1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright 2018-2020 Broadcom.
*/
#ifndef BCM_VK_H
#define BCM_VK_H
#include <linux/firmware.h>
#include <linux/kref.h>
#include <linux/miscdevice.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/sched/signal.h>
#include <uapi/linux/misc/bcm_vk.h>
#include "bcm_vk_msg.h"
#define DRV_MODULE_NAME "bcm-vk"
/*
* Load Image is completed in two stages:
*
* 1) When the VK device boot-up, M7 CPU runs and executes the BootROM.
* The Secure Boot Loader (SBL) as part of the BootROM will run
* to open up ITCM for host to push BOOT1 image.
* SBL will authenticate the image before jumping to BOOT1 image.
*
* 2) Because BOOT1 image is a secured image, we also called it the
* Secure Boot Image (SBI). At second stage, SBI will initialize DDR
* and wait for host to push BOOT2 image to DDR.
* SBI will authenticate the image before jumping to BOOT2 image.
*
*/
/* Location of registers of interest in BAR0 */
/* Request register for Secure Boot Loader (SBL) download */
#define BAR_CODEPUSH_SBL 0x400
/* Start of ITCM */
#define CODEPUSH_BOOT1_ENTRY 0x00400000
#define CODEPUSH_MASK 0xfffff000
#define CODEPUSH_BOOTSTART BIT(0)
/* Boot Status register */
#define BAR_BOOT_STATUS 0x404
#define SRAM_OPEN BIT(16)
#define DDR_OPEN BIT(17)
/* Firmware loader progress status definitions */
#define FW_LOADER_ACK_SEND_MORE_DATA BIT(18)
#define FW_LOADER_ACK_IN_PROGRESS BIT(19)
#define FW_LOADER_ACK_RCVD_ALL_DATA BIT(20)
/* Boot1/2 is running in standalone mode */
#define BOOT_STDALONE_RUNNING BIT(21)
/* definitions for boot status register */
#define BOOT_STATE_MASK (0xffffffff & \
~(FW_LOADER_ACK_SEND_MORE_DATA | \
FW_LOADER_ACK_IN_PROGRESS | \
BOOT_STDALONE_RUNNING))
#define BOOT_ERR_SHIFT 4
#define BOOT_ERR_MASK (0xf << BOOT_ERR_SHIFT)
#define BOOT_PROG_MASK 0xf
#define BROM_STATUS_NOT_RUN 0x2
#define BROM_NOT_RUN (SRAM_OPEN | BROM_STATUS_NOT_RUN)
#define BROM_STATUS_COMPLETE 0x6
#define BROM_RUNNING (SRAM_OPEN | BROM_STATUS_COMPLETE)
#define BOOT1_STATUS_COMPLETE 0x6
#define BOOT1_RUNNING (DDR_OPEN | BOOT1_STATUS_COMPLETE)
#define BOOT2_STATUS_COMPLETE 0x6
#define BOOT2_RUNNING (FW_LOADER_ACK_RCVD_ALL_DATA | \
BOOT2_STATUS_COMPLETE)
/* Boot request for Secure Boot Image (SBI) */
#define BAR_CODEPUSH_SBI 0x408
/* 64M mapped to BAR2 */
#define CODEPUSH_BOOT2_ENTRY 0x60000000
#define BAR_CARD_STATUS 0x410
#define BAR_BOOT1_STDALONE_PROGRESS 0x420
#define BOOT1_STDALONE_SUCCESS (BIT(13) | BIT(14))
#define BOOT1_STDALONE_PROGRESS_MASK BOOT1_STDALONE_SUCCESS
#define BAR_METADATA_VERSION 0x440
#define BAR_OS_UPTIME 0x444
#define BAR_CHIP_ID 0x448
#define MAJOR_SOC_REV(_chip_id) (((_chip_id) >> 20) & 0xf)
#define BAR_CARD_TEMPERATURE 0x45c
