summaryrefslogtreecommitdiff
path: root/drivers/hwmon/ltc4282.c
blob: 4f608a3790fb729d917a3e5f338097e86f2b62df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
// SPDX-License-Identifier: GPL-2.0
/*
 * Analog Devices LTC4282 I2C High Current Hot Swap Controller over I2C
 *
 * Copyright 2023 Analog Devices Inc.
 */
#include <linux/bitfield.h>
#include <linux/cleanup.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/i2c.h>
#include <linux/math.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/mutex.h>
#include <linux/regmap.h>
#include <linux/property.h>
#include <linux/string.h>
#include <linux/units.h>
#include <linux/util_macros.h>

#define LTC4282_CTRL_LSB			0x00
  #define LTC4282_CTRL_OV_RETRY_MASK		BIT(0)
  #define LTC4282_CTRL_UV_RETRY_MASK		BIT(1)
  #define LTC4282_CTRL_OC_RETRY_MASK		BIT(2)
  #define LTC4282_CTRL_ON_ACTIVE_LOW_MASK	BIT(5)
  #define LTC4282_CTRL_ON_DELAY_MASK		BIT(6)
#define LTC4282_CTRL_MSB			0x01
  #define LTC4282_CTRL_VIN_MODE_MASK		GENMASK(1, 0)
  #define LTC4282_CTRL_OV_MODE_MASK		GENMASK(3, 2)
  #define LTC4282_CTRL_UV_MODE_MASK		GENMASK(5, 4)
#define LTC4282_FAULT_LOG			0x04
  #define LTC4282_OV_FAULT_MASK			BIT(0)
  #define LTC4282_UV_FAULT_MASK			BIT(1)
  #define LTC4282_VDD_FAULT_MASK \
		(LTC4282_OV_FAULT_MASK | LTC4282_UV_FAULT_MASK)
  #define LTC4282_OC_FAULT_MASK			BIT(2)
  #define LTC4282_POWER_BAD_FAULT_MASK		BIT(3)
  #define LTC4282_FET_SHORT_FAULT_MASK		BIT(5)
  #define LTC4282_FET_BAD_FAULT_MASK		BIT(6)
  #define LTC4282_FET_FAILURE_FAULT_MASK \
		(LTC4282_FET_SHORT_FAULT_MASK | LTC4282_FET_BAD_FAULT_MASK)
#define LTC4282_ADC_ALERT_LOG			0x05
  #define LTC4282_GPIO_ALARM_L_MASK		BIT(0)
  #define LTC4282_GPIO_ALARM_H_MASK		BIT(1)
  #define LTC4282_VSOURCE_ALARM_L_MASK		BIT(2)
  #define LTC4282_VSOURCE_ALARM_H_MASK		BIT(3)
  #define LTC4282_VSENSE_ALARM_L_MASK		BIT(4)
  #define LTC4282_VSENSE_ALARM_H_MASK		BIT(5)
  #define LTC4282_POWER_ALARM_L_MASK		BIT(6)
  #define LTC4282_POWER_ALARM_H_MASK		BIT(7)
#define LTC4282_FET_BAD_FAULT_TIMEOUT		0x06
  #define LTC4282_FET_BAD_MAX_TIMEOUT		255
#define LTC4282_GPIO_CONFIG			0x07
  #define LTC4282_GPIO_2_FET_STRESS_MASK	BIT(1)
  #define LTC4282_GPIO_1_CONFIG_MASK		GENMASK(5, 4)
#define LTC4282_VGPIO_MIN			0x08
#define LTC4282_VGPIO_MAX			0x09
#define LTC4282_VSOURCE_MIN			0x0a
#define LTC4282_VSOURCE_MAX			0x0b
#define LTC4282_VSENSE_MIN			0x0c
#define LTC4282_VSENSE_MAX			0x0d
#define LTC4282_POWER_MIN			0x0e
#define LTC4282_POWER_MAX			0x0f
#define LTC4282_CLK_DIV				0x10
  #define LTC4282_CLK_DIV_MASK			GENMASK(4, 0)
  #define LTC4282_CLKOUT_MASK			GENMASK(6, 5)
#define LTC4282_ILIM_ADJUST			0x11
  #define LTC4282_GPIO_MODE_MASK		BIT(1)
  #define LTC4282_VDD_MONITOR_MASK		BIT(2)
  #define LTC4282_FOLDBACK_MODE_MASK		GENMASK(4, 3)
  #define LTC4282_ILIM_ADJUST_MASK		GENMASK(7, 5)
#define LTC4282_ENERGY				0x12
#define LTC4282_TIME_COUNTER			0x18
#define LTC4282_ALERT_CTRL			0x1c
  #define LTC4282_ALERT_OUT_MASK		BIT(6)
#define LTC4282_ADC_CTRL			0x1d
  #define LTC4282_FAULT_LOG_EN_MASK		BIT(2)
  #define LTC4282_METER_HALT_MASK		BIT(5)
  #define LTC4282_METER_RESET_MASK		BIT(6)
  #define LTC4282_RESET_MASK			BIT(7)
#define LTC4282_STATUS_LSB			0x1e
  #define LTC4282_OV_STATUS_MASK		BIT(0)
  #define LTC4282_UV_STATUS_MASK		BIT(1)
  #define LTC4282_VDD_STATUS_MASK \
		(LTC4282_OV_STATUS_MASK | LTC4282_UV_STATUS_MASK)
  #define LTC4282_OC_STATUS_MASK		BIT(2)
  #define LTC4282_POWER_GOOD_MASK		BIT(3)
  #define LTC4282_FET_FAILURE_MASK		GENMASK(6, 5)
#define LTC4282_STATUS_MSB			0x1f
#define LTC4282_RESERVED_1			0x32
#define LTC4282_RESERVED_2			0x33
#define LTC4282_VGPIO				0x34
#define LTC4282_VGPIO_LOWEST			0x36
#define LTC4282_VGPIO_HIGHEST			0x38
#define LTC4282_VSOURCE				0x3a
#define LTC4282_VSOURCE_LOWEST			0x3c
#define LTC4282_VSOURCE_HIGHEST			0x3e
#define LTC4282_VSENSE				0x40
#define LTC4282_VSENSE_LOWEST			0x42
#define LTC4282_VSENSE_HIGHEST			0x44
#define LTC4282_POWER				0x46
#define LTC4282_POWER_LOWEST			0x48
#define LTC4282_POWER_HIGHEST			0x4a
#define LTC4282_RESERVED_3			0x50

#define LTC4282_CLKIN_MIN	(250 * KILO)
#define LTC4282_CLKIN_MAX	(15500 * KILO)
#define LTC4282_CLKIN_RANGE	(LTC4282_CLKIN_MAX - LTC4282_CLKIN_MIN + 1)
#define LTC4282_CLKOUT_SYSTEM	(250 * KILO)
#define LTC4282_CLKOUT_CNV	15

enum {
	LTC4282_CHAN_VSOURCE,
	LTC4282_CHAN_VDD,
	LTC4282_CHAN_VGPIO,
};

struct ltc4282_cache {
	u32 in_max_raw;
	u32 in_min_raw;
	long in_highest;
	long in_lowest;
	bool en;
};

struct ltc4282_state {
	struct regmap *map;
	/* Protect against multiple accesses to the device registers */
	struct mutex lock;
	struct clk_hw clk_hw;
	/*
	 * Used to cache values for VDD/VSOURCE depending which will be used
	 * when hwmon is not enabled for that channel. Needed because they share
	 * the same registers.
	 */
	struct ltc4282_cache in0_1_cache[LTC4282_CHAN_VGPIO];
	u32 vsense_max;
	long power_max;
	u32 rsense;
	u16 vdd;
	u16 vfs_out;
	bool energy_en;
};

enum {
	LTC4282_CLKOUT_NONE,
	LTC4282_CLKOUT_INT,
	LTC4282_CLKOUT_TICK,
};

static int ltc4282_set_rate(struct clk_hw *hw,
			    unsigned long rate, unsigned long parent_rate)
{
	struct ltc4282_state *st = container_of(hw, struct ltc4282_state,
						clk_hw);
	u32 val = LTC4282_CLKOUT_INT;

	if (rate == LTC4282_CLKOUT_CNV)
		val = LTC4282_CLKOUT_TICK;

	return regmap_update_bits(st->map, LTC4282_CLK_DIV, LTC4282_CLKOUT_MASK,
				  FIELD_PREP(LTC4282_CLKOUT_MASK, val));
}

