summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/drm_panic_qr.rs
blob: 09500cddc009bb96e6b8373d583db69a2b69dc0d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
// SPDX-License-Identifier: MIT

//! This is a simple QR encoder for DRM panic.
//!
//! It is called from a panic handler, so it should't allocate memory and
//! does all the work on the stack or on the provided buffers. For
//! simplification, it only supports low error correction, and applies the
//! first mask (checkerboard). It will draw the smallest QRcode that can
//! contain the string passed as parameter. To get the most compact
//! QR code, the start of the URL is encoded as binary, and the
//! compressed kmsg is encoded as numeric.
//!
//! The binary data must be a valid URL parameter, so the easiest way is
//! to use base64 encoding. But this wastes 25% of data space, so the
//! whole stack trace won't fit in the QR code. So instead it encodes
//! every 13bits of input into 4 decimal digits, and then uses the
//! efficient numeric encoding, that encode 3 decimal digits into
//! 10bits. This makes 39bits of compressed data into 12 decimal digits,
//! into 40bits in the QR code, so wasting only 2.5%. And the numbers are
//! valid URL parameter, so the website can do the reverse, to get the
//! binary data.
//!
//! Inspired by these 3 projects, all under MIT license:
//!
//! * <https://github.com/kennytm/qrcode-rust>
//! * <https://github.com/erwanvivien/fast_qr>
//! * <https://github.com/bjguillot/qr>

use core::cmp;
use kernel::str::CStr;

#[derive(Debug, Clone, Copy, PartialEq, Eq, Ord, PartialOrd)]
struct Version(usize);

// Generator polynomials for ECC, only those that are needed for low quality.
const P7: [u8; 7] = [87, 229, 146, 149, 238, 102, 21];
const P10: [u8; 10] = [251, 67, 46, 61, 118, 70, 64, 94, 32, 45];
const P15: [u8; 15] = [
    8, 183, 61, 91, 202, 37, 51, 58, 58, 237, 140, 124, 5, 99, 105,
];
const P18: [u8; 18] = [
    215, 234, 158, 94, 184, 97, 118, 170, 79, 187, 152, 148, 252, 179, 5, 98, 96, 153,
];
const P20: [u8; 20] = [
    17, 60, 79, 50, 61, 163, 26, 187, 202, 180, 221, 225, 83, 239, 156, 164, 212, 212, 188, 190,
];
const P22: [u8; 22] = [
    210, 171, 247, 242, 93, 230, 14, 109, 221, 53, 200, 74, 8, 172, 98, 80, 219, 134, 160, 105,
    165, 231,
];
const P24: [u8; 24] = [
    229, 121, 135, 48, 211, 117, 251, 126, 159, 180, 169, 152, 192, 226, 228, 218, 111, 0, 117,
    232, 87, 96, 227, 21,
];
const P26: [u8; 26] = [
    173, 125, 158, 2, 103, 182, 118, 17, 145, 201, 111, 28, 165, 53, 161, 21, 245, 142, 13, 102,
    48, 227, 153, 145, 218, 70,
];
const P28: [u8; 28] = [
    168, 223, 200, 104, 224, 234, 108, 180, 110, 190, 195, 147, 205, 27, 232, 201, 21, 43, 245, 87,
    42, 195, 212, 119, 242, 37, 9, 123,
];
const P30: [u8; 30] = [
    41, 173, 145, 152, 216, 31, 179, 182, 50, 48, 110, 86, 239, 96, 222, 125, 42, 173, 226, 193,
    224, 130, 156, 37, 251, 216, 238, 40, 192, 180,
];

