summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/intel/ice/ice_ptp.c
blob: ef2e858f49bb0ed12302454177a2640b07ec7161 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2021, Intel Corporation. */

#include "ice.h"
#include "ice_lib.h"
#include "ice_trace.h"

#define E810_OUT_PROP_DELAY_NS 1

static const struct ptp_pin_desc ice_pin_desc_e810t[] = {
	/* name    idx   func         chan */
	{ "GNSS",  GNSS, PTP_PF_EXTTS, 0, { 0, } },
	{ "SMA1",  SMA1, PTP_PF_NONE, 1, { 0, } },
	{ "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } },
	{ "SMA2",  SMA2, PTP_PF_NONE, 2, { 0, } },
	{ "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } },
};

/**
 * ice_get_sma_config_e810t
 * @hw: pointer to the hw struct
 * @ptp_pins: pointer to the ptp_pin_desc struture
 *
 * Read the configuration of the SMA control logic and put it into the
 * ptp_pin_desc structure
 */
static int
ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins)
{
	u8 data, i;
	int status;

	/* Read initial pin state */
	status = ice_read_sma_ctrl_e810t(hw, &data);
	if (status)
		return status;

	/* initialize with defaults */
	for (i = 0; i < NUM_PTP_PINS_E810T; i++) {
		strscpy(ptp_pins[i].name, ice_pin_desc_e810t[i].name,
			sizeof(ptp_pins[i].name));
		ptp_pins[i].index = ice_pin_desc_e810t[i].index;
		ptp_pins[i].func = ice_pin_desc_e810t[i].func;
		ptp_pins[i].chan = ice_pin_desc_e810t[i].chan;
	}

	/* Parse SMA1/UFL1 */
	switch (data & ICE_SMA1_MASK_E810T) {
	case ICE_SMA1_MASK_E810T:
	default:
		ptp_pins[SMA1].func = PTP_PF_NONE;
		ptp_pins[UFL1].func = PTP_PF_NONE;
		break;
	case ICE_SMA1_DIR_EN_E810T:
		ptp_pins[SMA1].func = PTP_PF_PEROUT;
		ptp_pins[UFL1].func = PTP_PF_NONE;
		break;
	case ICE_SMA1_TX_EN_E810T:
		ptp_pins[SMA1].func = PTP_PF_EXTTS;
		ptp_pins[UFL1].func = PTP_PF_NONE;
		break;
	case 0:
		ptp_pins[SMA1].func = PTP_PF_EXTTS;
		ptp_pins[UFL1].func = PTP_PF_PEROUT;
		break;
	}

	/* Parse SMA2/UFL2 */
	switch (data & ICE_SMA2_MASK_E810T) {
	case ICE_SMA2_MASK_E810T:
	default:
		ptp_pins[SMA2].func = PTP_PF_NONE;
		ptp_pins[UFL2].func = PTP_PF_NONE;
		break;
	case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
		ptp_pins[SMA2].func = PTP_PF_EXTTS;
		ptp_pins[UFL2].func = PTP_PF_NONE;
		break;
	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
		ptp_pins[SMA2].func = PTP_PF_PEROUT;
		ptp_pins[UFL2].func = PTP_PF_NONE;
		break;
	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T):
		ptp_pins[SMA2].func = PTP_PF_NONE;
		ptp_pins[UFL2].func = PTP_PF_EXTTS;
		break;
	case ICE_SMA2_DIR_EN_E810T:
		ptp_pins[SMA2].func = PTP_PF_PEROUT;
		ptp_pins[UFL2].func = PTP_PF_EXTTS;
		break;
	}

	return 0;
}

/**
 * ice_ptp_set_sma_config_e810t
 * @hw: pointer to the hw struct
 * @ptp_pins: pointer to the ptp_pin_desc struture
 *
 * Set the configuration of the SMA control logic based on the configuration in
 * num_pins parameter
 */
static int
ice_ptp_set_sma_config_e810t(struct ice_hw *hw,
			     const struct ptp_pin_desc *ptp_pins)
{
	int status;
	u8 data;

	/* SMA1 and UFL1 cannot be set to TX at the same time */
	if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
	    ptp_pins[UFL1].func == PTP_PF_PEROUT)
		return -EINVAL;

	/* SMA2 and UFL2 cannot be set to RX at the same time */
	if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
	    ptp_pins[UFL2].func == PTP_PF_EXTTS)
		return -EINVAL;

	/* Read initial pin state value */
	status = ice_read_sma_ctrl_e810t(hw, &data);
	if (status)
		return status;

	/* Set the right sate based on the desired configuration */
	data &= ~ICE_SMA1_MASK_E810T;
	if (ptp_pins[SMA1].func == PTP_PF_NONE &&
	    ptp_pins[UFL1].func == PTP_PF_NONE) {
		dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled");
		data |= ICE_SMA1_MASK_E810T;
	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
		   ptp_pins[UFL1].func == PTP_PF_NONE) {
		dev_info(ice_hw_to_dev(hw), "SMA1 RX");
		data |= ICE_SMA1_TX_EN_E810T;
	} else if (ptp_pins[SMA1].func == PTP_PF_NONE &&
		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
		/* U.FL 1 TX will always enable SMA 1 RX */
		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
	} else if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
		   ptp_pins[UFL1].func == PTP_PF_NONE) {
		dev_info(ice_hw_to_dev(hw), "SMA1 TX");
		data |= ICE_SMA1_DIR_EN_E810T;
	}

	data &= ~ICE_SMA2_MASK_E810T;
	if (ptp_pins[SMA2].func == PTP_PF_NONE &&
	    ptp_pins[UFL2].func == PTP_PF_NONE) {
		dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled");
		data |= ICE_SMA2_MASK_E810T;
	} else if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
			ptp_pins[UFL2].func == PTP_PF_NONE) {
		dev_info(ice_hw_to_dev(hw), "SMA2 RX");
		data |= (ICE_SMA2_TX_EN_E810T |
			 ICE_SMA2_UFL2_RX_DIS_E810T);
	} else if (ptp_pins[SMA2].func == PTP_PF_NONE &&
		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
		dev_info(ice_hw_to_dev(hw), "UFL2 RX");
		data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T);
	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
		   ptp_pins[UFL2].func == PTP_PF_NONE) {
		dev_info(ice_hw_to_dev(hw), "SMA2 TX");
		data |= (ICE_SMA2_DIR_EN_E810T |
			 ICE_SMA2_UFL2_RX_DIS_E810T);
	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
		dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX");
		data |= ICE_SMA2_DIR_EN_E810T;
	}

	return ice_write_sma_ctrl_e810t(hw, data);
}

/**
 * ice_ptp_set_sma_e810t
 * @info: the driver's PTP info structure
 * @pin: pin index in kernel structure
 * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT)
 *
 * Set the configuration of a single SMA pin
 */
static int
ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin,
		      enum ptp_pin_function func)
{
	struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T];
	struct ice_pf *pf = ptp_info_to_pf(info);
	struct ice_hw *hw = &pf->hw;
	int err;

	if (pin < SMA1 || func > PTP_PF_PEROUT)
		return -EOPNOTSUPP;

	err = ice_get_sma_config_e810t(hw, ptp_pins);
	if (err)
		return err;

	/* Disable the same function on the other pin sharing the channel */
	if (pin == SMA1 && ptp_pins[UFL1].func == func)
		ptp_pins[UFL1].func = PTP_PF_NONE;
	if (pin == UFL1 && ptp_pins[SMA1].func == func)
		ptp_pins[SMA1].func = PTP_PF_NONE;

	if (pin == SMA2 && ptp_pins[UFL2].func == func)
		ptp_pins[UFL2].func = PTP_PF_NONE;
	if (pin == UFL2 && ptp_pins[SMA2].func == func)
		ptp_pins[SMA2].func = PTP_PF_NONE;

	/* Set up new pin function in the temp table */
	ptp_pins[pin].func = func;

	return ice_ptp_set_sma_config_e810t(hw, ptp_pins);
}

/**
 * ice_verify_pin_e810t
 * @info: the driver's PTP info structure
 * @pin: Pin index
 * @func: Assigned function
 * @chan: Assigned channel
 *
 * Verify if pin supports requested pin function. If the Check pins consistency.
 * Reconfigure the SMA logic attached to the given pin to enable its
 * desired functionality
 */
static int
ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin,
		     enum ptp_pin_function func, unsigned int chan)
{
	/* Don't allow channel reassignment */
	if (chan != ice_pin_desc_e810t[pin].chan)
		return -EOPNOTSUPP;

	/* Check if functions are properly assigned */
	switch (func) {
	case PTP_PF_NONE:
		break;
	case PTP_PF_EXTTS:
		if (pin == UFL1)
			return -EOPNOTSUPP;
		break;
	case PTP_PF_PEROUT:
		if (pin == UFL2 || pin == GNSS)
			return -EOPNOTSUPP;
		break;
	case PTP_PF_PHYSYNC:
		return -EOPNOTSUPP;
	}

	return ice_ptp_set_sma_e810t(info, pin, func);
}

/**
 * ice_ptp_cfg_tx_interrupt - Configure Tx timestamp interrupt for the device
 * @pf: Board private structure
 *
 * Program the device to respond appropriately to the Tx timestamp interrupt
 * cause.
 */
static void ice_ptp_cfg_tx_interrupt(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;
	bool enable;
	u32 val;

	switch (pf->ptp.tx_interrupt_mode) {
	case ICE_PTP_TX_INTERRUPT_ALL:
		/* React to interrupts across all quads. */
		wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x1f);
		enable = true;
		break;
	case ICE_PTP_TX_INTERRUPT_NONE:
		/* Do not react to interrupts on any quad. */
		wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x0);
		enable = false;
		break;
	case ICE_PTP_TX_INTERRUPT_SELF:
	default:
		enable = pf->ptp.tstamp_config.tx_type == HWTSTAMP_TX_ON;
		break;
	}

	/* Configure the Tx timestamp interrupt */
	val = rd32(hw, PFINT_OICR_ENA);
	if (enable)
		val |= PFINT_OICR_TSYN_TX_M;
	else
		val &= ~PFINT_OICR_TSYN_TX_M;
	wr32(hw, PFINT_OICR_ENA, val);
}

/**
 * ice_set_rx_tstamp - Enable or disable Rx timestamping
 * @pf: The PF pointer to search in
 * @on: bool value for whether timestamps are enabled or disabled
 */
static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
{
	struct ice_vsi *vsi;
	u16 i;

	vsi = ice_get_main_vsi(pf);
	if (!vsi || !vsi->rx_rings)
		return;

	/* Set the timestamp flag for all the Rx rings */
	ice_for_each_rxq(vsi, i) {
		if (!vsi->rx_rings[i])
			continue;
		vsi->rx_rings[i]->ptp_rx = on;
	}
}

/**
 * ice_ptp_disable_timestamp_mode - Disable current timestamp mode
 * @pf: Board private structure
 *
 * Called during preparation for reset to temporarily disable timestamping on
 * the device. Called during remove to disable timestamping while cleaning up
 * driver resources.
 */
static void ice_ptp_disable_timestamp_mode(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;
	u32 val;

	val = rd32(hw, PFINT_OICR_ENA);
	val &= ~PFINT_OICR_TSYN_TX_M;
	wr32(hw, PFINT_OICR_ENA, val);

	ice_set_rx_tstamp(pf, false);
}

/**
 * ice_ptp_restore_timestamp_mode - Restore timestamp configuration
 * @pf: Board private structure
 *
 * Called at the end of rebuild to restore timestamp configuration after
 * a device reset.
 */
void ice_ptp_restore_timestamp_mode(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;
	bool enable_rx;

	ice_ptp_cfg_tx_interrupt(pf);

	enable_rx = pf->ptp.tstamp_config.rx_filter == HWTSTAMP_FILTER_ALL;
	ice_set_rx_tstamp(pf, enable_rx);

	/* Trigger an immediate software interrupt to ensure that timestamps
	 * which occurred during reset are handled now.
	 */
	wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
	ice_flush(hw);
}

/**
 * ice_ptp_read_src_clk_reg - Read the source clock register
 * @pf: Board private structure
 * @sts: Optional parameter for holding a pair of system timestamps from
 *       the system clock. Will be ignored if NULL is given.
 */
static u64
ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
{
	struct ice_hw *hw = &pf->hw;
	u32 hi, lo, lo2;
	u8 tmr_idx;

	tmr_idx = ice_get_ptp_src_clock_index(hw);
	guard(spinlock)(&pf->adapter->ptp_gltsyn_time_lock);
	/* Read the system timestamp pre PHC read */
	ptp_read_system_prets(sts);

	lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));

