1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* ROHM Colour Sensor driver for
* - BU27008 RGBC sensor
* - BU27010 RGBC + Flickering sensor
*
* Copyright (c) 2023, ROHM Semiconductor.
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/device.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/units.h>
#include <linux/iio/iio.h>
#include <linux/iio/iio-gts-helper.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
/*
* A word about register address and mask definitions.
*
* At a quick glance to the data-sheet register tables, the BU27010 has all the
* registers that the BU27008 has. On top of that the BU27010 adds couple of new
* ones.
*
* So, all definitions BU27008_REG_* are there also for BU27010 but none of the
* BU27010_REG_* are present on BU27008. This makes sense as BU27010 just adds
* some features (Flicker FIFO, more power control) on top of the BU27008.
*
* Unfortunately, some of the wheel has been re-invented. Even though the names
* of the registers have stayed the same, pretty much all of the functionality
* provided by the registers has changed place. Contents of all MODE_CONTROL
* registers on BU27008 and BU27010 are different.
*
* Chip-specific mapping from register addresses/bits to functionality is done
* in bu27_chip_data structures.
*/
#define BU27008_REG_SYSTEM_CONTROL 0x40
#define BU27008_MASK_SW_RESET BIT(7)
#define BU27008_MASK_PART_ID GENMASK(5, 0)
#define BU27008_ID 0x1a
#define BU27008_REG_MODE_CONTROL1 0x41
#define BU27008_MASK_MEAS_MODE GENMASK(2, 0)
#define BU27008_MASK_CHAN_SEL GENMASK(3, 2)
#define BU27008_REG_MODE_CONTROL2 0x42
#define BU27008_MASK_RGBC_GAIN GENMASK(7, 3)
#define BU27008_MASK_IR_GAIN_LO GENMASK(2, 0)
#define BU27008_SHIFT_IR_GAIN 3
#define BU27008_REG_MODE_CONTROL3 0x43
#define BU27008_MASK_VALID BIT(7)
#define BU27008_MASK_INT_EN BIT(1)
#define BU27008_INT_EN BU27008_MASK_INT_EN
#define BU27008_INT_DIS 0
#define BU27008_MASK_MEAS_EN BIT(0)
#define BU27008_MEAS_EN BIT(0)
#define BU27008_MEAS_DIS 0
#define BU27008_REG_DATA0_LO 0x50
#define BU27008_REG_DATA1_LO 0x52
#define BU27008_REG_DATA2_LO 0x54
#define BU27008_REG_DATA3_LO 0x56
#define BU27008_REG_DATA3_HI 0x57
#define BU27008_REG_MANUFACTURER_ID 0x92
#define BU27008_REG_MAX BU27008_REG_MANUFACTURER_ID
/* BU27010 specific definitions */
#define BU27010_MASK_SW_RESET BIT(7)
#define BU27010_ID 0x1b
#define BU27010_REG_POWER 0x3e
#define BU27010_MASK_POWER BIT(0)
#define BU27010_REG_RESET 0x3f
#define BU27010_MASK_RESET BIT(0)
#define BU27010_RESET_RELEASE BU27010_MASK_RESET
#define BU27010_MASK_MEAS_EN BIT(1)
#define BU27010_MASK_CHAN_SEL GENMASK(7, 6)
#define BU27010_MASK_MEAS_MODE GENMASK(5, 4)
#define BU27010_MASK_RGBC_GAIN GENMASK(3, 0)
#define BU27010_MASK_DATA3_GAIN GENMASK(7, 6)
#define BU27010_MASK_DATA2_GAIN GENMASK(5, 4)
#define BU27010_MASK_DATA1_GAIN GENMASK(3, 2)
#define BU27010_MASK_DATA0_GAIN GENMASK(1, 0)
#define BU27010_MASK_FLC_MODE BIT(7)
#define BU27010_MASK_FLC_GAIN GENMASK(4, 0)
#define BU27010_REG_MODE_CONTROL4 0x44
/* If flicker is ever to be supported the IRQ must be handled as a field */
#define BU27010_IRQ_DIS_ALL GENMASK(1, 0)
#define BU27010_DRDY_EN BIT(0)
#define BU27010_MASK_INT_SEL GENMASK(1, 0)
#define BU27010_REG_MODE_CONTROL5 0x45
#define BU27010_MASK_RGB_VALID BIT(7)
#define BU27010_MASK_FLC_VALID BIT(6)
#define BU27010_MASK_WAIT_EN BIT(3)
#define BU27010_MASK_FIFO_EN BIT(2)
#define BU27010_MASK_RGB_EN BIT(1)
#define BU27010_MASK_FLC_EN BIT(0)
#define BU27010_REG_DATA_FLICKER_LO 0x56
#define BU27010_MASK_DATA_FLICKER_HI GENMASK(2, 0)
#define BU27010_REG_FLICKER_COUNT 0x5a
#define BU27010_REG_FIFO_LEVEL_LO 0x5b
#define BU27010_MASK_FIFO_LEVEL_HI BIT(0)
#define BU27010_REG_FIFO_DATA_LO 0x5d
#define BU27010_REG_FIFO_DATA_HI 0x5e
#define BU27010_MASK_FIFO_DATA_HI GENMASK(2, 0)
#define BU27010_REG_MANUFACTURER_ID 0x92
#define BU27010_REG_MAX BU27010_REG_MANUFACTURER_ID
/**
* enum bu27008_chan_type - BU27008 channel types
* @BU27008_RED: Red channel. Always via data0.
* @BU27008_GREEN: Green channel. Always via data1.
* @BU27008_BLUE: Blue channel. Via data2 (when used).
* @BU27008_CLEAR: Clear channel. Via data2 or data3 (when used).
* @BU27008_IR: IR channel. Via data3 (when used).
* @BU27008_LUX: Illuminance channel, computed using RGB and IR.
* @BU27008_NUM_CHANS: Number of channel types.
*/
enum bu27008_chan_type {
BU27008_RED,
BU27008_GREEN,
BU27008_BLUE,
BU27008_CLEAR,
BU27008_IR,
BU27008_LUX,
BU27008_NUM_CHANS
};
/**
* enum bu27008_chan - BU27008 physical data channel
* @BU27008_DATA0: Always red.
* @BU27008_DATA1: Always green.
* @BU27008_DATA2: Blue or clear.
* @BU27008_DATA3: IR or clear.
