1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
|
/*
* SPDX-License-Identifier: GPL-2.0
* Copyright (c) 2018, The Linux Foundation
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/iopoll.h>
#include "dsi_pll.h"
#include "dsi.xml.h"
/*
* DSI PLL 10nm - clock diagram (eg: DSI0):
*
* dsi0_pll_out_div_clk dsi0_pll_bit_clk
* | |
* | |
* +---------+ | +----------+ | +----+
* dsi0vco_clk ---| out_div |--o--| divl_3_0 |--o--| /8 |-- dsi0pllbyte
* +---------+ | +----------+ | +----+
* | |
* | | dsi0_pll_by_2_bit_clk
* | | |
* | | +----+ | |\ dsi0_pclk_mux
* | |--| /2 |--o--| \ |
* | | +----+ | \ | +---------+
* | --------------| |--o--| div_7_4 |-- dsi0pll
* |------------------------------| / +---------+
* | +-----+ | /
* -----------| /4? |--o----------|/
* +-----+ | |
* | |dsiclk_sel
* |
* dsi0_pll_post_out_div_clk
*/
#define DSI_BYTE_PLL_CLK 0
#define DSI_PIXEL_PLL_CLK 1
#define NUM_PROVIDED_CLKS 2
struct dsi_pll_regs {
u32 pll_prop_gain_rate;
u32 pll_lockdet_rate;
u32 decimal_div_start;
u32 frac_div_start_low;
u32 frac_div_start_mid;
u32 frac_div_start_high;
u32 pll_clock_inverters;
u32 ssc_stepsize_low;
u32 ssc_stepsize_high;
u32 ssc_div_per_low;
u32 ssc_div_per_high;
u32 ssc_adjper_low;
u32 ssc_adjper_high;
u32 ssc_control;
};
struct dsi_pll_config {
u32 ref_freq;
bool div_override;
u32 output_div;
bool ignore_frac;
bool disable_prescaler;
bool enable_ssc;
bool ssc_center;
u32 dec_bits;
u32 frac_bits;
u32 lock_timer;
u32 ssc_freq;
u32 ssc_offset;
u32 ssc_adj_per;
u32 thresh_cycles;
u32 refclk_cycles;
};
struct pll_10nm_cached_state {
unsigned long vco_rate;
u8 bit_clk_div;
u8 pix_clk_div;
u8 pll_out_div;
u8 pll_mux;
};
struct dsi_pll_10nm {
struct msm_dsi_pll base;
int id;
struct platform_device *pdev;
void __iomem *phy_cmn_mmio;
void __iomem *mmio;
u64 vco_ref_clk_rate;
u64 vco_current_rate;
/* protects REG_DSI_10nm_PHY_CMN_CLK_CFG0 register */
spinlock_t postdiv_lock;
int vco_delay;
struct dsi_pll_config pll_configuration;
struct dsi_pll_regs reg_setup;
/* private clocks: */
struct clk_hw *hws[NUM_DSI_CLOCKS_MAX];
u32 num_hws;
/* clock-provider: */
struct clk_hw_onecell_data *hw_data;
struct pll_10nm_cached_state cached_state;
enum msm_dsi_phy_usecase uc;
struct dsi_pll_10nm *slave;
};
#define to_pll_10nm(x) container_of(x, struct dsi_pll_10nm, base)
/*
* Global list of private DSI PLL struct pointers. We need this for Dual DSI
* mode, where the master PLL's clk_ops needs access the slave's private data
*/
static struct dsi_pll_10nm *pll_10nm_list[DSI_MAX];
static void dsi_pll_setup_config(struct dsi_pll_10nm *pll)
{
struct dsi_pll_config *config = &pll->pll_configuration;
config->ref_freq = pll->vco_ref_clk_rate;
config->output_div = 1;
config->dec_bits = 8;
config->frac_bits = 18;
config->lock_timer = 64;
config->ssc_freq = 31500;
config->ssc_offset = 5000;
config->ssc_adj_per = 2;
config->thresh_cycles = 32;
config->refclk_cycles = 256;
config->div_override = false;
config->ignore_frac = false;
config->disable_prescaler = false;
config->enable_ssc = false;
config->ssc_center = 0;
}
