for (intr_vec = RVU_MBOX_PF_INT_VEC_VFPF_MBOX0; intr_vec <=
RVU_MBOX_PF_INT_VEC_VFPF1_MBOX1;
intr_vec++, vec++) {
switch (intr_vec) {
case RVU_MBOX_PF_INT_VEC_VFPF_MBOX0:
irq_data[vec].intr_status =
RVU_MBOX_PF_VFPF_INTX(0);
irq_data[vec].start = 0;
irq_data[vec].mdevs = 64;
break;
case RVU_MBOX_PF_INT_VEC_VFPF_MBOX1:
irq_data[vec].intr_status =
RVU_MBOX_PF_VFPF_INTX(1);
irq_data[vec].start = 64;
irq_data[vec].mdevs = 64;
break;
case RVU_MBOX_PF_INT_VEC_VFPF1_MBOX0:
irq_data[vec].intr_status =
RVU_MBOX_PF_VFPF1_INTX(0);
irq_data[vec].start = 0;
irq_data[vec].mdevs = 64;
break;
case RVU_MBOX_PF_INT_VEC_VFPF1_MBOX1:
irq_data[vec].intr_status = RVU_MBOX_PF_VFPF1_INTX(1);
irq_data[vec].start = 64;
irq_data[vec].mdevs = 64;
break;
}
irq_data[vec].afvf_queue_work_hdlr =
rvu_queue_work;
offset = pf_vec_start + intr_vec;
irq_data[vec].vec_num = offset;
irq_data[vec].rvu = rvu;
sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAF VFAF%d Mbox%d",
vec / 2, vec % 2);
err = request_irq(pci_irq_vector(rvu->pdev, offset),
rvu->ng_rvu->rvu_mbox_ops->afvf_intr_handler, 0,
&rvu->irq_name[offset * NAME_SIZE],
&irq_data[vec]);
if (err) {
dev_err(rvu->dev,
"RVUAF: IRQ registration failed for AFVF mbox irq\n");
return err;
}
rvu->irq_allocated[offset] = true;
}
return 0;
}
/* CN20K mbox PFx => AF irq handler */
static irqreturn_t cn20k_mbox_pf_common_intr_handler(int irq, void *rvu_irq)
{
struct rvu_irq_data *rvu_irq_data = rvu_irq;
struct rvu *rvu = rvu_irq_data->rvu;
u64 intr;
/* Clear interrupts */
intr = rvu_read64(rvu, BLKADDR_RVUM, rvu_irq_data->intr_status);
rvu_write64(rvu, BLKADDR_RVUM, rvu_irq_data->intr_status, intr);
if (intr)
trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
/* Sync with mbox memory region */
rmb();
rvu_irq_data->rvu_queue_work_hdlr(&rvu->afpf_wq_info,
rvu_irq_data->start,
rvu_irq_data->mdevs, intr);
return IRQ_HANDLED;
}
void cn20k_rvu_enable_mbox_intr(struct rvu *rvu)
{
struct rvu_hwinfo *hw = rvu->hw;
/* Clear spurious irqs, if any */
rvu_write64(rvu, BLKADDR_RVUM,
RVU_MBOX_AF_PFAF_INT(0), INTR_MASK(hw->total_pfs));
rvu_write64(rvu, BLKADDR_RVUM,
RVU_MBOX_AF_PFAF_INT(1), INTR_MASK(hw->total_pfs - 64));
rvu_write64(rvu, BLKADDR_RVUM,
RVU_MBOX_AF_PFAF1_INT(0), INTR_MASK(hw->total_pfs));
rvu_write64(rvu, BLKADDR_RVUM,
RVU_MBOX_AF_PFAF1_INT(1), INTR_MASK(hw->total_pfs - 64));
/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
rvu_write64(rvu, BLKADDR_RVUM, RVU_MBOX_AF_PFAF_INT_ENA_W1S(0),
INTR_MASK(hw->total_pfs) & ~1ULL);
rvu_write64(rvu, BLKADDR_RVUM, RVU_MBOX_AF_PFAF_INT_ENA_W1S(1),
INTR_MASK(hw->total_pfs - 64));
rvu_write64(rvu, BLKADDR_RVUM, RVU_MBOX_AF_PFAF1_INT_ENA_W1S(0),
INTR_MASK(hw->total_pfs) & ~1ULL);
rvu_write64(rvu, BLKADDR_RVUM, RVU_MBOX_AF_PFAF1_INT_ENA_W1S(1),
INTR_MASK(hw->total_pfs - 64));
}
void cn20k_rvu_unregister_interrupts(struct rvu *rvu)
{
rvu_write64(rvu, BLKADDR_RVUM, RVU_MBOX_AF_PFAF_INT_ENA_W1C(0),
INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
rvu_write64(rvu, BLKADDR_RVUM, RVU_MBOX_AF_PFAF_INT_ENA_W1C(1),
