1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2016-2019 Intel Corporation
*/
#include <linux/types.h>
#include "gt/intel_gt.h"
#include "intel_huc.h"
#include "i915_drv.h"
/**
* DOC: HuC
*
* The HuC is a dedicated microcontroller for usage in media HEVC (High
* Efficiency Video Coding) operations. Userspace can directly use the firmware
* capabilities by adding HuC specific commands to batch buffers.
*
* The kernel driver is only responsible for loading the HuC firmware and
* triggering its security authentication, which is performed by the GuC. For
* The GuC to correctly perform the authentication, the HuC binary must be
* loaded before the GuC one. Loading the HuC is optional; however, not using
* the HuC might negatively impact power usage and/or performance of media
* workloads, depending on the use-cases.
*
* See https://github.com/intel/media-driver for the latest details on HuC
* functionality.
*/
/**
* DOC: HuC Memory Management
*
* Similarly to the GuC, the HuC can't do any memory allocations on its own,
* with the difference being that the allocations for HuC usage are handled by
* the userspace driver instead of the kernel one. The HuC accesses the memory
* via the PPGTT belonging to the context loaded on the VCS executing the
* HuC-specific commands.
*/
void intel_huc_init_early(struct intel_huc *huc)
{
struct drm_i915_private *i915 = huc_to_gt(huc)->i915;
intel_uc_fw_init_early(&huc->fw, INTEL_UC_FW_TYPE_HUC);
if (GRAPHICS_VER(i915) >= 11) {
huc->status.reg = GEN11_HUC_KERNEL_LOAD_INFO;
huc->status.mask = HUC_LOAD_SUCCESSFUL;
huc->status.value = HUC_LOAD_SUCCESSFUL;
} else {
huc->status.reg = HUC_STATUS2;
huc->status.mask = HUC_FW_VERIFIED;
huc->status.value = HUC_FW_VERIFIED;
}
}
int intel_huc_init(struct intel_huc *huc)
{
struct drm_i915_private *i915 = huc_to_gt(huc)->i915;
int err;
err = intel_uc_fw_init(&huc->fw);
if (err)
goto out;
intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOADABLE);
return 0;
out:
i915_probe_error(i915, "failed with %d\n", err);
return err;
}
void intel_huc_fini(struct intel_huc *huc)
{
if (!intel_uc_fw_is_loadable(&huc->fw))
return;
intel_uc_fw_fini(&huc->fw);
}
/**
* intel_huc_auth() - Authenticate HuC uCode
* @huc: intel_huc structure
*
* Called after HuC and GuC firmware loading during intel_uc_init_hw().
*
* This function invokes the GuC action to authenticate the HuC firmware,
* passing the offset of the RSA signature to intel_guc_auth_huc(). It then
* waits for up to 50ms for firmware verification ACK.
*/
int intel_huc_auth(struct intel_huc *huc)
{
struct intel_gt *gt = huc_to_gt(huc);
struct intel_guc *guc = >->uc.guc;
int ret;
GEM_BUG_ON(intel_huc_is_authenticated(huc));
if (!intel_uc_fw_is_loaded(&huc->fw))
return -ENOEXEC;
ret = i915_inject_probe_error(gt->i915, -ENXIO);
if (ret)
goto fail;
ret = intel_guc_auth_huc(guc,
intel_guc_ggtt_offset(guc, huc->fw.rsa_data));
if (ret) {
DRM_ERROR("HuC: GuC did not ack Auth request %d\n", ret);
goto fail;
}
/* Check authentication status, it should be done by now */
ret = __intel_wait_for_register(gt->uncore,
huc->status.reg,
huc->status.mask,
huc->status.value,
2, 50, NULL);
if (ret) {
DRM_ERROR("HuC: Firmware not verified %d\n", ret);
goto fail;
}
intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING);
return 0;
fail:
i915_probe_error(gt->i915, "HuC: Authentication failed %d\n", ret);
intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL);
return ret;
}
/**
* intel_huc_check_status() - check HuC status
* @huc: intel_huc structure
*
* This function reads status register to verify if HuC
* firmware was successfully loaded.
*
* Returns:
* * -ENODEV if HuC is not present on this platform,
* * -EOPNOTSUPP if HuC firmware is disabled,
* * -ENOPKG if HuC firmware was not installed,
* * -ENOEXEC if HuC firmware is invalid or mismatched,
* * 0 if HuC firmware is not running,
* * 1 if HuC firmware is authenticated and running.
*/
int intel_huc_check_status(struct intel_huc *huc)
{
struct intel_gt *gt = huc_to_gt(huc);
intel_wakeref_t wakeref;
u32 status = 0;
switch (__intel_uc_fw_status(&huc->fw)) {
case INTEL_UC_FIRMWARE_NOT_SUPPORTED:
return -ENODEV;
case INTEL_UC_FIRMWARE_DISABLED:
return -EOPNOTSUPP;
case INTEL_UC_FIRMWARE_MISSING:
return -ENOPKG;
case INTEL_UC_FIRMWARE_ERROR:
return -ENOEXEC;
default:
break;
}
with_intel_runtime_pm(gt->uncore->rpm, wakeref)
status = intel_uncore_read(gt->uncore, huc->status.reg);
return (status & huc->status.mask) == huc->status.value;
}
/**
* intel_huc_load_status - dump information about HuC load status
* @huc: the HuC
* @p: the &drm_printer
*
* Pretty printer for HuC load status.
*/
void intel_huc_load_status(struct intel_huc *huc, struct drm_printer *p)
{
struct intel_gt *gt = huc_to_gt(huc);
intel_wakeref_t wakeref;
if (!intel_huc_is_supported(huc)) {
drm_printf(p, "HuC not supported\n");
return;
}
if (!intel_huc_is_wanted(huc)) {
drm_printf(p, "HuC disabled\n");
return;
}
intel_uc_fw_dump(&huc->fw, p);
with_intel_runtime_pm(gt->uncore->rpm, wakeref)
drm_printf(p, "HuC status: 0x%08x\n",
intel_uncore_read(gt->uncore, huc->status.reg));
}
|