static void dsi_pll_calc_dec_frac(struct dsi_pll_10nm *pll)
{
struct dsi_pll_config *config = &pll->pll_configuration;
struct dsi_pll_regs *regs = &pll->reg_setup;
u64 fref = pll->vco_ref_clk_rate;
u64 pll_freq;
u64 divider;
u64 dec, dec_multiple;
u32 frac;
u64 multiplier;
pll_freq = pll->vco_current_rate;
if (config->disable_prescaler)
divider = fref;
else
divider = fref * 2;
multiplier = 1 << config->frac_bits;
dec_multiple = div_u64(pll_freq * multiplier, divider);
div_u64_rem(dec_multiple, multiplier, &frac);
dec = div_u64(dec_multiple, multiplier);
if (pll_freq <= 1900000000UL)
regs->pll_prop_gain_rate = 8;
else if (pll_freq <= 3000000000UL)
regs->pll_prop_gain_rate = 10;
else
regs->pll_prop_gain_rate = 12;
if (pll_freq < 1100000000UL)
regs->pll_clock_inverters = 8;
else
regs->pll_clock_inverters = 0;
regs->pll_lockdet_rate = config->lock_timer;
regs->decimal_div_start = dec;
regs->frac_div_start_low = (frac & 0xff);
regs->frac_div_start_mid = (frac & 0xff00) >> 8;
regs->frac_div_start_high = (frac & 0x30000) >> 16;
}
#define SSC_CENTER BIT(0)
#define SSC_EN BIT(1)
static void dsi_pll_calc_ssc(struct dsi_pll_10nm *pll)
{
struct dsi_pll_config *config = &pll->pll_configuration;
struct dsi_pll_regs *regs = &pll->reg_setup;
u32 ssc_per;
u32 ssc_mod;
u64 ssc_step_size;
u64 frac;
if (!config->enable_ssc) {
DBG("SSC not enabled\n");
return;
}
ssc_per = DIV_ROUND_CLOSEST(config->ref_freq, config->ssc_freq) / 2 - 1;
ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1);
ssc_per -= ssc_mod;
frac = regs->frac_div_start_low |
(regs->frac_div_start_mid << 8) |
(regs->frac_div_start_high << 16);
ssc_step_size = regs->decimal_div_start;
ssc_step_size *= (1 << config->frac_bits);
ssc_step_size += frac;
ssc_step_size *= config->ssc_offset;
ssc_step_size *= (config->ssc_adj_per + 1);
ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1));
ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000);
regs->ssc_div_per_low = ssc_per & 0xFF;
regs->ssc_div_per_high = (ssc_per & 0xFF00) >> 8;
regs->ssc_stepsize_low = (u32)(ssc_step_size & 0xFF);
regs->ssc_stepsize_high = (u32)((ssc_step_size & 0xFF00) >> 8);
regs->ssc_adjper_low = config->ssc_adj_per & 0xFF;
regs->ssc_adjper_high = (config->ssc_adj_per & 0xFF00) >> 8;
regs->ssc_control = config->ssc_center ? SSC_CENTER : 0;
pr_debug("SCC: Dec:%d, frac:%llu, frac_bits:%d\n",
regs->decimal_div_start, frac, config->frac_bits);
pr_debug("SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n",
ssc_per, (u32)ssc_step_size, config->ssc_adj_per);
}
static void dsi_pll_ssc_commit(struct dsi_pll_10nm *pll)
{
void __iomem *base = pll->mmio;
struct dsi_pll_regs *regs = &pll->reg_setup;
if (pll->pll_configuration.enable_ssc) {
pr_debug("SSC is enabled\n");
pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_STEPSIZE_LOW_1,
regs->ssc_stepsize_low);
pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_STEPSIZE_HIGH_1,
regs->ssc_stepsize_high);
pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_DIV_PER_LOW_1,
regs->ssc_div_per_low);
pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_DIV_PER_HIGH_1,
