1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
|
/*
* Copyright © 2014-2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "display/intel_dp.h"
#include "intel_display_types.h"
#include "intel_dpio_phy.h"
#include "intel_sideband.h"
/**
* DOC: DPIO
*
* VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
* ports. DPIO is the name given to such a display PHY. These PHYs
* don't follow the standard programming model using direct MMIO
* registers, and instead their registers must be accessed trough IOSF
* sideband. VLV has one such PHY for driving ports B and C, and CHV
* adds another PHY for driving port D. Each PHY responds to specific
* IOSF-SB port.
*
* Each display PHY is made up of one or two channels. Each channel
* houses a common lane part which contains the PLL and other common
* logic. CH0 common lane also contains the IOSF-SB logic for the
* Common Register Interface (CRI) ie. the DPIO registers. CRI clock
* must be running when any DPIO registers are accessed.
*
* In addition to having their own registers, the PHYs are also
* controlled through some dedicated signals from the display
* controller. These include PLL reference clock enable, PLL enable,
* and CRI clock selection, for example.
*
* Eeach channel also has two splines (also called data lanes), and
* each spline is made up of one Physical Access Coding Sub-Layer
* (PCS) block and two TX lanes. So each channel has two PCS blocks
* and four TX lanes. The TX lanes are used as DP lanes or TMDS
* data/clock pairs depending on the output type.
*
* Additionally the PHY also contains an AUX lane with AUX blocks
* for each channel. This is used for DP AUX communication, but
* this fact isn't really relevant for the driver since AUX is
* controlled from the display controller side. No DPIO registers
* need to be accessed during AUX communication,
*
* Generally on VLV/CHV the common lane corresponds to the pipe and
* the spline (PCS/TX) corresponds to the port.
*
* For dual channel PHY (VLV/CHV):
*
* pipe A == CMN/PLL/REF CH0
*
* pipe B == CMN/PLL/REF CH1
*
* port B == PCS/TX CH0
*
* port C == PCS/TX CH1
*
* This is especially important when we cross the streams
* ie. drive port B with pipe B, or port C with pipe A.
*
* For single channel PHY (CHV):
*
* pipe C == CMN/PLL/REF CH0
*
* port D == PCS/TX CH0
*
* On BXT the entire PHY channel corresponds to the port. That means
* the PLL is also now associated with the port rather than the pipe,
* and so the clock needs to be routed to the appropriate transcoder.
* Port A PLL is directly connected to transcoder EDP and port B/C
* PLLs can be routed to any transcoder A/B/C.
*
* Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
* digital port D (CHV) or port A (BXT). ::
*
*
* Dual channel PHY (VLV/CHV/BXT)
* ---------------------------------
* | CH0 | CH1 |
* | CMN/PLL/REF | CMN/PLL/REF |
* |---------------|---------------| Display PHY
* | PCS01 | PCS23 | PCS01 | PCS23 |
* |-------|-------|-------|-------|
* |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
* ---------------------------------
* | DDI0 | DDI1 | DP/HDMI ports
* ---------------------------------
*
* Single channel PHY (CHV/BXT)
* -----------------
* | CH0 |
* | CMN/PLL/REF |
* |---------------| Display PHY
* | PCS01 | PCS23 |
* |-------|-------|
* |TX0|TX1|TX2|TX3|
* -----------------
* | DDI2 | DP/HDMI port
* -----------------
*/
/**
* struct bxt_ddi_phy_info - Hold info for a broxton DDI phy
*/
struct bxt_ddi_phy_info {
/**
* @dual_channel: true if this phy has a second channel.
*/
bool dual_channel;
/**
* @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
* Otherwise the GRC value will be copied from the phy indicated by
* this field.
*/
enum dpio_phy rcomp_phy;
/**
* @reset_delay: delay in us to wait before setting the common reset
* bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
*/
int reset_delay;
/**
* @pwron_mask: Mask with the appropriate bit set that would cause the
* punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
*/
u32 pwron_mask;
/**
* @channel: struct containing per channel information.
*/
struct {
/**
* @channel.port: which port maps to this channel.