/// QR Code parameters for Low quality ECC:
/// - Error Correction polynomial.
/// - Number of blocks in group 1.
/// - Number of blocks in group 2.
/// - Block size in group 1.
///
/// (Block size in group 2 is one more than group 1).
struct VersionParameter(&'static [u8], u8, u8, u8);
const VPARAM: [VersionParameter; 40] = [
    VersionParameter(&P7, 1, 0, 19),    // V1
    VersionParameter(&P10, 1, 0, 34),   // V2
    VersionParameter(&P15, 1, 0, 55),   // V3
    VersionParameter(&P20, 1, 0, 80),   // V4
    VersionParameter(&P26, 1, 0, 108),  // V5
    VersionParameter(&P18, 2, 0, 68),   // V6
    VersionParameter(&P20, 2, 0, 78),   // V7
    VersionParameter(&P24, 2, 0, 97),   // V8
    VersionParameter(&P30, 2, 0, 116),  // V9
    VersionParameter(&P18, 2, 2, 68),   // V10
    VersionParameter(&P20, 4, 0, 81),   // V11
    VersionParameter(&P24, 2, 2, 92),   // V12
    VersionParameter(&P26, 4, 0, 107),  // V13
    VersionParameter(&P30, 3, 1, 115),  // V14
    VersionParameter(&P22, 5, 1, 87),   // V15
    VersionParameter(&P24, 5, 1, 98),   // V16
    VersionParameter(&P28, 1, 5, 107),  // V17
    VersionParameter(&P30, 5, 1, 120),  // V18
    VersionParameter(&P28, 3, 4, 113),  // V19
    VersionParameter(&P28, 3, 5, 107),  // V20
    VersionParameter(&P28, 4, 4, 116),  // V21
    VersionParameter(&P28, 2, 7, 111),  // V22
    VersionParameter(&P30, 4, 5, 121),  // V23
    VersionParameter(&P30, 6, 4, 117),  // V24
    VersionParameter(&P26, 8, 4, 106),  // V25
    VersionParameter(&P28, 10, 2, 114), // V26
    VersionParameter(&P30, 8, 4, 122),  // V27
    VersionParameter(&P30, 3, 10, 117), // V28
    VersionParameter(&P30, 7, 7, 116),  // V29
    VersionParameter(&P30, 5, 10, 115), // V30
    VersionParameter(&P30, 13, 3, 115), // V31
    VersionParameter(&P30, 17, 0, 115), // V32
    VersionParameter(&P30, 17, 1, 115), // V33
    VersionParameter(&P30, 13, 6, 115), // V34
    VersionParameter(&P30, 12, 7, 121), // V35
    VersionParameter(&P30, 6, 14, 121), // V36
    VersionParameter(&P30, 17, 4, 122), // V37
    VersionParameter(&P30, 4, 18, 122), // V38
    VersionParameter(&P30, 20, 4, 117), // V39
    VersionParameter(&P30, 19, 6, 118), // V40
];

const MAX_EC_SIZE: usize = 30;
const MAX_BLK_SIZE: usize = 123;

/// Position of the alignment pattern grid.
const ALIGNMENT_PATTERNS: [&[u8]; 40] = [
    &[],
    &[6, 18],
    &[6, 22],
    &[6, 26],
    &[6, 30],
    &[6, 34],
    &[6, 22, 38],
    &[6, 24, 42],
    &[6, 26, 46],
    &[6, 28, 50],
    &[6, 30, 54],
    &[6, 32, 58],
    &[6, 34, 62],
    &[6, 26, 46, 66],
    &[6, 26, 48, 70],
    &[6, 26, 50, 74],
    &[6, 30, 54, 78],
    &[6, 30, 56, 82],
    &[6, 30, 58, 86],
    &[6, 34, 62, 90],
    &[6, 28, 50, 72, 94],
    &[6, 26, 50, 74, 98],
    &[6, 30, 54, 78, 102],
    &[6, 28, 54, 80, 106],
    &[6, 32, 58, 84, 110],
    &[6, 30, 58, 86, 114],
    &[6, 34, 62, 90, 118],
    &[6, 26, 50, 74, 98, 122],
    &[6, 30, 54, 78, 102, 126],
    &[6, 26, 52, 78, 104, 130],
    &[6, 30, 56, 82, 108, 134],
    &[6, 34, 60, 86, 112, 138],
    &[6, 30, 58, 86, 114, 142],
    &[6, 34, 62, 90, 118, 146],
    &[6, 30, 54, 78, 102, 126, 150],
    &[6, 24, 50, 76, 102, 128, 154],
    &[6, 28, 54, 80, 106, 132, 158],
    &[6, 32, 58, 84, 110, 136, 162],
    &[6, 26, 54, 82, 110, 138, 166],
    &[6, 30, 58, 86, 114, 142, 170],
];

/// Version information for format V7-V40.
const VERSION_INFORMATION: [u32; 34] = [
    0b00_0111_1100_1001_0100,
    0b00_1000_0101_1011_1100,
    0b00_1001_1010_1001_1001,
    0b00_1010_0100_1101_0011,
    0b00_1011_1011_1111_0110,
    0b00_1100_0111_0110_0010,
    0b00_1101_1000_0100_0111,
    0b00_1110_0110_0000_1101,
    0b00_1111_1001_0010_1000,
    0b01_0000_1011_0111_1000,
    0b01_0001_0100_0101_1101,
    0b01_0010_1010_0001_0111,
    0b01_0011_0101_0011_0010,
    0b01_0100_1001_1010_0110,
    0b01_0101_0110_1000_0011,
    0b01_0110_1000_1100_1001,
    0b01_0111_0111_1110_1100,
    0b01_1000_1110_1100_0100,
    0b01_1001_0001_1110_0001,
    0b01_1010_1111_1010_1011,
    0b01_1011_0000_1000_1110,
    0b01_1100_1100_0001_1010,
    0b01_1101_0011_0011_1111,
    0b01_1110_1101_0111_0101,
    0b01_1111_0010_0101_0000,
    0b10_0000_1001_1101_0101,
    0b10_0001_0110_1111_0000,
    0b10_0010_1000_1011_1010,
    0b10_0011_0111_1001_1111,
    0b10_0100_1011_0000_1011,
    0b10_0101_0100_0010_1110,
    0b10_0110_1010_0110_0100,
    0b10_0111_0101_0100_0001,
    0b10_1000_1100_0110_1001,
];