regs->ssc_div_per_high);
pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_DIV_ADJPER_LOW_1,
regs->ssc_adjper_low);
pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_DIV_ADJPER_HIGH_1,
regs->ssc_adjper_high);
pll_write(base + REG_DSI_10nm_PHY_PLL_SSC_CONTROL,
SSC_EN | regs->ssc_control);
}
}
static void dsi_pll_config_hzindep_reg(struct dsi_pll_10nm *pll)
{
void __iomem *base = pll->mmio;
pll_write(base + REG_DSI_10nm_PHY_PLL_ANALOG_CONTROLS_ONE, 0x80);
pll_write(base + REG_DSI_10nm_PHY_PLL_ANALOG_CONTROLS_TWO, 0x03);
pll_write(base + REG_DSI_10nm_PHY_PLL_ANALOG_CONTROLS_THREE, 0x00);
pll_write(base + REG_DSI_10nm_PHY_PLL_DSM_DIVIDER, 0x00);
pll_write(base + REG_DSI_10nm_PHY_PLL_FEEDBACK_DIVIDER, 0x4e);
pll_write(base + REG_DSI_10nm_PHY_PLL_CALIBRATION_SETTINGS, 0x40);
pll_write(base + REG_DSI_10nm_PHY_PLL_BAND_SEL_CAL_SETTINGS_THREE,
0xba);
pll_write(base + REG_DSI_10nm_PHY_PLL_FREQ_DETECT_SETTINGS_ONE, 0x0c);
pll_write(base + REG_DSI_10nm_PHY_PLL_OUTDIV, 0x00);
pll_write(base + REG_DSI_10nm_PHY_PLL_CORE_OVERRIDE, 0x00);
pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_DIGITAL_TIMERS_TWO, 0x08);
pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_PROP_GAIN_RATE_1, 0x08);
pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_BAND_SET_RATE_1, 0xc0);
pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0xfa);
pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_FL_INT_GAIN_PFILT_BAND_1,
0x4c);
pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_LOCK_OVERRIDE, 0x80);
pll_write(base + REG_DSI_10nm_PHY_PLL_PFILT, 0x29);
pll_write(base + REG_DSI_10nm_PHY_PLL_IFILT, 0x3f);
}
static void dsi_pll_commit(struct dsi_pll_10nm *pll)
{
void __iomem *base = pll->mmio;
struct dsi_pll_regs *reg = &pll->reg_setup;
pll_write(base + REG_DSI_10nm_PHY_PLL_CORE_INPUT_OVERRIDE, 0x12);
pll_write(base + REG_DSI_10nm_PHY_PLL_DECIMAL_DIV_START_1,
reg->decimal_div_start);
pll_write(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_LOW_1,
reg->frac_div_start_low);
pll_write(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_MID_1,
reg->frac_div_start_mid);
pll_write(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_HIGH_1,
reg->frac_div_start_high);
pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_LOCKDET_RATE_1, 0x40);
pll_write(base + REG_DSI_10nm_PHY_PLL_PLL_LOCK_DELAY, 0x06);
pll_write(base + REG_DSI_10nm_PHY_PLL_CMODE, 0x10);
pll_write(base + REG_DSI_10nm_PHY_PLL_CLOCK_INVERTERS,
reg->pll_clock_inverters);
}
static int dsi_pll_10nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_10nm->id, rate,
parent_rate);
pll_10nm->vco_current_rate = rate;
pll_10nm->vco_ref_clk_rate = parent_rate;
dsi_pll_setup_config(pll_10nm);
dsi_pll_calc_dec_frac(pll_10nm);
dsi_pll_calc_ssc(pll_10nm);
dsi_pll_commit(pll_10nm);
dsi_pll_config_hzindep_reg(pll_10nm);
dsi_pll_ssc_commit(pll_10nm);
/* flush, ensure all register writes are done*/
wmb();
return 0;
}
static int dsi_pll_10nm_lock_status(struct dsi_pll_10nm *pll)
{
int rc;
u32 status = 0;
u32 const delay_us = 100;
u32 const timeout_us = 5000;