*/
enum port port;
} channel[2];
};
static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = {
[DPIO_PHY0] = {
.dual_channel = true,
.rcomp_phy = DPIO_PHY1,
.pwron_mask = BIT(0),
.channel = {
[DPIO_CH0] = { .port = PORT_B },
[DPIO_CH1] = { .port = PORT_C },
}
},
[DPIO_PHY1] = {
.dual_channel = false,
.rcomp_phy = -1,
.pwron_mask = BIT(1),
.channel = {
[DPIO_CH0] = { .port = PORT_A },
}
},
};
static const struct bxt_ddi_phy_info glk_ddi_phy_info[] = {
[DPIO_PHY0] = {
.dual_channel = false,
.rcomp_phy = DPIO_PHY1,
.pwron_mask = BIT(0),
.reset_delay = 20,
.channel = {
[DPIO_CH0] = { .port = PORT_B },
}
},
[DPIO_PHY1] = {
.dual_channel = false,
.rcomp_phy = -1,
.pwron_mask = BIT(3),
.reset_delay = 20,
.channel = {
[DPIO_CH0] = { .port = PORT_A },
}
},
[DPIO_PHY2] = {
.dual_channel = false,
.rcomp_phy = DPIO_PHY1,
.pwron_mask = BIT(1),
.reset_delay = 20,
.channel = {
[DPIO_CH0] = { .port = PORT_C },
}
},
};
static const struct bxt_ddi_phy_info *
bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count)
{
if (IS_GEMINILAKE(dev_priv)) {
*count = ARRAY_SIZE(glk_ddi_phy_info);
return glk_ddi_phy_info;
} else {
*count = ARRAY_SIZE(bxt_ddi_phy_info);
return bxt_ddi_phy_info;
}
}
static const struct bxt_ddi_phy_info *
bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy)
{
int count;
const struct bxt_ddi_phy_info *phy_list =
bxt_get_phy_list(dev_priv, &count);
return &phy_list[phy];
}
void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
enum dpio_phy *phy, enum dpio_channel *ch)
{
const struct bxt_ddi_phy_info *phy_info, *phys;
int i, count;
phys = bxt_get_phy_list(dev_priv, &count);
for (i = 0; i < count; i++) {
phy_info = &phys[i];
if (port == phy_info->channel[DPIO_CH0].port) {
*phy = i;
*ch = DPIO_CH0;
return;
}
if (phy_info->dual_channel &&
port == phy_info->channel[DPIO_CH1].port) {
*phy = i;
*ch = DPIO_CH1;
return;
}
}
drm_WARN(&dev_priv->drm, 1, "PHY not found for PORT %c",
port_name(port));
*phy = DPIO_PHY0;
*ch = DPIO_CH0;
}
void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
enum port port, u32 margin, u32 scale,
u32 enable, u32 deemphasis)
{
u32 val;
enum dpio_phy phy;
enum dpio_channel ch;
bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
/*
* While we write to the group register to program all lanes at once we
* can read only lane registers and we pick lanes 0/1 for that.
*/
val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch));
val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val);
val = intel_de_read(dev_priv, BXT_PORT_TX_DW2_LN0(phy, ch));
val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
val |= margin << MARGIN_000_SHIFT | scale << UNIQ_TRANS_SCALE_SHIFT;
intel_de_write(dev_priv, BXT_PORT_TX_DW2_GRP(phy, ch), val);
val = intel_de_read(dev_priv, BXT_PORT_TX_DW3_LN0(phy, ch));
val &= ~SCALE_DCOMP_METHOD;
if (enable)
val |= SCALE_DCOMP_METHOD;
if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
drm_err(&dev_priv->drm,
"Disabled scaling while ouniqetrangenmethod was set");
intel_de_write(dev_priv, BXT_PORT_TX_DW3_GRP(phy, ch), val);
val = intel_de_read(dev_priv, BXT_PORT_TX_DW4_LN0(phy, ch));
val &= ~DE_EMPHASIS;
val |= deemphasis << DEEMPH_SHIFT;
intel_de_write(dev_priv, BXT_PORT_TX_DW4_GRP(phy, ch), val);
val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch));
val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val);
}
bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
enum dpio_phy phy)
{
const struct bxt_ddi_phy_info *phy_info;
phy_info = bxt_get_phy_info(dev_priv, phy);
if (!(intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
return false;
if ((intel_de_read(dev_priv, BXT_PORT_CL1CM_DW0(phy)) &
(PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
drm_dbg(&dev_priv->drm,
"DDI PHY %d powered, but power hasn't settled\n", phy);
return false;
}
if (!(intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
drm_dbg(&dev_priv->drm,
"DDI PHY %d powered, but still in reset\n", phy);
return false;
}
return true;
}
static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
{
u32 val = intel_de_read(dev_priv, BXT_PORT_REF_DW6(phy));
return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
}