INTR_MASK(rvu->hw->total_pfs - 64));
rvu_write64(rvu, BLKADDR_RVUM, RVU_MBOX_AF_PFAF1_INT_ENA_W1C(0),
INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
rvu_write64(rvu, BLKADDR_RVUM, RVU_MBOX_AF_PFAF1_INT_ENA_W1C(1),
INTR_MASK(rvu->hw->total_pfs - 64));
}
int cn20k_register_afpf_mbox_intr(struct rvu *rvu)
{
struct rvu_irq_data *irq_data;
int intr_vec, ret, vec = 0;
/* irq data for 4 PF intr vectors */
irq_data = devm_kcalloc(rvu->dev, 4,
sizeof(struct rvu_irq_data), GFP_KERNEL);
if (!irq_data)
return -ENOMEM;
for (intr_vec = RVU_AF_CN20K_INT_VEC_PFAF_MBOX0; intr_vec <=
RVU_AF_CN20K_INT_VEC_PFAF1_MBOX1; intr_vec++,
vec++) {
switch (intr_vec) {
case RVU_AF_CN20K_INT_VEC_PFAF_MBOX0:
irq_data[vec].intr_status =
RVU_MBOX_AF_PFAF_INT(0);
irq_data[vec].start = 0;
irq_data[vec].mdevs = 64;
break;
case RVU_AF_CN20K_INT_VEC_PFAF_MBOX1:
irq_data[vec].intr_status =
RVU_MBOX_AF_PFAF_INT(1);
irq_data[vec].start = 64;
irq_data[vec].mdevs = 96;
break;
case RVU_AF_CN20K_INT_VEC_PFAF1_MBOX0:
irq_data[vec].intr_status =
RVU_MBOX_AF_PFAF1_INT(0);
irq_data[vec].start = 0;
irq_data[vec].mdevs = 64;
break;
case RVU_AF_CN20K_INT_VEC_PFAF1_MBOX1:
irq_data[vec].intr_status =
RVU_MBOX_AF_PFAF1_INT(1);
irq_data[vec].start = 64;
irq_data[vec].mdevs = 96;
break;
}
irq_data[vec].rvu_queue_work_hdlr = rvu_queue_work;
irq_data[vec].vec_num = intr_vec;
irq_data[vec].rvu = rvu;
/* Register mailbox interrupt handler */
sprintf(&rvu->irq_name[intr_vec * NAME_SIZE],
"RVUAF PFAF%d Mbox%d",
vec / 2, vec % 2);
ret = request_irq(pci_irq_vector(rvu->pdev, intr_vec),
rvu->ng_rvu->rvu_mbox_ops->pf_intr_handler, 0,
&rvu->irq_name[intr_vec * NAME_SIZE],
&irq_data[vec]);
if (ret)
return ret;
rvu->irq_allocated[intr_vec] = true;
}
return 0;
}
int cn20k_rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
int num, int type, unsigned long *pf_bmap)
{
int region;
u64 bar;
if (type == TYPE_AFVF) {
for (region = 0; region < num; region++) {
if (!test_bit(region, pf_bmap))
continue;
bar = (u64)phys_to_virt((u64)rvu->ng_rvu->vf_mbox_addr->base);
bar += region * MBOX_SIZE;
mbox_addr[region] = (void *)bar;
if (!mbox_addr[region])
return -ENOMEM;
}
return 0;
}
for (region = 0; region < num; region++) {
if (!test_bit(region, pf_bmap))
continue;
bar = (u64)phys_to_virt((u64)rvu->ng_rvu->pf_mbox_addr->base);
bar += region * MBOX_SIZE;
mbox_addr[region] = (void *)bar;
if (!mbox_addr[region])
return -ENOMEM;
}
return 0;
}
static int rvu_alloc_mbox_memory(struct rvu *rvu, int type,
int ndevs, int mbox_size)
{
struct qmem *mbox_addr;
dma_addr_t iova;
int pf, err;
/* Allocate contiguous memory for mailbox communication.
* eg: AF <=> PFx mbox memory
* This allocated memory is split into chunks of MBOX_SIZE
* and setup into each of the RVU PFs. In HW this memory will
* get aliased to an offset within BAR2 of those PFs.
*
* AF will access mbox memory using direct physical addresses
* and PFs will access the same shared memory from BAR2.
*
* PF <=> VF mbox memory also works in the same fashion.