/// Format info for low quality ECC.
const FORMAT_INFOS_QR_L: [u16; 8] = [
    0x77c4, 0x72f3, 0x7daa, 0x789d, 0x662f, 0x6318, 0x6c41, 0x6976,
];

impl Version {
    /// Returns the smallest QR version than can hold these segments.
    fn from_segments(segments: &[&Segment<'_>]) -> Option<Version> {
        (1..=40)
            .map(Version)
            .find(|&v| v.max_data() * 8 >= segments.iter().map(|s| s.total_size_bits(v)).sum())
    }

    fn width(&self) -> u8 {
        (self.0 as u8) * 4 + 17
    }

    fn max_data(&self) -> usize {
        self.g1_blk_size() * self.g1_blocks() + (self.g1_blk_size() + 1) * self.g2_blocks()
    }

    fn ec_size(&self) -> usize {
        VPARAM[self.0 - 1].0.len()
    }

    fn g1_blocks(&self) -> usize {
        VPARAM[self.0 - 1].1 as usize
    }

    fn g2_blocks(&self) -> usize {
        VPARAM[self.0 - 1].2 as usize
    }

    fn g1_blk_size(&self) -> usize {
        VPARAM[self.0 - 1].3 as usize
    }

    fn alignment_pattern(&self) -> &'static [u8] {
        ALIGNMENT_PATTERNS[self.0 - 1]
    }

    fn poly(&self) -> &'static [u8] {
        VPARAM[self.0 - 1].0
    }

    fn version_info(&self) -> u32 {
        if *self >= Version(7) {
            VERSION_INFORMATION[self.0 - 7]
        } else {
            0
        }
    }
}

/// Exponential table for Galois Field GF(256).
const EXP_TABLE: [u8; 256] = [
    1, 2, 4, 8, 16, 32, 64, 128, 29, 58, 116, 232, 205, 135, 19, 38, 76, 152, 45, 90, 180, 117,
    234, 201, 143, 3, 6, 12, 24, 48, 96, 192, 157, 39, 78, 156, 37, 74, 148, 53, 106, 212, 181,
    119, 238, 193, 159, 35, 70, 140, 5, 10, 20, 40, 80, 160, 93, 186, 105, 210, 185, 111, 222, 161,
    95, 190, 97, 194, 153, 47, 94, 188, 101, 202, 137, 15, 30, 60, 120, 240, 253, 231, 211, 187,
    107, 214, 177, 127, 254, 225, 223, 163, 91, 182, 113, 226, 217, 175, 67, 134, 17, 34, 68, 136,
    13, 26, 52, 104, 208, 189, 103, 206, 129, 31, 62, 124, 248, 237, 199, 147, 59, 118, 236, 197,
    151, 51, 102, 204, 133, 23, 46, 92, 184, 109, 218, 169, 79, 158, 33, 66, 132, 21, 42, 84, 168,
    77, 154, 41, 82, 164, 85, 170, 73, 146, 57, 114, 228, 213, 183, 115, 230, 209, 191, 99, 198,
    145, 63, 126, 252, 229, 215, 179, 123, 246, 241, 255, 227, 219, 171, 75, 150, 49, 98, 196, 149,
    55, 110, 220, 165, 87, 174, 65, 130, 25, 50, 100, 200, 141, 7, 14, 28, 56, 112, 224, 221, 167,
    83, 166, 81, 162, 89, 178, 121, 242, 249, 239, 195, 155, 43, 86, 172, 69, 138, 9, 18, 36, 72,
    144, 61, 122, 244, 245, 247, 243, 251, 235, 203, 139, 11, 22, 44, 88, 176, 125, 250, 233, 207,
    131, 27, 54, 108, 216, 173, 71, 142, 1,
];