#define BAR_CARD_VOLTAGE 0x460
#define BAR_CARD_ERR_LOG 0x464
#define BAR_CARD_ERR_MEM 0x468
#define BAR_CARD_PWR_AND_THRE 0x46c
#define BAR_CARD_STATIC_INFO 0x470
#define BAR_INTF_VER 0x47c
#define BAR_INTF_VER_MAJOR_SHIFT 16
#define BAR_INTF_VER_MASK 0xffff
/*
* major and minor semantic version numbers supported
* Please update as required on interface changes
*/
#define SEMANTIC_MAJOR 1
#define SEMANTIC_MINOR 0
/*
* first door bell reg, ie for queue = 0. Only need the first one, as
* we will use the queue number to derive the others
*/
#define VK_BAR0_REGSEG_DB_BASE 0x484
#define VK_BAR0_REGSEG_DB_REG_GAP 8 /*
* DB register gap,
* DB1 at 0x48c and DB2 at 0x494
*/
/* reset register and specific values */
#define VK_BAR0_RESET_DB_NUM 3
#define VK_BAR0_RESET_DB_SOFT 0xffffffff
#define VK_BAR0_RESET_DB_HARD 0xfffffffd
#define VK_BAR0_RESET_RAMPDUMP 0xa0000000
#define VK_BAR0_Q_DB_BASE(q_num) (VK_BAR0_REGSEG_DB_BASE + \
((q_num) * VK_BAR0_REGSEG_DB_REG_GAP))
#define VK_BAR0_RESET_DB_BASE (VK_BAR0_REGSEG_DB_BASE + \
(VK_BAR0_RESET_DB_NUM * VK_BAR0_REGSEG_DB_REG_GAP))
#define BAR_BOOTSRC_SELECT 0xc78
/* BOOTSRC definitions */
#define BOOTSRC_SOFT_ENABLE BIT(14)
/* Card OS Firmware version size */
#define BAR_FIRMWARE_TAG_SIZE 50
#define FIRMWARE_STATUS_PRE_INIT_DONE 0x1f
/*
* BAR1
*/
/* BAR1 message q definition */
/* indicate if msgq ctrl in BAR1 is populated */
#define VK_BAR1_MSGQ_DEF_RDY 0x60c0
/* ready marker value for the above location, normal boot2 */
#define VK_BAR1_MSGQ_RDY_MARKER 0xbeefcafe
/* ready marker value for the above location, normal boot2 */
#define VK_BAR1_DIAG_RDY_MARKER 0xdeadcafe
/* number of msgqs in BAR1 */
#define VK_BAR1_MSGQ_NR 0x60c4
/* BAR1 queue control structure offset */
#define VK_BAR1_MSGQ_CTRL_OFF 0x60c8
/* BAR1 ucode and boot1 version tag */
#define VK_BAR1_UCODE_VER_TAG 0x6170
#define VK_BAR1_BOOT1_VER_TAG 0x61b0
#define VK_BAR1_VER_TAG_SIZE 64
/* Memory to hold the DMA buffer memory address allocated for boot2 download */
#define VK_BAR1_DMA_BUF_OFF_HI 0x61e0
#define VK_BAR1_DMA_BUF_OFF_LO (VK_BAR1_DMA_BUF_OFF_HI + 4)
#define VK_BAR1_DMA_BUF_SZ (VK_BAR1_DMA_BUF_OFF_HI + 8)
/* Scratch memory allocated on host for VK */
#define VK_BAR1_SCRATCH_OFF_HI 0x61f0
#define VK_BAR1_SCRATCH_OFF_LO (VK_BAR1_SCRATCH_OFF_HI + 4)
#define VK_BAR1_SCRATCH_SZ_ADDR (VK_BAR1_SCRATCH_OFF_HI + 8)
#define VK_BAR1_SCRATCH_DEF_NR_PAGES 32
/* BAR1 DAUTH info */
#define VK_BAR1_DAUTH_BASE_ADDR 0x6200
#define VK_BAR1_DAUTH_STORE_SIZE 0x48
#define VK_BAR1_DAUTH_VALID_SIZE 0x8
#define VK_BAR1_DAUTH_MAX 4
#define VK_BAR1_DAUTH_STORE_ADDR(x) \
(VK_BAR1_DAUTH_BASE_ADDR + \
(x) * (VK_BAR1_DAUTH_STORE_SIZE + VK_BAR1_DAUTH_VALID_SIZE))