rc = readl_poll_timeout_atomic(pll->mmio +
REG_DSI_10nm_PHY_PLL_COMMON_STATUS_ONE,
status,
((status & BIT(0)) > 0),
delay_us,
timeout_us);
if (rc)
pr_err("DSI PLL(%d) lock failed, status=0x%08x\n",
pll->id, status);
return rc;
}
static void dsi_pll_disable_pll_bias(struct dsi_pll_10nm *pll)
{
u32 data = pll_read(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CTRL_0);
pll_write(pll->mmio + REG_DSI_10nm_PHY_PLL_SYSTEM_MUXES, 0);
pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CTRL_0,
data & ~BIT(5));
ndelay(250);
}
static void dsi_pll_enable_pll_bias(struct dsi_pll_10nm *pll)
{
u32 data = pll_read(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CTRL_0);
pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CTRL_0,
data | BIT(5));
pll_write(pll->mmio + REG_DSI_10nm_PHY_PLL_SYSTEM_MUXES, 0xc0);
ndelay(250);
}
static void dsi_pll_disable_global_clk(struct dsi_pll_10nm *pll)
{
u32 data;
data = pll_read(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1);
pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1,
data & ~BIT(5));
}
static void dsi_pll_enable_global_clk(struct dsi_pll_10nm *pll)
{
u32 data;
data = pll_read(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1);
pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_CLK_CFG1,
data | BIT(5));
}
static int dsi_pll_10nm_vco_prepare(struct clk_hw *hw)
{
struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
int rc;
dsi_pll_enable_pll_bias(pll_10nm);
if (pll_10nm->slave)
dsi_pll_enable_pll_bias(pll_10nm->slave);
/* Start PLL */
pll_write(pll_10nm->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_PLL_CNTRL,
0x01);
/*
* ensure all PLL configurations are written prior to checking
* for PLL lock.
*/
wmb();
/* Check for PLL lock */
rc = dsi_pll_10nm_lock_status(pll_10nm);
if (rc) {
pr_err("PLL(%d) lock failed\n", pll_10nm->id);
goto error;
}
pll->pll_on = true;
dsi_pll_enable_global_clk(pll_10nm);
if (pll_10nm->slave)
dsi_pll_enable_global_clk(pll_10nm->slave);
pll_write(pll_10nm->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_RBUF_CTRL,
0x01);
if (pll_10nm->slave)
pll_write(pll_10nm->slave->phy_cmn_mmio +
REG_DSI_10nm_PHY_CMN_RBUF_CTRL, 0x01);
error:
return rc;
}
static void dsi_pll_disable_sub(struct dsi_pll_10nm *pll)
{
pll_write(pll->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_RBUF_CTRL, 0);
dsi_pll_disable_pll_bias(pll);
}
static void dsi_pll_10nm_vco_unprepare(struct clk_hw *hw)
{
struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
/*
* To avoid any stray glitches while abruptly powering down the PLL
* make sure to gate the clock using the clock enable bit before
* powering down the PLL
*/
dsi_pll_disable_global_clk(pll_10nm);
pll_write(pll_10nm->phy_cmn_mmio + REG_DSI_10nm_PHY_CMN_PLL_CNTRL, 0);
dsi_pll_disable_sub(pll_10nm);
if (pll_10nm->slave) {
dsi_pll_disable_global_clk(pll_10nm->slave);
dsi_pll_disable_sub(pll_10nm->slave);
}
/* flush, ensure all register writes are done */
wmb();
pll->pll_on = false;
}
static unsigned long dsi_pll_10nm_vco_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
void __iomem *base = pll_10nm->mmio;