/*
 * Note the 15HZ conversion rate assumes 12bit ADC which is what we are
 * supporting for now.
 */
static const unsigned int ltc4282_out_rates[] = {
	LTC4282_CLKOUT_CNV, LTC4282_CLKOUT_SYSTEM
};

static long ltc4282_round_rate(struct clk_hw *hw, unsigned long rate,
			       unsigned long *parent_rate)
{
	int idx = find_closest(rate, ltc4282_out_rates,
			       ARRAY_SIZE(ltc4282_out_rates));

	return ltc4282_out_rates[idx];
}

static unsigned long ltc4282_recalc_rate(struct clk_hw *hw,
					 unsigned long parent)
{
	struct ltc4282_state *st = container_of(hw, struct ltc4282_state,
						clk_hw);
	u32 clkdiv;
	int ret;

	ret = regmap_read(st->map, LTC4282_CLK_DIV, &clkdiv);
	if (ret)
		return 0;

	clkdiv = FIELD_GET(LTC4282_CLKOUT_MASK, clkdiv);
	if (!clkdiv)
		return 0;
	if (clkdiv == LTC4282_CLKOUT_INT)
		return LTC4282_CLKOUT_SYSTEM;

	return LTC4282_CLKOUT_CNV;
}

static void ltc4282_disable(struct clk_hw *clk_hw)
{
	struct ltc4282_state *st = container_of(clk_hw, struct ltc4282_state,
						clk_hw);

	regmap_clear_bits(st->map, LTC4282_CLK_DIV, LTC4282_CLKOUT_MASK);
}

static int ltc4282_read_voltage_word(const struct ltc4282_state *st, u32 reg,
				     u32 fs, long *val)
{
	__be16 in;
	int ret;

	ret = regmap_bulk_read(st->map, reg, &in, sizeof(in));
	if (ret)
		return ret;

	/*
	 * This is also used to calculate current in which case fs comes in
	 * 10 * uV. Hence the ULL usage.
	 */
	*val = DIV_ROUND_CLOSEST_ULL(be16_to_cpu(in) * (u64)fs, U16_MAX);
	return 0;
}

static int ltc4282_read_voltage_byte_cached(const struct ltc4282_state *st,
					    u32 reg, u32 fs, long *val,
					    u32 *cached_raw)
{
	int ret;
	u32 in;

	if (cached_raw) {
		in = *cached_raw;
	} else {
		ret = regmap_read(st->map, reg, &in);
		if (ret)
			return ret;
	}

	*val = DIV_ROUND_CLOSEST(in * fs, U8_MAX);
	return 0;
}

static int ltc4282_read_voltage_byte(const struct ltc4282_state *st, u32 reg,
				     u32 fs, long *val)
{
	return ltc4282_read_voltage_byte_cached(st, reg, fs, val, NULL);
}

static int __ltc4282_read_alarm(struct ltc4282_state *st, u32 reg, u32 mask,
				long *val)
{
	u32 alarm;
	int ret;

	ret = regmap_read(st->map, reg, &alarm);
	if (ret)
		return ret;

	*val = !!(alarm & mask);

	/* if not status/fault logs, clear the alarm after reading it */
	if (reg != LTC4282_STATUS_LSB && reg != LTC4282_FAULT_LOG)
		return regmap_clear_bits(st->map, reg, mask);

	return 0;
}

static int ltc4282_read_alarm(struct ltc4282_state *st, u32 reg, u32 mask,
			      long *val)
{
	guard(mutex)(&st->lock);
	return __ltc4282_read_alarm(st, reg, mask, val);
}

static int ltc4282_vdd_source_read_in(struct ltc4282_state *st, u32 channel,
				      long *val)
{
	guard(mutex)(&st->lock);
	if (!st->in0_1_cache[channel].en)
		return -ENODATA;

	return ltc4282_read_voltage_word(st, LTC4282_VSOURCE, st->vfs_out, val);
}

static int ltc4282_vdd_source_read_hist(struct ltc4282_state *st, u32 reg,
					u32 channel, long *cached, long *val)
{
	int ret;

	guard(mutex)(&st->lock);
	if (!st->in0_1_cache[channel].en) {
		*val = *cached;
		return 0;
	}

	ret = ltc4282_read_voltage_word(st, reg, st->vfs_out, val);
	if (ret)
		return ret;

	*cached = *val;
	return 0;
}

static int ltc4282_vdd_source_read_lim(struct ltc4282_state *st, u32 reg,
				       u32 channel, u32 *cached, long *val)
{
	guard(mutex)(&st->lock);
	if (!st->in0_1_cache[channel].en)
		return ltc4282_read_voltage_byte_cached(st, reg, st->vfs_out,
							val, cached);

	return ltc4282_read_voltage_byte(st, reg, st->vfs_out, val);
}

static int ltc4282_vdd_source_read_alm(struct ltc4282_state *st, u32 mask,
				       u32 channel, long *val)
{
	guard(mutex)(&st->lock);
	if (!st->in0_1_cache[channel].en) {
		/*
		 * Do this otherwise alarms can get confused because we clear
		 * them after reading them. So, if someone mistakenly reads
		 * VSOURCE right before VDD (or the other way around), we might
		 * get no alarm just because it was cleared when reading VSOURCE
		 * and had no time for a new conversion and thus having the
		 * alarm again.
		 */
		*val = 0;
		return 0;
	}

	return __ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG, mask, val);
}

static int ltc4282_read_in(struct ltc4282_state *st, u32 attr, long *val,
			   u32 channel)
{
	switch (attr) {
	case hwmon_in_input:
		if (channel == LTC4282_CHAN_VGPIO)
			return ltc4282_read_voltage_word(st, LTC4282_VGPIO,
							 1280, val);

		return ltc4282_vdd_source_read_in(st, channel, val);
	case hwmon_in_highest:
		if (channel == LTC4282_CHAN_VGPIO)
			return ltc4282_read_voltage_word(st,
							 LTC4282_VGPIO_HIGHEST,
							 1280, val);

		return ltc4282_vdd_source_read_hist(st, LTC4282_VSOURCE_HIGHEST,
						    channel,
						    &st->in0_1_cache[channel].in_highest, val);
	case hwmon_in_lowest:
		if (channel == LTC4282_CHAN_VGPIO)
			return ltc4282_read_voltage_word(st, LTC4282_VGPIO_LOWEST,
							 1280, val);

		return ltc4282_vdd_source_read_hist(st, LTC4282_VSOURCE_LOWEST,
						    channel,
						    &st->in0_1_cache[channel].in_lowest, val);
	case hwmon_in_max_alarm:
		if (channel == LTC4282_CHAN_VGPIO)
			return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG,
						  LTC4282_GPIO_ALARM_H_MASK,
						  val);

		return ltc4282_vdd_source_read_alm(st,
						   LTC4282_VSOURCE_ALARM_H_MASK,
						   channel, val);
	case hwmon_in_min_alarm:
		if (channel == LTC4282_CHAN_VGPIO)
			ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG,
					   LTC4282_GPIO_ALARM_L_MASK, val);

		return ltc4282_vdd_source_read_alm(st,
						   LTC4282_VSOURCE_ALARM_L_MASK,
						   channel, val);
	case hwmon_in_crit_alarm:
		return ltc4282_read_alarm(st, LTC4282_STATUS_LSB,
					  LTC4282_OV_STATUS_MASK, val);
	case hwmon_in_lcrit_alarm:
		return ltc4282_read_alarm(st, LTC4282_STATUS_LSB,
					  LTC4282_UV_STATUS_MASK, val);
	case hwmon_in_max:
		if (channel == LTC4282_CHAN_VGPIO)
			return ltc4282_read_voltage_byte(st, LTC4282_VGPIO_MAX,
							 1280, val);