	/* Read the system timestamp post PHC read */
	ptp_read_system_postts(sts);

	hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
	lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));

	if (lo2 < lo) {
		/* if TIME_L rolled over read TIME_L again and update
		 * system timestamps
		 */
		ptp_read_system_prets(sts);
		lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
		ptp_read_system_postts(sts);
		hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
	}

	return ((u64)hi << 32) | lo;
}

/**
 * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
 * @cached_phc_time: recently cached copy of PHC time
 * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
 *
 * Hardware captures timestamps which contain only 32 bits of nominal
 * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
 * Note that the captured timestamp values may be 40 bits, but the lower
 * 8 bits are sub-nanoseconds and generally discarded.
 *
 * Extend the 32bit nanosecond timestamp using the following algorithm and
 * assumptions:
 *
 * 1) have a recently cached copy of the PHC time
 * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
 *    seconds) before or after the PHC time was captured.
 * 3) calculate the delta between the cached time and the timestamp
 * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
 *    captured after the PHC time. In this case, the full timestamp is just
 *    the cached PHC time plus the delta.
 * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
 *    timestamp was captured *before* the PHC time, i.e. because the PHC
 *    cache was updated after the timestamp was captured by hardware. In this
 *    case, the full timestamp is the cached time minus the inverse delta.
 *
 * This algorithm works even if the PHC time was updated after a Tx timestamp
 * was requested, but before the Tx timestamp event was reported from
 * hardware.
 *
 * This calculation primarily relies on keeping the cached PHC time up to
 * date. If the timestamp was captured more than 2^31 nanoseconds after the
 * PHC time, it is possible that the lower 32bits of PHC time have
 * overflowed more than once, and we might generate an incorrect timestamp.
 *
 * This is prevented by (a) periodically updating the cached PHC time once
 * a second, and (b) discarding any Tx timestamp packet if it has waited for
 * a timestamp for more than one second.
 */
static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
{
	u32 delta, phc_time_lo;
	u64 ns;

	/* Extract the lower 32 bits of the PHC time */
	phc_time_lo = (u32)cached_phc_time;

	/* Calculate the delta between the lower 32bits of the cached PHC
	 * time and the in_tstamp value
	 */
	delta = (in_tstamp - phc_time_lo);

	/* Do not assume that the in_tstamp is always more recent than the
	 * cached PHC time. If the delta is large, it indicates that the
	 * in_tstamp was taken in the past, and should be converted
	 * forward.
	 */
	if (delta > (U32_MAX / 2)) {
		/* reverse the delta calculation here */
		delta = (phc_time_lo - in_tstamp);
		ns = cached_phc_time - delta;
	} else {
		ns = cached_phc_time + delta;
	}

	return ns;
}

/**
 * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
 * @pf: Board private structure
 * @in_tstamp: Ingress/egress 40b timestamp value
 *
 * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
 * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
 *
 *  *--------------------------------------------------------------*
 *  | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
 *  *--------------------------------------------------------------*
 *
 * The low bit is an indicator of whether the timestamp is valid. The next
 * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
 * and the remaining 32 bits are the lower 32 bits of the PHC timer.
 *
 * It is assumed that the caller verifies the timestamp is valid prior to
 * calling this function.
 *
 * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
 * time stored in the device private PTP structure as the basis for timestamp
 * extension.
 *
 * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
 * algorithm.
 */
static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
{
	const u64 mask = GENMASK_ULL(31, 0);
	unsigned long discard_time;

	/* Discard the hardware timestamp if the cached PHC time is too old */
	discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
	if (time_is_before_jiffies(discard_time)) {
		pf->ptp.tx_hwtstamp_discarded++;
		return 0;
	}

	return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
				     (in_tstamp >> 8) & mask);
}

/**
 * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps
 * @tx: the PTP Tx timestamp tracker to check
 *
 * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready
 * to accept new timestamp requests.
 *
 * Assumes the tx->lock spinlock is already held.
 */
static bool
ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx)
{
	lockdep_assert_held(&tx->lock);

	return tx->init && !tx->calibrating;
}

/**
 * ice_ptp_req_tx_single_tstamp - Request Tx timestamp for a port from FW
 * @tx: the PTP Tx timestamp tracker
 * @idx: index of the timestamp to request
 */
void ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx *tx, u8 idx)
{
	struct ice_ptp_port *ptp_port;
	struct sk_buff *skb;
	struct ice_pf *pf;

	if (!tx->init)
		return;

	ptp_port = container_of(tx, struct ice_ptp_port, tx);
	pf = ptp_port_to_pf(ptp_port);

	/* Drop packets which have waited for more than 2 seconds */
	if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
		/* Count the number of Tx timestamps that timed out */
		pf->ptp.tx_hwtstamp_timeouts++;

		skb = tx->tstamps[idx].skb;
		tx->tstamps[idx].skb = NULL;
		clear_bit(idx, tx->in_use);

		dev_kfree_skb_any(skb);
		return;
	}

	ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);

	/* Write TS index to read to the PF register so the FW can read it */
	wr32(&pf->hw, PF_SB_ATQBAL,
	     TS_LL_READ_TS_INTR | FIELD_PREP(TS_LL_READ_TS_IDX, idx) |
	     TS_LL_READ_TS);
	tx->last_ll_ts_idx_read = idx;
}

/**
 * ice_ptp_complete_tx_single_tstamp - Complete Tx timestamp for a port
 * @tx: the PTP Tx timestamp tracker
 */
void ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx *tx)
{
	struct skb_shared_hwtstamps shhwtstamps = {};
	u8 idx = tx->last_ll_ts_idx_read;
	struct ice_ptp_port *ptp_port;
	u64 raw_tstamp, tstamp;
	bool drop_ts = false;
	struct sk_buff *skb;
	struct ice_pf *pf;
	u32 val;

	if (!tx->init || tx->last_ll_ts_idx_read < 0)
		return;

	ptp_port = container_of(tx, struct ice_ptp_port, tx);
	pf = ptp_port_to_pf(ptp_port);

	ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);

	val = rd32(&pf->hw, PF_SB_ATQBAL);

	/* When the bit is cleared, the TS is ready in the register */
	if (val & TS_LL_READ_TS) {
		dev_err(ice_pf_to_dev(pf), "Failed to get the Tx tstamp - FW not ready");
		return;
	}

	/* High 8 bit value of the TS is on the bits 16:23 */
	raw_tstamp = FIELD_GET(TS_LL_READ_TS_HIGH, val);
	raw_tstamp <<= 32;

	/* Read the low 32 bit value */
	raw_tstamp |= (u64)rd32(&pf->hw, PF_SB_ATQBAH);

	/* Devices using this interface always verify the timestamp differs
	 * relative to the last cached timestamp value.
	 */
	if (raw_tstamp == tx->tstamps[idx].cached_tstamp)
		return;

	tx->tstamps[idx].cached_tstamp = raw_tstamp;
	clear_bit(idx, tx->in_use);
	skb = tx->tstamps[idx].skb;
	tx->tstamps[idx].skb = NULL;
	if (test_and_clear_bit(idx, tx->stale))
		drop_ts = true;

	if (!skb)
		return;

	if (drop_ts) {
		dev_kfree_skb_any(skb);
		return;
	}

	/* Extend the timestamp using cached PHC time */
	tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
	if (tstamp) {
		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
		ice_trace(tx_tstamp_complete, skb, idx);
	}

	skb_tstamp_tx(skb, &shhwtstamps);
	dev_kfree_skb_any(skb);
}

/**
 * ice_ptp_process_tx_tstamp - Process Tx timestamps for a port
 * @tx: the PTP Tx timestamp tracker
 *
 * Process timestamps captured by the PHY associated with this port. To do
 * this, loop over each index with a waiting skb.
 *
 * If a given index has a valid timestamp, perform the following steps:
 *
 * 1) check that the timestamp request is not stale
 * 2) check that a timestamp is ready and available in the PHY memory bank
 * 3) read and copy the timestamp out of the PHY register
 * 4) unlock the index by clearing the associated in_use bit
 * 5) check if the timestamp is stale, and discard if so
 * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value
 * 7) send this 64 bit timestamp to the stack
 *
 * Note that we do not hold the tracking lock while reading the Tx timestamp.
 * This is because reading the timestamp requires taking a mutex that might
 * sleep.
 *
 * The only place where we set in_use is when a new timestamp is initiated
 * with a slot index. This is only called in the hard xmit routine where an
 * SKB has a request flag set. The only places where we clear this bit is this
 * function, or during teardown when the Tx timestamp tracker is being
 * removed. A timestamp index will never be re-used until the in_use bit for
 * that index is cleared.
 *
 * If a Tx thread starts a new timestamp, we might not begin processing it
 * right away but we will notice it at the end when we re-queue the task.
 *
 * If a Tx thread starts a new timestamp just after this function exits, the
 * interrupt for that timestamp should re-trigger this function once
 * a timestamp is ready.
 *
 * In cases where the PTP hardware clock was directly adjusted, some
 * timestamps may not be able to safely use the timestamp extension math. In
 * this case, software will set the stale bit for any outstanding Tx
 * timestamps when the clock is adjusted. Then this function will discard
 * those captured timestamps instead of sending them to the stack.
 *
 * If a Tx packet has been waiting for more than 2 seconds, it is not possible
 * to correctly extend the timestamp using the cached PHC time. It is
 * extremely unlikely that a packet will ever take this long to timestamp. If
 * we detect a Tx timestamp request that has waited for this long we assume
 * the packet will never be sent by hardware and discard it without reading
 * the timestamp register.
 */
static void ice_ptp_process_tx_tstamp(struct ice_ptp_tx *tx)
{
	struct ice_ptp_port *ptp_port;
	unsigned long flags;
	struct ice_pf *pf;
	struct ice_hw *hw;
	u64 tstamp_ready;
	bool link_up;
	int err;
	u8 idx;

	ptp_port = container_of(tx, struct ice_ptp_port, tx);
	pf = ptp_port_to_pf(ptp_port);
	hw = &pf->hw;

	/* Read the Tx ready status first */
	if (tx->has_ready_bitmap) {
		err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
		if (err)
			return;
	}

	/* Drop packets if the link went down */
	link_up = ptp_port->link_up;

	for_each_set_bit(idx, tx->in_use, tx->len) {
		struct skb_shared_hwtstamps shhwtstamps = {};
		u8 phy_idx = idx + tx->offset;
		u64 raw_tstamp = 0, tstamp;
		bool drop_ts = !link_up;
		struct sk_buff *skb;

		/* Drop packets which have waited for more than 2 seconds */
		if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
			drop_ts = true;

			/* Count the number of Tx timestamps that timed out */
			pf->ptp.tx_hwtstamp_timeouts++;
		}

		/* Only read a timestamp from the PHY if its marked as ready
		 * by the tstamp_ready register. This avoids unnecessary
		 * reading of timestamps which are not yet valid. This is
		 * important as we must read all timestamps which are valid
		 * and only timestamps which are valid during each interrupt.
		 * If we do not, the hardware logic for generating a new
		 * interrupt can get stuck on some devices.
		 */
		if (tx->has_ready_bitmap &&
		    !(tstamp_ready & BIT_ULL(phy_idx))) {
			if (drop_ts)
				goto skip_ts_read;

			continue;
		}

		ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);

		err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp);
		if (err && !drop_ts)
			continue;

		ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);

		/* For PHYs which don't implement a proper timestamp ready
		 * bitmap, verify that the timestamp value is different
		 * from the last cached timestamp. If it is not, skip this for
		 * now assuming it hasn't yet been captured by hardware.
		 */
		if (!drop_ts && !tx->has_ready_bitmap &&
		    raw_tstamp == tx->tstamps[idx].cached_tstamp)
			continue;

		/* Discard any timestamp value without the valid bit set */
		if (!(raw_tstamp & ICE_PTP_TS_VALID))
			drop_ts = true;

skip_ts_read:
		spin_lock_irqsave(&tx->lock, flags);
		if (!tx->has_ready_bitmap && raw_tstamp)
			tx->tstamps[idx].cached_tstamp = raw_tstamp;
		clear_bit(idx, tx->in_use);
		skb = tx->tstamps[idx].skb;
		tx->tstamps[idx].skb = NULL;
		if (test_and_clear_bit(idx, tx->stale))
			drop_ts = true;
		spin_unlock_irqrestore(&tx->lock, flags);