u64 ref_clk = pll_10nm->vco_ref_clk_rate;
u64 vco_rate = 0x0;
u64 multiplier;
u32 frac;
u32 dec;
u64 pll_freq, tmp64;
dec = pll_read(base + REG_DSI_10nm_PHY_PLL_DECIMAL_DIV_START_1);
dec &= 0xff;
frac = pll_read(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_LOW_1);
frac |= ((pll_read(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_MID_1) &
0xff) << 8);
frac |= ((pll_read(base + REG_DSI_10nm_PHY_PLL_FRAC_DIV_START_HIGH_1) &
0x3) << 16);
/*
* TODO:
* 1. Assumes prescaler is disabled
* 2. Multiplier is 2^18. it should be 2^(num_of_frac_bits)
*/
multiplier = 1 << 18;
pll_freq = dec * (ref_clk * 2);
tmp64 = (ref_clk * 2 * frac);
pll_freq += div_u64(tmp64, multiplier);
vco_rate = pll_freq;
DBG("DSI PLL%d returning vco rate = %lu, dec = %x, frac = %x",
pll_10nm->id, (unsigned long)vco_rate, dec, frac);
return (unsigned long)vco_rate;
}
static const struct clk_ops clk_ops_dsi_pll_10nm_vco = {
.round_rate = msm_dsi_pll_helper_clk_round_rate,
.set_rate = dsi_pll_10nm_vco_set_rate,
.recalc_rate = dsi_pll_10nm_vco_recalc_rate,
.prepare = dsi_pll_10nm_vco_prepare,
.unprepare = dsi_pll_10nm_vco_unprepare,
};
/*
* PLL Callbacks
*/
static void dsi_pll_10nm_save_state(struct msm_dsi_pll *pll)
{
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
struct pll_10nm_cached_state *cached = &pll_10nm->cached_state;
void __iomem *phy_base = pll_10nm->phy_cmn_mmio;
u32 cmn_clk_cfg0, cmn_clk_cfg1;
cached->pll_out_div = pll_read(pll_10nm->mmio +
REG_DSI_10nm_PHY_PLL_PLL_OUTDIV_RATE);
cached->pll_out_div &= 0x3;
cmn_clk_cfg0 = pll_read(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG0);
cached->bit_clk_div = cmn_clk_cfg0 & 0xf;
cached->pix_clk_div = (cmn_clk_cfg0 & 0xf0) >> 4;
cmn_clk_cfg1 = pll_read(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG1);
cached->pll_mux = cmn_clk_cfg1 & 0x3;
DBG("DSI PLL%d outdiv %x bit_clk_div %x pix_clk_div %x pll_mux %x",
pll_10nm->id, cached->pll_out_div, cached->bit_clk_div,
cached->pix_clk_div, cached->pll_mux);
}
static int dsi_pll_10nm_restore_state(struct msm_dsi_pll *pll)
{
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
struct pll_10nm_cached_state *cached = &pll_10nm->cached_state;
void __iomem *phy_base = pll_10nm->phy_cmn_mmio;
u32 val;
val = pll_read(pll_10nm->mmio + REG_DSI_10nm_PHY_PLL_PLL_OUTDIV_RATE);
val &= ~0x3;
val |= cached->pll_out_div;
pll_write(pll_10nm->mmio + REG_DSI_10nm_PHY_PLL_PLL_OUTDIV_RATE, val);
pll_write(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG0,
cached->bit_clk_div | (cached->pix_clk_div << 4));
val = pll_read(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG1);
val &= ~0x3;
val |= cached->pll_mux;
pll_write(phy_base + REG_DSI_10nm_PHY_CMN_CLK_CFG1, val);
DBG("DSI PLL%d", pll_10nm->id);
return 0;
}
static int dsi_pll_10nm_set_usecase(struct msm_dsi_pll *pll,
enum msm_dsi_phy_usecase uc)
{
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
void __iomem *base = pll_10nm->phy_cmn_mmio;
u32 data = 0x0; /* internal PLL */
DBG("DSI PLL%d", pll_10nm->id);
switch (uc) {
case MSM_DSI_PHY_STANDALONE:
break;