		return ltc4282_vdd_source_read_lim(st, LTC4282_VSOURCE_MAX,
						   channel,
						   &st->in0_1_cache[channel].in_max_raw, val);
	case hwmon_in_min:
		if (channel == LTC4282_CHAN_VGPIO)
			return ltc4282_read_voltage_byte(st, LTC4282_VGPIO_MIN,
							 1280, val);

		return ltc4282_vdd_source_read_lim(st, LTC4282_VSOURCE_MIN,
						   channel,
						   &st->in0_1_cache[channel].in_min_raw, val);
	case hwmon_in_enable:
		scoped_guard(mutex, &st->lock) {
			*val = st->in0_1_cache[channel].en;
		}
		return 0;
	case hwmon_in_fault:
		/*
		 * We report failure if we detect either a fer_bad or a
		 * fet_short in the status register.
		 */
		return ltc4282_read_alarm(st, LTC4282_STATUS_LSB,
					  LTC4282_FET_FAILURE_MASK, val);
	default:
		return -EOPNOTSUPP;
	}
}

static int ltc4282_read_current_word(const struct ltc4282_state *st, u32 reg,
				     long *val)
{
	long in;
	int ret;

	/*
	 * We pass in full scale in 10 * micro (note that 40 is already
	 * millivolt) so we have better approximations to calculate current.
	 */
	ret = ltc4282_read_voltage_word(st, reg, DECA * 40 * MILLI, &in);
	if (ret)
		return ret;

	*val = DIV_ROUND_CLOSEST(in * MILLI, st->rsense);

	return 0;
}

static int ltc4282_read_current_byte(const struct ltc4282_state *st, u32 reg,
				     long *val)
{
	long in;
	int ret;

	ret = ltc4282_read_voltage_byte(st, reg, DECA * 40 * MILLI, &in);
	if (ret)
		return ret;

	*val = DIV_ROUND_CLOSEST(in * MILLI, st->rsense);

	return 0;
}

static int ltc4282_read_curr(struct ltc4282_state *st, const u32 attr,
			     long *val)
{
	switch (attr) {
	case hwmon_curr_input:
		return ltc4282_read_current_word(st, LTC4282_VSENSE, val);
	case hwmon_curr_highest:
		return ltc4282_read_current_word(st, LTC4282_VSENSE_HIGHEST,
						 val);
	case hwmon_curr_lowest:
		return ltc4282_read_current_word(st, LTC4282_VSENSE_LOWEST,
						 val);
	case hwmon_curr_max:
		return ltc4282_read_current_byte(st, LTC4282_VSENSE_MAX, val);
	case hwmon_curr_min:
		return ltc4282_read_current_byte(st, LTC4282_VSENSE_MIN, val);
	case hwmon_curr_max_alarm:
		return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG,
					  LTC4282_VSENSE_ALARM_H_MASK, val);
	case hwmon_curr_min_alarm:
		return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG,
					  LTC4282_VSENSE_ALARM_L_MASK, val);
	case hwmon_curr_crit_alarm:
		return ltc4282_read_alarm(st, LTC4282_STATUS_LSB,
					  LTC4282_OC_STATUS_MASK, val);
	default:
		return -EOPNOTSUPP;
	}
}

static int ltc4282_read_power_word(const struct ltc4282_state *st, u32 reg,
				   long *val)
{
	u64 temp =  DECA * 40ULL * st->vfs_out * BIT(16), temp_2;
	__be16 raw;
	u16 power;
	int ret;

	ret = regmap_bulk_read(st->map, reg, &raw, sizeof(raw));
	if (ret)
		return ret;

	power = be16_to_cpu(raw);
	/*
	 * Power is given by:
	 *     P = CODE(16b) * 0.040 * Vfs(out) * 2^16 / ((2^16 - 1)^2 * Rsense)
	 */
	if (check_mul_overflow(power * temp, MICRO, &temp_2)) {
		temp = DIV_ROUND_CLOSEST_ULL(power * temp, U16_MAX);
		*val = DIV64_U64_ROUND_CLOSEST(temp * MICRO,
					       U16_MAX * (u64)st->rsense);
		return 0;
	}

	*val = DIV64_U64_ROUND_CLOSEST(temp_2,
				       st->rsense * int_pow(U16_MAX, 2));

	return 0;
}

static int ltc4282_read_power_byte(const struct ltc4282_state *st, u32 reg,
				   long *val)
{
	u32 power;
	u64 temp;
	int ret;

	ret = regmap_read(st->map, reg, &power);
	if (ret)
		return ret;

	temp = power * 40 * DECA * st->vfs_out * BIT_ULL(8);
	*val = DIV64_U64_ROUND_CLOSEST(temp * MICRO,
				       int_pow(U8_MAX, 2) * st->rsense);

	return 0;
}

static int ltc4282_read_energy(const struct ltc4282_state *st, u64 *val)
{
	u64 temp, energy;
	__be64 raw;
	int ret;

	ret = regmap_bulk_read(st->map, LTC4282_ENERGY, &raw, 6);
	if (ret)
		return ret;

	energy =  be64_to_cpu(raw) >> 16;
	/*
	 * The formula for energy is given by:
	 *	E = CODE(48b) * 0.040 * Vfs(out) * Tconv * 256 /
	 *						((2^16 - 1)^2 * Rsense)
	 *
	 * Since we only support 12bit ADC, Tconv = 0.065535s. Passing Vfs(out)
	 * and 0.040 to mV and Tconv to us, we can simplify the formula to:
	 *	E = CODE(48b) * 40 * Vfs(out) * 256 / (U16_MAX * Rsense)
	 *
	 * As Rsense can have tenths of micro-ohm resolution, we need to
	 * multiply by DECA to get microujoule.
	 */
	if (check_mul_overflow(DECA * st->vfs_out * 40 * BIT(8), energy, &temp)) {
		temp = DIV_ROUND_CLOSEST(DECA * st->vfs_out * 40 * BIT(8), U16_MAX);
		*val = DIV_ROUND_CLOSEST_ULL(temp * energy, st->rsense);
		return 0;
	}

	*val = DIV64_U64_ROUND_CLOSEST(temp, U16_MAX * (u64)st->rsense);

	return 0;
}

static int ltc4282_read_power(struct ltc4282_state *st, const u32 attr,
			      long *val)
{
	switch (attr) {
	case hwmon_power_input:
		return ltc4282_read_power_word(st, LTC4282_POWER, val);
	case hwmon_power_input_highest:
		return ltc4282_read_power_word(st, LTC4282_POWER_HIGHEST, val);
	case hwmon_power_input_lowest:
		return ltc4282_read_power_word(st, LTC4282_POWER_LOWEST, val);
	case hwmon_power_max_alarm:
		return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG,
					  LTC4282_POWER_ALARM_H_MASK, val);
	case hwmon_power_min_alarm:
		return ltc4282_read_alarm(st, LTC4282_ADC_ALERT_LOG,
					  LTC4282_POWER_ALARM_L_MASK, val);
	case hwmon_power_max:
		return ltc4282_read_power_byte(st, LTC4282_POWER_MAX, val);
	case hwmon_power_min:
		return ltc4282_read_power_byte(st, LTC4282_POWER_MIN, val);
	default:
		return -EOPNOTSUPP;
	}
}

static int ltc4282_read(struct device *dev, enum hwmon_sensor_types type,
			u32 attr, int channel, long *val)
{
	struct ltc4282_state *st = dev_get_drvdata(dev);

	switch (type) {
	case hwmon_in:
		return ltc4282_read_in(st, attr, val, channel);
	case hwmon_curr:
		return ltc4282_read_curr(st, attr, val);
	case hwmon_power:
		return ltc4282_read_power(st, attr, val);
	case hwmon_energy:
		scoped_guard(mutex, &st->lock) {
			*val = st->energy_en;
		}
		return 0;
	default:
		return -EOPNOTSUPP;
	}
}

static int ltc4282_write_power_byte(const struct ltc4282_state *st, u32 reg,
				    long val)
{
	u32 power;
	u64 temp;

	if (val > st->power_max)
		val = st->power_max;

	temp = val * int_pow(U8_MAX, 2) * st->rsense;
	power = DIV64_U64_ROUND_CLOSEST(temp,
					MICRO * DECA * 256ULL * st->vfs_out * 40);

	return regmap_write(st->map, reg, power);
}

static int ltc4282_write_power_word(const struct ltc4282_state *st, u32 reg,
				    long val)
{
	u64 temp = int_pow(U16_MAX, 2) * st->rsense, temp_2;
	__be16 __raw;
	u16 code;

	if (check_mul_overflow(temp, val, &temp_2)) {
		temp = DIV_ROUND_CLOSEST_ULL(temp, DECA * MICRO);
		code = DIV64_U64_ROUND_CLOSEST(temp * val,
					       40ULL * BIT(16) * st->vfs_out);
	} else {
		temp =  DECA * MICRO * 40ULL * BIT(16) * st->vfs_out;
		code = DIV64_U64_ROUND_CLOSEST(temp_2, temp);
	}