* @BU27008_NUM_HW_CHANS: Number of physical channels
*/
enum bu27008_chan {
BU27008_DATA0,
BU27008_DATA1,
BU27008_DATA2,
BU27008_DATA3,
BU27008_NUM_HW_CHANS
};
/* We can always measure red and green at same time */
#define ALWAYS_SCANNABLE (BIT(BU27008_RED) | BIT(BU27008_GREEN))
/* We use these data channel configs. Ensure scan_masks below follow them too */
#define BU27008_BLUE2_CLEAR3 0x0 /* buffer is R, G, B, C */
#define BU27008_CLEAR2_IR3 0x1 /* buffer is R, G, C, IR */
#define BU27008_BLUE2_IR3 0x2 /* buffer is R, G, B, IR */
static const unsigned long bu27008_scan_masks[] = {
/* buffer is R, G, B, C */
ALWAYS_SCANNABLE | BIT(BU27008_BLUE) | BIT(BU27008_CLEAR),
/* buffer is R, G, C, IR */
ALWAYS_SCANNABLE | BIT(BU27008_CLEAR) | BIT(BU27008_IR),
/* buffer is R, G, B, IR */
ALWAYS_SCANNABLE | BIT(BU27008_BLUE) | BIT(BU27008_IR),
/* buffer is R, G, B, IR, LUX */
ALWAYS_SCANNABLE | BIT(BU27008_BLUE) | BIT(BU27008_IR) | BIT(BU27008_LUX),
0
};
/*
* Available scales with gain 1x - 1024x, timings 55, 100, 200, 400 mS
* Time impacts to gain: 1x, 2x, 4x, 8x.
*
* => Max total gain is HWGAIN * gain by integration time (8 * 1024) = 8192
*
* Max amplification is (HWGAIN * MAX integration-time multiplier) 1024 * 8
* = 8192. With NANO scale we get rid of accuracy loss when we start with the
* scale 16.0 for HWGAIN1, INT-TIME 55 mS. This way the nano scale for MAX
* total gain 8192 will be 1953125
*/
#define BU27008_SCALE_1X 16
/*
* On BU27010 available scales with gain 1x - 4096x,
* timings 55, 100, 200, 400 mS. Time impacts to gain: 1x, 2x, 4x, 8x.
*
* => Max total gain is HWGAIN * gain by integration time (8 * 4096)
*
* Using NANO precision for scale we must use scale 64x corresponding gain 1x
* to avoid precision loss.
*/
#define BU27010_SCALE_1X 64
/* See the data sheet for the "Gain Setting" table */
#define BU27008_GSEL_1X 0x00
#define BU27008_GSEL_4X 0x08
#define BU27008_GSEL_8X 0x09
#define BU27008_GSEL_16X 0x0a
#define BU27008_GSEL_32X 0x0b
#define BU27008_GSEL_64X 0x0c
#define BU27008_GSEL_256X 0x18
#define BU27008_GSEL_512X 0x19
#define BU27008_GSEL_1024X 0x1a
static const struct iio_gain_sel_pair bu27008_gains[] = {
GAIN_SCALE_GAIN(1, BU27008_GSEL_1X),
GAIN_SCALE_GAIN(4, BU27008_GSEL_4X),
GAIN_SCALE_GAIN(8, BU27008_GSEL_8X),
GAIN_SCALE_GAIN(16, BU27008_GSEL_16X),
GAIN_SCALE_GAIN(32, BU27008_GSEL_32X),
GAIN_SCALE_GAIN(64, BU27008_GSEL_64X),
GAIN_SCALE_GAIN(256, BU27008_GSEL_256X),
GAIN_SCALE_GAIN(512, BU27008_GSEL_512X),
GAIN_SCALE_GAIN(1024, BU27008_GSEL_1024X),
};
static const struct iio_gain_sel_pair bu27008_gains_ir[] = {
GAIN_SCALE_GAIN(2, BU27008_GSEL_1X),
GAIN_SCALE_GAIN(4, BU27008_GSEL_4X),
GAIN_SCALE_GAIN(8, BU27008_GSEL_8X),
GAIN_SCALE_GAIN(16, BU27008_GSEL_16X),
GAIN_SCALE_GAIN(32, BU27008_GSEL_32X),
GAIN_SCALE_GAIN(64, BU27008_GSEL_64X),
GAIN_SCALE_GAIN(256, BU27008_GSEL_256X),
GAIN_SCALE_GAIN(512, BU27008_GSEL_512X),
GAIN_SCALE_GAIN(1024, BU27008_GSEL_1024X),
};
#define BU27010_GSEL_1X 0x00 /* 000000 */
#define BU27010_GSEL_4X 0x08 /* 001000 */
#define BU27010_GSEL_16X 0x09 /* 001001 */
#define BU27010_GSEL_64X 0x0e /* 001110 */
#define BU27010_GSEL_256X 0x1e /* 011110 */
#define BU27010_GSEL_1024X 0x2e /* 101110 */
#define BU27010_GSEL_4096X 0x3f /* 111111 */
static const struct iio_gain_sel_pair bu27010_gains[] = {
GAIN_SCALE_GAIN(1, BU27010_GSEL_1X),
GAIN_SCALE_GAIN(4, BU27010_GSEL_4X),
GAIN_SCALE_GAIN(16, BU27010_GSEL_16X),
GAIN_SCALE_GAIN(64, BU27010_GSEL_64X),
GAIN_SCALE_GAIN(256, BU27010_GSEL_256X),
GAIN_SCALE_GAIN(1024, BU27010_GSEL_1024X),
GAIN_SCALE_GAIN(4096, BU27010_GSEL_4096X),
};
static const struct iio_gain_sel_pair bu27010_gains_ir[] = {
GAIN_SCALE_GAIN(2, BU27010_GSEL_1X),
GAIN_SCALE_GAIN(4, BU27010_GSEL_4X),
GAIN_SCALE_GAIN(16, BU27010_GSEL_16X),
GAIN_SCALE_GAIN(64, BU27010_GSEL_64X),
GAIN_SCALE_GAIN(256, BU27010_GSEL_256X),
GAIN_SCALE_GAIN(1024, BU27010_GSEL_1024X),
GAIN_SCALE_GAIN(4096, BU27010_GSEL_4096X),
};
#define BU27008_MEAS_MODE_100MS 0x00
#define BU27008_MEAS_MODE_55MS 0x01
#define BU27008_MEAS_MODE_200MS 0x02
#define BU27008_MEAS_MODE_400MS 0x04
#define BU27010_MEAS_MODE_100MS 0x00
#define BU27010_MEAS_MODE_55MS 0x03
#define BU27010_MEAS_MODE_200MS 0x01
#define BU27010_MEAS_MODE_400MS 0x02
#define BU27008_MEAS_TIME_MAX_MS 400
static const struct iio_itime_sel_mul bu27008_itimes[] = {
GAIN_SCALE_ITIME_US(400000, BU27008_MEAS_MODE_400MS, 8),
GAIN_SCALE_ITIME_US(200000, BU27008_MEAS_MODE_200MS, 4),
GAIN_SCALE_ITIME_US(100000, BU27008_MEAS_MODE_100MS, 2),
GAIN_SCALE_ITIME_US(55000, BU27008_MEAS_MODE_55MS, 1),
};
static const struct iio_itime_sel_mul bu27010_itimes[] = {
GAIN_SCALE_ITIME_US(400000, BU27010_MEAS_MODE_400MS, 8),
GAIN_SCALE_ITIME_US(200000, BU27010_MEAS_MODE_200MS, 4),
GAIN_SCALE_ITIME_US(100000, BU27010_MEAS_MODE_100MS, 2),
GAIN_SCALE_ITIME_US(55000, BU27010_MEAS_MODE_55MS, 1),
};
/*
* All the RGBC channels share the same gain.