case MSM_DSI_PHY_MASTER:
pll_10nm->slave = pll_10nm_list[(pll_10nm->id + 1) % DSI_MAX];
break;
case MSM_DSI_PHY_SLAVE:
data = 0x1; /* external PLL */
break;
default:
return -EINVAL;
}
/* set PLL src */
pll_write(base + REG_DSI_10nm_PHY_CMN_CLK_CFG1, (data << 2));
pll_10nm->uc = uc;
return 0;
}
static int dsi_pll_10nm_get_provider(struct msm_dsi_pll *pll,
struct clk **byte_clk_provider,
struct clk **pixel_clk_provider)
{
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
struct clk_hw_onecell_data *hw_data = pll_10nm->hw_data;
DBG("DSI PLL%d", pll_10nm->id);
if (byte_clk_provider)
*byte_clk_provider = hw_data->hws[DSI_BYTE_PLL_CLK]->clk;
if (pixel_clk_provider)
*pixel_clk_provider = hw_data->hws[DSI_PIXEL_PLL_CLK]->clk;
return 0;
}
static void dsi_pll_10nm_destroy(struct msm_dsi_pll *pll)
{
struct dsi_pll_10nm *pll_10nm = to_pll_10nm(pll);
DBG("DSI PLL%d", pll_10nm->id);
}
/*
* The post dividers and mux clocks are created using the standard divider and
* mux API. Unlike the 14nm PHY, the slave PLL doesn't need its dividers/mux
* state to follow the master PLL's divider/mux state. Therefore, we don't
* require special clock ops that also configure the slave PLL registers
*/
static int pll_10nm_register(struct dsi_pll_10nm *pll_10nm)
{
char clk_name[32], parent[32], vco_name[32];
char parent2[32], parent3[32], parent4[32];
struct clk_init_data vco_init = {
.parent_names = (const char *[]){ "xo" },
.num_parents = 1,
.name = vco_name,
.flags = CLK_IGNORE_UNUSED,
.ops = &clk_ops_dsi_pll_10nm_vco,
};
struct device *dev = &pll_10nm->pdev->dev;
struct clk_hw **hws = pll_10nm->hws;
struct clk_hw_onecell_data *hw_data;
struct clk_hw *hw;
int num = 0;
int ret;
DBG("DSI%d", pll_10nm->id);
hw_data = devm_kzalloc(dev, sizeof(*hw_data) +
NUM_PROVIDED_CLKS * sizeof(struct clk_hw *),
GFP_KERNEL);
if (!hw_data)
return -ENOMEM;
snprintf(vco_name, 32, "dsi%dvco_clk", pll_10nm->id);
pll_10nm->base.clk_hw.init = &vco_init;
ret = clk_hw_register(dev, &pll_10nm->base.clk_hw);
if (ret)
return ret;
hws[num++] = &pll_10nm->base.clk_hw;
snprintf(clk_name, 32, "dsi%d_pll_out_div_clk", pll_10nm->id);
snprintf(parent, 32, "dsi%dvco_clk", pll_10nm->id);
hw = clk_hw_register_divider(dev, clk_name,
parent, CLK_SET_RATE_PARENT,
pll_10nm->mmio +
REG_DSI_10nm_PHY_PLL_PLL_OUTDIV_RATE,
0, 2, CLK_DIVIDER_POWER_OF_TWO, NULL);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
snprintf(clk_name, 32, "dsi%d_pll_bit_clk", pll_10nm->id);
snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_10nm->id);
/* BIT CLK: DIV_CTRL_3_0 */
hw = clk_hw_register_divider(dev, clk_name, parent,
CLK_SET_RATE_PARENT,
pll_10nm->phy_cmn_mmio +
REG_DSI_10nm_PHY_CMN_CLK_CFG0,
0, 4, CLK_DIVIDER_ONE_BASED,
&pll_10nm->postdiv_lock);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
snprintf(clk_name, 32, "dsi%dpllbyte", pll_10nm->id);
snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_10nm->id);
/* DSI Byte clock = VCO_CLK / OUT_DIV / BIT_DIV / 8 */
hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
CLK_SET_RATE_PARENT, 1, 8);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