* AFPF, PFVF requires IOVA to be used to maintain the mailbox msgs
*/
err = qmem_alloc(rvu->dev, &mbox_addr, ndevs, mbox_size);
if (err)
return -ENOMEM;
switch (type) {
case TYPE_AFPF:
rvu->ng_rvu->pf_mbox_addr = mbox_addr;
iova = (u64)mbox_addr->iova;
for (pf = 0; pf < ndevs; pf++) {
rvu_write64(rvu, BLKADDR_RVUM, RVU_MBOX_AF_PFX_ADDR(pf),
(u64)iova);
iova += mbox_size;
}
break;
case TYPE_AFVF:
rvu->ng_rvu->vf_mbox_addr = mbox_addr;
rvupf_write64(rvu, RVU_PF_VF_MBOX_ADDR, (u64)mbox_addr->iova);
break;
default:
return 0;
}
return 0;
}
static struct mbox_ops cn20k_mbox_ops = {
.pf_intr_handler = cn20k_mbox_pf_common_intr_handler,
.afvf_intr_handler = cn20k_afvf_mbox_intr_handler,
};
int cn20k_rvu_mbox_init(struct rvu *rvu, int type, int ndevs)
{
int dev;
if (!is_cn20k(rvu->pdev))
return 0;
rvu->ng_rvu->rvu_mbox_ops = &cn20k_mbox_ops;
if (type == TYPE_AFVF) {
rvu_write64(rvu, BLKADDR_RVUM, RVU_MBOX_PF_VF_CFG, ilog2(MBOX_SIZE));
} else {
for (dev = 0; dev < ndevs; dev++)
rvu_write64(rvu, BLKADDR_RVUM,
RVU_MBOX_AF_PFX_CFG(dev), ilog2(MBOX_SIZE));
}
return rvu_alloc_mbox_memory(rvu, type, ndevs, MBOX_SIZE);
}
void cn20k_free_mbox_memory(struct rvu *rvu)
{
if (!is_cn20k(rvu->pdev))
return;
qmem_free(rvu->dev, rvu->ng_rvu->pf_mbox_addr);
qmem_free(rvu->dev, rvu->ng_rvu->vf_mbox_addr);
}
void cn20k_rvu_disable_afvf_intr(struct rvu *rvu, int vfs)
{
rvupf_write64(rvu, RVU_MBOX_PF_VFPF_INT_ENA_W1CX(0), INTR_MASK(vfs));
rvupf_write64(rvu, RVU_MBOX_PF_VFPF1_INT_ENA_W1CX(0), INTR_MASK(vfs));
rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
if (vfs <= 64)
return;
rvupf_write64(rvu, RVU_MBOX_PF_VFPF_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
rvupf_write64(rvu, RVU_MBOX_PF_VFPF1_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
}
void cn20k_rvu_enable_afvf_intr(struct rvu *rvu, int vfs)
{
/* Clear any pending interrupts and enable AF VF interrupts for
* the first 64 VFs.
*/
rvupf_write64(rvu, RVU_MBOX_PF_VFPF_INTX(0), INTR_MASK(vfs));
rvupf_write64(rvu, RVU_MBOX_PF_VFPF_INT_ENA_W1SX(0), INTR_MASK(vfs));
rvupf_write64(rvu, RVU_MBOX_PF_VFPF1_INTX(0), INTR_MASK(vfs));
rvupf_write64(rvu, RVU_MBOX_PF_VFPF1_INT_ENA_W1SX(0), INTR_MASK(vfs));
/* FLR */
rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
/* Same for remaining VFs, if any. */
if (vfs <= 64)
return;
rvupf_write64(rvu, RVU_MBOX_PF_VFPF_INTX(1), INTR_MASK(vfs - 64));
rvupf_write64(rvu, RVU_MBOX_PF_VFPF_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
rvupf_write64(rvu, RVU_MBOX_PF_VFPF1_INTX(1), INTR_MASK(vfs - 64));
rvupf_write64(rvu, RVU_MBOX_PF_VFPF1_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
}
int rvu_alloc_cint_qint_mem(struct rvu *rvu, struct rvu_pfvf *pfvf,
int blkaddr, int nixlf)
{
int qints, hwctx_size, err;
u64 cfg, ctx_cfg;
if (is_rvu_otx2(rvu) || is_cn20k(rvu->pdev))
return 0;
ctx_cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST3);
/* Alloc memory for CQINT's HW contexts */
cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
qints = (cfg >> 24) & 0xFFF;
hwctx_size = 1UL << ((ctx_cfg >> 24) & 0xF);
err = qmem_alloc(rvu->dev, &pfvf->cq_ints_ctx, qints, hwctx_size);
if (err)
return -ENOMEM;
rvu_write64(rvu, blkaddr, NIX_AF_LFX_CINTS_BASE(nixlf),
(u64)pfvf->cq_ints_ctx->iova);
/* Alloc memory for QINT's HW contexts */
cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
qints = (cfg >> 12) & 0xFFF;
hwctx_size = 1UL << ((ctx_cfg >> 20) & 0xF);
err = qmem_alloc(rvu->dev, &pfvf->nix_qints_ctx, qints, hwctx_size);
if (err)
return -ENOMEM;
rvu_write64(rvu, blkaddr, NIX_AF_LFX_QINTS_BASE(nixlf),
(u64)pfvf->nix_qints_ctx->iova);
return 0;
}
|