	__raw = cpu_to_be16(code);
	return regmap_bulk_write(st->map, reg, &__raw, sizeof(__raw));
}

static int __ltc4282_in_write_history(const struct ltc4282_state *st, u32 reg,
				      long lowest, long highest, u32 fs)
{
	__be16 __raw;
	u16 tmp;
	int ret;

	tmp = DIV_ROUND_CLOSEST(U16_MAX * lowest, fs);

	__raw = cpu_to_be16(tmp);

	ret = regmap_bulk_write(st->map, reg, &__raw, 2);
	if (ret)
		return ret;

	tmp = DIV_ROUND_CLOSEST(U16_MAX * highest, fs);

	__raw = cpu_to_be16(tmp);

	return regmap_bulk_write(st->map, reg + 2, &__raw, 2);
}

static int ltc4282_in_write_history(struct ltc4282_state *st, u32 reg,
				    long lowest, long highest, u32 fs)
{
	guard(mutex)(&st->lock);
	return __ltc4282_in_write_history(st, reg, lowest, highest, fs);
}

static int ltc4282_power_reset_hist(struct ltc4282_state *st)
{
	int ret;

	guard(mutex)(&st->lock);

	ret = ltc4282_write_power_word(st, LTC4282_POWER_LOWEST,
				       st->power_max);
	if (ret)
		return ret;

	ret = ltc4282_write_power_word(st, LTC4282_POWER_HIGHEST, 0);
	if (ret)
		return ret;

	/* now, let's also clear possible power_bad fault logs */
	return regmap_clear_bits(st->map, LTC4282_FAULT_LOG,
				 LTC4282_POWER_BAD_FAULT_MASK);
}

static int ltc4282_write_power(struct ltc4282_state *st, u32 attr,
			       long val)
{
	switch (attr) {
	case hwmon_power_max:
		return ltc4282_write_power_byte(st, LTC4282_POWER_MAX, val);
	case hwmon_power_min:
		return ltc4282_write_power_byte(st, LTC4282_POWER_MIN, val);
	case hwmon_power_reset_history:
		return ltc4282_power_reset_hist(st);
	default:
		return -EOPNOTSUPP;
	}
}

static int ltc4282_write_voltage_byte_cached(const struct ltc4282_state *st,
					     u32 reg, u32 fs, long val,
					     u32 *cache_raw)
{
	u32 in;

	val = clamp_val(val, 0, fs);
	in = DIV_ROUND_CLOSEST(val * U8_MAX, fs);

	if (cache_raw) {
		*cache_raw = in;
		return 0;
	}

	return regmap_write(st->map, reg, in);
}

static int ltc4282_write_voltage_byte(const struct ltc4282_state *st, u32 reg,
				      u32 fs, long val)
{
	return ltc4282_write_voltage_byte_cached(st, reg, fs, val, NULL);
}

static int ltc4282_cache_history(struct ltc4282_state *st, u32 channel)
{
	long val;
	int ret;

	ret = ltc4282_read_voltage_word(st, LTC4282_VSOURCE_LOWEST, st->vfs_out,
					&val);
	if (ret)
		return ret;

	st->in0_1_cache[channel].in_lowest = val;

	ret = ltc4282_read_voltage_word(st, LTC4282_VSOURCE_HIGHEST,
					st->vfs_out, &val);
	if (ret)
		return ret;

	st->in0_1_cache[channel].in_highest = val;

	ret = regmap_read(st->map, LTC4282_VSOURCE_MIN,
			  &st->in0_1_cache[channel].in_min_raw);
	if (ret)
		return ret;

	return regmap_read(st->map, LTC4282_VSOURCE_MAX,
			  &st->in0_1_cache[channel].in_max_raw);
}

static int ltc4282_cache_sync(struct ltc4282_state *st, u32 channel)
{
	int ret;

	ret = __ltc4282_in_write_history(st, LTC4282_VSOURCE_LOWEST,
					 st->in0_1_cache[channel].in_lowest,
					 st->in0_1_cache[channel].in_highest,
					 st->vfs_out);
	if (ret)
		return ret;

	ret = regmap_write(st->map, LTC4282_VSOURCE_MIN,
			   st->in0_1_cache[channel].in_min_raw);
	if (ret)
		return ret;

	return regmap_write(st->map, LTC4282_VSOURCE_MAX,
			    st->in0_1_cache[channel].in_max_raw);
}

static int ltc4282_vdd_source_write_lim(struct ltc4282_state *st, u32 reg,
					int channel, u32 *cache, long val)
{
	int ret;

	guard(mutex)(&st->lock);
	if (st->in0_1_cache[channel].en)
		ret = ltc4282_write_voltage_byte(st, reg, st->vfs_out, val);
	else
		ret = ltc4282_write_voltage_byte_cached(st, reg, st->vfs_out,
							val, cache);

	return ret;
}

static int ltc4282_vdd_source_reset_hist(struct ltc4282_state *st, int channel)
{
	long lowest = st->vfs_out;
	int ret;

	if (channel == LTC4282_CHAN_VDD)
		lowest = st->vdd;

	guard(mutex)(&st->lock);
	if (st->in0_1_cache[channel].en) {
		ret = __ltc4282_in_write_history(st, LTC4282_VSOURCE_LOWEST,
						 lowest, 0, st->vfs_out);
		if (ret)
			return ret;
	}

	st->in0_1_cache[channel].in_lowest = lowest;
	st->in0_1_cache[channel].in_highest = 0;

	/*
	 * We are also clearing possible fault logs in reset_history. Clearing
	 * the logs might be important when the auto retry bits are not enabled
	 * as the chip only enables the output again after having these logs
	 * cleared. As some of these logs are related to limits, it makes sense
	 * to clear them in here. For VDD, we need to clear under/over voltage
	 * events. For VSOURCE, fet_short and fet_bad...
	 */
	if (channel == LTC4282_CHAN_VSOURCE)
		return regmap_clear_bits(st->map, LTC4282_FAULT_LOG,
					 LTC4282_FET_FAILURE_FAULT_MASK);

	return regmap_clear_bits(st->map, LTC4282_FAULT_LOG,
				 LTC4282_VDD_FAULT_MASK);
}

/*
 * We need to mux between VSOURCE and VDD which means they are mutually
 * exclusive. Moreover, we can't really disable both VDD and VSOURCE as the ADC
 * is continuously running (we cannot independently halt it without also
 * stopping VGPIO). Hence, the logic is that disabling or enabling VDD will
 * automatically have the reverse effect on VSOURCE and vice-versa.
 */
static int ltc4282_vdd_source_enable(struct ltc4282_state *st, int channel,
				     long val)
{
	int ret, other_chan = ~channel & 0x1;
	u8 __val = val;

	guard(mutex)(&st->lock);
	if (st->in0_1_cache[channel].en == !!val)
		return 0;