* IR gain can be fine-tuned from the gain set for the RGBC by 2 bit, but this
* would yield quite complex gain setting. Especially since not all bit
* compinations are supported. And in any case setting GAIN for RGBC will
* always also change the IR-gain.
*
* On top of this, the selector '0' which corresponds to hw-gain 1X on RGBC,
* corresponds to gain 2X on IR. Rest of the selctors correspond to same gains
* though. This, however, makes it not possible to use shared gain for all
* RGBC and IR settings even though they are all changed at the one go.
*/
#define BU27008_CHAN(color, data, separate_avail) \
{ \
.type = IIO_INTENSITY, \
.modified = 1, \
.channel2 = IIO_MOD_LIGHT_##color, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_separate_available = (separate_avail), \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME), \
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_INT_TIME), \
.address = BU27008_REG_##data##_LO, \
.scan_index = BU27008_##color, \
.scan_type = { \
.sign = 'u', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_LE, \
}, \
}
/* For raw reads we always configure DATA3 for CLEAR */
static const struct iio_chan_spec bu27008_channels[] = {
BU27008_CHAN(RED, DATA0, BIT(IIO_CHAN_INFO_SCALE)),
BU27008_CHAN(GREEN, DATA1, BIT(IIO_CHAN_INFO_SCALE)),
BU27008_CHAN(BLUE, DATA2, BIT(IIO_CHAN_INFO_SCALE)),
BU27008_CHAN(CLEAR, DATA2, BIT(IIO_CHAN_INFO_SCALE)),
/*
* We don't allow setting scale for IR (because of shared gain bits).
* Hence we don't advertise available ones either.
*/
BU27008_CHAN(IR, DATA3, 0),
{
.type = IIO_LIGHT,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
.channel = BU27008_LUX,
.scan_index = BU27008_LUX,
.scan_type = {
.sign = 'u',
.realbits = 64,
.storagebits = 64,
.endianness = IIO_CPU,
},
},
IIO_CHAN_SOFT_TIMESTAMP(BU27008_NUM_CHANS),
};
struct bu27008_data;
struct bu27_chip_data {
const char *name;
int (*chip_init)(struct bu27008_data *data);
int (*get_gain_sel)(struct bu27008_data *data, int *sel);
int (*write_gain_sel)(struct bu27008_data *data, int sel);
const struct regmap_config *regmap_cfg;
const struct iio_gain_sel_pair *gains;
const struct iio_gain_sel_pair *gains_ir;
const struct iio_itime_sel_mul *itimes;
int num_gains;
int num_gains_ir;
int num_itimes;
int scale1x;
int drdy_en_reg;
int drdy_en_mask;
int meas_en_reg;
int meas_en_mask;
int valid_reg;
int chan_sel_reg;
int chan_sel_mask;
int int_time_mask;
u8 part_id;
};
struct bu27008_data {
const struct bu27_chip_data *cd;
struct regmap *regmap;
struct iio_trigger *trig;
struct device *dev;
struct iio_gts gts;
struct iio_gts gts_ir;
int irq;
/*
* Prevent changing gain/time config when scale is read/written.
* Similarly, protect the integration_time read/change sequence.
* Prevent changing gain/time when data is read.
*/
struct mutex mutex;
};
static const struct regmap_range bu27008_volatile_ranges[] = {
{
.range_min = BU27008_REG_SYSTEM_CONTROL, /* SWRESET */
.range_max = BU27008_REG_SYSTEM_CONTROL,
}, {
.range_min = BU27008_REG_MODE_CONTROL3, /* VALID */
.range_max = BU27008_REG_MODE_CONTROL3,
}, {
.range_min = BU27008_REG_DATA0_LO, /* DATA */
.range_max = BU27008_REG_DATA3_HI,
},
};
static const struct regmap_range bu27010_volatile_ranges[] = {
{
.range_min = BU27010_REG_RESET, /* RSTB */
.range_max = BU27008_REG_SYSTEM_CONTROL, /* RESET */
}, {
.range_min = BU27010_REG_MODE_CONTROL5, /* VALID bits */
.range_max = BU27010_REG_MODE_CONTROL5,
}, {
.range_min = BU27008_REG_DATA0_LO,
.range_max = BU27010_REG_FIFO_DATA_HI,
},
};
static const struct regmap_access_table bu27008_volatile_regs = {
.yes_ranges = &bu27008_volatile_ranges[0],
.n_yes_ranges = ARRAY_SIZE(bu27008_volatile_ranges),
};
static const struct regmap_access_table bu27010_volatile_regs = {
.yes_ranges = &bu27010_volatile_ranges[0],
.n_yes_ranges = ARRAY_SIZE(bu27010_volatile_ranges),
};
static const struct regmap_range bu27008_read_only_ranges[] = {
{
.range_min = BU27008_REG_DATA0_LO,
.range_max = BU27008_REG_DATA3_HI,
}, {
.range_min = BU27008_REG_MANUFACTURER_ID,
.range_max = BU27008_REG_MANUFACTURER_ID,
},
};
static const struct regmap_range bu27010_read_only_ranges[] = {
{
.range_min = BU27008_REG_DATA0_LO,
.range_max = BU27010_REG_FIFO_DATA_HI,
}, {
.range_min = BU27010_REG_MANUFACTURER_ID,
.range_max = BU27010_REG_MANUFACTURER_ID,
}
};
static const struct regmap_access_table bu27008_ro_regs = {
.no_ranges = &bu27008_read_only_ranges[0],
.n_no_ranges = ARRAY_SIZE(bu27008_read_only_ranges),
};
static const struct regmap_access_table bu27010_ro_regs = {
.no_ranges = &bu27010_read_only_ranges[0],
.n_no_ranges = ARRAY_SIZE(bu27010_read_only_ranges),
};
static const struct regmap_config bu27008_regmap = {
.reg_bits = 8,
.val_bits = 8,
.max_register = BU27008_REG_MAX,
.cache_type = REGCACHE_RBTREE,
.volatile_table = &bu27008_volatile_regs,
.wr_table = &bu27008_ro_regs,
/*
* All register writes are serialized by the mutex which protects the
* scale setting/getting. This is needed because scale is combined by
* gain and integration time settings and we need to ensure those are
* not read / written when scale is being computed.
*
* As a result of this serializing, we don't need regmap locking. Note,
* this is not true if we add any configurations which are not
* serialized by the mutex and which may need for example a protected
* read-modify-write cycle (eg. regmap_update_bits()). Please, revise
* this when adding features to the driver.
*/
.disable_locking = true,
};
static const struct regmap_config bu27010_regmap = {
.reg_bits = 8,
.val_bits = 8,
.max_register = BU27010_REG_MAX,
.cache_type = REGCACHE_RBTREE,
.volatile_table = &bu27010_volatile_regs,
.wr_table = &bu27010_ro_regs,
.disable_locking = true,
};
static int bu27008_write_gain_sel(struct bu27008_data *data, int sel)
{
int regval;
regval = FIELD_PREP(BU27008_MASK_RGBC_GAIN, sel);
/*
* We do always set also the LOW bits of IR-gain because othervice we
* would risk resulting an invalid GAIN register value.