		/* It is unlikely but possible that the SKB will have been
		 * flushed at this point due to link change or teardown.
		 */
		if (!skb)
			continue;

		if (drop_ts) {
			dev_kfree_skb_any(skb);
			continue;
		}

		/* Extend the timestamp using cached PHC time */
		tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
		if (tstamp) {
			shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
			ice_trace(tx_tstamp_complete, skb, idx);
		}

		skb_tstamp_tx(skb, &shhwtstamps);
		dev_kfree_skb_any(skb);
	}
}

/**
 * ice_ptp_tx_tstamp_owner - Process Tx timestamps for all ports on the device
 * @pf: Board private structure
 */
static enum ice_tx_tstamp_work ice_ptp_tx_tstamp_owner(struct ice_pf *pf)
{
	struct ice_ptp_port *port;
	unsigned int i;

	mutex_lock(&pf->ptp.ports_owner.lock);
	list_for_each_entry(port, &pf->ptp.ports_owner.ports, list_member) {
		struct ice_ptp_tx *tx = &port->tx;

		if (!tx || !tx->init)
			continue;

		ice_ptp_process_tx_tstamp(tx);
	}
	mutex_unlock(&pf->ptp.ports_owner.lock);

	for (i = 0; i < ICE_GET_QUAD_NUM(pf->hw.ptp.num_lports); i++) {
		u64 tstamp_ready;
		int err;

		/* Read the Tx ready status first */
		err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
		if (err)
			break;
		else if (tstamp_ready)
			return ICE_TX_TSTAMP_WORK_PENDING;
	}

	return ICE_TX_TSTAMP_WORK_DONE;
}

/**
 * ice_ptp_tx_tstamp - Process Tx timestamps for this function.
 * @tx: Tx tracking structure to initialize
 *
 * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding incomplete
 * Tx timestamps, or ICE_TX_TSTAMP_WORK_DONE otherwise.
 */
static enum ice_tx_tstamp_work ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
{
	bool more_timestamps;
	unsigned long flags;

	if (!tx->init)
		return ICE_TX_TSTAMP_WORK_DONE;

	/* Process the Tx timestamp tracker */
	ice_ptp_process_tx_tstamp(tx);

	/* Check if there are outstanding Tx timestamps */
	spin_lock_irqsave(&tx->lock, flags);
	more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len);
	spin_unlock_irqrestore(&tx->lock, flags);

	if (more_timestamps)
		return ICE_TX_TSTAMP_WORK_PENDING;

	return ICE_TX_TSTAMP_WORK_DONE;
}

/**
 * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
 * @tx: Tx tracking structure to initialize
 *
 * Assumes that the length has already been initialized. Do not call directly,
 * use the ice_ptp_init_tx_* instead.
 */
static int
ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
{
	unsigned long *in_use, *stale;
	struct ice_tx_tstamp *tstamps;

	tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL);
	in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
	stale = bitmap_zalloc(tx->len, GFP_KERNEL);

	if (!tstamps || !in_use || !stale) {
		kfree(tstamps);
		bitmap_free(in_use);
		bitmap_free(stale);

		return -ENOMEM;
	}

	tx->tstamps = tstamps;
	tx->in_use = in_use;
	tx->stale = stale;
	tx->init = 1;
	tx->last_ll_ts_idx_read = -1;

	spin_lock_init(&tx->lock);

	return 0;
}

/**
 * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
 * @pf: Board private structure
 * @tx: the tracker to flush
 *
 * Called during teardown when a Tx tracker is being removed.
 */
static void
ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
{
	struct ice_hw *hw = &pf->hw;
	unsigned long flags;
	u64 tstamp_ready;
	int err;
	u8 idx;

	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
	if (err) {
		dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n",
			tx->block, err);

		/* If we fail to read the Tx timestamp ready bitmap just
		 * skip clearing the PHY timestamps.
		 */
		tstamp_ready = 0;
	}

	for_each_set_bit(idx, tx->in_use, tx->len) {
		u8 phy_idx = idx + tx->offset;
		struct sk_buff *skb;

		/* In case this timestamp is ready, we need to clear it. */
		if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx)))
			ice_clear_phy_tstamp(hw, tx->block, phy_idx);

		spin_lock_irqsave(&tx->lock, flags);
		skb = tx->tstamps[idx].skb;
		tx->tstamps[idx].skb = NULL;
		clear_bit(idx, tx->in_use);
		clear_bit(idx, tx->stale);
		spin_unlock_irqrestore(&tx->lock, flags);

		/* Count the number of Tx timestamps flushed */
		pf->ptp.tx_hwtstamp_flushed++;

		/* Free the SKB after we've cleared the bit */
		dev_kfree_skb_any(skb);
	}
}

/**
 * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale
 * @tx: the tracker to mark
 *
 * Mark currently outstanding Tx timestamps as stale. This prevents sending
 * their timestamp value to the stack. This is required to prevent extending
 * the 40bit hardware timestamp incorrectly.
 *
 * This should be called when the PTP clock is modified such as after a set
 * time request.
 */
static void
ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx)
{
	unsigned long flags;

	spin_lock_irqsave(&tx->lock, flags);
	bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len);
	spin_unlock_irqrestore(&tx->lock, flags);
}

/**
 * ice_ptp_flush_all_tx_tracker - Flush all timestamp trackers on this clock
 * @pf: Board private structure
 *
 * Called by the clock owner to flush all the Tx timestamp trackers associated
 * with the clock.
 */
static void
ice_ptp_flush_all_tx_tracker(struct ice_pf *pf)
{
	struct ice_ptp_port *port;

	list_for_each_entry(port, &pf->ptp.ports_owner.ports, list_member)
		ice_ptp_flush_tx_tracker(ptp_port_to_pf(port), &port->tx);
}

/**
 * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
 * @pf: Board private structure
 * @tx: Tx tracking structure to release
 *
 * Free memory associated with the Tx timestamp tracker.
 */
static void
ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
{
	unsigned long flags;

	spin_lock_irqsave(&tx->lock, flags);
	tx->init = 0;
	spin_unlock_irqrestore(&tx->lock, flags);

	/* wait for potentially outstanding interrupt to complete */
	synchronize_irq(pf->oicr_irq.virq);

	ice_ptp_flush_tx_tracker(pf, tx);

	kfree(tx->tstamps);
	tx->tstamps = NULL;

	bitmap_free(tx->in_use);
	tx->in_use = NULL;

	bitmap_free(tx->stale);
	tx->stale = NULL;

	tx->len = 0;
}

/**
 * ice_ptp_init_tx_eth56g - Initialize tracking for Tx timestamps
 * @pf: Board private structure
 * @tx: the Tx tracking structure to initialize
 * @port: the port this structure tracks
 *
 * Initialize the Tx timestamp tracker for this port. ETH56G PHYs
 * have independent memory blocks for all ports.
 *
 * Return: 0 for success, -ENOMEM when failed to allocate Tx tracker
 */
static int ice_ptp_init_tx_eth56g(struct ice_pf *pf, struct ice_ptp_tx *tx,
				  u8 port)
{
	tx->block = port;
	tx->offset = 0;
	tx->len = INDEX_PER_PORT_ETH56G;
	tx->has_ready_bitmap = 1;

	return ice_ptp_alloc_tx_tracker(tx);
}

/**
 * ice_ptp_init_tx_e82x - Initialize tracking for Tx timestamps
 * @pf: Board private structure
 * @tx: the Tx tracking structure to initialize
 * @port: the port this structure tracks
 *
 * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
 * the timestamp block is shared for all ports in the same quad. To avoid
 * ports using the same timestamp index, logically break the block of
 * registers into chunks based on the port number.
 */
static int
ice_ptp_init_tx_e82x(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
{
	tx->block = ICE_GET_QUAD_NUM(port);
	tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E82X;
	tx->len = INDEX_PER_PORT_E82X;
	tx->has_ready_bitmap = 1;

	return ice_ptp_alloc_tx_tracker(tx);
}

/**
 * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
 * @pf: Board private structure
 * @tx: the Tx tracking structure to initialize
 *
 * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
 * port has its own block of timestamps, independent of the other ports.
 */
static int
ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
{
	tx->block = pf->hw.port_info->lport;
	tx->offset = 0;
	tx->len = INDEX_PER_PORT_E810;
	/* The E810 PHY does not provide a timestamp ready bitmap. Instead,
	 * verify new timestamps against cached copy of the last read
	 * timestamp.
	 */
	tx->has_ready_bitmap = 0;

	return ice_ptp_alloc_tx_tracker(tx);
}

/**
 * ice_ptp_update_cached_phctime - Update the cached PHC time values
 * @pf: Board specific private structure
 *
 * This function updates the system time values which are cached in the PF
 * structure and the Rx rings.
 *
 * This function must be called periodically to ensure that the cached value
 * is never more than 2 seconds old.
 *
 * Note that the cached copy in the PF PTP structure is always updated, even
 * if we can't update the copy in the Rx rings.
 *
 * Return:
 * * 0 - OK, successfully updated
 * * -EAGAIN - PF was busy, need to reschedule the update
 */
static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
{
	struct device *dev = ice_pf_to_dev(pf);
	unsigned long update_before;
	u64 systime;
	int i;

	update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
	if (pf->ptp.cached_phc_time &&
	    time_is_before_jiffies(update_before)) {
		unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;

		dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
			 jiffies_to_msecs(time_taken));
		pf->ptp.late_cached_phc_updates++;
	}

	/* Read the current PHC time */
	systime = ice_ptp_read_src_clk_reg(pf, NULL);

	/* Update the cached PHC time stored in the PF structure */
	WRITE_ONCE(pf->ptp.cached_phc_time, systime);
	WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);

	if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
		return -EAGAIN;

	ice_for_each_vsi(pf, i) {
		struct ice_vsi *vsi = pf->vsi[i];
		int j;

		if (!vsi)
			continue;

		if (vsi->type != ICE_VSI_PF)
			continue;

		ice_for_each_rxq(vsi, j) {
			if (!vsi->rx_rings[j])
				continue;
			WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
		}
	}
	clear_bit(ICE_CFG_BUSY, pf->state);

	return 0;
}

/**
 * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
 * @pf: Board specific private structure
 *
 * This function must be called when the cached PHC time is no longer valid,
 * such as after a time adjustment. It marks any currently outstanding Tx
 * timestamps as stale and updates the cached PHC time for both the PF and Rx
 * rings.
 *
 * If updating the PHC time cannot be done immediately, a warning message is
 * logged and the work item is scheduled immediately to minimize the window
 * with a wrong cached timestamp.
 */
static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
{
	struct device *dev = ice_pf_to_dev(pf);
	int err;

	/* Update the cached PHC time immediately if possible, otherwise
	 * schedule the work item to execute soon.
	 */
	err = ice_ptp_update_cached_phctime(pf);
	if (err) {
		/* If another thread is updating the Rx rings, we won't
		 * properly reset them here. This could lead to reporting of
		 * invalid timestamps, but there isn't much we can do.
		 */
		dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
			 __func__);

		/* Queue the work item to update the Rx rings when possible */
		kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
					   msecs_to_jiffies(10));
	}

	/* Mark any outstanding timestamps as stale, since they might have
	 * been captured in hardware before the time update. This could lead
	 * to us extending them with the wrong cached value resulting in
	 * incorrect timestamp values.
	 */
	ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx);
}

/**
 * ice_ptp_write_init - Set PHC time to provided value
 * @pf: Board private structure
 * @ts: timespec structure that holds the new time value
 *
 * Set the PHC time to the specified time provided in the timespec.
 */
static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
{
	u64 ns = timespec64_to_ns(ts);
	struct ice_hw *hw = &pf->hw;

	return ice_ptp_init_time(hw, ns);
}

/**
 * ice_ptp_write_adj - Adjust PHC clock time atomically
 * @pf: Board private structure
 * @adj: Adjustment in nanoseconds
 *
 * Perform an atomic adjustment of the PHC time by the specified number of
 * nanoseconds.
 */
static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
{
	struct ice_hw *hw = &pf->hw;

	return ice_ptp_adj_clock(hw, adj);
}

/**
 * ice_base_incval - Get base timer increment value
 * @pf: Board private structure
 *
 * Look up the base timer increment value for this device. The base increment
 * value is used to define the nominal clock tick rate. This increment value
 * is programmed during device initialization. It is also used as the basis
 * for calculating adjustments using scaled_ppm.
 */
static u64 ice_base_incval(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;
	u64 incval;

	incval = ice_get_base_incval(hw);

	dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
		incval);

	return incval;
}

/**
 * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
 * @port: PTP port for which Tx FIFO is checked
 */
static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
{
	int offs = port->port_num % ICE_PORTS_PER_QUAD;
	int quad = ICE_GET_QUAD_NUM(port->port_num);
	struct ice_pf *pf;
	struct ice_hw *hw;
	u32 val, phy_sts;
	int err;

	pf = ptp_port_to_pf(port);
	hw = &pf->hw;

	if (port->tx_fifo_busy_cnt == FIFO_OK)
		return 0;