/// Reverse exponential table for Galois Field GF(256).
const LOG_TABLE: [u8; 256] = [
    175, 0, 1, 25, 2, 50, 26, 198, 3, 223, 51, 238, 27, 104, 199, 75, 4, 100, 224, 14, 52, 141,
    239, 129, 28, 193, 105, 248, 200, 8, 76, 113, 5, 138, 101, 47, 225, 36, 15, 33, 53, 147, 142,
    218, 240, 18, 130, 69, 29, 181, 194, 125, 106, 39, 249, 185, 201, 154, 9, 120, 77, 228, 114,
    166, 6, 191, 139, 98, 102, 221, 48, 253, 226, 152, 37, 179, 16, 145, 34, 136, 54, 208, 148,
    206, 143, 150, 219, 189, 241, 210, 19, 92, 131, 56, 70, 64, 30, 66, 182, 163, 195, 72, 126,
    110, 107, 58, 40, 84, 250, 133, 186, 61, 202, 94, 155, 159, 10, 21, 121, 43, 78, 212, 229, 172,
    115, 243, 167, 87, 7, 112, 192, 247, 140, 128, 99, 13, 103, 74, 222, 237, 49, 197, 254, 24,
    227, 165, 153, 119, 38, 184, 180, 124, 17, 68, 146, 217, 35, 32, 137, 46, 55, 63, 209, 91, 149,
    188, 207, 205, 144, 135, 151, 178, 220, 252, 190, 97, 242, 86, 211, 171, 20, 42, 93, 158, 132,
    60, 57, 83, 71, 109, 65, 162, 31, 45, 67, 216, 183, 123, 164, 118, 196, 23, 73, 236, 127, 12,
    111, 246, 108, 161, 59, 82, 41, 157, 85, 170, 251, 96, 134, 177, 187, 204, 62, 90, 203, 89, 95,
    176, 156, 169, 160, 81, 11, 245, 22, 235, 122, 117, 44, 215, 79, 174, 213, 233, 230, 231, 173,
    232, 116, 214, 244, 234, 168, 80, 88, 175,
];

// 4 bits segment header.
const MODE_STOP: u16 = 0;
const MODE_NUMERIC: u16 = 1;
const MODE_BINARY: u16 = 4;
/// Padding bytes.
const PADDING: [u8; 2] = [236, 17];

/// Get the next 13 bits of data, starting at specified offset (in bits).
fn get_next_13b(data: &[u8], offset: usize) -> Option<(u16, usize)> {
    if offset < data.len() * 8 {
        let size = cmp::min(13, data.len() * 8 - offset);
        let byte_off = offset / 8;
        let bit_off = offset % 8;
        // `b` is 20 at max (`bit_off` <= 7 and `size` <= 13).
        let b = (bit_off + size) as u16;

        let first_byte = (data[byte_off] << bit_off >> bit_off) as u16;

        let number = match b {
            0..=8 => first_byte >> (8 - b),
            9..=16 => (first_byte << (b - 8)) + (data[byte_off + 1] >> (16 - b)) as u16,
            _ => {
                (first_byte << (b - 8))
                    + ((data[byte_off + 1] as u16) << (b - 16))
                    + (data[byte_off + 2] >> (24 - b)) as u16
            }
        };
        Some((number, size))
    } else {
        None
    }
}

/// Number of bits to encode characters in numeric mode.
const NUM_CHARS_BITS: [usize; 4] = [0, 4, 7, 10];
const POW10: [u16; 4] = [1, 10, 100, 1000];

enum Segment<'a> {
    Numeric(&'a [u8]),
    Binary(&'a [u8]),
}

impl Segment<'_> {
    fn get_header(&self) -> (u16, usize) {
        match self {
            Segment::Binary(_) => (MODE_BINARY, 4),
            Segment::Numeric(_) => (MODE_NUMERIC, 4),
        }
    }

    // Returns the size of the length field in bits, depending on QR Version.
    fn length_bits_count(&self, version: Version) -> usize {
        let Version(v) = version;
        match self {
            Segment::Binary(_) => match v {
                1..=9 => 8,
                _ => 16,
            },
            Segment::Numeric(_) => match v {
                1..=9 => 10,
                10..=26 => 12,
                _ => 14,
            },
        }
    }

    // Number of characters in the segment.
    fn character_count(&self) -> usize {
        match self {
            Segment::Binary(data) => data.len(),
            Segment::Numeric(data) => {
                let data_bits = data.len() * 8;
                let last_chars = match data_bits % 13 {
                    1 => 1,
                    k => (k + 1) / 3,
                };
                // 4 decimal numbers per 13bits + remainder.
                4 * (data_bits / 13) + last_chars
            }
        }
    }

    fn get_length_field(&self, version: Version) -> (u16, usize) {
        (
            self.character_count() as u16,
            self.length_bits_count(version),
        )
    }

    fn total_size_bits(&self, version: Version) -> usize {
        let data_size = match self {
            Segment::Binary(data) => data.len() * 8,
            Segment::Numeric(_) => {
                let digits = self.character_count();
                10 * (digits / 3) + NUM_CHARS_BITS[digits % 3]
            }
        };
        // header + length + data.
        4 + self.length_bits_count(version) + data_size
    }

    fn iter(&self) -> SegmentIterator<'_> {
        SegmentIterator {
            segment: self,
            offset: 0,
            carry: 0,
            carry_len: 0,
        }
    }
}

struct SegmentIterator<'a> {
    segment: &'a Segment<'a>,
    offset: usize,
    carry: u16,
    carry_len: usize,
}

impl Iterator for SegmentIterator<'_> {
    type Item = (u16, usize);

