summaryrefslogtreecommitdiff
path: root/drivers/dma/at_hdmac.c
blob: fb89ecbf0cc5be8ca566eaac6e499f2e2336b625 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
 *
 * Copyright (C) 2008 Atmel Corporation
 * Copyright (C) 2022 Microchip Technology, Inc. and its subsidiaries
 *
 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
 * The only Atmel DMA Controller that is not covered by this driver is the one
 * found on AT91SAM9263.
 */

#include <dt-bindings/dma/at91.h>
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/overflow.h>
#include <linux/of_platform.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/slab.h>

#include "dmaengine.h"
#include "virt-dma.h"

/*
 * Glossary
 * --------
 *
 * at_hdmac		: Name of the ATmel AHB DMA Controller
 * at_dma_ / atdma	: ATmel DMA controller entity related
 * atc_	/ atchan	: ATmel DMA Channel entity related
 */

#define	AT_DMA_MAX_NR_CHANNELS	8

/* Global Configuration Register */
#define AT_DMA_GCFG		0x00
#define AT_DMA_IF_BIGEND(i)	BIT((i))	/* AHB-Lite Interface i in Big-endian mode */
#define AT_DMA_ARB_CFG		BIT(4)		/* Arbiter mode. */

/* Controller Enable Register */
#define AT_DMA_EN		0x04
#define AT_DMA_ENABLE		BIT(0)

/* Software Single Request Register */
#define AT_DMA_SREQ		0x08
#define AT_DMA_SSREQ(x)		BIT((x) << 1)		/* Request a source single transfer on channel x */
#define AT_DMA_DSREQ(x)		BIT(1 + ((x) << 1))	/* Request a destination single transfer on channel x */

/* Software Chunk Transfer Request Register */
#define AT_DMA_CREQ		0x0c
#define AT_DMA_SCREQ(x)		BIT((x) << 1)		/* Request a source chunk transfer on channel x */
#define AT_DMA_DCREQ(x)		BIT(1 + ((x) << 1))	/* Request a destination chunk transfer on channel x */

/* Software Last Transfer Flag Register */
#define AT_DMA_LAST		0x10
#define AT_DMA_SLAST(x)		BIT((x) << 1)		/* This src rq is last tx of buffer on channel x */
#define AT_DMA_DLAST(x)		BIT(1 + ((x) << 1))	/* This dst rq is last tx of buffer on channel x */

/* Request Synchronization Register */
#define AT_DMA_SYNC		0x14
#define AT_DMA_SYR(h)		BIT((h))		/* Synchronize handshake line h */

/* Error, Chained Buffer transfer completed and Buffer transfer completed Interrupt registers */
#define AT_DMA_EBCIER		0x18			/* Enable register */
#define AT_DMA_EBCIDR		0x1c			/* Disable register */
#define AT_DMA_EBCIMR		0x20			/* Mask Register */
#define AT_DMA_EBCISR		0x24			/* Status Register */
#define AT_DMA_CBTC_OFFSET	8
#define AT_DMA_ERR_OFFSET	16
#define AT_DMA_BTC(x)		BIT((x))
#define AT_DMA_CBTC(x)		BIT(AT_DMA_CBTC_OFFSET + (x))
#define AT_DMA_ERR(x)		BIT(AT_DMA_ERR_OFFSET + (x))

/* Channel Handler Enable Register */
#define AT_DMA_CHER		0x28
#define AT_DMA_ENA(x)		BIT((x))
#define AT_DMA_SUSP(x)		BIT(8 + (x))
#define AT_DMA_KEEP(x)		BIT(24 + (x))

/* Channel Handler Disable Register */
#define AT_DMA_CHDR		0x2c
#define AT_DMA_DIS(x)		BIT(x)
#define AT_DMA_RES(x)		BIT(8 + (x))

/* Channel Handler Status Register */
#define AT_DMA_CHSR		0x30
#define AT_DMA_EMPT(x)		BIT(16 + (x))
#define AT_DMA_STAL(x)		BIT(24 + (x))

/* Channel registers base address */
#define AT_DMA_CH_REGS_BASE	0x3c
#define ch_regs(x)		(AT_DMA_CH_REGS_BASE + (x) * 0x28) /* Channel x base addr */

/* Hardware register offset for each channel */
#define ATC_SADDR_OFFSET	0x00	/* Source Address Register */
#define ATC_DADDR_OFFSET	0x04	/* Destination Address Register */
#define ATC_DSCR_OFFSET		0x08	/* Descriptor Address Register */
#define ATC_CTRLA_OFFSET	0x0c	/* Control A Register */
#define ATC_CTRLB_OFFSET	0x10	/* Control B Register */
#define ATC_CFG_OFFSET		0x14	/* Configuration Register */
#define ATC_SPIP_OFFSET		0x18	/* Src PIP Configuration Register */
#define ATC_DPIP_OFFSET		0x1c	/* Dst PIP Configuration Register */


/* Bitfield definitions */

/* Bitfields in DSCR */
#define ATC_DSCR_IF		GENMASK(1, 0)	/* Dsc feched via AHB-Lite Interface */