#define VK_BAR1_DAUTH_VALID_ADDR(x) \
(VK_BAR1_DAUTH_STORE_ADDR(x) + VK_BAR1_DAUTH_STORE_SIZE)
/* BAR1 SOTP AUTH and REVID info */
#define VK_BAR1_SOTP_REVID_BASE_ADDR 0x6340
#define VK_BAR1_SOTP_REVID_SIZE 0x10
#define VK_BAR1_SOTP_REVID_MAX 2
#define VK_BAR1_SOTP_REVID_ADDR(x) \
(VK_BAR1_SOTP_REVID_BASE_ADDR + (x) * VK_BAR1_SOTP_REVID_SIZE)
/* VK device supports a maximum of 3 bars */
#define MAX_BAR 3
enum pci_barno {
BAR_0 = 0,
BAR_1,
BAR_2
};
#define BCM_VK_NUM_TTY 2
/* DAUTH related info */
struct bcm_vk_dauth_key {
char store[VK_BAR1_DAUTH_STORE_SIZE];
char valid[VK_BAR1_DAUTH_VALID_SIZE];
};
struct bcm_vk_dauth_info {
struct bcm_vk_dauth_key keys[VK_BAR1_DAUTH_MAX];
};
struct bcm_vk {
struct pci_dev *pdev;
void __iomem *bar[MAX_BAR];
struct bcm_vk_dauth_info dauth_info;
struct miscdevice miscdev;
int devid; /* dev id allocated */
/* Reference-counting to handle file operations */
struct kref kref;
spinlock_t ctx_lock; /* Spinlock for component context */
struct bcm_vk_ctx ctx[VK_CMPT_CTX_MAX];
struct bcm_vk_ht_entry pid_ht[VK_PID_HT_SZ];
struct workqueue_struct *wq_thread;
struct work_struct wq_work; /* work queue for deferred job */
unsigned long wq_offload[1]; /* various flags on wq requested */
void *tdma_vaddr; /* test dma segment virtual addr */
dma_addr_t tdma_addr; /* test dma segment bus addr */
struct notifier_block panic_nb;
};
/* wq offload work items bits definitions */
enum bcm_vk_wq_offload_flags {
BCM_VK_WQ_DWNLD_PEND = 0,
BCM_VK_WQ_DWNLD_AUTO = 1,
};
/*
* check if PCIe interface is down on read. Use it when it is
* certain that _val should never be all ones.
*/
#define BCM_VK_INTF_IS_DOWN(val) ((val) == 0xffffffff)
static inline u32 vkread32(struct bcm_vk *vk, enum pci_barno bar, u64 offset)
{
return readl(vk->bar[bar] + offset);
}
static inline void vkwrite32(struct bcm_vk *vk,
u32 value,
enum pci_barno bar,
u64 offset)
{
writel(value, vk->bar[bar] + offset);
}
static inline u8 vkread8(struct bcm_vk *vk, enum pci_barno bar, u64 offset)
{
return readb(vk->bar[bar] + offset);
}
static inline void vkwrite8(struct bcm_vk *vk,
u8 value,
enum pci_barno bar,
u64 offset)
{
writeb(value, vk->bar[bar] + offset);
}
static inline bool bcm_vk_msgq_marker_valid(struct bcm_vk *vk)
{
u32 rdy_marker = 0;
u32 fw_status;
fw_status = vkread32(vk, BAR_0, VK_BAR_FWSTS);
if ((fw_status & VK_FWSTS_READY) == VK_FWSTS_READY)
rdy_marker = vkread32(vk, BAR_1, VK_BAR1_MSGQ_DEF_RDY);
return (rdy_marker == VK_BAR1_MSGQ_RDY_MARKER);
}
int bcm_vk_open(struct inode *inode, struct file *p_file);
int bcm_vk_release(struct inode *inode, struct file *p_file);
void bcm_vk_release_data(struct kref *kref);
int bcm_vk_auto_load_all_images(struct bcm_vk *vk);
#endif
|