    fn next(&mut self) -> Option<Self::Item> {
        match self.segment {
            Segment::Binary(data) => {
                if self.offset < data.len() {
                    let byte = data[self.offset] as u16;
                    self.offset += 1;
                    Some((byte, 8))
                } else {
                    None
                }
            }
            Segment::Numeric(data) => {
                if self.carry_len == 3 {
                    let out = (self.carry, NUM_CHARS_BITS[self.carry_len]);
                    self.carry_len = 0;
                    self.carry = 0;
                    Some(out)
                } else if let Some((bits, size)) = get_next_13b(data, self.offset) {
                    self.offset += size;
                    let new_chars = match size {
                        1 => 1,
                        k => (k + 1) / 3,
                    };
                    if self.carry_len + new_chars > 3 {
                        self.carry_len = new_chars + self.carry_len - 3;
                        let out = (
                            self.carry * POW10[new_chars - self.carry_len]
                                + bits / POW10[self.carry_len],
                            NUM_CHARS_BITS[3],
                        );
                        self.carry = bits % POW10[self.carry_len];
                        Some(out)
                    } else {
                        let out = (
                            self.carry * POW10[new_chars] + bits,
                            NUM_CHARS_BITS[self.carry_len + new_chars],
                        );
                        self.carry_len = 0;
                        Some(out)
                    }
                } else if self.carry_len > 0 {
                    let out = (self.carry, NUM_CHARS_BITS[self.carry_len]);
                    self.carry_len = 0;
                    Some(out)
                } else {
                    None
                }
            }
        }
    }
}

struct EncodedMsg<'a> {
    data: &'a mut [u8],
    ec_size: usize,
    g1_blocks: usize,
    g2_blocks: usize,
    g1_blk_size: usize,
    g2_blk_size: usize,
    poly: &'static [u8],
    version: Version,
}

/// Data to be put in the QR code, with correct segment encoding, padding, and
/// Error Code Correction.
impl EncodedMsg<'_> {
    fn new<'a>(segments: &[&Segment<'_>], data: &'a mut [u8]) -> Option<EncodedMsg<'a>> {
        let version = Version::from_segments(segments)?;
        let ec_size = version.ec_size();
        let g1_blocks = version.g1_blocks();
        let g2_blocks = version.g2_blocks();
        let g1_blk_size = version.g1_blk_size();
        let g2_blk_size = g1_blk_size + 1;
        let poly = version.poly();

        // clear the output.
        data.fill(0);

        let mut em = EncodedMsg {
            data,
            ec_size,
            g1_blocks,
            g2_blocks,
            g1_blk_size,
            g2_blk_size,
            poly,
            version,
        };
        em.encode(segments);
        Some(em)
    }

    /// Push bits of data at an offset (in bits).
    fn push(&mut self, offset: &mut usize, bits: (u16, usize)) {
        let (number, len_bits) = bits;
        let byte_off = *offset / 8;
        let bit_off = *offset % 8;
        let b = bit_off + len_bits;

        match (bit_off, b) {
            (0, 0..=8) => {
                self.data[byte_off] = (number << (8 - b)) as u8;
            }
            (0, _) => {
                self.data[byte_off] = (number >> (b - 8)) as u8;
                self.data[byte_off + 1] = (number << (16 - b)) as u8;
            }
            (_, 0..=8) => {
                self.data[byte_off] |= (number << (8 - b)) as u8;
            }
            (_, 9..=16) => {
                self.data[byte_off] |= (number >> (b - 8)) as u8;
                self.data[byte_off + 1] = (number << (16 - b)) as u8;
            }
            _ => {
                self.data[byte_off] |= (number >> (b - 8)) as u8;
                self.data[byte_off + 1] = (number >> (b - 16)) as u8;
                self.data[byte_off + 2] = (number << (24 - b)) as u8;
            }
        }
        *offset += len_bits;
    }

    fn add_segments(&mut self, segments: &[&Segment<'_>]) {
        let mut offset: usize = 0;

        for s in segments.iter() {
            self.push(&mut offset, s.get_header());
            self.push(&mut offset, s.get_length_field(self.version));
            for bits in s.iter() {
                self.push(&mut offset, bits);
            }
        }
        self.push(&mut offset, (MODE_STOP, 4));

        let pad_offset = (offset + 7) / 8;
        for i in pad_offset..self.version.max_data() {
            self.data[i] = PADDING[(i & 1) ^ (pad_offset & 1)];
        }
    }

    fn error_code_for_blocks(&mut self, offset: usize, size: usize, ec_offset: usize) {
        let mut tmp: [u8; MAX_BLK_SIZE + MAX_EC_SIZE] = [0; MAX_BLK_SIZE + MAX_EC_SIZE];

        tmp[0..size].copy_from_slice(&self.data[offset..offset + size]);
        for i in 0..size {
            let lead_coeff = tmp[i] as usize;
            if lead_coeff == 0 {
                continue;
            }
            let log_lead_coeff = usize::from(LOG_TABLE[lead_coeff]);
            for (u, &v) in tmp[i + 1..].iter_mut().zip(self.poly.iter()) {
                *u ^= EXP_TABLE[(usize::from(v) + log_lead_coeff) % 255];
            }
        }
        self.data[ec_offset..ec_offset + self.ec_size]
            .copy_from_slice(&tmp[size..size + self.ec_size]);
    }