*
* We could allow setting separate gains for RGBC and IR when the
* values were such that HW could support both gain settings.
* Eg, when the shared bits were same for both gain values.
*
* This, however, has a negligible benefit compared to the increased
* software complexity when we would need to go through the gains
* for both channels separately when the integration time changes.
* This would end up with nasty logic for computing gain values for
* both channels - and rejecting them if shared bits changed.
*
* We should then build the logic by guessing what a user prefers.
* RGBC or IR gains correctly set while other jumps to odd value?
* Maybe look-up a value where both gains are somehow optimized
* <what this somehow is, is ATM unknown to us>. Or maybe user would
* expect us to reject changes when optimal gains can't be set to both
* channels w/given integration time. At best that would result
* solution that works well for a very specific subset of
* configurations but causes unexpected corner-cases.
*
* So, we keep it simple. Always set same selector to IR and RGBC.
* We disallow setting IR (as I expect that most of the users are
* interested in RGBC). This way we can show the user that the scales
* for RGBC and IR channels are different (1X Vs 2X with sel 0) while
* still keeping the operation deterministic.
*/
regval |= FIELD_PREP(BU27008_MASK_IR_GAIN_LO, sel);
return regmap_update_bits(data->regmap, BU27008_REG_MODE_CONTROL2,
BU27008_MASK_RGBC_GAIN, regval);
}
static int bu27010_write_gain_sel(struct bu27008_data *data, int sel)
{
unsigned int regval;
int ret, chan_selector;
/*
* Gain 'selector' is composed of two registers. Selector is 6bit value,
* 4 high bits being the RGBC gain fieild in MODE_CONTROL1 register and
* two low bits being the channel specific gain in MODE_CONTROL2.
*
* Let's take the 4 high bits of whole 6 bit selector, and prepare
* the MODE_CONTROL1 value (RGBC gain part).
*/
regval = FIELD_PREP(BU27010_MASK_RGBC_GAIN, (sel >> 2));
ret = regmap_update_bits(data->regmap, BU27008_REG_MODE_CONTROL1,
BU27010_MASK_RGBC_GAIN, regval);
if (ret)
return ret;
/*
* Two low two bits of the selector must be written for all 4
* channels in the MODE_CONTROL2 register. Copy these two bits for
* all channels.
*/
chan_selector = sel & GENMASK(1, 0);
regval = FIELD_PREP(BU27010_MASK_DATA0_GAIN, chan_selector);
regval |= FIELD_PREP(BU27010_MASK_DATA1_GAIN, chan_selector);
regval |= FIELD_PREP(BU27010_MASK_DATA2_GAIN, chan_selector);
regval |= FIELD_PREP(BU27010_MASK_DATA3_GAIN, chan_selector);
return regmap_write(data->regmap, BU27008_REG_MODE_CONTROL2, regval);
}
static int bu27008_get_gain_sel(struct bu27008_data *data, int *sel)
{
int ret;
/*
* If we always "lock" the gain selectors for all channels to prevent
* unsupported configs, then it does not matter which channel is used
* we can just return selector from any of them.
*
* This, however is not true if we decide to support only 4X and 16X
* and then individual gains for channels. Currently this is not the
* case.
*
* If we some day decide to support individual gains, then we need to
* have channel information here.
*/
ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL2, sel);
if (ret)
return ret;
*sel = FIELD_GET(BU27008_MASK_RGBC_GAIN, *sel);
return 0;
}
static int bu27010_get_gain_sel(struct bu27008_data *data, int *sel)
{
int ret, tmp;
/*
* We always "lock" the gain selectors for all channels to prevent
* unsupported configs. It does not matter which channel is used
* we can just return selector from any of them.
*
* Read the channel0 gain.
*/
ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL2, sel);
if (ret)
return ret;
*sel = FIELD_GET(BU27010_MASK_DATA0_GAIN, *sel);
/* Read the shared gain */
ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL1, &tmp);
if (ret)
return ret;
/*
* The gain selector is made as a combination of common RGBC gain and
* the channel specific gain. The channel specific gain forms the low
* bits of selector and RGBC gain is appended right after it.
*
* Compose the selector from channel0 gain and shared RGBC gain.
*/
*sel |= FIELD_GET(BU27010_MASK_RGBC_GAIN, tmp) << fls(BU27010_MASK_DATA0_GAIN);
return ret;
}
static int bu27008_chip_init(struct bu27008_data *data)
{
int ret;
ret = regmap_write_bits(data->regmap, BU27008_REG_SYSTEM_CONTROL,
BU27008_MASK_SW_RESET, BU27008_MASK_SW_RESET);
if (ret)
return dev_err_probe(data->dev, ret, "Sensor reset failed\n");
/*
* The data-sheet does not tell how long performing the IC reset takes.
* However, the data-sheet says the minimum time it takes the IC to be
* able to take inputs after power is applied, is 100 uS. I'd assume
* > 1 mS is enough.
*/
msleep(1);
ret = regmap_reinit_cache(data->regmap, data->cd->regmap_cfg);
if (ret)
dev_err(data->dev, "Failed to reinit reg cache\n");
return ret;
}
static int bu27010_chip_init(struct bu27008_data *data)
{
int ret;
ret = regmap_write_bits(data->regmap, BU27008_REG_SYSTEM_CONTROL,
BU27010_MASK_SW_RESET, BU27010_MASK_SW_RESET);
if (ret)
return dev_err_probe(data->dev, ret, "Sensor reset failed\n");
msleep(1);
/* Power ON*/
ret = regmap_write_bits(data->regmap, BU27010_REG_POWER,
BU27010_MASK_POWER, BU27010_MASK_POWER);
if (ret)
return dev_err_probe(data->dev, ret, "Sensor power-on failed\n");
msleep(1);
/* Release blocks from reset */
ret = regmap_write_bits(data->regmap, BU27010_REG_RESET,
BU27010_MASK_RESET, BU27010_RESET_RELEASE);
if (ret)
return dev_err_probe(data->dev, ret, "Sensor powering failed\n");
msleep(1);
/*
* The IRQ enabling on BU27010 is done in a peculiar way. The IRQ
* enabling is not a bit mask where individual IRQs could be enabled but
* a field which values are:
* 00 => IRQs disabled
* 01 => Data-ready (RGBC/IR)
* 10 => Data-ready (flicker)
* 11 => Flicker FIFO
*
* So, only one IRQ can be enabled at a time and enabling for example
* flicker FIFO would automagically disable data-ready IRQ.
*
* Currently the driver does not support the flicker. Hence, we can
* just treat the RGBC data-ready as single bit which can be enabled /
* disabled. This works for as long as the second bit in the field
* stays zero. Here we ensure it gets zeroed.