	/* clearing the bit makes the ADC to monitor VDD */
	if (channel == LTC4282_CHAN_VDD)
		__val = !__val;

	ret = regmap_update_bits(st->map, LTC4282_ILIM_ADJUST,
				 LTC4282_VDD_MONITOR_MASK,
				 FIELD_PREP(LTC4282_VDD_MONITOR_MASK, !!__val));
	if (ret)
		return ret;

	st->in0_1_cache[channel].en = !!val;
	st->in0_1_cache[other_chan].en = !val;

	if (st->in0_1_cache[channel].en) {
		/*
		 * Then, we are disabling @other_chan. Let's save it's current
		 * history.
		 */
		ret = ltc4282_cache_history(st, other_chan);
		if (ret)
			return ret;

		return ltc4282_cache_sync(st, channel);
	}
	/*
	 * Then, we are enabling @other_chan. We need to do the opposite from
	 * above.
	 */
	ret = ltc4282_cache_history(st, channel);
	if (ret)
		return ret;

	return ltc4282_cache_sync(st, other_chan);
}

static int ltc4282_write_in(struct ltc4282_state *st, u32 attr, long val,
			    int channel)
{
	switch (attr) {
	case hwmon_in_max:
		if (channel == LTC4282_CHAN_VGPIO)
			return ltc4282_write_voltage_byte(st, LTC4282_VGPIO_MAX,
							  1280, val);

		return ltc4282_vdd_source_write_lim(st, LTC4282_VSOURCE_MAX,
						    channel,
						    &st->in0_1_cache[channel].in_max_raw, val);
	case hwmon_in_min:
		if (channel == LTC4282_CHAN_VGPIO)
			return ltc4282_write_voltage_byte(st, LTC4282_VGPIO_MIN,
							  1280, val);

		return ltc4282_vdd_source_write_lim(st, LTC4282_VSOURCE_MIN,
						    channel,
						    &st->in0_1_cache[channel].in_min_raw, val);
	case hwmon_in_reset_history:
		if (channel == LTC4282_CHAN_VGPIO)
			return ltc4282_in_write_history(st,
							LTC4282_VGPIO_LOWEST,
							1280, 0, 1280);

		return ltc4282_vdd_source_reset_hist(st, channel);
	case hwmon_in_enable:
		return ltc4282_vdd_source_enable(st, channel, val);
	default:
		return -EOPNOTSUPP;
	}
}

static int ltc4282_curr_reset_hist(struct ltc4282_state *st)
{
	int ret;

	guard(mutex)(&st->lock);

	ret = __ltc4282_in_write_history(st, LTC4282_VSENSE_LOWEST,
					 st->vsense_max, 0, 40 * MILLI);
	if (ret)
		return ret;

	/* now, let's also clear possible overcurrent fault logs */
	return regmap_clear_bits(st->map, LTC4282_FAULT_LOG,
				 LTC4282_OC_FAULT_MASK);
}

static int ltc4282_write_curr(struct ltc4282_state *st, u32 attr,
			      long val)
{
	/* need to pass it in millivolt */
	u32 in = DIV_ROUND_CLOSEST_ULL((u64)val * st->rsense, DECA * MICRO);

	switch (attr) {
	case hwmon_curr_max:
		return ltc4282_write_voltage_byte(st, LTC4282_VSENSE_MAX, 40,
						  in);
	case hwmon_curr_min:
		return ltc4282_write_voltage_byte(st, LTC4282_VSENSE_MIN, 40,
						  in);
	case hwmon_curr_reset_history:
		return ltc4282_curr_reset_hist(st);
	default:
		return -EOPNOTSUPP;
	}
}

static int ltc4282_energy_enable_set(struct ltc4282_state *st, long val)
{
	int ret;

	guard(mutex)(&st->lock);
	/* setting the bit halts the meter */
	ret = regmap_update_bits(st->map, LTC4282_ADC_CTRL,
				 LTC4282_METER_HALT_MASK,
				 FIELD_PREP(LTC4282_METER_HALT_MASK, !val));
	if (ret)
		return ret;

	st->energy_en = !!val;

	return 0;
}

static int ltc4282_write(struct device *dev,
			 enum hwmon_sensor_types type,
			 u32 attr, int channel, long val)
{
	struct ltc4282_state *st = dev_get_drvdata(dev);

	switch (type) {
	case hwmon_power:
		return ltc4282_write_power(st, attr, val);
	case hwmon_in:
		return ltc4282_write_in(st, attr, val, channel);
	case hwmon_curr:
		return ltc4282_write_curr(st, attr, val);
	case hwmon_energy:
		return ltc4282_energy_enable_set(st, val);
	default:
		return -EOPNOTSUPP;
	}
}

static umode_t ltc4282_in_is_visible(const struct ltc4282_state *st, u32 attr)
{
	switch (attr) {
	case hwmon_in_input:
	case hwmon_in_highest:
	case hwmon_in_lowest:
	case hwmon_in_max_alarm:
	case hwmon_in_min_alarm:
	case hwmon_in_label:
	case hwmon_in_lcrit_alarm:
	case hwmon_in_crit_alarm:
	case hwmon_in_fault:
		return 0444;
	case hwmon_in_max:
	case hwmon_in_min:
	case hwmon_in_enable:
	case hwmon_in_reset_history:
		return 0644;
	default:
		return 0;
	}
}

static umode_t ltc4282_curr_is_visible(u32 attr)
{
	switch (attr) {
	case hwmon_curr_input:
	case hwmon_curr_highest:
	case hwmon_curr_lowest:
	case hwmon_curr_max_alarm:
	case hwmon_curr_min_alarm:
	case hwmon_curr_crit_alarm:
	case hwmon_curr_label:
		return 0444;
	case hwmon_curr_max:
	case hwmon_curr_min:
	case hwmon_curr_reset_history:
		return 0644;
	default:
		return 0;
	}
}

static umode_t ltc4282_power_is_visible(u32 attr)
{
	switch (attr) {
	case hwmon_power_input:
	case hwmon_power_input_highest:
	case hwmon_power_input_lowest:
	case hwmon_power_label:
	case hwmon_power_max_alarm:
	case hwmon_power_min_alarm:
		return 0444;
	case hwmon_power_max:
	case hwmon_power_min:
	case hwmon_power_reset_history:
		return 0644;
	default:
		return 0;
	}
}

static umode_t ltc4282_is_visible(const void *data,
				  enum hwmon_sensor_types type,
				  u32 attr, int channel)
{
	switch (type) {
	case hwmon_in:
		return ltc4282_in_is_visible(data, attr);
	case hwmon_curr:
		return ltc4282_curr_is_visible(attr);
	case hwmon_power:
		return ltc4282_power_is_visible(attr);
	case hwmon_energy:
		/* hwmon_energy_enable */
		return 0644;
	default:
		return 0;
	}
}

static const char * const ltc4282_in_strs[] = {
	"VSOURCE", "VDD", "VGPIO"
};

static int ltc4282_read_labels(struct device *dev,
			       enum hwmon_sensor_types type,
			       u32 attr, int channel, const char **str)
{
	switch (type) {
	case hwmon_in:
		*str = ltc4282_in_strs[channel];
		return 0;
	case hwmon_curr:
		*str = "ISENSE";
		return 0;
	case hwmon_power:
		*str = "Power";
		return 0;
	default:
		return -EOPNOTSUPP;
	}
}

static ssize_t ltc4282_energy_show(struct device *dev,
				   struct device_attribute *da, char *buf)
{
	struct ltc4282_state *st = dev_get_drvdata(dev);
	u64 energy;
	int ret;

	guard(mutex)(&st->lock);
	if (!st->energy_en)
		return -ENODATA;

	ret = ltc4282_read_energy(st, &energy);
	if (ret < 0)
		return ret;

	return sysfs_emit(buf, "%llu\n", energy);
}

static const struct clk_ops ltc4282_ops = {
	.recalc_rate = ltc4282_recalc_rate,
	.round_rate = ltc4282_round_rate,
	.set_rate = ltc4282_set_rate,
	.disable = ltc4282_disable,
};

static int ltc428_clk_provider_setup(struct ltc4282_state *st,
				     struct device *dev)
{
	struct clk_init_data init;
	int ret;

	if (!IS_ENABLED(CONFIG_COMMON_CLK))
		return 0;