    fn compute_error_code(&mut self) {
        let mut offset = 0;
        let mut ec_offset = self.g1_blocks * self.g1_blk_size + self.g2_blocks * self.g2_blk_size;

        for _ in 0..self.g1_blocks {
            self.error_code_for_blocks(offset, self.g1_blk_size, ec_offset);
            offset += self.g1_blk_size;
            ec_offset += self.ec_size;
        }
        for _ in 0..self.g2_blocks {
            self.error_code_for_blocks(offset, self.g2_blk_size, ec_offset);
            offset += self.g2_blk_size;
            ec_offset += self.ec_size;
        }
    }

    fn encode(&mut self, segments: &[&Segment<'_>]) {
        self.add_segments(segments);
        self.compute_error_code();
    }

    fn iter(&self) -> EncodedMsgIterator<'_> {
        EncodedMsgIterator {
            em: self,
            offset: 0,
        }
    }
}

/// Iterator, to retrieve the data in the interleaved order needed by QR code.
struct EncodedMsgIterator<'a> {
    em: &'a EncodedMsg<'a>,
    offset: usize,
}

impl Iterator for EncodedMsgIterator<'_> {
    type Item = u8;

    // Send the bytes in interleaved mode, first byte of first block of group1,
    // then first byte of second block of group1, ...
    fn next(&mut self) -> Option<Self::Item> {
        let em = self.em;
        let blocks = em.g1_blocks + em.g2_blocks;
        let g1_end = em.g1_blocks * em.g1_blk_size;
        let g2_end = g1_end + em.g2_blocks * em.g2_blk_size;
        let ec_end = g2_end + em.ec_size * blocks;

        if self.offset >= ec_end {
            return None;
        }

        let offset = if self.offset < em.g1_blk_size * blocks {
            // group1 and group2 interleaved
            let blk = self.offset % blocks;
            let blk_off = self.offset / blocks;
            if blk < em.g1_blocks {
                blk * em.g1_blk_size + blk_off
            } else {
                g1_end + em.g2_blk_size * (blk - em.g1_blocks) + blk_off
            }
        } else if self.offset < g2_end {
            // last byte of group2 blocks
            let blk2 = self.offset - blocks * em.g1_blk_size;
            em.g1_blk_size * em.g1_blocks + blk2 * em.g2_blk_size + em.g2_blk_size - 1
        } else {
            // EC blocks
            let ec_offset = self.offset - g2_end;
            let blk = ec_offset % blocks;
            let blk_off = ec_offset / blocks;

            g2_end + blk * em.ec_size + blk_off
        };
        self.offset += 1;
        Some(em.data[offset])
    }
}

/// A QR code image, encoded as a linear binary framebuffer.
/// 1 bit per module (pixel), each new line start at next byte boundary.
/// Max width is 177 for V40 QR code, so `u8` is enough for coordinate.
struct QrImage<'a> {
    data: &'a mut [u8],
    width: u8,
    stride: u8,
    version: Version,
}

impl QrImage<'_> {
    fn new<'a, 'b>(em: &'b EncodedMsg<'b>, qrdata: &'a mut [u8]) -> QrImage<'a> {
        let width = em.version.width();
        let stride = (width + 7) / 8;
        let data = qrdata;

        let mut qr_image = QrImage {
            data,
            width,
            stride,
            version: em.version,
        };
        qr_image.draw_all(em.iter());
        qr_image
    }

    fn clear(&mut self) {
        self.data.fill(0);
    }

    // Set pixel to light color.
    fn set(&mut self, x: u8, y: u8) {
        let off = y as usize * self.stride as usize + x as usize / 8;
        let mut v = self.data[off];
        v |= 0x80 >> (x % 8);
        self.data[off] = v;
    }

    // Invert a module color.
    fn xor(&mut self, x: u8, y: u8) {
        let off = y as usize * self.stride as usize + x as usize / 8;
        self.data[off] ^= 0x80 >> (x % 8);
    }

    // Draw a light square at (x, y) top left corner.
    fn draw_square(&mut self, x: u8, y: u8, size: u8) {
        for k in 0..size {
            self.set(x + k, y);
            self.set(x, y + k + 1);
            self.set(x + size, y + k);
            self.set(x + k + 1, y + size);
        }
    }