	/* need to read FIFO state */
	if (offs == 0 || offs == 1)
		err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO01_STATUS,
					     &val);
	else
		err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO23_STATUS,
					     &val);

	if (err) {
		dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
			port->port_num, err);
		return err;
	}

	if (offs & 0x1)
		phy_sts = FIELD_GET(Q_REG_FIFO13_M, val);
	else
		phy_sts = FIELD_GET(Q_REG_FIFO02_M, val);

	if (phy_sts & FIFO_EMPTY) {
		port->tx_fifo_busy_cnt = FIFO_OK;
		return 0;
	}

	port->tx_fifo_busy_cnt++;

	dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
		port->tx_fifo_busy_cnt, port->port_num);

	if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
		dev_dbg(ice_pf_to_dev(pf),
			"Port %d Tx FIFO still not empty; resetting quad %d\n",
			port->port_num, quad);
		ice_ptp_reset_ts_memory_quad_e82x(hw, quad);
		port->tx_fifo_busy_cnt = FIFO_OK;
		return 0;
	}

	return -EAGAIN;
}

/**
 * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets
 * @work: Pointer to the kthread_work structure for this task
 *
 * Check whether hardware has completed measuring the Tx and Rx offset values
 * used to configure and enable vernier timestamp calibration.
 *
 * Once the offset in either direction is measured, configure the associated
 * registers with the calibrated offset values and enable timestamping. The Tx
 * and Rx directions are configured independently as soon as their associated
 * offsets are known.
 *
 * This function reschedules itself until both Tx and Rx calibration have
 * completed.
 */
static void ice_ptp_wait_for_offsets(struct kthread_work *work)
{
	struct ice_ptp_port *port;
	struct ice_pf *pf;
	struct ice_hw *hw;
	int tx_err;
	int rx_err;

	port = container_of(work, struct ice_ptp_port, ov_work.work);
	pf = ptp_port_to_pf(port);
	hw = &pf->hw;

	if (ice_is_reset_in_progress(pf->state)) {
		/* wait for device driver to complete reset */
		kthread_queue_delayed_work(pf->ptp.kworker,
					   &port->ov_work,
					   msecs_to_jiffies(100));
		return;
	}

	tx_err = ice_ptp_check_tx_fifo(port);
	if (!tx_err)
		tx_err = ice_phy_cfg_tx_offset_e82x(hw, port->port_num);
	rx_err = ice_phy_cfg_rx_offset_e82x(hw, port->port_num);
	if (tx_err || rx_err) {
		/* Tx and/or Rx offset not yet configured, try again later */
		kthread_queue_delayed_work(pf->ptp.kworker,
					   &port->ov_work,
					   msecs_to_jiffies(100));
		return;
	}
}

/**
 * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
 * @ptp_port: PTP port to stop
 */
static int
ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
{
	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
	u8 port = ptp_port->port_num;
	struct ice_hw *hw = &pf->hw;
	int err;

	if (ice_is_e810(hw))
		return 0;

	mutex_lock(&ptp_port->ps_lock);

	switch (hw->ptp.phy_model) {
	case ICE_PHY_ETH56G:
		err = ice_stop_phy_timer_eth56g(hw, port, true);
		break;
	case ICE_PHY_E82X:
		kthread_cancel_delayed_work_sync(&ptp_port->ov_work);

		err = ice_stop_phy_timer_e82x(hw, port, true);
		break;
	default:
		err = -ENODEV;
	}
	if (err && err != -EBUSY)
		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
			port, err);

	mutex_unlock(&ptp_port->ps_lock);

	return err;
}

/**
 * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
 * @ptp_port: PTP port for which the PHY start is set
 *
 * Start the PHY timestamping block, and initiate Vernier timestamping
 * calibration. If timestamping cannot be calibrated (such as if link is down)
 * then disable the timestamping block instead.
 */
static int
ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
{
	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
	u8 port = ptp_port->port_num;
	struct ice_hw *hw = &pf->hw;
	unsigned long flags;
	int err;

	if (ice_is_e810(hw))
		return 0;

	if (!ptp_port->link_up)
		return ice_ptp_port_phy_stop(ptp_port);

	mutex_lock(&ptp_port->ps_lock);

	switch (hw->ptp.phy_model) {
	case ICE_PHY_ETH56G:
		err = ice_start_phy_timer_eth56g(hw, port);
		break;
	case ICE_PHY_E82X:
		/* Start the PHY timer in Vernier mode */
		kthread_cancel_delayed_work_sync(&ptp_port->ov_work);

		/* temporarily disable Tx timestamps while calibrating
		 * PHY offset
		 */
		spin_lock_irqsave(&ptp_port->tx.lock, flags);
		ptp_port->tx.calibrating = true;
		spin_unlock_irqrestore(&ptp_port->tx.lock, flags);
		ptp_port->tx_fifo_busy_cnt = 0;

		/* Start the PHY timer in Vernier mode */
		err = ice_start_phy_timer_e82x(hw, port);
		if (err)
			break;

		/* Enable Tx timestamps right away */
		spin_lock_irqsave(&ptp_port->tx.lock, flags);
		ptp_port->tx.calibrating = false;
		spin_unlock_irqrestore(&ptp_port->tx.lock, flags);

		kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work,
					   0);
		break;
	default:
		err = -ENODEV;
	}

	if (err)
		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
			port, err);

	mutex_unlock(&ptp_port->ps_lock);

	return err;
}

/**
 * ice_ptp_link_change - Reconfigure PTP after link status change
 * @pf: Board private structure
 * @port: Port for which the PHY start is set
 * @linkup: Link is up or down
 */
void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
{
	struct ice_ptp_port *ptp_port;
	struct ice_hw *hw = &pf->hw;

	if (pf->ptp.state != ICE_PTP_READY)
		return;

	if (WARN_ON_ONCE(port >= hw->ptp.num_lports))
		return;

	ptp_port = &pf->ptp.port;
	if (ice_is_e825c(hw) && hw->ptp.is_2x50g_muxed_topo)
		port *= 2;
	if (WARN_ON_ONCE(ptp_port->port_num != port))
		return;

	/* Update cached link status for this port immediately */
	ptp_port->link_up = linkup;

	/* Skip HW writes if reset is in progress */
	if (pf->hw.reset_ongoing)
		return;

	switch (hw->ptp.phy_model) {
	case ICE_PHY_E810:
		/* Do not reconfigure E810 PHY */
		return;
	case ICE_PHY_ETH56G:
	case ICE_PHY_E82X:
		ice_ptp_port_phy_restart(ptp_port);
		return;
	default:
		dev_warn(ice_pf_to_dev(pf), "%s: Unknown PHY type\n", __func__);
	}
}

/**
 * ice_ptp_cfg_phy_interrupt - Configure PHY interrupt settings
 * @pf: PF private structure
 * @ena: bool value to enable or disable interrupt
 * @threshold: Minimum number of packets at which intr is triggered
 *
 * Utility function to configure all the PHY interrupt settings, including
 * whether the PHY interrupt is enabled, and what threshold to use. Also
 * configures The E82X timestamp owner to react to interrupts from all PHYs.
 *
 * Return: 0 on success, -EOPNOTSUPP when PHY model incorrect, other error codes
 * when failed to configure PHY interrupt for E82X
 */
static int ice_ptp_cfg_phy_interrupt(struct ice_pf *pf, bool ena, u32 threshold)
{
	struct device *dev = ice_pf_to_dev(pf);
	struct ice_hw *hw = &pf->hw;

	ice_ptp_reset_ts_memory(hw);

	switch (hw->ptp.phy_model) {
	case ICE_PHY_ETH56G: {
		int port;

		for (port = 0; port < hw->ptp.num_lports; port++) {
			int err;

			err = ice_phy_cfg_intr_eth56g(hw, port, ena, threshold);
			if (err) {
				dev_err(dev, "Failed to configure PHY interrupt for port %d, err %d\n",
					port, err);
				return err;
			}
		}

		return 0;
	}
	case ICE_PHY_E82X: {
		int quad;

		for (quad = 0; quad < ICE_GET_QUAD_NUM(hw->ptp.num_lports);
		     quad++) {
			int err;

			err = ice_phy_cfg_intr_e82x(hw, quad, ena, threshold);
			if (err) {
				dev_err(dev, "Failed to configure PHY interrupt for quad %d, err %d\n",
					quad, err);
				return err;
			}
		}

		return 0;
	}
	case ICE_PHY_E810:
		return 0;
	case ICE_PHY_UNSUP:
	default:
		dev_warn(dev, "%s: Unexpected PHY model %d\n", __func__,
			 hw->ptp.phy_model);
		return -EOPNOTSUPP;
	}
}

/**
 * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
 * @pf: Board private structure
 */
static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
{
	ice_ptp_port_phy_restart(&pf->ptp.port);
}

/**
 * ice_ptp_restart_all_phy - Restart all PHYs to recalibrate timestamping
 * @pf: Board private structure
 */
static void ice_ptp_restart_all_phy(struct ice_pf *pf)
{
	struct list_head *entry;

	list_for_each(entry, &pf->ptp.ports_owner.ports) {
		struct ice_ptp_port *port = list_entry(entry,
						       struct ice_ptp_port,
						       list_member);

		if (port->link_up)
			ice_ptp_port_phy_restart(port);
	}
}

/**
 * ice_ptp_adjfine - Adjust clock increment rate
 * @info: the driver's PTP info structure
 * @scaled_ppm: Parts per million with 16-bit fractional field
 *
 * Adjust the frequency of the clock by the indicated scaled ppm from the
 * base frequency.
 */
static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
{
	struct ice_pf *pf = ptp_info_to_pf(info);
	struct ice_hw *hw = &pf->hw;
	u64 incval;
	int err;

	incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm);
	err = ice_ptp_write_incval_locked(hw, incval);
	if (err) {
		dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
			err);
		return -EIO;
	}

	return 0;
}

/**
 * ice_ptp_extts_event - Process PTP external clock event
 * @pf: Board private structure
 */
void ice_ptp_extts_event(struct ice_pf *pf)
{
	struct ptp_clock_event event;
	struct ice_hw *hw = &pf->hw;
	u8 chan, tmr_idx;
	u32 hi, lo;

	/* Don't process timestamp events if PTP is not ready */
	if (pf->ptp.state != ICE_PTP_READY)
		return;

	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
	/* Event time is captured by one of the two matched registers
	 *      GLTSYN_EVNT_L: 32 LSB of sampled time event
	 *      GLTSYN_EVNT_H: 32 MSB of sampled time event
	 * Event is defined in GLTSYN_EVNT_0 register
	 */
	for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
		/* Check if channel is enabled */
		if (pf->ptp.ext_ts_irq & (1 << chan)) {
			lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
			hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
			event.timestamp = (((u64)hi) << 32) | lo;
			event.type = PTP_CLOCK_EXTTS;
			event.index = chan;

			/* Fire event */
			ptp_clock_event(pf->ptp.clock, &event);
			pf->ptp.ext_ts_irq &= ~(1 << chan);
		}
	}
}

/**
 * ice_ptp_cfg_extts - Configure EXTTS pin and channel
 * @pf: Board private structure
 * @chan: GPIO channel (0-3)
 * @config: desired EXTTS configuration.
 * @store: If set to true, the values will be stored
 *
 * Configure an external timestamp event on the requested channel.
 *
 * Return: 0 on success, -EOPNOTUSPP on unsupported flags
 */
static int ice_ptp_cfg_extts(struct ice_pf *pf, unsigned int chan,
			     struct ice_extts_channel *config, bool store)
{
	u32 func, aux_reg, gpio_reg, irq_reg;
	struct ice_hw *hw = &pf->hw;
	u8 tmr_idx;

	/* Reject requests with unsupported flags */
	if (config->flags & ~(PTP_ENABLE_FEATURE |
			      PTP_RISING_EDGE |
			      PTP_FALLING_EDGE |
			      PTP_STRICT_FLAGS))
		return -EOPNOTSUPP;

	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;

	irq_reg = rd32(hw, PFINT_OICR_ENA);

	if (config->ena) {
		/* Enable the interrupt */
		irq_reg |= PFINT_OICR_TSYN_EVNT_M;
		aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;

#define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE	BIT(0)
#define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE	BIT(1)