*/
return regmap_clear_bits(data->regmap, BU27010_REG_MODE_CONTROL4,
BU27010_IRQ_DIS_ALL);
}
static const struct bu27_chip_data bu27010_chip = {
.name = "bu27010",
.chip_init = bu27010_chip_init,
.get_gain_sel = bu27010_get_gain_sel,
.write_gain_sel = bu27010_write_gain_sel,
.regmap_cfg = &bu27010_regmap,
.gains = &bu27010_gains[0],
.gains_ir = &bu27010_gains_ir[0],
.itimes = &bu27010_itimes[0],
.num_gains = ARRAY_SIZE(bu27010_gains),
.num_gains_ir = ARRAY_SIZE(bu27010_gains_ir),
.num_itimes = ARRAY_SIZE(bu27010_itimes),
.scale1x = BU27010_SCALE_1X,
.drdy_en_reg = BU27010_REG_MODE_CONTROL4,
.drdy_en_mask = BU27010_DRDY_EN,
.meas_en_reg = BU27010_REG_MODE_CONTROL5,
.meas_en_mask = BU27010_MASK_MEAS_EN,
.valid_reg = BU27010_REG_MODE_CONTROL5,
.chan_sel_reg = BU27008_REG_MODE_CONTROL1,
.chan_sel_mask = BU27010_MASK_CHAN_SEL,
.int_time_mask = BU27010_MASK_MEAS_MODE,
.part_id = BU27010_ID,
};
static const struct bu27_chip_data bu27008_chip = {
.name = "bu27008",
.chip_init = bu27008_chip_init,
.get_gain_sel = bu27008_get_gain_sel,
.write_gain_sel = bu27008_write_gain_sel,
.regmap_cfg = &bu27008_regmap,
.gains = &bu27008_gains[0],
.gains_ir = &bu27008_gains_ir[0],
.itimes = &bu27008_itimes[0],
.num_gains = ARRAY_SIZE(bu27008_gains),
.num_gains_ir = ARRAY_SIZE(bu27008_gains_ir),
.num_itimes = ARRAY_SIZE(bu27008_itimes),
.scale1x = BU27008_SCALE_1X,
.drdy_en_reg = BU27008_REG_MODE_CONTROL3,
.drdy_en_mask = BU27008_MASK_INT_EN,
.valid_reg = BU27008_REG_MODE_CONTROL3,
.meas_en_reg = BU27008_REG_MODE_CONTROL3,
.meas_en_mask = BU27008_MASK_MEAS_EN,
.chan_sel_reg = BU27008_REG_MODE_CONTROL3,
.chan_sel_mask = BU27008_MASK_CHAN_SEL,
.int_time_mask = BU27008_MASK_MEAS_MODE,
.part_id = BU27008_ID,
};
#define BU27008_MAX_VALID_RESULT_WAIT_US 50000
#define BU27008_VALID_RESULT_WAIT_QUANTA_US 1000
static int bu27008_chan_read_data(struct bu27008_data *data, int reg, int *val)
{
int ret, valid;
__le16 tmp;
ret = regmap_read_poll_timeout(data->regmap, data->cd->valid_reg,
valid, (valid & BU27008_MASK_VALID),
BU27008_VALID_RESULT_WAIT_QUANTA_US,
BU27008_MAX_VALID_RESULT_WAIT_US);
if (ret)
return ret;
ret = regmap_bulk_read(data->regmap, reg, &tmp, sizeof(tmp));
if (ret)
dev_err(data->dev, "Reading channel data failed\n");
*val = le16_to_cpu(tmp);
return ret;
}
static int bu27008_get_gain(struct bu27008_data *data, struct iio_gts *gts, int *gain)
{
int ret, sel;
ret = data->cd->get_gain_sel(data, &sel);
if (ret)
return ret;
ret = iio_gts_find_gain_by_sel(gts, sel);
if (ret < 0) {
dev_err(data->dev, "unknown gain value 0x%x\n", sel);
return ret;
}
*gain = ret;
return 0;
}
static int bu27008_set_gain(struct bu27008_data *data, int gain)
{
int ret;
ret = iio_gts_find_sel_by_gain(&data->gts, gain);
if (ret < 0)
return ret;
return data->cd->write_gain_sel(data, ret);
}
static int bu27008_get_int_time_sel(struct bu27008_data *data, int *sel)
{
int ret, val;
ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL1, &val);
if (ret)
return ret;
val &= data->cd->int_time_mask;
val >>= ffs(data->cd->int_time_mask) - 1;
*sel = val;
return 0;
}
static int bu27008_set_int_time_sel(struct bu27008_data *data, int sel)
{
sel <<= ffs(data->cd->int_time_mask) - 1;
return regmap_update_bits(data->regmap, BU27008_REG_MODE_CONTROL1,
data->cd->int_time_mask, sel);
}
static int bu27008_get_int_time_us(struct bu27008_data *data)
{
int ret, sel;
ret = bu27008_get_int_time_sel(data, &sel);
if (ret)
return ret;
return iio_gts_find_int_time_by_sel(&data->gts, sel);
}
static int _bu27008_get_scale(struct bu27008_data *data, bool ir, int *val,
int *val2)
{
struct iio_gts *gts;
int gain, ret;
if (ir)
gts = &data->gts_ir;
else
gts = &data->gts;
ret = bu27008_get_gain(data, gts, &gain);
if (ret)
return ret;
ret = bu27008_get_int_time_us(data);
if (ret < 0)
return ret;
return iio_gts_get_scale(gts, gain, ret, val, val2);
}
static int bu27008_get_scale(struct bu27008_data *data, bool ir, int *val,
int *val2)
{
int ret;
mutex_lock(&data->mutex);
ret = _bu27008_get_scale(data, ir, val, val2);
mutex_unlock(&data->mutex);
return ret;
}
static int bu27008_set_int_time(struct bu27008_data *data, int time)
{
int ret;
ret = iio_gts_find_sel_by_int_time(&data->gts, time);
if (ret < 0)
return ret;
return bu27008_set_int_time_sel(data, ret);
}
/* Try to change the time so that the scale is maintained */
static int bu27008_try_set_int_time(struct bu27008_data *data, int int_time_new)
{
int ret, old_time_sel, new_time_sel, old_gain, new_gain;
mutex_lock(&data->mutex);
ret = bu27008_get_int_time_sel(data, &old_time_sel);
if (ret < 0)
goto unlock_out;
if (!iio_gts_valid_time(&data->gts, int_time_new)) {
dev_dbg(data->dev, "Unsupported integration time %u\n",
int_time_new);
ret = -EINVAL;
goto unlock_out;
}
/* If we already use requested time, then we're done */
new_time_sel = iio_gts_find_sel_by_int_time(&data->gts, int_time_new);
if (new_time_sel == old_time_sel)
goto unlock_out;
ret = bu27008_get_gain(data, &data->gts, &old_gain);
if (ret)
goto unlock_out;
ret = iio_gts_find_new_gain_sel_by_old_gain_time(&data->gts, old_gain,
old_time_sel, new_time_sel, &new_gain);
if (ret) {
int scale1, scale2;
bool ok;
_bu27008_get_scale(data, false, &scale1, &scale2);
dev_dbg(data->dev,
"Can't support time %u with current scale %u %u\n",
int_time_new, scale1, scale2);
if (new_gain < 0)
goto unlock_out;
/*
* If caller requests for integration time change and we
* can't support the scale - then the caller should be
* prepared to 'pick up the pieces and deal with the
* fact that the scale changed'.