    // Finder pattern: 3 8x8 square at the corners.
    fn draw_finders(&mut self) {
        self.draw_square(1, 1, 4);
        self.draw_square(self.width - 6, 1, 4);
        self.draw_square(1, self.width - 6, 4);
        for k in 0..8 {
            self.set(k, 7);
            self.set(self.width - k - 1, 7);
            self.set(k, self.width - 8);
        }
        for k in 0..7 {
            self.set(7, k);
            self.set(self.width - 8, k);
            self.set(7, self.width - 1 - k);
        }
    }

    fn is_finder(&self, x: u8, y: u8) -> bool {
        let end = self.width - 8;
        #[expect(clippy::nonminimal_bool)]
        {
            (x < 8 && y < 8) || (x < 8 && y >= end) || (x >= end && y < 8)
        }
    }

    // Alignment pattern: 5x5 squares in a grid.
    fn draw_alignments(&mut self) {
        let positions = self.version.alignment_pattern();
        for &x in positions.iter() {
            for &y in positions.iter() {
                if !self.is_finder(x, y) {
                    self.draw_square(x - 1, y - 1, 2);
                }
            }
        }
    }

    fn is_alignment(&self, x: u8, y: u8) -> bool {
        let positions = self.version.alignment_pattern();
        for &ax in positions.iter() {
            for &ay in positions.iter() {
                if self.is_finder(ax, ay) {
                    continue;
                }
                if x >= ax - 2 && x <= ax + 2 && y >= ay - 2 && y <= ay + 2 {
                    return true;
                }
            }
        }
        false
    }

    // Timing pattern: 2 dotted line between the finder patterns.
    fn draw_timing_patterns(&mut self) {
        let end = self.width - 8;

        for x in (9..end).step_by(2) {
            self.set(x, 6);
            self.set(6, x);
        }
    }

    fn is_timing(&self, x: u8, y: u8) -> bool {
        x == 6 || y == 6
    }

    // Mask info: 15 bits around the finders, written twice for redundancy.
    fn draw_maskinfo(&mut self) {
        let info: u16 = FORMAT_INFOS_QR_L[0];
        let mut skip = 0;

        for k in 0..7 {
            if k == 6 {
                skip = 1;
            }
            if info & (1 << (14 - k)) == 0 {
                self.set(k + skip, 8);
                self.set(8, self.width - 1 - k);
            }
        }
        skip = 0;
        for k in 0..8 {
            if k == 2 {
                skip = 1;
            }
            if info & (1 << (7 - k)) == 0 {
                self.set(8, 8 - skip - k);
                self.set(self.width - 8 + k, 8);
            }
        }
    }

    fn is_maskinfo(&self, x: u8, y: u8) -> bool {
        let end = self.width - 8;
        // Count the dark module as mask info.
        (x <= 8 && y == 8) || (y <= 8 && x == 8) || (x == 8 && y >= end) || (x >= end && y == 8)
    }

    // Version info: 18bits written twice, close to the finders.
    fn draw_version_info(&mut self) {
        let vinfo = self.version.version_info();
        let pos = self.width - 11;

        if vinfo != 0 {
            for x in 0..3 {
                for y in 0..6 {
                    if vinfo & (1 << (x + y * 3)) == 0 {
                        self.set(x + pos, y);
                        self.set(y, x + pos);
                    }
                }
            }
        }
    }

    fn is_version_info(&self, x: u8, y: u8) -> bool {
        let vinfo = self.version.version_info();
        let pos = self.width - 11;

        vinfo != 0 && ((x >= pos && x < pos + 3 && y < 6) || (y >= pos && y < pos + 3 && x < 6))
    }

    // Returns true if the module is reserved (Not usable for data and EC).
    fn is_reserved(&self, x: u8, y: u8) -> bool {
        self.is_alignment(x, y)
            || self.is_finder(x, y)
            || self.is_timing(x, y)
            || self.is_maskinfo(x, y)
            || self.is_version_info(x, y)
    }

    // Last module to draw, at bottom left corner.
    fn is_last(&self, x: u8, y: u8) -> bool {
        x == 0 && y == self.width - 1
    }

    // Move to the next module according to QR code order.
    // From bottom right corner, to bottom left corner.
    fn next(&self, x: u8, y: u8) -> (u8, u8) {
        let x_adj = if x <= 6 { x + 1 } else { x };
        let column_type = (self.width - x_adj) % 4;

        match column_type {
            2 if y > 0 => (x + 1, y - 1),
            0 if y < self.width - 1 => (x + 1, y + 1),
            0 | 2 if x == 7 => (x - 2, y),
            _ => (x - 1, y),
        }
    }

    // Find next module that can hold data.
    fn next_available(&self, x: u8, y: u8) -> (u8, u8) {
        let (mut x, mut y) = self.next(x, y);
        while self.is_reserved(x, y) && !self.is_last(x, y) {
            (x, y) = self.next(x, y);
        }
        (x, y)
    }

    fn draw_data(&mut self, data: impl Iterator<Item = u8>) {
        let (mut x, mut y) = (self.width - 1, self.width - 1);
        for byte in data {
            for s in 0..8 {
                if byte & (0x80 >> s) == 0 {
                    self.set(x, y);
                }
                (x, y) = self.next_available(x, y);
            }
        }
        // Set the remaining modules (0, 3 or 7 depending on version).
        // because 0 correspond to a light module.
        while !self.is_last(x, y) {
            if !self.is_reserved(x, y) {
                self.set(x, y);
            }
            (x, y) = self.next(x, y);
        }
    }