		/* set event level to requested edge */
		if (config->flags & PTP_FALLING_EDGE)
			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
		if (config->flags & PTP_RISING_EDGE)
			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;

		/* Write GPIO CTL reg.
		 * 0x1 is input sampled by EVENT register(channel)
		 * + num_in_channels * tmr_idx
		 */
		func = 1 + chan + (tmr_idx * 3);
		gpio_reg = FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M, func);
		pf->ptp.ext_ts_chan |= (1 << chan);
	} else {
		/* clear the values we set to reset defaults */
		aux_reg = 0;
		gpio_reg = 0;
		pf->ptp.ext_ts_chan &= ~(1 << chan);
		if (!pf->ptp.ext_ts_chan)
			irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
	}

	wr32(hw, PFINT_OICR_ENA, irq_reg);
	wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
	wr32(hw, GLGEN_GPIO_CTL(config->gpio_pin), gpio_reg);

	if (store)
		memcpy(&pf->ptp.extts_channels[chan], config, sizeof(*config));

	return 0;
}

/**
 * ice_ptp_disable_all_extts - Disable all EXTTS channels
 * @pf: Board private structure
 */
static void ice_ptp_disable_all_extts(struct ice_pf *pf)
{
	struct ice_extts_channel extts_cfg = {};
	int i;

	for (i = 0; i < pf->ptp.info.n_ext_ts; i++) {
		if (pf->ptp.extts_channels[i].ena) {
			extts_cfg.gpio_pin = pf->ptp.extts_channels[i].gpio_pin;
			extts_cfg.ena = false;
			ice_ptp_cfg_extts(pf, i, &extts_cfg, false);
		}
	}

	synchronize_irq(pf->oicr_irq.virq);
}

/**
 * ice_ptp_enable_all_extts - Enable all EXTTS channels
 * @pf: Board private structure
 *
 * Called during reset to restore user configuration.
 */
static void ice_ptp_enable_all_extts(struct ice_pf *pf)
{
	int i;

	for (i = 0; i < pf->ptp.info.n_ext_ts; i++) {
		if (pf->ptp.extts_channels[i].ena)
			ice_ptp_cfg_extts(pf, i, &pf->ptp.extts_channels[i],
					  false);
	}
}

/**
 * ice_ptp_cfg_clkout - Configure clock to generate periodic wave
 * @pf: Board private structure
 * @chan: GPIO channel (0-3)
 * @config: desired periodic clk configuration. NULL will disable channel
 * @store: If set to true the values will be stored
 *
 * Configure the internal clock generator modules to generate the clock wave of
 * specified period.
 */
static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
			      struct ice_perout_channel *config, bool store)
{
	u64 current_time, period, start_time, phase;
	struct ice_hw *hw = &pf->hw;
	u32 func, val, gpio_pin;
	u8 tmr_idx;

	if (config && config->flags & ~PTP_PEROUT_PHASE)
		return -EOPNOTSUPP;

	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;

	/* 0. Reset mode & out_en in AUX_OUT */
	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);

	/* If we're disabling the output, clear out CLKO and TGT and keep
	 * output level low
	 */
	if (!config || !config->ena) {
		wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
		wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
		wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);

		val = GLGEN_GPIO_CTL_PIN_DIR_M;
		gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
		wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);

		/* Store the value if requested */
		if (store)
			memset(&pf->ptp.perout_channels[chan], 0,
			       sizeof(struct ice_perout_channel));

		return 0;
	}
	period = config->period;
	start_time = config->start_time;
	div64_u64_rem(start_time, period, &phase);
	gpio_pin = config->gpio_pin;

	/* 1. Write clkout with half of required period value */
	if (period & 0x1) {
		dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
		goto err;
	}

	period >>= 1;

	/* For proper operation, the GLTSYN_CLKO must be larger than clock tick
	 */
#define MIN_PULSE 3
	if (period <= MIN_PULSE || period > U32_MAX) {
		dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
			MIN_PULSE * 2);
		goto err;
	}

	wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));

	/* Allow time for programming before start_time is hit */
	current_time = ice_ptp_read_src_clk_reg(pf, NULL);

	/* if start time is in the past start the timer at the nearest second
	 * maintaining phase
	 */
	if (start_time < current_time)
		start_time = roundup_u64(current_time, NSEC_PER_SEC) + phase;

	if (ice_is_e810(hw))
		start_time -= E810_OUT_PROP_DELAY_NS;
	else
		start_time -= ice_e82x_pps_delay(ice_e82x_time_ref(hw));

	/* 2. Write TARGET time */
	wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
	wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));

	/* 3. Write AUX_OUT register */
	val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);

	/* 4. write GPIO CTL reg */
	func = 8 + chan + (tmr_idx * 4);
	val = GLGEN_GPIO_CTL_PIN_DIR_M |
	      FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M, func);
	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);

	/* Store the value if requested */
	if (store) {
		memcpy(&pf->ptp.perout_channels[chan], config,
		       sizeof(struct ice_perout_channel));
		pf->ptp.perout_channels[chan].start_time = phase;
	}

	return 0;
err:
	dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
	return -EFAULT;
}

/**
 * ice_ptp_disable_all_clkout - Disable all currently configured outputs
 * @pf: pointer to the PF structure
 *
 * Disable all currently configured clock outputs. This is necessary before
 * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
 * re-enable the clocks again.
 */
static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
{
	uint i;

	for (i = 0; i < pf->ptp.info.n_per_out; i++)
		if (pf->ptp.perout_channels[i].ena)
			ice_ptp_cfg_clkout(pf, i, NULL, false);
}

/**
 * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
 * @pf: pointer to the PF structure
 *
 * Enable all currently configured clock outputs. Use this after
 * ice_ptp_disable_all_clkout to reconfigure the output signals according to
 * their configuration.
 */
static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
{
	uint i;

	for (i = 0; i < pf->ptp.info.n_per_out; i++)
		if (pf->ptp.perout_channels[i].ena)
			ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
					   false);
}

/**
 * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
 * @info: the driver's PTP info structure
 * @rq: The requested feature to change
 * @on: Enable/disable flag
 */
static int
ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
			 struct ptp_clock_request *rq, int on)
{
	struct ice_pf *pf = ptp_info_to_pf(info);
	bool sma_pres = false;
	unsigned int chan;
	u32 gpio_pin;

	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
		sma_pres = true;

	switch (rq->type) {
	case PTP_CLK_REQ_PEROUT:
	{
		struct ice_perout_channel clk_cfg = {};

		chan = rq->perout.index;
		if (sma_pres) {
			if (chan == ice_pin_desc_e810t[SMA1].chan)
				clk_cfg.gpio_pin = GPIO_20;
			else if (chan == ice_pin_desc_e810t[SMA2].chan)
				clk_cfg.gpio_pin = GPIO_22;
			else
				return -1;
		} else if (ice_is_e810t(&pf->hw)) {
			if (chan == 0)
				clk_cfg.gpio_pin = GPIO_20;
			else
				clk_cfg.gpio_pin = GPIO_22;
		} else if (chan == PPS_CLK_GEN_CHAN) {
			clk_cfg.gpio_pin = PPS_PIN_INDEX;
		} else {
			clk_cfg.gpio_pin = chan;
		}

		clk_cfg.flags = rq->perout.flags;
		clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
				   rq->perout.period.nsec);
		clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
				       rq->perout.start.nsec);
		clk_cfg.ena = !!on;

		return ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
	}
	case PTP_CLK_REQ_EXTTS:
	{
		struct ice_extts_channel extts_cfg = {};

		chan = rq->extts.index;
		if (sma_pres) {
			if (chan < ice_pin_desc_e810t[SMA2].chan)
				gpio_pin = GPIO_21;
			else
				gpio_pin = GPIO_23;
		} else if (ice_is_e810t(&pf->hw)) {
			if (chan == 0)
				gpio_pin = GPIO_21;
			else
				gpio_pin = GPIO_23;
		} else {
			gpio_pin = chan;
		}

		extts_cfg.flags = rq->extts.flags;
		extts_cfg.gpio_pin = gpio_pin;
		extts_cfg.ena = !!on;

		return ice_ptp_cfg_extts(pf, chan, &extts_cfg, true);
	}
	default:
		return -EOPNOTSUPP;
	}
}

/**
 * ice_ptp_gpio_enable_e823 - Enable/disable ancillary features of PHC
 * @info: the driver's PTP info structure
 * @rq: The requested feature to change
 * @on: Enable/disable flag
 */
static int ice_ptp_gpio_enable_e823(struct ptp_clock_info *info,
				    struct ptp_clock_request *rq, int on)
{
	struct ice_pf *pf = ptp_info_to_pf(info);

	switch (rq->type) {
	case PTP_CLK_REQ_PPS:
	{
		struct ice_perout_channel clk_cfg = {};

		clk_cfg.flags = rq->perout.flags;
		clk_cfg.gpio_pin = PPS_PIN_INDEX;
		clk_cfg.period = NSEC_PER_SEC;
		clk_cfg.ena = !!on;

		return ice_ptp_cfg_clkout(pf, PPS_CLK_GEN_CHAN, &clk_cfg, true);
	}
	case PTP_CLK_REQ_EXTTS:
	{
		struct ice_extts_channel extts_cfg = {};

		extts_cfg.flags = rq->extts.flags;
		extts_cfg.gpio_pin = TIME_SYNC_PIN_INDEX;
		extts_cfg.ena = !!on;

		return ice_ptp_cfg_extts(pf, rq->extts.index, &extts_cfg, true);
	}
	default:
		return -EOPNOTSUPP;
	}
}

/**
 * ice_ptp_gettimex64 - Get the time of the clock
 * @info: the driver's PTP info structure
 * @ts: timespec64 structure to hold the current time value
 * @sts: Optional parameter for holding a pair of system timestamps from
 *       the system clock. Will be ignored if NULL is given.
 *
 * Read the device clock and return the correct value on ns, after converting it
 * into a timespec struct.
 */
static int
ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
		   struct ptp_system_timestamp *sts)
{
	struct ice_pf *pf = ptp_info_to_pf(info);
	u64 time_ns;

	time_ns = ice_ptp_read_src_clk_reg(pf, sts);
	*ts = ns_to_timespec64(time_ns);
	return 0;
}

/**
 * ice_ptp_settime64 - Set the time of the clock
 * @info: the driver's PTP info structure
 * @ts: timespec64 structure that holds the new time value
 *
 * Set the device clock to the user input value. The conversion from timespec
 * to ns happens in the write function.
 */
static int
ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
{
	struct ice_pf *pf = ptp_info_to_pf(info);
	struct timespec64 ts64 = *ts;
	struct ice_hw *hw = &pf->hw;
	int err;

	/* For Vernier mode on E82X, we need to recalibrate after new settime.
	 * Start with marking timestamps as invalid.
	 */
	if (hw->ptp.phy_model == ICE_PHY_E82X) {
		err = ice_ptp_clear_phy_offset_ready_e82x(hw);
		if (err)
			dev_warn(ice_pf_to_dev(pf), "Failed to mark timestamps as invalid before settime\n");
	}

	if (!ice_ptp_lock(hw)) {
		err = -EBUSY;
		goto exit;
	}

	/* Disable periodic outputs */
	ice_ptp_disable_all_clkout(pf);

	err = ice_ptp_write_init(pf, &ts64);
	ice_ptp_unlock(hw);

	if (!err)
		ice_ptp_reset_cached_phctime(pf);

	/* Reenable periodic outputs */
	ice_ptp_enable_all_clkout(pf);

	/* Recalibrate and re-enable timestamp blocks for E822/E823 */
	if (hw->ptp.phy_model == ICE_PHY_E82X)
		ice_ptp_restart_all_phy(pf);
exit:
	if (err) {
		dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
		return err;
	}

	return 0;
}

/**
 * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
 * @info: the driver's PTP info structure
 * @delta: Offset in nanoseconds to adjust the time by
 */
static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
{
	struct timespec64 now, then;
	int ret;

	then = ns_to_timespec64(delta);
	ret = ice_ptp_gettimex64(info, &now, NULL);
	if (ret)
		return ret;
	now = timespec64_add(now, then);

	return ice_ptp_settime64(info, (const struct timespec64 *)&now);
}

/**
 * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
 * @info: the driver's PTP info structure
 * @delta: Offset in nanoseconds to adjust the time by
 */
static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
{
	struct ice_pf *pf = ptp_info_to_pf(info);
	struct ice_hw *hw = &pf->hw;
	struct device *dev;
	int err;

	dev = ice_pf_to_dev(pf);