*/
ret = iio_find_closest_gain_low(&data->gts, new_gain, &ok);
if (!ok)
dev_dbg(data->dev, "optimal gain out of range\n");
if (ret < 0) {
dev_dbg(data->dev,
"Total gain increase. Risk of saturation");
ret = iio_gts_get_min_gain(&data->gts);
if (ret < 0)
goto unlock_out;
}
new_gain = ret;
dev_dbg(data->dev, "scale changed, new gain %u\n", new_gain);
}
ret = bu27008_set_gain(data, new_gain);
if (ret)
goto unlock_out;
ret = bu27008_set_int_time(data, int_time_new);
unlock_out:
mutex_unlock(&data->mutex);
return ret;
}
static int bu27008_meas_set(struct bu27008_data *data, bool enable)
{
if (enable)
return regmap_set_bits(data->regmap, data->cd->meas_en_reg,
data->cd->meas_en_mask);
return regmap_clear_bits(data->regmap, data->cd->meas_en_reg,
data->cd->meas_en_mask);
}
static int bu27008_chan_cfg(struct bu27008_data *data,
struct iio_chan_spec const *chan)
{
int chan_sel;
if (chan->scan_index == BU27008_BLUE)
chan_sel = BU27008_BLUE2_CLEAR3;
else
chan_sel = BU27008_CLEAR2_IR3;
/*
* prepare bitfield for channel sel. The FIELD_PREP works only when
* mask is constant. In our case the mask is assigned based on the
* chip type. Hence the open-coded FIELD_PREP here. We don't bother
* zeroing the irrelevant bits though - update_bits takes care of that.
*/
chan_sel <<= ffs(data->cd->chan_sel_mask) - 1;
return regmap_update_bits(data->regmap, data->cd->chan_sel_reg,
BU27008_MASK_CHAN_SEL, chan_sel);
}
static int bu27008_read_one(struct bu27008_data *data, struct iio_dev *idev,
struct iio_chan_spec const *chan, int *val, int *val2)
{
int ret, int_time;
ret = bu27008_chan_cfg(data, chan);
if (ret)
return ret;
ret = bu27008_meas_set(data, true);
if (ret)
return ret;
ret = bu27008_get_int_time_us(data);
if (ret < 0)
int_time = BU27008_MEAS_TIME_MAX_MS;
else
int_time = ret / USEC_PER_MSEC;
msleep(int_time);
ret = bu27008_chan_read_data(data, chan->address, val);
if (!ret)
ret = IIO_VAL_INT;
if (bu27008_meas_set(data, false))
dev_warn(data->dev, "measurement disabling failed\n");
return ret;
}
#define BU27008_LUX_DATA_RED 0
#define BU27008_LUX_DATA_GREEN 1
#define BU27008_LUX_DATA_BLUE 2
#define BU27008_LUX_DATA_IR 3
#define LUX_DATA_SIZE (BU27008_NUM_HW_CHANS * sizeof(__le16))
static int bu27008_read_lux_chans(struct bu27008_data *data, unsigned int time,
__le16 *chan_data)
{
int ret, chan_sel, tmpret, valid;
chan_sel = BU27008_BLUE2_IR3 << (ffs(data->cd->chan_sel_mask) - 1);
ret = regmap_update_bits(data->regmap, data->cd->chan_sel_reg,
data->cd->chan_sel_mask, chan_sel);
if (ret)
return ret;
ret = bu27008_meas_set(data, true);
if (ret)
return ret;
msleep(time / USEC_PER_MSEC);
ret = regmap_read_poll_timeout(data->regmap, data->cd->valid_reg,
valid, (valid & BU27008_MASK_VALID),
BU27008_VALID_RESULT_WAIT_QUANTA_US,
BU27008_MAX_VALID_RESULT_WAIT_US);
if (ret)
goto out;
ret = regmap_bulk_read(data->regmap, BU27008_REG_DATA0_LO, chan_data,
LUX_DATA_SIZE);
if (ret)
goto out;
out:
tmpret = bu27008_meas_set(data, false);
if (tmpret)
dev_warn(data->dev, "Stopping measurement failed\n");
return ret;
}
/*
* Following equation for computing lux out of register values was given by
* ROHM HW colleagues;
*
* Red = RedData*1024 / Gain * 20 / meas_mode
* Green = GreenData* 1024 / Gain * 20 / meas_mode
* Blue = BlueData* 1024 / Gain * 20 / meas_mode
* IR = IrData* 1024 / Gain * 20 / meas_mode
*
* where meas_mode is the integration time in mS / 10
*
* IRratio = (IR > 0.18 * Green) ? 0 : 1
*
* Lx = max(c1*Red + c2*Green + c3*Blue,0)
*
* for
* IRratio 0: c1 = -0.00002237, c2 = 0.0003219, c3 = -0.000120371
* IRratio 1: c1 = -0.00001074, c2 = 0.000305415, c3 = -0.000129367
*/
/*
* The max chan data is 0xffff. When we multiply it by 1024 * 20, we'll get
* 0x4FFFB000 which still fits in 32-bit integer. This won't overflow.