static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
enum dpio_phy phy)
{
if (intel_de_wait_for_set(dev_priv, BXT_PORT_REF_DW3(phy),
GRC_DONE, 10))
drm_err(&dev_priv->drm, "timeout waiting for PHY%d GRC\n",
phy);
}
static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv,
enum dpio_phy phy)
{
const struct bxt_ddi_phy_info *phy_info;
u32 val;
phy_info = bxt_get_phy_info(dev_priv, phy);
if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
/* Still read out the GRC value for state verification */
if (phy_info->rcomp_phy != -1)
dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, phy);
if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
drm_dbg(&dev_priv->drm, "DDI PHY %d already enabled, "
"won't reprogram it\n", phy);
return;
}
drm_dbg(&dev_priv->drm,
"DDI PHY %d enabled with invalid state, "
"force reprogramming it\n", phy);
}
val = intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON);
val |= phy_info->pwron_mask;
intel_de_write(dev_priv, BXT_P_CR_GT_DISP_PWRON, val);
/*
* The PHY registers start out inaccessible and respond to reads with
* all 1s. Eventually they become accessible as they power up, then
* the reserved bit will give the default 0. Poll on the reserved bit
* becoming 0 to find when the PHY is accessible.
* The flag should get set in 100us according to the HW team, but
* use 1ms due to occasional timeouts observed with that.
*/
if (intel_wait_for_register_fw(&dev_priv->uncore,
BXT_PORT_CL1CM_DW0(phy),
PHY_RESERVED | PHY_POWER_GOOD,
PHY_POWER_GOOD,
1))
drm_err(&dev_priv->drm, "timeout during PHY%d power on\n",
phy);
/* Program PLL Rcomp code offset */
val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW9(phy));
val &= ~IREF0RC_OFFSET_MASK;
val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
intel_de_write(dev_priv, BXT_PORT_CL1CM_DW9(phy), val);
val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW10(phy));
val &= ~IREF1RC_OFFSET_MASK;
val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
intel_de_write(dev_priv, BXT_PORT_CL1CM_DW10(phy), val);
/* Program power gating */
val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW28(phy));
val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
SUS_CLK_CONFIG;
intel_de_write(dev_priv, BXT_PORT_CL1CM_DW28(phy), val);
if (phy_info->dual_channel) {
val = intel_de_read(dev_priv, BXT_PORT_CL2CM_DW6(phy));
val |= DW6_OLDO_DYN_PWR_DOWN_EN;
intel_de_write(dev_priv, BXT_PORT_CL2CM_DW6(phy), val);
}
if (phy_info->rcomp_phy != -1) {
u32 grc_code;
bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy);
/*
* PHY0 isn't connected to an RCOMP resistor so copy over
* the corresponding calibrated value from PHY1, and disable
* the automatic calibration on PHY0.
*/
val = dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv,
phy_info->rcomp_phy);
grc_code = val << GRC_CODE_FAST_SHIFT |
val << GRC_CODE_SLOW_SHIFT |
val;
intel_de_write(dev_priv, BXT_PORT_REF_DW6(phy), grc_code);
val = intel_de_read(dev_priv, BXT_PORT_REF_DW8(phy));
val |= GRC_DIS | GRC_RDY_OVRD;
intel_de_write(dev_priv, BXT_PORT_REF_DW8(phy), val);
}
if (phy_info->reset_delay)
udelay(phy_info->reset_delay);
val = intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy));
val |= COMMON_RESET_DIS;
intel_de_write(dev_priv, BXT_PHY_CTL_FAMILY(phy), val);
}
void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
{
const struct bxt_ddi_phy_info *phy_info;
u32 val;
phy_info = bxt_get_phy_info(dev_priv, phy);
val = intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy));
val &= ~COMMON_RESET_DIS;
intel_de_write(dev_priv, BXT_PHY_CTL_FAMILY(phy), val);
val = intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON);
val &= ~phy_info->pwron_mask;
intel_de_write(dev_priv, BXT_P_CR_GT_DISP_PWRON, val);
}
void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
{
const struct bxt_ddi_phy_info *phy_info =
bxt_get_phy_info(dev_priv, phy);
enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
bool was_enabled;
lockdep_assert_held(&dev_priv->power_domains.lock);
was_enabled = true;
if (rcomp_phy != -1)
was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy);
/*
* We need to copy the GRC calibration value from rcomp_phy,
* so make sure it's powered up.