	/* Hardware only supports atomic adjustments using signed 32-bit
	 * integers. For any adjustment outside this range, perform
	 * a non-atomic get->adjust->set flow.
	 */
	if (delta > S32_MAX || delta < S32_MIN) {
		dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
		return ice_ptp_adjtime_nonatomic(info, delta);
	}

	if (!ice_ptp_lock(hw)) {
		dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
		return -EBUSY;
	}

	/* Disable periodic outputs */
	ice_ptp_disable_all_clkout(pf);

	err = ice_ptp_write_adj(pf, delta);

	/* Reenable periodic outputs */
	ice_ptp_enable_all_clkout(pf);

	ice_ptp_unlock(hw);

	if (err) {
		dev_err(dev, "PTP failed to adjust time, err %d\n", err);
		return err;
	}

	ice_ptp_reset_cached_phctime(pf);

	return 0;
}

#ifdef CONFIG_ICE_HWTS
/**
 * ice_ptp_get_syncdevicetime - Get the cross time stamp info
 * @device: Current device time
 * @system: System counter value read synchronously with device time
 * @ctx: Context provided by timekeeping code
 *
 * Read device and system (ART) clock simultaneously and return the corrected
 * clock values in ns.
 */
static int
ice_ptp_get_syncdevicetime(ktime_t *device,
			   struct system_counterval_t *system,
			   void *ctx)
{
	struct ice_pf *pf = (struct ice_pf *)ctx;
	struct ice_hw *hw = &pf->hw;
	u32 hh_lock, hh_art_ctl;
	int i;

#define MAX_HH_HW_LOCK_TRIES	5
#define MAX_HH_CTL_LOCK_TRIES	100

	for (i = 0; i < MAX_HH_HW_LOCK_TRIES; i++) {
		/* Get the HW lock */
		hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
		if (hh_lock & PFHH_SEM_BUSY_M) {
			usleep_range(10000, 15000);
			continue;
		}
		break;
	}
	if (hh_lock & PFHH_SEM_BUSY_M) {
		dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
		return -EBUSY;
	}

	/* Program cmd to master timer */
	ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);

	/* Start the ART and device clock sync sequence */
	hh_art_ctl = rd32(hw, GLHH_ART_CTL);
	hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
	wr32(hw, GLHH_ART_CTL, hh_art_ctl);

	for (i = 0; i < MAX_HH_CTL_LOCK_TRIES; i++) {
		/* Wait for sync to complete */
		hh_art_ctl = rd32(hw, GLHH_ART_CTL);
		if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
			udelay(1);
			continue;
		} else {
			u32 hh_ts_lo, hh_ts_hi, tmr_idx;
			u64 hh_ts;

			tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
			/* Read ART time */
			hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
			hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
			system->cycles = hh_ts;
			system->cs_id = CSID_X86_ART;
			/* Read Device source clock time */
			hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
			hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
			*device = ns_to_ktime(hh_ts);
			break;
		}
	}

	/* Clear the master timer */
	ice_ptp_src_cmd(hw, ICE_PTP_NOP);

	/* Release HW lock */
	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
	hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
	wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);

	if (i == MAX_HH_CTL_LOCK_TRIES)
		return -ETIMEDOUT;

	return 0;
}

/**
 * ice_ptp_getcrosststamp_e82x - Capture a device cross timestamp
 * @info: the driver's PTP info structure
 * @cts: The memory to fill the cross timestamp info
 *
 * Capture a cross timestamp between the ART and the device PTP hardware
 * clock. Fill the cross timestamp information and report it back to the
 * caller.
 *
 * This is only valid for E822 and E823 devices which have support for
 * generating the cross timestamp via PCIe PTM.
 *
 * In order to correctly correlate the ART timestamp back to the TSC time, the
 * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
 */
static int
ice_ptp_getcrosststamp_e82x(struct ptp_clock_info *info,
			    struct system_device_crosststamp *cts)
{
	struct ice_pf *pf = ptp_info_to_pf(info);

	return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
					     pf, NULL, cts);
}
#endif /* CONFIG_ICE_HWTS */

/**
 * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
 * @pf: Board private structure
 * @ifr: ioctl data
 *
 * Copy the timestamping config to user buffer
 */
int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
{
	struct hwtstamp_config *config;

	if (pf->ptp.state != ICE_PTP_READY)
		return -EIO;

	config = &pf->ptp.tstamp_config;

	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
		-EFAULT : 0;
}

/**
 * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
 * @pf: Board private structure
 * @config: hwtstamp settings requested or saved
 */
static int
ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
{
	switch (config->tx_type) {
	case HWTSTAMP_TX_OFF:
		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF;
		break;
	case HWTSTAMP_TX_ON:
		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON;
		break;
	default:
		return -ERANGE;
	}

	switch (config->rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_NTP_ALL:
	case HWTSTAMP_FILTER_ALL:
		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL;
		break;
	default:
		return -ERANGE;
	}

	/* Immediately update the device timestamping mode */
	ice_ptp_restore_timestamp_mode(pf);

	return 0;
}

/**
 * ice_ptp_set_ts_config - ioctl interface to control the timestamping
 * @pf: Board private structure
 * @ifr: ioctl data
 *
 * Get the user config and store it
 */
int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
{
	struct hwtstamp_config config;
	int err;

	if (pf->ptp.state != ICE_PTP_READY)
		return -EAGAIN;

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	err = ice_ptp_set_timestamp_mode(pf, &config);
	if (err)
		return err;

	/* Return the actual configuration set */
	config = pf->ptp.tstamp_config;

	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
}

/**
 * ice_ptp_get_rx_hwts - Get packet Rx timestamp in ns
 * @rx_desc: Receive descriptor
 * @pkt_ctx: Packet context to get the cached time
 *
 * The driver receives a notification in the receive descriptor with timestamp.
 */
u64 ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc *rx_desc,
			const struct ice_pkt_ctx *pkt_ctx)
{
	u64 ts_ns, cached_time;
	u32 ts_high;

	if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
		return 0;

	cached_time = READ_ONCE(pkt_ctx->cached_phctime);

	/* Do not report a timestamp if we don't have a cached PHC time */
	if (!cached_time)
		return 0;

	/* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
	 * PHC value, rather than accessing the PF. This also allows us to
	 * simply pass the upper 32bits of nanoseconds directly. Calling
	 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these
	 * bits itself.
	 */
	ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
	ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);

	return ts_ns;
}

/**
 * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins
 * @pf: pointer to the PF structure
 * @info: PTP clock info structure
 *
 * Disable the OS access to the SMA pins. Called to clear out the OS
 * indications of pin support when we fail to setup the E810-T SMA control
 * register.
 */
static void
ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
{
	struct device *dev = ice_pf_to_dev(pf);

	dev_warn(dev, "Failed to configure E810-T SMA pin control\n");

	info->enable = NULL;
	info->verify = NULL;
	info->n_pins = 0;
	info->n_ext_ts = 0;
	info->n_per_out = 0;
}

/**
 * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins
 * @pf: pointer to the PF structure
 * @info: PTP clock info structure
 *
 * Finish setting up the SMA pins by allocating pin_config, and setting it up
 * according to the current status of the SMA. On failure, disable all of the
 * extended SMA pin support.
 */
static void
ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
{
	struct device *dev = ice_pf_to_dev(pf);
	int err;

	/* Allocate memory for kernel pins interface */
	info->pin_config = devm_kcalloc(dev, info->n_pins,
					sizeof(*info->pin_config), GFP_KERNEL);
	if (!info->pin_config) {
		ice_ptp_disable_sma_pins_e810t(pf, info);
		return;
	}

	/* Read current SMA status */
	err = ice_get_sma_config_e810t(&pf->hw, info->pin_config);
	if (err)
		ice_ptp_disable_sma_pins_e810t(pf, info);
}

/**
 * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
 * @pf: pointer to the PF instance
 * @info: PTP clock capabilities
 */
static void
ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info)
{
	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
		info->n_ext_ts = N_EXT_TS_E810;
		info->n_per_out = N_PER_OUT_E810T;
		info->n_pins = NUM_PTP_PINS_E810T;
		info->verify = ice_verify_pin_e810t;

		/* Complete setup of the SMA pins */
		ice_ptp_setup_sma_pins_e810t(pf, info);
	} else if (ice_is_e810t(&pf->hw)) {
		info->n_ext_ts = N_EXT_TS_NO_SMA_E810T;
		info->n_per_out = N_PER_OUT_NO_SMA_E810T;
	} else {
		info->n_per_out = N_PER_OUT_E810;
		info->n_ext_ts = N_EXT_TS_E810;
	}
}

/**
 * ice_ptp_setup_pins_e823 - Setup PTP pins in sysfs
 * @pf: pointer to the PF instance
 * @info: PTP clock capabilities
 */
static void
ice_ptp_setup_pins_e823(struct ice_pf *pf, struct ptp_clock_info *info)
{
	info->pps = 1;
	info->n_per_out = 0;
	info->n_ext_ts = 1;
}

/**
 * ice_ptp_set_funcs_e82x - Set specialized functions for E82x support
 * @pf: Board private structure
 * @info: PTP info to fill
 *
 * Assign functions to the PTP capabiltiies structure for E82x devices.
 * Functions which operate across all device families should be set directly
 * in ice_ptp_set_caps. Only add functions here which are distinct for E82x
 * devices.
 */
static void
ice_ptp_set_funcs_e82x(struct ice_pf *pf, struct ptp_clock_info *info)
{
#ifdef CONFIG_ICE_HWTS
	if (boot_cpu_has(X86_FEATURE_ART) &&
	    boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
		info->getcrosststamp = ice_ptp_getcrosststamp_e82x;
#endif /* CONFIG_ICE_HWTS */
}

/**
 * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
 * @pf: Board private structure
 * @info: PTP info to fill
 *
 * Assign functions to the PTP capabiltiies structure for E810 devices.
 * Functions which operate across all device families should be set directly
 * in ice_ptp_set_caps. Only add functions here which are distinct for e810
 * devices.
 */
static void
ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
{
	info->enable = ice_ptp_gpio_enable_e810;
	ice_ptp_setup_pins_e810(pf, info);
}

/**
 * ice_ptp_set_funcs_e823 - Set specialized functions for E823 support
 * @pf: Board private structure
 * @info: PTP info to fill
 *
 * Assign functions to the PTP capabiltiies structure for E823 devices.
 * Functions which operate across all device families should be set directly
 * in ice_ptp_set_caps. Only add functions here which are distinct for e823
 * devices.
 */
static void
ice_ptp_set_funcs_e823(struct ice_pf *pf, struct ptp_clock_info *info)
{
	ice_ptp_set_funcs_e82x(pf, info);

	info->enable = ice_ptp_gpio_enable_e823;
	ice_ptp_setup_pins_e823(pf, info);
}

/**
 * ice_ptp_set_caps - Set PTP capabilities
 * @pf: Board private structure
 */
static void ice_ptp_set_caps(struct ice_pf *pf)
{
	struct ptp_clock_info *info = &pf->ptp.info;
	struct device *dev = ice_pf_to_dev(pf);

	snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
		 dev_driver_string(dev), dev_name(dev));
	info->owner = THIS_MODULE;
	info->max_adj = 100000000;
	info->adjtime = ice_ptp_adjtime;
	info->adjfine = ice_ptp_adjfine;
	info->gettimex64 = ice_ptp_gettimex64;
	info->settime64 = ice_ptp_settime64;

	if (ice_is_e810(&pf->hw))
		ice_ptp_set_funcs_e810(pf, info);
	else if (ice_is_e823(&pf->hw))
		ice_ptp_set_funcs_e823(pf, info);
	else
		ice_ptp_set_funcs_e82x(pf, info);
}

/**
 * ice_ptp_create_clock - Create PTP clock device for userspace
 * @pf: Board private structure
 *
 * This function creates a new PTP clock device. It only creates one if we
 * don't already have one. Will return error if it can't create one, but success
 * if we already have a device. Should be used by ice_ptp_init to create clock
 * initially, and prevent global resets from creating new clock devices.
 */
static long ice_ptp_create_clock(struct ice_pf *pf)
{
	struct ptp_clock_info *info;
	struct device *dev;

	/* No need to create a clock device if we already have one */
	if (pf->ptp.clock)
		return 0;

	ice_ptp_set_caps(pf);

	info = &pf->ptp.info;
	dev = ice_pf_to_dev(pf);