*/
#define NORM_CHAN_DATA_FOR_LX_CALC(chan, gain, time) (le16_to_cpu(chan) * \
1024 * 20 / (gain) / (time))
static u64 bu27008_calc_nlux(struct bu27008_data *data, __le16 *lux_data,
unsigned int gain, unsigned int gain_ir, unsigned int time)
{
unsigned int red, green, blue, ir;
s64 c1, c2, c3, nlux;
time /= 10000;
ir = NORM_CHAN_DATA_FOR_LX_CALC(lux_data[BU27008_LUX_DATA_IR], gain_ir, time);
red = NORM_CHAN_DATA_FOR_LX_CALC(lux_data[BU27008_LUX_DATA_RED], gain, time);
green = NORM_CHAN_DATA_FOR_LX_CALC(lux_data[BU27008_LUX_DATA_GREEN], gain, time);
blue = NORM_CHAN_DATA_FOR_LX_CALC(lux_data[BU27008_LUX_DATA_BLUE], gain, time);
if ((u64)ir * 100LLU > (u64)green * 18LLU) {
c1 = -22370;
c2 = 321900;
c3 = -120371;
} else {
c1 = -10740;
c2 = 305415;
c3 = -129367;
}
nlux = c1 * red + c2 * green + c3 * blue;
return max_t(s64, 0, nlux);
}
static int bu27008_get_time_n_gains(struct bu27008_data *data,
unsigned int *gain, unsigned int *gain_ir, unsigned int *time)
{
int ret;
ret = bu27008_get_gain(data, &data->gts, gain);
if (ret < 0)
return ret;
ret = bu27008_get_gain(data, &data->gts_ir, gain_ir);
if (ret < 0)
return ret;
ret = bu27008_get_int_time_us(data);
if (ret < 0)
return ret;
/* Max integration time is 400000. Fits in signed int. */
*time = ret;
return 0;
}
struct bu27008_buf {
__le16 chan[BU27008_NUM_HW_CHANS];
u64 lux __aligned(8);
s64 ts __aligned(8);
};
static int bu27008_buffer_fill_lux(struct bu27008_data *data,
struct bu27008_buf *raw)
{
unsigned int gain, gain_ir, time;
int ret;
ret = bu27008_get_time_n_gains(data, &gain, &gain_ir, &time);
if (ret)
return ret;
raw->lux = bu27008_calc_nlux(data, raw->chan, gain, gain_ir, time);
return 0;
}
static int bu27008_read_lux(struct bu27008_data *data, struct iio_dev *idev,
struct iio_chan_spec const *chan,
int *val, int *val2)
{
__le16 lux_data[BU27008_NUM_HW_CHANS];
unsigned int gain, gain_ir, time;
u64 nlux;
int ret;
ret = bu27008_get_time_n_gains(data, &gain, &gain_ir, &time);
if (ret)
return ret;
ret = bu27008_read_lux_chans(data, time, lux_data);
if (ret)
return ret;
nlux = bu27008_calc_nlux(data, lux_data, gain, gain_ir, time);
*val = (int)nlux;
*val2 = nlux >> 32LLU;
return IIO_VAL_INT_64;
}
static int bu27008_read_raw(struct iio_dev *idev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct bu27008_data *data = iio_priv(idev);
int busy, ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
busy = iio_device_claim_direct_mode(idev);
if (busy)
return -EBUSY;
mutex_lock(&data->mutex);
if (chan->type == IIO_LIGHT)
ret = bu27008_read_lux(data, idev, chan, val, val2);
else
ret = bu27008_read_one(data, idev, chan, val, val2);
mutex_unlock(&data->mutex);
iio_device_release_direct_mode(idev);
return ret;
case IIO_CHAN_INFO_SCALE:
if (chan->type == IIO_LIGHT) {
*val = 0;
*val2 = 1;
return IIO_VAL_INT_PLUS_NANO;
}
ret = bu27008_get_scale(data, chan->scan_index == BU27008_IR,
val, val2);
if (ret)
return ret;
return IIO_VAL_INT_PLUS_NANO;
case IIO_CHAN_INFO_INT_TIME:
ret = bu27008_get_int_time_us(data);
if (ret < 0)
return ret;
*val = 0;
*val2 = ret;
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
}
/* Called if the new scale could not be supported with existing int-time */
static int bu27008_try_find_new_time_gain(struct bu27008_data *data, int val,
int val2, int *gain_sel)
{
int i, ret, new_time_sel;
for (i = 0; i < data->gts.num_itime; i++) {
new_time_sel = data->gts.itime_table[i].sel;
ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts,
new_time_sel, val, val2, gain_sel);
if (!ret)
break;
}
if (i == data->gts.num_itime) {
dev_err(data->dev, "Can't support scale %u %u\n", val, val2);
return -EINVAL;
}
return bu27008_set_int_time_sel(data, new_time_sel);
}
static int bu27008_set_scale(struct bu27008_data *data,
struct iio_chan_spec const *chan,
int val, int val2)
{
int ret, gain_sel, time_sel;
if (chan->scan_index == BU27008_IR)
return -EINVAL;
mutex_lock(&data->mutex);
ret = bu27008_get_int_time_sel(data, &time_sel);
if (ret < 0)
goto unlock_out;
ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts, time_sel,
val, val2, &gain_sel);
if (ret) {
ret = bu27008_try_find_new_time_gain(data, val, val2, &gain_sel);
if (ret)
goto unlock_out;
}
ret = data->cd->write_gain_sel(data, gain_sel);
unlock_out:
mutex_unlock(&data->mutex);
return ret;
}
static int bu27008_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SCALE:
return IIO_VAL_INT_PLUS_NANO;
case IIO_CHAN_INFO_INT_TIME:
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
}
static int bu27008_write_raw(struct iio_dev *idev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct bu27008_data *data = iio_priv(idev);
int ret;
/*
* Do not allow changing scale when measurement is ongoing as doing so
* could make values in the buffer inconsistent.
*/
ret = iio_device_claim_direct_mode(idev);
if (ret)
return ret;
switch (mask) {
case IIO_CHAN_INFO_SCALE:
ret = bu27008_set_scale(data, chan, val, val2);
break;
case IIO_CHAN_INFO_INT_TIME:
if (val) {
ret = -EINVAL;
break;
}
ret = bu27008_try_set_int_time(data, val2);
break;
default:
ret = -EINVAL;
break;
}
iio_device_release_direct_mode(idev);
return ret;
}
static int bu27008_read_avail(struct iio_dev *idev,
struct iio_chan_spec const *chan, const int **vals,
int *type, int *length, long mask)
{
struct bu27008_data *data = iio_priv(idev);
switch (mask) {
case IIO_CHAN_INFO_INT_TIME:
return iio_gts_avail_times(&data->gts, vals, type, length);
case IIO_CHAN_INFO_SCALE:
if (chan->channel2 == IIO_MOD_LIGHT_IR)
return iio_gts_all_avail_scales(&data->gts_ir, vals,
type, length);
return iio_gts_all_avail_scales(&data->gts, vals, type, length);
default:
return -EINVAL;
}
}
static int bu27008_update_scan_mode(struct iio_dev *idev,
const unsigned long *scan_mask)
{
struct bu27008_data *data = iio_priv(idev);
int chan_sel;
/* Configure channel selection */
if (test_bit(BU27008_BLUE, idev->active_scan_mask)) {
if (test_bit(BU27008_CLEAR, idev->active_scan_mask))
chan_sel = BU27008_BLUE2_CLEAR3;
else
chan_sel = BU27008_BLUE2_IR3;
} else {
chan_sel = BU27008_CLEAR2_IR3;
}
chan_sel <<= ffs(data->cd->chan_sel_mask) - 1;
