1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
|
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "include/fixed31_32.h"
static inline uint64_t abs_i64(
int64_t arg)
{
if (arg > 0)
return (uint64_t)arg;
else
return (uint64_t)(-arg);
}
/*
* @brief
* result = dividend / divisor
* *remainder = dividend % divisor
*/
static inline uint64_t complete_integer_division_u64(
uint64_t dividend,
uint64_t divisor,
uint64_t *remainder)
{
uint64_t result;
ASSERT(divisor);
result = div64_u64_rem(dividend, divisor, remainder);
return result;
}
#define FRACTIONAL_PART_MASK \
((1ULL << FIXED31_32_BITS_PER_FRACTIONAL_PART) - 1)
#define GET_INTEGER_PART(x) \
((x) >> FIXED31_32_BITS_PER_FRACTIONAL_PART)
#define GET_FRACTIONAL_PART(x) \
(FRACTIONAL_PART_MASK & (x))
struct fixed31_32 dal_fixed31_32_from_fraction(
int64_t numerator,
int64_t denominator)
{
struct fixed31_32 res;
bool arg1_negative = numerator < 0;
bool arg2_negative = denominator < 0;
uint64_t arg1_value = arg1_negative ? -numerator : numerator;
uint64_t arg2_value = arg2_negative ? -denominator : denominator;
uint64_t remainder;
/* determine integer part */
uint64_t res_value = complete_integer_division_u64(
arg1_value, arg2_value, &remainder);
ASSERT(res_value <= LONG_MAX);
/* determine fractional part */
{
uint32_t i = FIXED31_32_BITS_PER_FRACTIONAL_PART;
do {
remainder <<= 1;
res_value <<= 1;
if (remainder >= arg2_value) {
res_value |= 1;
remainder -= arg2_value;
}
} while (--i != 0);
}
/* round up LSB */
{
uint64_t summand = (remainder << 1) >= arg2_value;
ASSERT(res_value <= LLONG_MAX - summand);
res_value += summand;
}
res.value = (int64_t)res_value;
if (arg1_negative ^ arg2_negative)
res.value = -res.value;
return res;
}
struct fixed31_32 dal_fixed31_32_from_int_nonconst(
int64_t arg)
{
struct fixed31_32 res;
ASSERT((LONG_MIN <= arg) && (arg <= LONG_MAX));
res.value = arg << FIXED31_32_BITS_PER_FRACTIONAL_PART;
return res;
}
struct fixed31_32 dal_fixed31_32_shl(
struct fixed31_32 arg,
uint8_t shift)
{
struct fixed31_32 res;
ASSERT(((arg.value >= 0) && (arg.value <= LLONG_MAX >> shift)) ||
((arg.value < 0) && (arg.value >= LLONG_MIN >> shift)));
res.value = arg.value << shift;
return res;
}
struct fixed31_32 dal_fixed31_32_add(
struct fixed31_32 arg1,
struct fixed31_32 arg2)
{
struct fixed31_32 res;
ASSERT(((arg1.value >= 0) && (LLONG_MAX - arg1.value >= arg2.value)) ||
((arg1.value < 0) && (LLONG_MIN - arg1.value <= arg2.value)));
res.value = arg1.value + arg2.value;
return res;
}
struct fixed31_32 dal_fixed31_32_sub(
struct fixed31_32 arg1,
struct fixed31_32 arg2)
{
struct fixed31_32 res;
ASSERT(((arg2.value >= 0) && (LLONG_MIN + arg2.value <= arg1.value)) ||
((arg2.value < 0) && (LLONG_MAX + arg2.value >= arg1.value)));
res.value = arg1.value - arg2.value;
return res;
}
struct fixed31_32 dal_fixed31_32_mul(
struct fixed31_32 arg1,
struct fixed31_32 arg2)
{
struct fixed31_32 res;
bool arg1_negative = arg1.value < 0;
bool arg2_negative = arg2.value < 0;
uint64_t arg1_value = arg1_negative ? -arg1.value : arg1.value;
uint64_t arg2_value = arg2_negative ? -arg2.value : arg2.value;
uint64_t arg1_int = GET_INTEGER_PART(arg1_value);
uint64_t arg2_int = GET_INTEGER_PART(arg2_value);
uint64_t arg1_fra = GET_FRACTIONAL_PART(arg1_value);
uint64_t arg2_fra = GET_FRACTIONAL_PART(arg2_value);
uint64_t tmp;
res.value = arg1_int * arg2_int;
ASSERT(res.value <= LONG_MAX);
res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
tmp = arg1_int * arg2_fra;
ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value));
res.value += tmp;
tmp = arg2_int * arg1_fra;
ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value));
res.value += tmp;
tmp = arg1_fra * arg2_fra;
tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
(tmp >= (uint64_t)dal_fixed31_32_half.value);
ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value));
res.value += tmp;
if (arg1_negative ^ arg2_negative)
res.value = -res.value;
return res;
}
struct fixed31_32 dal_fixed31_32_sqr(
struct fixed31_32 arg)
{
struct fixed31_32 res;
uint64_t arg_value = abs_i64(arg.value);
uint64_t arg_int = GET_INTEGER_PART(arg_value);
uint64_t arg_fra = GET_FRACTIONAL_PART(arg_value);
uint64_t tmp;
res.value = arg_int * arg_int;
ASSERT(res.value <= LONG_MAX);
res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
tmp = arg_int * arg_fra;
ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value));
res.value += tmp;
ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value));
res.value += tmp;
tmp = arg_fra * arg_fra;
tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
(tmp >= (uint64_t)dal_fixed31_32_half.value);
ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value));
res.value += tmp;
return res;
}
struct fixed31_32 dal_fixed31_32_recip(
struct fixed31_32 arg)
{
/*
* @note
* Good idea to use Newton's method
*/
ASSERT(arg.value);
return dal_fixed31_32_from_fraction(
dal_fixed31_32_one.value,
arg.value);
}
struct fixed31_32 dal_fixed31_32_sinc(
struct fixed31_32 arg)
{
struct fixed31_32 square;
struct fixed31_32 res = dal_fixed31_32_one;
int32_t n = 27;
struct fixed31_32 arg_norm = arg;
if (dal_fixed31_32_le(
dal_fixed31_32_two_pi,
dal_fixed31_32_abs(arg))) {
arg_norm = dal_fixed31_32_sub(
arg_norm,
dal_fixed31_32_mul_int(
dal_fixed31_32_two_pi,
(int32_t)div64_s64(
arg_norm.value,
dal_fixed31_32_two_pi.value)));
}
square = dal_fixed31_32_sqr(arg_norm);
do {
res = dal_fixed31_32_sub(
dal_fixed31_32_one,
dal_fixed31_32_div_int(
dal_fixed31_32_mul(
square,
res),
n * (n - 1)));
n -= 2;
} while (n > 2);
if (arg.value != arg_norm.value)
res = dal_fixed31_32_div(
dal_fixed31_32_mul(res, arg_norm),
arg);
return res;
}
struct fixed31_32 dal_fixed31_32_sin(
struct fixed31_32 arg)
{
return dal_fixed31_32_mul(
arg,
dal_fixed31_32_sinc(arg));
}
struct fixed31_32 dal_fixed31_32_cos(
struct fixed31_32 arg)
{
/* TODO implement argument normalization */
const struct fixed31_32 square = dal_fixed31_32_sqr(arg);
struct fixed31_32 res = dal_fixed31_32_one;
int32_t n = 26;
do {
res = dal_fixed31_32_sub(
dal_fixed31_32_one,
dal_fixed31_32_div_int(
dal_fixed31_32_mul(
square,
res),
n * (n - 1)));
n -= 2;
} while (n != 0);
return res;
}
/*
* @brief
* result = exp(arg),
* where abs(arg) < 1
*
* Calculated as Taylor series.
*/
static struct fixed31_32 fixed31_32_exp_from_taylor_series(
struct fixed31_32 arg)
{
uint32_t n = 9;
struct fixed31_32 res = dal_fixed31_32_from_fraction(
n + 2,
n + 1);
/* TODO find correct res */
ASSERT(dal_fixed31_32_lt(arg, dal_fixed31_32_one));
do
res = dal_fixed31_32_add(
dal_fixed31_32_one,
dal_fixed31_32_div_int(
dal_fixed31_32_mul(
arg,
res),
n));
while (--n != 1);
return dal_fixed31_32_add(
dal_fixed31_32_one,
dal_fixed31_32_mul(
arg,
res));
}
struct fixed31_32 dal_fixed31_32_exp(
struct fixed31_32 arg)
{
/*
* @brief
* Main equation is:
* exp(x) = exp(r + m * ln(2)) = (1 << m) * exp(r),
* where m = round(x / ln(2)), r = x - m * ln(2)
*/
if (dal_fixed31_32_le(
dal_fixed31_32_ln2_div_2,
dal_fixed31_32_abs(arg))) {
int32_t m = dal_fixed31_32_round(
dal_fixed31_32_div(
arg,
dal_fixed31_32_ln2));
struct fixed31_32 r = dal_fixed31_32_sub(
arg,
dal_fixed31_32_mul_int(
dal_fixed31_32_ln2,
m));
ASSERT(m != 0);
ASSERT(dal_fixed31_32_lt(
dal_fixed31_32_abs(r),
dal_fixed31_32_one));
if (m > 0)
return dal_fixed31_32_shl(
fixed31_32_exp_from_taylor_series(r),
(uint8_t)m);
else
return dal_fixed31_32_div_int(