	/* Attempt to register the clock before enabling the hardware. */
	pf->ptp.clock = ptp_clock_register(info, dev);
	if (IS_ERR(pf->ptp.clock)) {
		dev_err(ice_pf_to_dev(pf), "Failed to register PTP clock device");
		return PTR_ERR(pf->ptp.clock);
	}

	return 0;
}

/**
 * ice_ptp_request_ts - Request an available Tx timestamp index
 * @tx: the PTP Tx timestamp tracker to request from
 * @skb: the SKB to associate with this timestamp request
 */
s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
{
	unsigned long flags;
	u8 idx;

	spin_lock_irqsave(&tx->lock, flags);

	/* Check that this tracker is accepting new timestamp requests */
	if (!ice_ptp_is_tx_tracker_up(tx)) {
		spin_unlock_irqrestore(&tx->lock, flags);
		return -1;
	}

	/* Find and set the first available index */
	idx = find_next_zero_bit(tx->in_use, tx->len,
				 tx->last_ll_ts_idx_read + 1);
	if (idx == tx->len)
		idx = find_first_zero_bit(tx->in_use, tx->len);

	if (idx < tx->len) {
		/* We got a valid index that no other thread could have set. Store
		 * a reference to the skb and the start time to allow discarding old
		 * requests.
		 */
		set_bit(idx, tx->in_use);
		clear_bit(idx, tx->stale);
		tx->tstamps[idx].start = jiffies;
		tx->tstamps[idx].skb = skb_get(skb);
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
		ice_trace(tx_tstamp_request, skb, idx);
	}

	spin_unlock_irqrestore(&tx->lock, flags);

	/* return the appropriate PHY timestamp register index, -1 if no
	 * indexes were available.
	 */
	if (idx >= tx->len)
		return -1;
	else
		return idx + tx->offset;
}

/**
 * ice_ptp_process_ts - Process the PTP Tx timestamps
 * @pf: Board private structure
 *
 * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding Tx
 * timestamps that need processing, and ICE_TX_TSTAMP_WORK_DONE otherwise.
 */
enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf)
{
	switch (pf->ptp.tx_interrupt_mode) {
	case ICE_PTP_TX_INTERRUPT_NONE:
		/* This device has the clock owner handle timestamps for it */
		return ICE_TX_TSTAMP_WORK_DONE;
	case ICE_PTP_TX_INTERRUPT_SELF:
		/* This device handles its own timestamps */
		return ice_ptp_tx_tstamp(&pf->ptp.port.tx);
	case ICE_PTP_TX_INTERRUPT_ALL:
		/* This device handles timestamps for all ports */
		return ice_ptp_tx_tstamp_owner(pf);
	default:
		WARN_ONCE(1, "Unexpected Tx timestamp interrupt mode %u\n",
			  pf->ptp.tx_interrupt_mode);
		return ICE_TX_TSTAMP_WORK_DONE;
	}
}

/**
 * ice_ptp_maybe_trigger_tx_interrupt - Trigger Tx timstamp interrupt
 * @pf: Board private structure
 *
 * The device PHY issues Tx timestamp interrupts to the driver for processing
 * timestamp data from the PHY. It will not interrupt again until all
 * current timestamp data is read. In rare circumstances, it is possible that
 * the driver fails to read all outstanding data.
 *
 * To avoid getting permanently stuck, periodically check if the PHY has
 * outstanding timestamp data. If so, trigger an interrupt from software to
 * process this data.
 */
static void ice_ptp_maybe_trigger_tx_interrupt(struct ice_pf *pf)
{
	struct device *dev = ice_pf_to_dev(pf);
	struct ice_hw *hw = &pf->hw;
	bool trigger_oicr = false;
	unsigned int i;

	if (ice_is_e810(hw))
		return;

	if (!ice_pf_src_tmr_owned(pf))
		return;

	for (i = 0; i < ICE_GET_QUAD_NUM(hw->ptp.num_lports); i++) {
		u64 tstamp_ready;
		int err;

		err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
		if (!err && tstamp_ready) {
			trigger_oicr = true;
			break;
		}
	}

	if (trigger_oicr) {
		/* Trigger a software interrupt, to ensure this data
		 * gets processed.
		 */
		dev_dbg(dev, "PTP periodic task detected waiting timestamps. Triggering Tx timestamp interrupt now.\n");

		wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
		ice_flush(hw);
	}
}

static void ice_ptp_periodic_work(struct kthread_work *work)
{
	struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
	int err;

	if (pf->ptp.state != ICE_PTP_READY)
		return;

	err = ice_ptp_update_cached_phctime(pf);

	ice_ptp_maybe_trigger_tx_interrupt(pf);

	/* Run twice a second or reschedule if phc update failed */
	kthread_queue_delayed_work(ptp->kworker, &ptp->work,
				   msecs_to_jiffies(err ? 10 : 500));
}

/**
 * ice_ptp_prepare_for_reset - Prepare PTP for reset
 * @pf: Board private structure
 * @reset_type: the reset type being performed
 */
void ice_ptp_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
{
	struct ice_ptp *ptp = &pf->ptp;
	u8 src_tmr;

	if (ptp->state != ICE_PTP_READY)
		return;

	ptp->state = ICE_PTP_RESETTING;

	/* Disable timestamping for both Tx and Rx */
	ice_ptp_disable_timestamp_mode(pf);

	kthread_cancel_delayed_work_sync(&ptp->work);

	if (reset_type == ICE_RESET_PFR)
		return;

	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);

	/* Disable periodic outputs */
	ice_ptp_disable_all_clkout(pf);

	src_tmr = ice_get_ptp_src_clock_index(&pf->hw);

	/* Disable source clock */
	wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);

	/* Acquire PHC and system timer to restore after reset */
	ptp->reset_time = ktime_get_real_ns();
}

/**
 * ice_ptp_rebuild_owner - Initialize PTP clock owner after reset
 * @pf: Board private structure
 *
 * Companion function for ice_ptp_rebuild() which handles tasks that only the
 * PTP clock owner instance should perform.
 */
static int ice_ptp_rebuild_owner(struct ice_pf *pf)
{
	struct ice_ptp *ptp = &pf->ptp;
	struct ice_hw *hw = &pf->hw;
	struct timespec64 ts;
	u64 time_diff;
	int err;

	err = ice_ptp_init_phc(hw);
	if (err)
		return err;

	/* Acquire the global hardware lock */
	if (!ice_ptp_lock(hw)) {
		err = -EBUSY;
		return err;
	}

	/* Write the increment time value to PHY and LAN */
	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
	if (err) {
		ice_ptp_unlock(hw);
		return err;
	}

	/* Write the initial Time value to PHY and LAN using the cached PHC
	 * time before the reset and time difference between stopping and
	 * starting the clock.
	 */
	if (ptp->cached_phc_time) {
		time_diff = ktime_get_real_ns() - ptp->reset_time;
		ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
	} else {
		ts = ktime_to_timespec64(ktime_get_real());
	}
	err = ice_ptp_write_init(pf, &ts);
	if (err) {
		ice_ptp_unlock(hw);
		return err;
	}

	/* Release the global hardware lock */
	ice_ptp_unlock(hw);

	/* Flush software tracking of any outstanding timestamps since we're
	 * about to flush the PHY timestamp block.
	 */
	ice_ptp_flush_all_tx_tracker(pf);

	if (!ice_is_e810(hw)) {
		/* Enable quad interrupts */
		err = ice_ptp_cfg_phy_interrupt(pf, true, 1);
		if (err)
			return err;

		ice_ptp_restart_all_phy(pf);
	}

	/* Re-enable all periodic outputs and external timestamp events */
	ice_ptp_enable_all_clkout(pf);
	ice_ptp_enable_all_extts(pf);

	return 0;
}

/**
 * ice_ptp_rebuild - Initialize PTP hardware clock support after reset
 * @pf: Board private structure
 * @reset_type: the reset type being performed
 */
void ice_ptp_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
{
	struct ice_ptp *ptp = &pf->ptp;
	int err;

	if (ptp->state == ICE_PTP_READY) {
		ice_ptp_prepare_for_reset(pf, reset_type);
	} else if (ptp->state != ICE_PTP_RESETTING) {
		err = -EINVAL;
		dev_err(ice_pf_to_dev(pf), "PTP was not initialized\n");
		goto err;
	}

	if (ice_pf_src_tmr_owned(pf) && reset_type != ICE_RESET_PFR) {
		err = ice_ptp_rebuild_owner(pf);
		if (err)
			goto err;
	}

	ptp->state = ICE_PTP_READY;

	/* Start periodic work going */
	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);

	dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
	return;

err:
	ptp->state = ICE_PTP_ERROR;
	dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
}

/**
 * ice_ptp_aux_dev_to_aux_pf - Get auxiliary PF handle for the auxiliary device
 * @aux_dev: auxiliary device to get the auxiliary PF for
 */
static struct ice_pf *
ice_ptp_aux_dev_to_aux_pf(struct auxiliary_device *aux_dev)
{
	struct ice_ptp_port *aux_port;
	struct ice_ptp *aux_ptp;

	aux_port = container_of(aux_dev, struct ice_ptp_port, aux_dev);
	aux_ptp = container_of(aux_port, struct ice_ptp, port);

	return container_of(aux_ptp, struct ice_pf, ptp);
}

/**
 * ice_ptp_aux_dev_to_owner_pf - Get PF handle for the auxiliary device
 * @aux_dev: auxiliary device to get the PF for
 */
static struct ice_pf *
ice_ptp_aux_dev_to_owner_pf(struct auxiliary_device *aux_dev)
{
	struct ice_ptp_port_owner *ports_owner;
	const struct auxiliary_driver *aux_drv;
	struct ice_ptp *owner_ptp;

	if (!aux_dev->dev.driver)
		return NULL;

	aux_drv = to_auxiliary_drv(aux_dev->dev.driver);
	ports_owner = container_of(aux_drv, struct ice_ptp_port_owner,
				   aux_driver);
	owner_ptp = container_of(ports_owner, struct ice_ptp, ports_owner);
	return container_of(owner_ptp, struct ice_pf, ptp);
}

/**
 * ice_ptp_auxbus_probe - Probe auxiliary devices
 * @aux_dev: PF's auxiliary device
 * @id: Auxiliary device ID
 */
static int ice_ptp_auxbus_probe(struct auxiliary_device *aux_dev,
				const struct auxiliary_device_id *id)
{
	struct ice_pf *owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev);
	struct ice_pf *aux_pf = ice_ptp_aux_dev_to_aux_pf(aux_dev);

	if (WARN_ON(!owner_pf))
		return -ENODEV;

	INIT_LIST_HEAD(&aux_pf->ptp.port.list_member);
	mutex_lock(&owner_pf->ptp.ports_owner.lock);
	list_add(&aux_pf->ptp.port.list_member,
		 &owner_pf->ptp.ports_owner.ports);
	mutex_unlock(&owner_pf->ptp.ports_owner.lock);

	return 0;
}

/**
 * ice_ptp_auxbus_remove - Remove auxiliary devices from the bus
 * @aux_dev: PF's auxiliary device
 */
static void ice_ptp_auxbus_remove(struct auxiliary_device *aux_dev)
{
	struct ice_pf *owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev);
	struct ice_pf *aux_pf = ice_ptp_aux_dev_to_aux_pf(aux_dev);

	mutex_lock(&owner_pf->ptp.ports_owner.lock);
	list_del(&aux_pf->ptp.port.list_member);
	mutex_unlock(&owner_pf->ptp.ports_owner.lock);
}

/**
 * ice_ptp_auxbus_shutdown
 * @aux_dev: PF's auxiliary device
 */
static void ice_ptp_auxbus_shutdown(struct auxiliary_device *aux_dev)
{
	/* Doing nothing here, but handle to auxbus driver must be satisfied */
}

/**
 * ice_ptp_auxbus_suspend
 * @aux_dev: PF's auxiliary device
 * @state: power management state indicator
 */
static int
ice_ptp_auxbus_suspend(struct auxiliary_device *aux_dev, pm_message_t state)
{
	/* Doing nothing here, but handle to auxbus driver must be satisfied */
	return 0;
}

/**
 * ice_ptp_auxbus_resume
 * @aux_dev: PF's auxiliary device
 */
static int ice_ptp_auxbus_resume(struct auxiliary_device *aux_dev)
{
	/* Doing nothing here, but handle to auxbus driver must be satisfied */
	return 0;
}

/**
 * ice_ptp_auxbus_create_id_table - Create auxiliary device ID table
 * @pf: Board private structure
 * @name: auxiliary bus driver name
 */
static struct auxiliary_device_id *
ice_ptp_auxbus_create_id_table(struct ice_pf *pf, const char *name)
{
	struct auxiliary_device_id *ids;