return regmap_update_bits(data->regmap, data->cd->chan_sel_reg,
data->cd->chan_sel_mask, chan_sel);
}
static const struct iio_info bu27008_info = {
.read_raw = &bu27008_read_raw,
.write_raw = &bu27008_write_raw,
.write_raw_get_fmt = &bu27008_write_raw_get_fmt,
.read_avail = &bu27008_read_avail,
.update_scan_mode = bu27008_update_scan_mode,
.validate_trigger = iio_validate_own_trigger,
};
static int bu27008_trigger_set_state(struct iio_trigger *trig, bool state)
{
struct bu27008_data *data = iio_trigger_get_drvdata(trig);
int ret;
if (state)
ret = regmap_set_bits(data->regmap, data->cd->drdy_en_reg,
data->cd->drdy_en_mask);
else
ret = regmap_clear_bits(data->regmap, data->cd->drdy_en_reg,
data->cd->drdy_en_mask);
if (ret)
dev_err(data->dev, "Failed to set trigger state\n");
return ret;
}
static void bu27008_trigger_reenable(struct iio_trigger *trig)
{
struct bu27008_data *data = iio_trigger_get_drvdata(trig);
enable_irq(data->irq);
}
static const struct iio_trigger_ops bu27008_trigger_ops = {
.set_trigger_state = bu27008_trigger_set_state,
.reenable = bu27008_trigger_reenable,
};
static irqreturn_t bu27008_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *idev = pf->indio_dev;
struct bu27008_data *data = iio_priv(idev);
struct bu27008_buf raw;
int ret, dummy;
memset(&raw, 0, sizeof(raw));
/*
* After some measurements, it seems reading the
* BU27008_REG_MODE_CONTROL3 debounces the IRQ line
*/
ret = regmap_read(data->regmap, data->cd->valid_reg, &dummy);
if (ret < 0)
goto err_read;
ret = regmap_bulk_read(data->regmap, BU27008_REG_DATA0_LO, &raw.chan,
sizeof(raw.chan));
if (ret < 0)
goto err_read;
if (test_bit(BU27008_LUX, idev->active_scan_mask)) {
ret = bu27008_buffer_fill_lux(data, &raw);
if (ret)
goto err_read;
}
iio_push_to_buffers_with_timestamp(idev, &raw, pf->timestamp);
err_read:
iio_trigger_notify_done(idev->trig);
return IRQ_HANDLED;
}
static int bu27008_buffer_preenable(struct iio_dev *idev)
{
struct bu27008_data *data = iio_priv(idev);
return bu27008_meas_set(data, true);
}
static int bu27008_buffer_postdisable(struct iio_dev *idev)
{
struct bu27008_data *data = iio_priv(idev);
return bu27008_meas_set(data, false);
}
static const struct iio_buffer_setup_ops bu27008_buffer_ops = {
.preenable = bu27008_buffer_preenable,
.postdisable = bu27008_buffer_postdisable,
};
static irqreturn_t bu27008_data_rdy_poll(int irq, void *private)
{
/*
* The BU27008 keeps IRQ asserted until we read the VALID bit from
* a register. We need to keep the IRQ disabled until then.
*/
disable_irq_nosync(irq);
iio_trigger_poll(private);
return IRQ_HANDLED;
}
static int bu27008_setup_trigger(struct bu27008_data *data, struct iio_dev *idev)
{
struct iio_trigger *itrig;
char *name;
int ret;
ret = devm_iio_triggered_buffer_setup(data->dev, idev,
&iio_pollfunc_store_time,
bu27008_trigger_handler,
&bu27008_buffer_ops);
if (ret)
return dev_err_probe(data->dev, ret,
"iio_triggered_buffer_setup_ext FAIL\n");
itrig = devm_iio_trigger_alloc(data->dev, "%sdata-rdy-dev%d",
idev->name, iio_device_id(idev));
if (!itrig)
return -ENOMEM;
data->trig = itrig;
itrig->ops = &bu27008_trigger_ops;
iio_trigger_set_drvdata(itrig, data);
name = devm_kasprintf(data->dev, GFP_KERNEL, "%s-bu27008",
dev_name(data->dev));
ret = devm_request_irq(data->dev, data->irq,
&bu27008_data_rdy_poll,
0, name, itrig);
if (ret)
return dev_err_probe(data->dev, ret, "Could not request IRQ\n");
ret = devm_iio_trigger_register(data->dev, itrig);
if (ret)
return dev_err_probe(data->dev, ret,
"Trigger registration failed\n");
/* set default trigger */
idev->trig = iio_trigger_get(itrig);
return 0;
}
static int bu27008_probe(struct i2c_client *i2c)
{
struct device *dev = &i2c->dev;
struct bu27008_data *data;
struct regmap *regmap;
unsigned int part_id, reg;
struct iio_dev *idev;
int ret;
idev = devm_iio_device_alloc(dev, sizeof(*data));
if (!idev)
return -ENOMEM;
ret = devm_regulator_get_enable(dev, "vdd");
if (ret)
return dev_err_probe(dev, ret, "Failed to get regulator\n");
data = iio_priv(idev);
data->cd = device_get_match_data(&i2c->dev);
if (!data->cd)
return -ENODEV;
regmap = devm_regmap_init_i2c(i2c, data->cd->regmap_cfg);
if (IS_ERR(regmap))
return dev_err_probe(dev, PTR_ERR(regmap),
"Failed to initialize Regmap\n");
ret = regmap_read(regmap, BU27008_REG_SYSTEM_CONTROL, ®);
if (ret)
return dev_err_probe(dev, ret, "Failed to access sensor\n");
part_id = FIELD_GET(BU27008_MASK_PART_ID, reg);
if (part_id != data->cd->part_id)
dev_warn(dev, "unknown device 0x%x\n", part_id);
ret = devm_iio_init_iio_gts(dev, data->cd->scale1x, 0, data->cd->gains,
data->cd->num_gains, data->cd->itimes,
data->cd->num_itimes, &data->gts);
if (ret)
return ret;
ret = devm_iio_init_iio_gts(dev, data->cd->scale1x, 0, data->cd->gains_ir,
data->cd->num_gains_ir, data->cd->itimes,
data->cd->num_itimes, &data->gts_ir);
if (ret)
return ret;
mutex_init(&data->mutex);
data->regmap = regmap;
data->dev = dev;
data->irq = i2c->irq;
idev->channels = bu27008_channels;
idev->num_channels = ARRAY_SIZE(bu27008_channels);
idev->name = data->cd->name;
idev->info = &bu27008_info;
idev->modes = INDIO_DIRECT_MODE;
idev->available_scan_masks = bu27008_scan_masks;
ret = data->cd->chip_init(data);
if (ret)
return ret;
if (i2c->irq) {
ret = bu27008_setup_trigger(data, idev);
if (ret)
return ret;
} else {
dev_info(dev, "No IRQ, buffered mode disabled\n");
}
ret = devm_iio_device_register(dev, idev);
if (ret)
return dev_err_probe(dev, ret,
"Unable to register iio device\n");
return 0;
}
static const struct of_device_id bu27008_of_match[] = {
{ .compatible = "rohm,bu27008", .data = &bu27008_chip },
{ .compatible = "rohm,bu27010", .data = &bu27010_chip },
{ }
};
MODULE_DEVICE_TABLE(of, bu27008_of_match);
static struct i2c_driver bu27008_i2c_driver = {
.driver = {
.name = "bu27008",
.of_match_table = bu27008_of_match,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
},
.probe = bu27008_probe,
};
module_i2c_driver(bu27008_i2c_driver);
MODULE_DESCRIPTION("ROHM BU27008 and BU27010 colour sensor driver");
MODULE_AUTHOR("Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS("IIO_GTS_HELPER");
|