*/
if (!was_enabled)
_bxt_ddi_phy_init(dev_priv, rcomp_phy);
_bxt_ddi_phy_init(dev_priv, phy);
if (!was_enabled)
bxt_ddi_phy_uninit(dev_priv, rcomp_phy);
}
static bool __printf(6, 7)
__phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
i915_reg_t reg, u32 mask, u32 expected,
const char *reg_fmt, ...)
{
struct va_format vaf;
va_list args;
u32 val;
val = intel_de_read(dev_priv, reg);
if ((val & mask) == expected)
return true;
va_start(args, reg_fmt);
vaf.fmt = reg_fmt;
vaf.va = &args;
drm_dbg(&dev_priv->drm, "DDI PHY %d reg %pV [%08x] state mismatch: "
"current %08x, expected %08x (mask %08x)\n",
phy, &vaf, reg.reg, val, (val & ~mask) | expected,
mask);
va_end(args);
return false;
}
bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
enum dpio_phy phy)
{
const struct bxt_ddi_phy_info *phy_info;
u32 mask;
bool ok;
phy_info = bxt_get_phy_info(dev_priv, phy);
#define _CHK(reg, mask, exp, fmt, ...) \
__phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt, \
## __VA_ARGS__)
if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
return false;
ok = true;
/* PLL Rcomp code offset */
ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
"BXT_PORT_CL1CM_DW9(%d)", phy);
ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
"BXT_PORT_CL1CM_DW10(%d)", phy);
/* Power gating */
mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
"BXT_PORT_CL1CM_DW28(%d)", phy);
if (phy_info->dual_channel)
ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
"BXT_PORT_CL2CM_DW6(%d)", phy);
if (phy_info->rcomp_phy != -1) {
u32 grc_code = dev_priv->bxt_phy_grc;
grc_code = grc_code << GRC_CODE_FAST_SHIFT |
grc_code << GRC_CODE_SLOW_SHIFT |
grc_code;
mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
GRC_CODE_NOM_MASK;
ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
"BXT_PORT_REF_DW6(%d)", phy);
mask = GRC_DIS | GRC_RDY_OVRD;
ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
"BXT_PORT_REF_DW8(%d)", phy);
}
return ok;
#undef _CHK
}
u8
bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count)
{
switch (lane_count) {
case 1:
return 0;
case 2:
return BIT(2) | BIT(0);
case 4:
return BIT(3) | BIT(2) | BIT(0);
default:
MISSING_CASE(lane_count);
return 0;
}
}
void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
u8 lane_lat_optim_mask)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = encoder->port;
enum dpio_phy phy;
enum dpio_channel ch;
int lane;
bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
for (lane = 0; lane < 4; lane++) {
u32 val = intel_de_read(dev_priv,
BXT_PORT_TX_DW14_LN(phy, ch, lane));
/*
* Note that on CHV this flag is called UPAR, but has
* the same function.
*/
val &= ~LATENCY_OPTIM;
if (lane_lat_optim_mask & BIT(lane))
val |= LATENCY_OPTIM;
intel_de_write(dev_priv, BXT_PORT_TX_DW14_LN(phy, ch, lane),
val);
}
}
u8
bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = encoder->port;
enum dpio_phy phy;
enum dpio_channel ch;
int lane;
u8 mask;
bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
mask = 0;
for (lane = 0; lane < 4; lane++) {
u32 val = intel_de_read(dev_priv,
BXT_PORT_TX_DW14_LN(phy, ch, lane));
if (val & LATENCY_OPTIM)
mask |= BIT(lane);
}
return mask;
}
void chv_set_phy_signal_level(struct intel_encoder *encoder,
u32 deemph_reg_value, u32 margin_reg_value,
bool uniq_trans_scale)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_digital_port *dport = enc_to_dig_port(encoder);
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
enum dpio_channel ch = vlv_dport_to_channel(dport);
enum pipe pipe = intel_crtc->pipe;
u32 val;
int i;
vlv_dpio_get(dev_priv);
/* Clear calc init */
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
if (intel_crtc->config->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
}
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
if (intel_crtc->config->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
}
/* Program swing deemph */
for (i = 0; i < intel_crtc->config->lane_count; i++) {
val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
val &= ~DPIO_SWING_DEEMPH9P5_MASK;
val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
}
/* Program swing margin */
for (i = 0; i < intel_crtc->config->lane_count; i++) {
val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
val &= ~DPIO_SWING_MARGIN000_MASK;
val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
/*
* Supposedly this value shouldn't matter when unique transition
* scale is disabled, but in fact it does matter. Let's just
* always program the same value and hope it's OK.