fixed31_32_exp_from_taylor_series(r),
1LL << -m);
} else if (arg.value != 0)
return fixed31_32_exp_from_taylor_series(arg);
else
return dal_fixed31_32_one;
}
struct fixed31_32 dal_fixed31_32_log(
struct fixed31_32 arg)
{
struct fixed31_32 res = dal_fixed31_32_neg(dal_fixed31_32_one);
/* TODO improve 1st estimation */
struct fixed31_32 error;
ASSERT(arg.value > 0);
/* TODO if arg is negative, return NaN */
/* TODO if arg is zero, return -INF */
do {
struct fixed31_32 res1 = dal_fixed31_32_add(
dal_fixed31_32_sub(
res,
dal_fixed31_32_one),
dal_fixed31_32_div(
arg,
dal_fixed31_32_exp(res)));
error = dal_fixed31_32_sub(
res,
res1);
res = res1;
/* TODO determine max_allowed_error based on quality of exp() */
} while (abs_i64(error.value) > 100ULL);
return res;
}
struct fixed31_32 dal_fixed31_32_pow(
struct fixed31_32 arg1,
struct fixed31_32 arg2)
{
return dal_fixed31_32_exp(
dal_fixed31_32_mul(
dal_fixed31_32_log(arg1),
arg2));
}
int32_t dal_fixed31_32_floor(
struct fixed31_32 arg)
{
uint64_t arg_value = abs_i64(arg.value);
if (arg.value >= 0)
return (int32_t)GET_INTEGER_PART(arg_value);
else
return -(int32_t)GET_INTEGER_PART(arg_value);
}
int32_t dal_fixed31_32_round(
struct fixed31_32 arg)
{
uint64_t arg_value = abs_i64(arg.value);
const int64_t summand = dal_fixed31_32_half.value;
ASSERT(LLONG_MAX - (int64_t)arg_value >= summand);
arg_value += summand;
if (arg.value >= 0)
return (int32_t)GET_INTEGER_PART(arg_value);
else
return -(int32_t)GET_INTEGER_PART(arg_value);
}
int32_t dal_fixed31_32_ceil(
struct fixed31_32 arg)
{
uint64_t arg_value = abs_i64(arg.value);
const int64_t summand = dal_fixed31_32_one.value -
dal_fixed31_32_epsilon.value;
ASSERT(LLONG_MAX - (int64_t)arg_value >= summand);
arg_value += summand;
if (arg.value >= 0)
return (int32_t)GET_INTEGER_PART(arg_value);
else
return -(int32_t)GET_INTEGER_PART(arg_value);
}
/* this function is a generic helper to translate fixed point value to
* specified integer format that will consist of integer_bits integer part and
* fractional_bits fractional part. For example it is used in
* dal_fixed31_32_u2d19 to receive 2 bits integer part and 19 bits fractional
* part in 32 bits. It is used in hw programming (scaler)
*/
static inline uint32_t ux_dy(
int64_t value,
uint32_t integer_bits,
uint32_t fractional_bits)
{
/* 1. create mask of integer part */
uint32_t result = (1 << integer_bits) - 1;
/* 2. mask out fractional part */
uint32_t fractional_part = FRACTIONAL_PART_MASK & value;
/* 3. shrink fixed point integer part to be of integer_bits width*/
result &= GET_INTEGER_PART(value);
/* 4. make space for fractional part to be filled in after integer */
result <<= fractional_bits;
/* 5. shrink fixed point fractional part to of fractional_bits width*/
fractional_part >>= FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits;
/* 6. merge the result */
return result | fractional_part;
}
static inline uint32_t clamp_ux_dy(
int64_t value,
uint32_t integer_bits,
uint32_t fractional_bits,
uint32_t min_clamp)
{
uint32_t truncated_val = ux_dy(value, integer_bits, fractional_bits);
if (value >= (1LL << (integer_bits + FIXED31_32_BITS_PER_FRACTIONAL_PART)))
return (1 << (integer_bits + fractional_bits)) - 1;
else if (truncated_val > min_clamp)
return truncated_val;
else
return min_clamp;
}
uint32_t dal_fixed31_32_u2d19(
struct fixed31_32 arg)
{
return ux_dy(arg.value, 2, 19);
}
uint32_t dal_fixed31_32_u0d19(
struct fixed31_32 arg)
{
return ux_dy(arg.value, 0, 19);
}
uint32_t dal_fixed31_32_clamp_u0d14(
struct fixed31_32 arg)
{
return clamp_ux_dy(arg.value, 0, 14, 1);
}
uint32_t dal_fixed31_32_clamp_u0d10(
struct fixed31_32 arg)
{
return clamp_ux_dy(arg.value, 0, 10, 1);
}
|