	init.name =  devm_kasprintf(dev, GFP_KERNEL, "%s-clk",
				    fwnode_get_name(dev_fwnode(dev)));
	if (!init.name)
		return -ENOMEM;

	init.ops = &ltc4282_ops;
	init.flags = CLK_GET_RATE_NOCACHE;
	st->clk_hw.init = &init;

	ret = devm_clk_hw_register(dev, &st->clk_hw);
	if (ret)
		return ret;

	return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get,
					   &st->clk_hw);
}

static int ltc428_clks_setup(struct ltc4282_state *st, struct device *dev)
{
	unsigned long rate;
	struct clk *clkin;
	u32 val;
	int ret;

	ret = ltc428_clk_provider_setup(st, dev);
	if (ret)
		return ret;

	clkin = devm_clk_get_optional_enabled(dev, NULL);
	if (IS_ERR(clkin))
		return dev_err_probe(dev, PTR_ERR(clkin),
				     "Failed to get clkin");
	if (!clkin)
		return 0;

	rate = clk_get_rate(clkin);
	if (!in_range(rate, LTC4282_CLKIN_MIN, LTC4282_CLKIN_RANGE))
		return dev_err_probe(dev, -EINVAL,
				     "Invalid clkin range(%lu) [%lu %lu]\n",
				     rate, LTC4282_CLKIN_MIN,
				     LTC4282_CLKIN_MAX);

	/*
	 * Clocks faster than 250KHZ should be reduced to 250KHZ. The clock
	 * frequency is divided by twice the value in the register.
	 */
	val = rate / (2 * LTC4282_CLKIN_MIN);

	return regmap_update_bits(st->map, LTC4282_CLK_DIV,
				  LTC4282_CLK_DIV_MASK,
				  FIELD_PREP(LTC4282_CLK_DIV_MASK, val));
}

static const int ltc4282_curr_lim_uv[] = {
	12500, 15625, 18750, 21875, 25000, 28125, 31250, 34375
};

static int ltc4282_get_defaults(struct ltc4282_state *st, u32 *vin_mode)
{
	u32 reg_val, ilm_adjust;
	int ret;

	ret = regmap_read(st->map, LTC4282_ADC_CTRL, &reg_val);
	if (ret)
		return ret;

	st->energy_en = !FIELD_GET(LTC4282_METER_HALT_MASK, reg_val);

	ret = regmap_read(st->map, LTC4282_CTRL_MSB, &reg_val);
	if (ret)
		return ret;

	*vin_mode = FIELD_GET(LTC4282_CTRL_VIN_MODE_MASK, reg_val);

	ret = regmap_read(st->map, LTC4282_ILIM_ADJUST, &reg_val);
	if (ret)
		return ret;

	ilm_adjust = FIELD_GET(LTC4282_ILIM_ADJUST_MASK, reg_val);
	st->vsense_max = ltc4282_curr_lim_uv[ilm_adjust];

	st->in0_1_cache[LTC4282_CHAN_VSOURCE].en = FIELD_GET(LTC4282_VDD_MONITOR_MASK,
							     ilm_adjust);
	if (!st->in0_1_cache[LTC4282_CHAN_VSOURCE].en) {
		st->in0_1_cache[LTC4282_CHAN_VDD].en = true;
		return regmap_read(st->map, LTC4282_VSOURCE_MAX,
				   &st->in0_1_cache[LTC4282_CHAN_VSOURCE].in_max_raw);
	}

	return regmap_read(st->map, LTC4282_VSOURCE_MAX,
			   &st->in0_1_cache[LTC4282_CHAN_VDD].in_max_raw);
}

/*
 * Set max limits for ISENSE and Power as that depends on the max voltage on
 * rsense that is defined in ILIM_ADJUST. This is specially important for power
 * because for some rsense and vfsout values, if we allow the default raw 255
 * value, that would overflow long in 32bit archs when reading back the max
 * power limit.
 *
 * Also set meaningful historic values for VDD and VSOURCE
 * (0 would not mean much).
 */
static int ltc4282_set_max_limits(struct ltc4282_state *st)
{
	int ret;

	ret = ltc4282_write_voltage_byte(st, LTC4282_VSENSE_MAX, 40 * MILLI,
					 st->vsense_max);
	if (ret)
		return ret;

	/* Power is given by ISENSE * Vout. */
	st->power_max = DIV_ROUND_CLOSEST(st->vsense_max * DECA * MILLI, st->rsense) * st->vfs_out;
	ret = ltc4282_write_power_byte(st, LTC4282_POWER_MAX, st->power_max);
	if (ret)
		return ret;

	if (st->in0_1_cache[LTC4282_CHAN_VDD].en) {
		st->in0_1_cache[LTC4282_CHAN_VSOURCE].in_lowest = st->vfs_out;
		return __ltc4282_in_write_history(st, LTC4282_VSOURCE_LOWEST,
						  st->vdd, 0, st->vfs_out);
	}

	st->in0_1_cache[LTC4282_CHAN_VDD].in_lowest = st->vdd;
	return __ltc4282_in_write_history(st, LTC4282_VSOURCE_LOWEST,
					  st->vfs_out, 0, st->vfs_out);
}

static const char * const ltc4282_gpio1_modes[] = {
	"power_bad", "power_good"
};

static const char * const ltc4282_gpio2_modes[] = {
	"adc_input", "stress_fet"
};

static int ltc4282_gpio_setup(struct ltc4282_state *st, struct device *dev)
{
	const char *func = NULL;
	int ret;

	ret = device_property_read_string(dev, "adi,gpio1-mode", &func);
	if (!ret) {
		ret = match_string(ltc4282_gpio1_modes,
				   ARRAY_SIZE(ltc4282_gpio1_modes), func);
		if (ret < 0)
			return dev_err_probe(dev, ret,
					     "Invalid func(%s) for gpio1\n",
					     func);

		ret = regmap_update_bits(st->map, LTC4282_GPIO_CONFIG,
					 LTC4282_GPIO_1_CONFIG_MASK,
					 FIELD_PREP(LTC4282_GPIO_1_CONFIG_MASK, ret));
		if (ret)
			return ret;
	}

	ret = device_property_read_string(dev, "adi,gpio2-mode", &func);
	if (!ret) {
		ret = match_string(ltc4282_gpio2_modes,
				   ARRAY_SIZE(ltc4282_gpio2_modes), func);
		if (ret < 0)
			return dev_err_probe(dev, ret,
					     "Invalid func(%s) for gpio2\n",
					     func);
		if (!ret) {
			/* setting the bit to 1 so the ADC to monitors GPIO2 */
			ret = regmap_set_bits(st->map, LTC4282_ILIM_ADJUST,
					      LTC4282_GPIO_MODE_MASK);
		} else {
			ret = regmap_update_bits(st->map, LTC4282_GPIO_CONFIG,
						 LTC4282_GPIO_2_FET_STRESS_MASK,
						 FIELD_PREP(LTC4282_GPIO_2_FET_STRESS_MASK, 1));
		}

		if (ret)
			return ret;
	}

	if (!device_property_read_bool(dev, "adi,gpio3-monitor-enable"))
		return 0;

	if (func && !strcmp(func, "adc_input"))
		return dev_err_probe(dev, -EINVAL,
				     "Cannot have both gpio2 and gpio3 muxed into the ADC");

	return regmap_clear_bits(st->map, LTC4282_ILIM_ADJUST,
				 LTC4282_GPIO_MODE_MASK);
}

static const char * const ltc4282_dividers[] = {
	"external", "vdd_5_percent", "vdd_10_percent", "vdd_15_percent"
};

/* This maps the Vout full scale for the given Vin mode */
static const u16 ltc4282_vfs_milli[] = { 5540, 8320, 16640, 33280 };

static const u16 ltc4282_vdd_milli[] = { 3300, 5000, 12000, 24000 };

enum {
	LTC4282_VIN_3_3V,
	LTC4282_VIN_5V,
	LTC4282_VIN_12V,
	LTC4282_VIN_24V,
};

static int ltc4282_setup(struct ltc4282_state *st, struct device *dev)
{
	const char *divider;
	u32 val, vin_mode;
	int ret;