*/
val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
}
/*
* The document said it needs to set bit 27 for ch0 and bit 26
* for ch1. Might be a typo in the doc.
* For now, for this unique transition scale selection, set bit
* 27 for ch0 and ch1.
*/
for (i = 0; i < intel_crtc->config->lane_count; i++) {
val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
if (uniq_trans_scale)
val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
else
val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
}
/* Start swing calculation */
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
if (intel_crtc->config->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
}
vlv_dpio_put(dev_priv);
}
void chv_data_lane_soft_reset(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
bool reset)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(encoder));
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum pipe pipe = crtc->pipe;
u32 val;
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
if (reset)
val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
else
val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
if (crtc_state->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
if (reset)
val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
else
val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
}
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
val |= CHV_PCS_REQ_SOFTRESET_EN;
if (reset)
val &= ~DPIO_PCS_CLK_SOFT_RESET;
else
val |= DPIO_PCS_CLK_SOFT_RESET;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
if (crtc_state->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
val |= CHV_PCS_REQ_SOFTRESET_EN;
if (reset)
val &= ~DPIO_PCS_CLK_SOFT_RESET;
else
val |= DPIO_PCS_CLK_SOFT_RESET;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
}
}
void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct intel_digital_port *dport = enc_to_dig_port(encoder);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum dpio_channel ch = vlv_dport_to_channel(dport);
enum pipe pipe = crtc->pipe;
unsigned int lane_mask =
intel_dp_unused_lane_mask(crtc_state->lane_count);
u32 val;
/*
* Must trick the second common lane into life.
* Otherwise we can't even access the PLL.
*/
if (ch == DPIO_CH0 && pipe == PIPE_B)
dport->release_cl2_override =
!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
chv_phy_powergate_lanes(encoder, true, lane_mask);
vlv_dpio_get(dev_priv);
/* Assert data lane reset */
chv_data_lane_soft_reset(encoder, crtc_state, true);
/* program left/right clock distribution */
if (pipe != PIPE_B) {
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
if (ch == DPIO_CH0)
val |= CHV_BUFLEFTENA1_FORCE;
if (ch == DPIO_CH1)
val |= CHV_BUFRIGHTENA1_FORCE;
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
} else {
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
if (ch == DPIO_CH0)
val |= CHV_BUFLEFTENA2_FORCE;
if (ch == DPIO_CH1)
val |= CHV_BUFRIGHTENA2_FORCE;
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
}
/* program clock channel usage */
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
if (pipe != PIPE_B)
val &= ~CHV_PCS_USEDCLKCHANNEL;
else
val |= CHV_PCS_USEDCLKCHANNEL;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
if (crtc_state->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
if (pipe != PIPE_B)
val &= ~CHV_PCS_USEDCLKCHANNEL;
else
val |= CHV_PCS_USEDCLKCHANNEL;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
}
/*
* This a a bit weird since generally CL
* matches the pipe, but here we need to
* pick the CL based on the port.