    // Apply checkerboard mask to all non-reserved modules.
    fn apply_mask(&mut self) {
        for x in 0..self.width {
            for y in 0..self.width {
                if (x ^ y) % 2 == 0 && !self.is_reserved(x, y) {
                    self.xor(x, y);
                }
            }
        }
    }

    // Draw the QR code with the provided data iterator.
    fn draw_all(&mut self, data: impl Iterator<Item = u8>) {
        // First clear the table, as it may have already some data.
        self.clear();
        self.draw_finders();
        self.draw_alignments();
        self.draw_timing_patterns();
        self.draw_version_info();
        self.draw_data(data);
        self.draw_maskinfo();
        self.apply_mask();
    }
}

/// C entry point for the rust QR Code generator.
///
/// Write the QR code image in the data buffer, and return the QR code width,
/// or 0, if the data doesn't fit in a QR code.
///
/// * `url`: The base URL of the QR code. It will be encoded as Binary segment.
/// * `data`: A pointer to the binary data, to be encoded. if URL is NULL, it
///    will be encoded as binary segment, otherwise it will be encoded
///    efficiently as a numeric segment, and appended to the URL.
/// * `data_len`: Length of the data, that needs to be encoded, must be less
///    than data_size.
/// * `data_size`: Size of data buffer, it should be at least 4071 bytes to hold
///    a V40 QR code. It will then be overwritten with the QR code image.
/// * `tmp`: A temporary buffer that the QR code encoder will use, to write the
///    segments and ECC.
/// * `tmp_size`: Size of the temporary buffer, it must be at least 3706 bytes
///    long for V40.
///
/// # Safety
///
/// * `url` must be null or point at a nul-terminated string.
/// * `data` must be valid for reading and writing for `data_size` bytes.
/// * `tmp` must be valid for reading and writing for `tmp_size` bytes.
///
/// They must remain valid for the duration of the function call.

#[no_mangle]
pub unsafe extern "C" fn drm_panic_qr_generate(
    url: *const i8,
    data: *mut u8,
    data_len: usize,
    data_size: usize,
    tmp: *mut u8,
    tmp_size: usize,
) -> u8 {
    if data_size < 4071 || tmp_size < 3706 || data_len > data_size {
        return 0;
    }
    // SAFETY: The caller ensures that `data` is a valid pointer for reading and
    // writing `data_size` bytes.
    let data_slice: &mut [u8] = unsafe { core::slice::from_raw_parts_mut(data, data_size) };
    // SAFETY: The caller ensures that `tmp` is a valid pointer for reading and
    // writing `tmp_size` bytes.
    let tmp_slice: &mut [u8] = unsafe { core::slice::from_raw_parts_mut(tmp, tmp_size) };
    if url.is_null() {
        match EncodedMsg::new(&[&Segment::Binary(&data_slice[0..data_len])], tmp_slice) {
            None => 0,
            Some(em) => {
                let qr_image = QrImage::new(&em, data_slice);
                qr_image.width
            }
        }
    } else {
        // SAFETY: The caller ensures that `url` is a valid pointer to a
        // nul-terminated string.
        let url_cstr: &CStr = unsafe { CStr::from_char_ptr(url) };
        let segments = &[
            &Segment::Binary(url_cstr.as_bytes()),
            &Segment::Numeric(&data_slice[0..data_len]),
        ];
        match EncodedMsg::new(segments, tmp_slice) {
            None => 0,
            Some(em) => {
                let qr_image = QrImage::new(&em, data_slice);
                qr_image.width
            }
        }
    }
}

/// Returns the maximum data size that can fit in a QR code of this version.
/// * `version`: QR code version, between 1-40.
/// * `url_len`: Length of the URL.
///
/// * If `url_len` > 0, remove the 2 segments header/length and also count the
///   conversion to numeric segments.
/// * If `url_len` = 0, only removes 3 bytes for 1 binary segment.
#[no_mangle]
pub extern "C" fn drm_panic_qr_max_data_size(version: u8, url_len: usize) -> usize {
    #[expect(clippy::manual_range_contains)]
    if version < 1 || version > 40 {
        return 0;
    }
    let max_data = Version(version as usize).max_data();

    if url_len > 0 {
        // Binary segment (URL) 4 + 16 bits, numeric segment (kmsg) 4 + 12 bits => 5 bytes.
        if url_len + 5 >= max_data {
            0
        } else {
            let max = max_data - url_len - 5;
            (max * 39) / 40
        }
    } else {
        // Remove 3 bytes for the binary segment (header 4 bits, length 16 bits, stop 4bits).
        max_data - 3
    }
}