	/* The part has an eeprom so let's get the needed defaults from it */
	ret = ltc4282_get_defaults(st, &vin_mode);
	if (ret)
		return ret;

	ret = device_property_read_u32(dev, "adi,rsense-nano-ohms",
				       &st->rsense);
	if (ret)
		return dev_err_probe(dev, ret,
				     "Failed to read adi,rsense-nano-ohms\n");
	if (st->rsense < CENTI)
		return dev_err_probe(dev, -EINVAL,
				     "adi,rsense-nano-ohms too small (< %lu)\n",
				     CENTI);

	/*
	 * The resolution for rsense is tenths of micro (eg: 62.5 uOhm) which
	 * means we need nano in the bindings. However, to make things easier to
	 * handle (with respect to overflows) we divide it by 100 as we don't
	 * really need the last two digits.
	 */
	st->rsense /= CENTI;

	val = vin_mode;
	ret = device_property_read_u32(dev, "adi,vin-mode-microvolt", &val);
	if (!ret) {
		switch (val) {
		case 3300000:
			val = LTC4282_VIN_3_3V;
			break;
		case 5000000:
			val = LTC4282_VIN_5V;
			break;
		case 12000000:
			val = LTC4282_VIN_12V;
			break;
		case 24000000:
			val = LTC4282_VIN_24V;
			break;
		default:
			return dev_err_probe(dev, -EINVAL,
					     "Invalid val(%u) for vin-mode-microvolt\n",
					     val);
		}

		ret = regmap_update_bits(st->map, LTC4282_CTRL_MSB,
					 LTC4282_CTRL_VIN_MODE_MASK,
					 FIELD_PREP(LTC4282_CTRL_VIN_MODE_MASK, val));
		if (ret)
			return ret;

		/* Foldback mode should also be set to the input voltage */
		ret = regmap_update_bits(st->map, LTC4282_ILIM_ADJUST,
					 LTC4282_FOLDBACK_MODE_MASK,
					 FIELD_PREP(LTC4282_FOLDBACK_MODE_MASK, val));
		if (ret)
			return ret;
	}

	st->vfs_out = ltc4282_vfs_milli[val];
	st->vdd = ltc4282_vdd_milli[val];

	ret = device_property_read_u32(dev, "adi,current-limit-sense-microvolt",
				       &st->vsense_max);
	if (!ret) {
		int reg_val;

		switch (val) {
		case 12500:
			reg_val = 0;
			break;
		case 15625:
			reg_val = 1;
			break;
		case 18750:
			reg_val = 2;
			break;
		case 21875:
			reg_val = 3;
			break;
		case 25000:
			reg_val = 4;
			break;
		case 28125:
			reg_val = 5;
			break;
		case 31250:
			reg_val = 6;
			break;
		case 34375:
			reg_val = 7;
			break;
		default:
			return dev_err_probe(dev, -EINVAL,
					     "Invalid val(%u) for adi,current-limit-microvolt\n",
					     st->vsense_max);
		}

		ret = regmap_update_bits(st->map, LTC4282_ILIM_ADJUST,
					 LTC4282_ILIM_ADJUST_MASK,
					 FIELD_PREP(LTC4282_ILIM_ADJUST_MASK, reg_val));
		if (ret)
			return ret;
	}

	ret = ltc4282_set_max_limits(st);
	if (ret)
		return ret;

	ret = device_property_read_string(dev, "adi,overvoltage-dividers",
					  &divider);
	if (!ret) {
		int div = match_string(ltc4282_dividers,
				       ARRAY_SIZE(ltc4282_dividers), divider);
		if (div < 0)
			return dev_err_probe(dev, -EINVAL,
					     "Invalid val(%s) for adi,overvoltage-divider\n",
					     divider);

		ret = regmap_update_bits(st->map, LTC4282_CTRL_MSB,
					 LTC4282_CTRL_OV_MODE_MASK,
					 FIELD_PREP(LTC4282_CTRL_OV_MODE_MASK, div));
	}

	ret = device_property_read_string(dev, "adi,undervoltage-dividers",
					  &divider);
	if (!ret) {
		int div = match_string(ltc4282_dividers,
				       ARRAY_SIZE(ltc4282_dividers), divider);
		if (div < 0)
			return dev_err_probe(dev, -EINVAL,
					     "Invalid val(%s) for adi,undervoltage-divider\n",
					     divider);

		ret = regmap_update_bits(st->map, LTC4282_CTRL_MSB,
					 LTC4282_CTRL_UV_MODE_MASK,
					 FIELD_PREP(LTC4282_CTRL_UV_MODE_MASK, div));
	}

	if (device_property_read_bool(dev, "adi,overcurrent-retry")) {
		ret = regmap_set_bits(st->map, LTC4282_CTRL_LSB,
				      LTC4282_CTRL_OC_RETRY_MASK);
		if (ret)
			return ret;
	}

	if (device_property_read_bool(dev, "adi,overvoltage-retry-disable")) {
		ret = regmap_clear_bits(st->map, LTC4282_CTRL_LSB,
					LTC4282_CTRL_OV_RETRY_MASK);
		if (ret)
			return ret;
	}

	if (device_property_read_bool(dev, "adi,undervoltage-retry-disable")) {
		ret = regmap_clear_bits(st->map, LTC4282_CTRL_LSB,
					LTC4282_CTRL_UV_RETRY_MASK);
		if (ret)
			return ret;
	}

	if (device_property_read_bool(dev, "adi,fault-log-enable")) {
		ret = regmap_set_bits(st->map, LTC4282_ADC_CTRL,
				      LTC4282_FAULT_LOG_EN_MASK);
		if (ret)
			return ret;
	}

	if (device_property_read_bool(dev, "adi,fault-log-enable")) {
		ret = regmap_set_bits(st->map, LTC4282_ADC_CTRL, LTC4282_FAULT_LOG_EN_MASK);
		if (ret)
			return ret;
	}

	ret = device_property_read_u32(dev, "adi,fet-bad-timeout-ms", &val);
	if (!ret) {
		if (val > LTC4282_FET_BAD_MAX_TIMEOUT)
			return dev_err_probe(dev, -EINVAL,
					     "Invalid value(%u) for adi,fet-bad-timeout-ms",
					     val);

		ret = regmap_write(st->map, LTC4282_FET_BAD_FAULT_TIMEOUT, val);
		if (ret)
			return ret;
	}

	return ltc4282_gpio_setup(st, dev);
}

static bool ltc4282_readable_reg(struct device *dev, unsigned int reg)
{
	if (reg == LTC4282_RESERVED_1 || reg == LTC4282_RESERVED_2)
		return false;

	return true;
}

static bool ltc4282_writable_reg(struct device *dev, unsigned int reg)
{
	if (reg == LTC4282_STATUS_LSB || reg == LTC4282_STATUS_MSB)
		return false;
	if (reg == LTC4282_RESERVED_1 || reg == LTC4282_RESERVED_2)
		return false;

	return true;
}

static const struct regmap_config ltc4282_regmap_config = {
	.reg_bits = 8,
	.val_bits = 8,
	.max_register = LTC4282_RESERVED_3,
	.readable_reg = ltc4282_readable_reg,
	.writeable_reg = ltc4282_writable_reg,
};