	/* Second id left empty to terminate the array */
	ids = devm_kcalloc(ice_pf_to_dev(pf), 2,
			   sizeof(struct auxiliary_device_id), GFP_KERNEL);
	if (!ids)
		return NULL;

	snprintf(ids[0].name, sizeof(ids[0].name), "ice.%s", name);

	return ids;
}

/**
 * ice_ptp_register_auxbus_driver - Register PTP auxiliary bus driver
 * @pf: Board private structure
 */
static int ice_ptp_register_auxbus_driver(struct ice_pf *pf)
{
	struct auxiliary_driver *aux_driver;
	struct ice_ptp *ptp;
	struct device *dev;
	char *name;
	int err;

	ptp = &pf->ptp;
	dev = ice_pf_to_dev(pf);
	aux_driver = &ptp->ports_owner.aux_driver;
	INIT_LIST_HEAD(&ptp->ports_owner.ports);
	mutex_init(&ptp->ports_owner.lock);
	name = devm_kasprintf(dev, GFP_KERNEL, "ptp_aux_dev_%u_%u_clk%u",
			      pf->pdev->bus->number, PCI_SLOT(pf->pdev->devfn),
			      ice_get_ptp_src_clock_index(&pf->hw));
	if (!name)
		return -ENOMEM;

	aux_driver->name = name;
	aux_driver->shutdown = ice_ptp_auxbus_shutdown;
	aux_driver->suspend = ice_ptp_auxbus_suspend;
	aux_driver->remove = ice_ptp_auxbus_remove;
	aux_driver->resume = ice_ptp_auxbus_resume;
	aux_driver->probe = ice_ptp_auxbus_probe;
	aux_driver->id_table = ice_ptp_auxbus_create_id_table(pf, name);
	if (!aux_driver->id_table)
		return -ENOMEM;

	err = auxiliary_driver_register(aux_driver);
	if (err) {
		devm_kfree(dev, aux_driver->id_table);
		dev_err(dev, "Failed registering aux_driver, name <%s>\n",
			name);
	}

	return err;
}

/**
 * ice_ptp_unregister_auxbus_driver - Unregister PTP auxiliary bus driver
 * @pf: Board private structure
 */
static void ice_ptp_unregister_auxbus_driver(struct ice_pf *pf)
{
	struct auxiliary_driver *aux_driver = &pf->ptp.ports_owner.aux_driver;

	auxiliary_driver_unregister(aux_driver);
	devm_kfree(ice_pf_to_dev(pf), aux_driver->id_table);

	mutex_destroy(&pf->ptp.ports_owner.lock);
}

/**
 * ice_ptp_clock_index - Get the PTP clock index for this device
 * @pf: Board private structure
 *
 * Returns: the PTP clock index associated with this PF, or -1 if no PTP clock
 * is associated.
 */
int ice_ptp_clock_index(struct ice_pf *pf)
{
	struct auxiliary_device *aux_dev;
	struct ice_pf *owner_pf;
	struct ptp_clock *clock;

	aux_dev = &pf->ptp.port.aux_dev;
	owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev);
	if (!owner_pf)
		return -1;
	clock = owner_pf->ptp.clock;

	return clock ? ptp_clock_index(clock) : -1;
}

/**
 * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
 * @pf: Board private structure
 *
 * Setup and initialize a PTP clock device that represents the device hardware
 * clock. Save the clock index for other functions connected to the same
 * hardware resource.
 */
static int ice_ptp_init_owner(struct ice_pf *pf)
{
	struct ice_hw *hw = &pf->hw;
	struct timespec64 ts;
	int err;

	err = ice_ptp_init_phc(hw);
	if (err) {
		dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
			err);
		return err;
	}

	/* Acquire the global hardware lock */
	if (!ice_ptp_lock(hw)) {
		err = -EBUSY;
		goto err_exit;
	}

	/* Write the increment time value to PHY and LAN */
	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
	if (err) {
		ice_ptp_unlock(hw);
		goto err_exit;
	}

	ts = ktime_to_timespec64(ktime_get_real());
	/* Write the initial Time value to PHY and LAN */
	err = ice_ptp_write_init(pf, &ts);
	if (err) {
		ice_ptp_unlock(hw);
		goto err_exit;
	}

	/* Release the global hardware lock */
	ice_ptp_unlock(hw);

	/* Configure PHY interrupt settings */
	err = ice_ptp_cfg_phy_interrupt(pf, true, 1);
	if (err)
		goto err_exit;

	/* Ensure we have a clock device */
	err = ice_ptp_create_clock(pf);
	if (err)
		goto err_clk;

	err = ice_ptp_register_auxbus_driver(pf);
	if (err) {
		dev_err(ice_pf_to_dev(pf), "Failed to register PTP auxbus driver");
		goto err_aux;
	}

	return 0;
err_aux:
	ptp_clock_unregister(pf->ptp.clock);
err_clk:
	pf->ptp.clock = NULL;
err_exit:
	return err;
}

/**
 * ice_ptp_init_work - Initialize PTP work threads
 * @pf: Board private structure
 * @ptp: PF PTP structure
 */
static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
{
	struct kthread_worker *kworker;

	/* Initialize work functions */
	kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);

	/* Allocate a kworker for handling work required for the ports
	 * connected to the PTP hardware clock.
	 */
	kworker = kthread_create_worker(0, "ice-ptp-%s",
					dev_name(ice_pf_to_dev(pf)));
	if (IS_ERR(kworker))
		return PTR_ERR(kworker);

	ptp->kworker = kworker;

	/* Start periodic work going */
	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);

	return 0;
}

/**
 * ice_ptp_init_port - Initialize PTP port structure
 * @pf: Board private structure
 * @ptp_port: PTP port structure
 */
static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
{
	struct ice_hw *hw = &pf->hw;

	mutex_init(&ptp_port->ps_lock);

	switch (hw->ptp.phy_model) {
	case ICE_PHY_ETH56G:
		return ice_ptp_init_tx_eth56g(pf, &ptp_port->tx,
					      ptp_port->port_num);
	case ICE_PHY_E810:
		return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
	case ICE_PHY_E82X:
		kthread_init_delayed_work(&ptp_port->ov_work,
					  ice_ptp_wait_for_offsets);

		return ice_ptp_init_tx_e82x(pf, &ptp_port->tx,
					    ptp_port->port_num);
	default:
		return -ENODEV;
	}
}

/**
 * ice_ptp_release_auxbus_device
 * @dev: device that utilizes the auxbus
 */
static void ice_ptp_release_auxbus_device(struct device *dev)
{
	/* Doing nothing here, but handle to auxbux device must be satisfied */
}

/**
 * ice_ptp_create_auxbus_device - Create PTP auxiliary bus device
 * @pf: Board private structure
 */
static int ice_ptp_create_auxbus_device(struct ice_pf *pf)
{
	struct auxiliary_device *aux_dev;
	struct ice_ptp *ptp;
	struct device *dev;
	char *name;
	int err;
	u32 id;

	ptp = &pf->ptp;
	id = ptp->port.port_num;
	dev = ice_pf_to_dev(pf);

	aux_dev = &ptp->port.aux_dev;

	name = devm_kasprintf(dev, GFP_KERNEL, "ptp_aux_dev_%u_%u_clk%u",
			      pf->pdev->bus->number, PCI_SLOT(pf->pdev->devfn),
			      ice_get_ptp_src_clock_index(&pf->hw));
	if (!name)
		return -ENOMEM;

	aux_dev->name = name;
	aux_dev->id = id;
	aux_dev->dev.release = ice_ptp_release_auxbus_device;
	aux_dev->dev.parent = dev;

	err = auxiliary_device_init(aux_dev);
	if (err)
		goto aux_err;

	err = auxiliary_device_add(aux_dev);
	if (err) {
		auxiliary_device_uninit(aux_dev);
		goto aux_err;
	}

	return 0;
aux_err:
	dev_err(dev, "Failed to create PTP auxiliary bus device <%s>\n", name);
	devm_kfree(dev, name);
	return err;
}

/**
 * ice_ptp_remove_auxbus_device - Remove PTP auxiliary bus device
 * @pf: Board private structure
 */
static void ice_ptp_remove_auxbus_device(struct ice_pf *pf)
{
	struct auxiliary_device *aux_dev = &pf->ptp.port.aux_dev;

	auxiliary_device_delete(aux_dev);
	auxiliary_device_uninit(aux_dev);

	memset(aux_dev, 0, sizeof(*aux_dev));
}

/**
 * ice_ptp_init_tx_interrupt_mode - Initialize device Tx interrupt mode
 * @pf: Board private structure
 *
 * Initialize the Tx timestamp interrupt mode for this device. For most device
 * types, each PF processes the interrupt and manages its own timestamps. For
 * E822-based devices, only the clock owner processes the timestamps. Other
 * PFs disable the interrupt and do not process their own timestamps.
 */
static void ice_ptp_init_tx_interrupt_mode(struct ice_pf *pf)
{
	switch (pf->hw.ptp.phy_model) {
	case ICE_PHY_E82X:
		/* E822 based PHY has the clock owner process the interrupt
		 * for all ports.
		 */
		if (ice_pf_src_tmr_owned(pf))
			pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_ALL;
		else
			pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_NONE;
		break;
	default:
		/* other PHY types handle their own Tx interrupt */
		pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_SELF;
	}
}

/**
 * ice_ptp_init - Initialize PTP hardware clock support
 * @pf: Board private structure
 *
 * Set up the device for interacting with the PTP hardware clock for all
 * functions, both the function that owns the clock hardware, and the
 * functions connected to the clock hardware.
 *
 * The clock owner will allocate and register a ptp_clock with the
 * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
 * items used for asynchronous work such as Tx timestamps and periodic work.
 */
void ice_ptp_init(struct ice_pf *pf)
{
	struct ice_ptp *ptp = &pf->ptp;
	struct ice_hw *hw = &pf->hw;
	int err;

	ptp->state = ICE_PTP_INITIALIZING;

	ice_ptp_init_hw(hw);

	ice_ptp_init_tx_interrupt_mode(pf);

	/* If this function owns the clock hardware, it must allocate and
	 * configure the PTP clock device to represent it.
	 */
	if (ice_pf_src_tmr_owned(pf)) {
		err = ice_ptp_init_owner(pf);
		if (err)
			goto err;
	}

	ptp->port.port_num = hw->pf_id;
	if (ice_is_e825c(hw) && hw->ptp.is_2x50g_muxed_topo)
		ptp->port.port_num = hw->pf_id * 2;

	err = ice_ptp_init_port(pf, &ptp->port);
	if (err)
		goto err;

	/* Start the PHY timestamping block */
	ice_ptp_reset_phy_timestamping(pf);

	/* Configure initial Tx interrupt settings */
	ice_ptp_cfg_tx_interrupt(pf);

	err = ice_ptp_create_auxbus_device(pf);
	if (err)
		goto err;

	ptp->state = ICE_PTP_READY;

	err = ice_ptp_init_work(pf, ptp);
	if (err)
		goto err;

	dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
	return;

err:
	/* If we registered a PTP clock, release it */
	if (pf->ptp.clock) {
		ptp_clock_unregister(ptp->clock);
		pf->ptp.clock = NULL;
	}
	ptp->state = ICE_PTP_ERROR;
	dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
}

/**
 * ice_ptp_release - Disable the driver/HW support and unregister the clock
 * @pf: Board private structure
 *
 * This function handles the cleanup work required from the initialization by
 * clearing out the important information and unregistering the clock
 */
void ice_ptp_release(struct ice_pf *pf)
{
	if (pf->ptp.state != ICE_PTP_READY)
		return;

	pf->ptp.state = ICE_PTP_UNINIT;

	/* Disable timestamping for both Tx and Rx */
	ice_ptp_disable_timestamp_mode(pf);

	ice_ptp_remove_auxbus_device(pf);

	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);

	ice_ptp_disable_all_extts(pf);

	kthread_cancel_delayed_work_sync(&pf->ptp.work);

	ice_ptp_port_phy_stop(&pf->ptp.port);
	mutex_destroy(&pf->ptp.port.ps_lock);
	if (pf->ptp.kworker) {
		kthread_destroy_worker(pf->ptp.kworker);
		pf->ptp.kworker = NULL;
	}

	if (ice_pf_src_tmr_owned(pf))
		ice_ptp_unregister_auxbus_driver(pf);

	if (!pf->ptp.clock)
		return;

	/* Disable periodic outputs */
	ice_ptp_disable_all_clkout(pf);

	ptp_clock_unregister(pf->ptp.clock);
	pf->ptp.clock = NULL;

	dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
}