*/
val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
if (pipe != PIPE_B)
val &= ~CHV_CMN_USEDCLKCHANNEL;
else
val |= CHV_CMN_USEDCLKCHANNEL;
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
vlv_dpio_put(dev_priv);
}
void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum dpio_channel ch = vlv_dport_to_channel(dport);
enum pipe pipe = crtc->pipe;
int data, i, stagger;
u32 val;
vlv_dpio_get(dev_priv);
/* allow hardware to manage TX FIFO reset source */
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
if (crtc_state->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
}
/* Program Tx lane latency optimal setting*/
for (i = 0; i < crtc_state->lane_count; i++) {
/* Set the upar bit */
if (crtc_state->lane_count == 1)
data = 0x0;
else
data = (i == 1) ? 0x0 : 0x1;
vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
data << DPIO_UPAR_SHIFT);
}
/* Data lane stagger programming */
if (crtc_state->port_clock > 270000)
stagger = 0x18;
else if (crtc_state->port_clock > 135000)
stagger = 0xd;
else if (crtc_state->port_clock > 67500)
stagger = 0x7;
else if (crtc_state->port_clock > 33750)
stagger = 0x4;
else
stagger = 0x2;
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
val |= DPIO_TX2_STAGGER_MASK(0x1f);
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
if (crtc_state->lane_count > 2) {
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
val |= DPIO_TX2_STAGGER_MASK(0x1f);
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
}
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
DPIO_LANESTAGGER_STRAP(stagger) |
DPIO_LANESTAGGER_STRAP_OVRD |
DPIO_TX1_STAGGER_MASK(0x1f) |
DPIO_TX1_STAGGER_MULT(6) |
DPIO_TX2_STAGGER_MULT(0));
if (crtc_state->lane_count > 2) {
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
DPIO_LANESTAGGER_STRAP(stagger) |
DPIO_LANESTAGGER_STRAP_OVRD |
DPIO_TX1_STAGGER_MASK(0x1f) |
DPIO_TX1_STAGGER_MULT(7) |
DPIO_TX2_STAGGER_MULT(5));
}
/* Deassert data lane reset */
chv_data_lane_soft_reset(encoder, crtc_state, false);
vlv_dpio_put(dev_priv);
}
void chv_phy_release_cl2_override(struct intel_encoder *encoder)
{
struct intel_digital_port *dport = enc_to_dig_port(encoder);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
if (dport->release_cl2_override) {
chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
dport->release_cl2_override = false;
}
}
void chv_phy_post_pll_disable(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe;
u32 val;
vlv_dpio_get(dev_priv);
/* disable left/right clock distribution */
if (pipe != PIPE_B) {
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
} else {
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
}
vlv_dpio_put(dev_priv);
/*
* Leave the power down bit cleared for at least one
* lane so that chv_powergate_phy_ch() will power
* on something when the channel is otherwise unused.
* When the port is off and the override is removed
* the lanes power down anyway, so otherwise it doesn't
* really matter what the state of power down bits is
* after this.
*/
chv_phy_powergate_lanes(encoder, false, 0x0);
}
void vlv_set_phy_signal_level(struct intel_encoder *encoder,
u32 demph_reg_value, u32 preemph_reg_value,
u32 uniqtranscale_reg_value, u32 tx3_demph)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
struct intel_digital_port *dport = enc_to_dig_port(encoder);
enum dpio_channel port = vlv_dport_to_channel(dport);
enum pipe pipe = intel_crtc->pipe;
vlv_dpio_get(dev_priv);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
uniqtranscale_reg_value);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
if (tx3_demph)
vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), tx3_demph);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
vlv_dpio_put(dev_priv);
}
void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct intel_digital_port *dport = enc_to_dig_port(encoder);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum dpio_channel port = vlv_dport_to_channel(dport);
enum pipe pipe = crtc->pipe;
/* Program Tx lane resets to default */
vlv_dpio_get(dev_priv);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
DPIO_PCS_TX_LANE2_RESET |
DPIO_PCS_TX_LANE1_RESET);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
(1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
DPIO_PCS_CLK_SOFT_RESET);
/* Fix up inter-pair skew failure */
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
vlv_dpio_put(dev_priv);
}
void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum dpio_channel port = vlv_dport_to_channel(dport);
enum pipe pipe = crtc->pipe;
u32 val;
vlv_dpio_get(dev_priv);
/* Enable clock channels for this port */
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
val = 0;
if (pipe)
val |= (1<<21);
else
val &= ~(1<<21);
val |= 0x001000c4;
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
/* Program lane clock */
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
vlv_dpio_put(dev_priv);
}
void vlv_phy_reset_lanes(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state)
{
struct intel_digital_port *dport = enc_to_dig_port(encoder);
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
enum dpio_channel port = vlv_dport_to_channel(dport);
enum pipe pipe = crtc->pipe;
vlv_dpio_get(dev_priv);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
vlv_dpio_put(dev_priv);
}
|