static const struct hwmon_channel_info * const ltc4282_info[] = {
	HWMON_CHANNEL_INFO(in,
			   HWMON_I_INPUT | HWMON_I_LOWEST | HWMON_I_HIGHEST |
			   HWMON_I_MAX | HWMON_I_MIN | HWMON_I_MIN_ALARM |
			   HWMON_I_MAX_ALARM | HWMON_I_ENABLE |
			   HWMON_I_RESET_HISTORY | HWMON_I_FAULT |
			   HWMON_I_LABEL,
			   HWMON_I_INPUT | HWMON_I_LOWEST | HWMON_I_HIGHEST |
			   HWMON_I_MAX | HWMON_I_MIN | HWMON_I_MIN_ALARM |
			   HWMON_I_MAX_ALARM | HWMON_I_LCRIT_ALARM |
			   HWMON_I_CRIT_ALARM | HWMON_I_ENABLE |
			   HWMON_I_RESET_HISTORY | HWMON_I_LABEL,
			   HWMON_I_INPUT | HWMON_I_LOWEST | HWMON_I_HIGHEST |
			   HWMON_I_MAX | HWMON_I_MIN | HWMON_I_MIN_ALARM |
			   HWMON_I_RESET_HISTORY | HWMON_I_MAX_ALARM |
			   HWMON_I_LABEL),
	HWMON_CHANNEL_INFO(curr,
			   HWMON_C_INPUT | HWMON_C_LOWEST | HWMON_C_HIGHEST |
			   HWMON_C_MAX | HWMON_C_MIN | HWMON_C_MIN_ALARM |
			   HWMON_C_MAX_ALARM | HWMON_C_CRIT_ALARM |
			   HWMON_C_RESET_HISTORY | HWMON_C_LABEL),
	HWMON_CHANNEL_INFO(power,
			   HWMON_P_INPUT | HWMON_P_INPUT_LOWEST |
			   HWMON_P_INPUT_HIGHEST | HWMON_P_MAX | HWMON_P_MIN |
			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
			   HWMON_P_RESET_HISTORY | HWMON_P_LABEL),
	HWMON_CHANNEL_INFO(energy,
			   HWMON_E_ENABLE),
	NULL
};

static const struct hwmon_ops ltc4282_hwmon_ops = {
	.read = ltc4282_read,
	.write = ltc4282_write,
	.is_visible = ltc4282_is_visible,
	.read_string = ltc4282_read_labels,
};

static const struct hwmon_chip_info ltc2947_chip_info = {
	.ops = &ltc4282_hwmon_ops,
	.info = ltc4282_info,
};

/* energy attributes are 6bytes wide so we need u64 */
static SENSOR_DEVICE_ATTR_RO(energy1_input, ltc4282_energy, 0);

static struct attribute *ltc4282_attrs[] = {
	&sensor_dev_attr_energy1_input.dev_attr.attr,
	NULL
};
ATTRIBUTE_GROUPS(ltc4282);

static int ltc4282_show_fault_log(void *arg, u64 *val, u32 mask)
{
	struct ltc4282_state *st = arg;
	long alarm;
	int ret;

	ret = ltc4282_read_alarm(st, LTC4282_FAULT_LOG,	mask, &alarm);
	if (ret)
		return ret;

	*val = alarm;

	return 0;
}

static int ltc4282_show_curr1_crit_fault_log(void *arg, u64 *val)
{
	return ltc4282_show_fault_log(arg, val, LTC4282_OC_FAULT_MASK);
}
DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_curr1_crit_fault_log,
			 ltc4282_show_curr1_crit_fault_log, NULL, "%llu\n");

static int ltc4282_show_in1_lcrit_fault_log(void *arg, u64 *val)
{
	return ltc4282_show_fault_log(arg, val, LTC4282_UV_FAULT_MASK);
}
DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_in1_lcrit_fault_log,
			 ltc4282_show_in1_lcrit_fault_log, NULL, "%llu\n");

static int ltc4282_show_in1_crit_fault_log(void *arg, u64 *val)
{
	return ltc4282_show_fault_log(arg, val, LTC4282_OV_FAULT_MASK);
}
DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_in1_crit_fault_log,
			 ltc4282_show_in1_crit_fault_log, NULL, "%llu\n");

static int ltc4282_show_fet_bad_fault_log(void *arg, u64 *val)
{
	return ltc4282_show_fault_log(arg, val, LTC4282_FET_BAD_FAULT_MASK);
}
DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_fet_bad_fault_log,
			 ltc4282_show_fet_bad_fault_log, NULL, "%llu\n");

static int ltc4282_show_fet_short_fault_log(void *arg, u64 *val)
{
	return ltc4282_show_fault_log(arg, val, LTC4282_FET_SHORT_FAULT_MASK);
}
DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_fet_short_fault_log,
			 ltc4282_show_fet_short_fault_log, NULL, "%llu\n");

static int ltc4282_show_power1_bad_fault_log(void *arg, u64 *val)
{
	return ltc4282_show_fault_log(arg, val, LTC4282_POWER_BAD_FAULT_MASK);
}
DEFINE_DEBUGFS_ATTRIBUTE(ltc4282_power1_bad_fault_log,
			 ltc4282_show_power1_bad_fault_log, NULL, "%llu\n");

static void ltc4282_debugfs_remove(void *dir)
{
	debugfs_remove_recursive(dir);
}

static void ltc4282_debugfs_init(struct ltc4282_state *st,
				 struct i2c_client *i2c,
				 const struct device *hwmon)
{
	const char *debugfs_name;
	struct dentry *dentry;
	int ret;

	if (!IS_ENABLED(CONFIG_DEBUG_FS))
		return;

	debugfs_name = devm_kasprintf(&i2c->dev, GFP_KERNEL, "ltc4282-%s",
				      dev_name(hwmon));
	if (!debugfs_name)
		return;

	dentry = debugfs_create_dir(debugfs_name, NULL);
	if (IS_ERR(dentry))
		return;

	ret = devm_add_action_or_reset(&i2c->dev, ltc4282_debugfs_remove,
				       dentry);
	if (ret)
		return;

	debugfs_create_file_unsafe("power1_bad_fault_log", 0400, dentry, st,
				   &ltc4282_power1_bad_fault_log);
	debugfs_create_file_unsafe("in0_fet_short_fault_log", 0400, dentry, st,
				   &ltc4282_fet_short_fault_log);
	debugfs_create_file_unsafe("in0_fet_bad_fault_log", 0400, dentry, st,
				   &ltc4282_fet_bad_fault_log);
	debugfs_create_file_unsafe("in1_crit_fault_log", 0400, dentry, st,
				   &ltc4282_in1_crit_fault_log);
	debugfs_create_file_unsafe("in1_lcrit_fault_log", 0400, dentry, st,
				   &ltc4282_in1_lcrit_fault_log);
	debugfs_create_file_unsafe("curr1_crit_fault_log", 0400, dentry, st,
				   &ltc4282_curr1_crit_fault_log);
}

static int ltc4282_probe(struct i2c_client *i2c)
{
	struct device *dev = &i2c->dev, *hwmon;
	struct ltc4282_state *st;
	int ret;

	st = devm_kzalloc(dev, sizeof(*st), GFP_KERNEL);
	if (!st)
		return dev_err_probe(dev, -ENOMEM,
				     "Failed to allocate memory\n");

	st->map = devm_regmap_init_i2c(i2c, &ltc4282_regmap_config);
	if (IS_ERR(st->map))
		return dev_err_probe(dev, PTR_ERR(st->map),
				     "failed regmap init\n");

	/* Soft reset */
	ret = regmap_set_bits(st->map, LTC4282_ADC_CTRL, LTC4282_RESET_MASK);
	if (ret)
		return ret;

	/* Yes, it's big but it is as specified in the datasheet */
	msleep(3200);

	ret = ltc428_clks_setup(st, dev);
	if (ret)
		return ret;

	ret = ltc4282_setup(st, dev);
	if (ret)
		return ret;

	mutex_init(&st->lock);
	hwmon = devm_hwmon_device_register_with_info(dev, "ltc4282", st,
						     &ltc2947_chip_info,
						     ltc4282_groups);
	if (IS_ERR(hwmon))
		return PTR_ERR(hwmon);

	ltc4282_debugfs_init(st, i2c, hwmon);

	return 0;
}

static const struct of_device_id ltc4282_of_match[] = {
	{ .compatible = "adi,ltc4282" },
	{}
};
MODULE_DEVICE_TABLE(of, ltc4282_of_match);

static struct i2c_driver ltc4282_driver = {
	.driver = {
		.name = "ltc4282",
		.of_match_table = ltc4282_of_match,
	},
	.probe = ltc4282_probe,
};
module_i2c_driver(ltc4282_driver);

MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
MODULE_DESCRIPTION("LTC4282 I2C High Current Hot Swap Controller");
MODULE_LICENSE("GPL");