hw_data->hws[DSI_BYTE_PLL_CLK] = hw;
snprintf(clk_name, 32, "dsi%d_pll_by_2_bit_clk", pll_10nm->id);
snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_10nm->id);
hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
0, 1, 2);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
snprintf(clk_name, 32, "dsi%d_pll_post_out_div_clk", pll_10nm->id);
snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_10nm->id);
hw = clk_hw_register_fixed_factor(dev, clk_name, parent,
0, 1, 4);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
snprintf(clk_name, 32, "dsi%d_pclk_mux", pll_10nm->id);
snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_10nm->id);
snprintf(parent2, 32, "dsi%d_pll_by_2_bit_clk", pll_10nm->id);
snprintf(parent3, 32, "dsi%d_pll_out_div_clk", pll_10nm->id);
snprintf(parent4, 32, "dsi%d_pll_post_out_div_clk", pll_10nm->id);
hw = clk_hw_register_mux(dev, clk_name,
(const char *[]){
parent, parent2, parent3, parent4
}, 4, 0, pll_10nm->phy_cmn_mmio +
REG_DSI_10nm_PHY_CMN_CLK_CFG1,
0, 2, 0, NULL);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
snprintf(clk_name, 32, "dsi%dpll", pll_10nm->id);
snprintf(parent, 32, "dsi%d_pclk_mux", pll_10nm->id);
/* PIX CLK DIV : DIV_CTRL_7_4*/
hw = clk_hw_register_divider(dev, clk_name, parent,
0, pll_10nm->phy_cmn_mmio +
REG_DSI_10nm_PHY_CMN_CLK_CFG0,
4, 4, CLK_DIVIDER_ONE_BASED,
&pll_10nm->postdiv_lock);
if (IS_ERR(hw))
return PTR_ERR(hw);
hws[num++] = hw;
hw_data->hws[DSI_PIXEL_PLL_CLK] = hw;
pll_10nm->num_hws = num;
hw_data->num = NUM_PROVIDED_CLKS;
pll_10nm->hw_data = hw_data;
ret = of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
pll_10nm->hw_data);
if (ret) {
dev_err(dev, "failed to register clk provider: %d\n", ret);
return ret;
}
return 0;
}
struct msm_dsi_pll *msm_dsi_pll_10nm_init(struct platform_device *pdev, int id)
{
struct dsi_pll_10nm *pll_10nm;
struct msm_dsi_pll *pll;
int ret;
if (!pdev)
return ERR_PTR(-ENODEV);
pll_10nm = devm_kzalloc(&pdev->dev, sizeof(*pll_10nm), GFP_KERNEL);
if (!pll_10nm)
return ERR_PTR(-ENOMEM);
DBG("DSI PLL%d", id);
pll_10nm->pdev = pdev;
pll_10nm->id = id;
pll_10nm_list[id] = pll_10nm;
pll_10nm->phy_cmn_mmio = msm_ioremap(pdev, "dsi_phy", "DSI_PHY");
if (IS_ERR_OR_NULL(pll_10nm->phy_cmn_mmio)) {
dev_err(&pdev->dev, "failed to map CMN PHY base\n");
return ERR_PTR(-ENOMEM);
}
pll_10nm->mmio = msm_ioremap(pdev, "dsi_pll", "DSI_PLL");
if (IS_ERR_OR_NULL(pll_10nm->mmio)) {
dev_err(&pdev->dev, "failed to map PLL base\n");
return ERR_PTR(-ENOMEM);
}
pll = &pll_10nm->base;
pll->min_rate = 1000000000UL;
pll->max_rate = 3500000000UL;
pll->get_provider = dsi_pll_10nm_get_provider;
pll->destroy = dsi_pll_10nm_destroy;
pll->save_state = dsi_pll_10nm_save_state;
pll->restore_state = dsi_pll_10nm_restore_state;
pll->set_usecase = dsi_pll_10nm_set_usecase;
pll_10nm->vco_delay = 1;
ret = pll_10nm_register(pll_10nm);
if (ret) {
dev_err(&pdev->dev, "failed to register PLL: %d\n", ret);
return ERR_PTR(ret);
}
/* TODO: Remove this when we have proper display handover support */
msm_dsi_pll_save_state(pll);
return pll;
}
|