/* Bitfields in CTRLA */
#define ATC_BTSIZE_MAX		GENMASK(15, 0)	/* Maximum Buffer Transfer Size */
#define ATC_BTSIZE		GENMASK(15, 0)	/* Buffer Transfer Size */
#define ATC_SCSIZE		GENMASK(18, 16)	/* Source Chunk Transfer Size */
#define ATC_DCSIZE		GENMASK(22, 20)	/* Destination Chunk Transfer Size */
#define ATC_SRC_WIDTH		GENMASK(25, 24)	/* Source Single Transfer Size */
#define ATC_DST_WIDTH		GENMASK(29, 28)	/* Destination Single Transfer Size */
#define ATC_DONE		BIT(31)	/* Tx Done (only written back in descriptor) */

/* Bitfields in CTRLB */
#define ATC_SIF			GENMASK(1, 0)	/* Src tx done via AHB-Lite Interface i */
#define ATC_DIF			GENMASK(5, 4)	/* Dst tx done via AHB-Lite Interface i */
#define AT_DMA_MEM_IF		0x0		/* interface 0 as memory interface */
#define AT_DMA_PER_IF		0x1		/* interface 1 as peripheral interface */
#define ATC_SRC_PIP		BIT(8)		/* Source Picture-in-Picture enabled */
#define ATC_DST_PIP		BIT(12)		/* Destination Picture-in-Picture enabled */
#define ATC_SRC_DSCR_DIS	BIT(16)		/* Src Descriptor fetch disable */
#define ATC_DST_DSCR_DIS	BIT(20)		/* Dst Descriptor fetch disable */
#define ATC_FC			GENMASK(23, 21)	/* Choose Flow Controller */
#define ATC_FC_MEM2MEM		0x0		/* Mem-to-Mem (DMA) */
#define ATC_FC_MEM2PER		0x1		/* Mem-to-Periph (DMA) */
#define ATC_FC_PER2MEM		0x2		/* Periph-to-Mem (DMA) */
#define ATC_FC_PER2PER		0x3		/* Periph-to-Periph (DMA) */
#define ATC_FC_PER2MEM_PER	0x4		/* Periph-to-Mem (Peripheral) */
#define ATC_FC_MEM2PER_PER	0x5		/* Mem-to-Periph (Peripheral) */
#define ATC_FC_PER2PER_SRCPER	0x6		/* Periph-to-Periph (Src Peripheral) */
#define ATC_FC_PER2PER_DSTPER	0x7		/* Periph-to-Periph (Dst Peripheral) */
#define ATC_SRC_ADDR_MODE	GENMASK(25, 24)
#define ATC_SRC_ADDR_MODE_INCR	0x0		/* Incrementing Mode */
#define ATC_SRC_ADDR_MODE_DECR	0x1		/* Decrementing Mode */
#define ATC_SRC_ADDR_MODE_FIXED	0x2		/* Fixed Mode */
#define ATC_DST_ADDR_MODE	GENMASK(29, 28)
#define ATC_DST_ADDR_MODE_INCR	0x0		/* Incrementing Mode */
#define ATC_DST_ADDR_MODE_DECR	0x1		/* Decrementing Mode */
#define ATC_DST_ADDR_MODE_FIXED	0x2		/* Fixed Mode */
#define ATC_IEN			BIT(30)		/* BTC interrupt enable (active low) */
#define ATC_AUTO		BIT(31)		/* Auto multiple buffer tx enable */

/* Bitfields in CFG */
#define ATC_SRC_PER		GENMASK(3, 0)	/* Channel src rq associated with periph handshaking ifc h */
#define ATC_DST_PER		GENMASK(7, 4)	/* Channel dst rq associated with periph handshaking ifc h */
#define ATC_SRC_REP		BIT(8)		/* Source Replay Mod */
#define ATC_SRC_H2SEL		BIT(9)		/* Source Handshaking Mod */
#define ATC_SRC_PER_MSB		GENMASK(11, 10)	/* Channel src rq (most significant bits) */
#define ATC_DST_REP		BIT(12)		/* Destination Replay Mod */
#define ATC_DST_H2SEL		BIT(13)		/* Destination Handshaking Mod */
#define ATC_DST_PER_MSB		GENMASK(15, 14)	/* Channel dst rq (most significant bits) */
#define ATC_SOD			BIT(16)		/* Stop On Done */
#define ATC_LOCK_IF		BIT(20)		/* Interface Lock */
#define ATC_LOCK_B		BIT(21)		/* AHB Bus Lock */
#define ATC_LOCK_IF_L		BIT(22)		/* Master Interface Arbiter Lock */
#define ATC_AHB_PROT		GENMASK(26, 24)	/* AHB Protection */
#define ATC_FIFOCFG		GENMASK(29, 28)	/* FIFO Request Configuration */
#define ATC_FIFOCFG_LARGESTBURST	0x0
#define ATC_FIFOCFG_HALFFIFO		0x1
#define ATC_FIFOCFG_ENOUGHSPACE		0x2

/* Bitfields in SPIP */
#define ATC_SPIP_HOLE		GENMASK(15, 0)
#define ATC_SPIP_BOUNDARY	GENMASK(25, 16)

/* Bitfields in DPIP */
#define ATC_DPIP_HOLE		GENMASK(15, 0)
#define ATC_DPIP_BOUNDARY	GENMASK(25, 16)

#define ATC_PER_MSB		GENMASK(5, 4)	/* Extract MSBs of a handshaking identifier */
#define ATC_SRC_PER_ID(id)					       \
	({ typeof(id) _id = (id);				       \
	   FIELD_PREP(ATC_SRC_PER_MSB, FIELD_GET(ATC_PER_MSB, _id)) |  \
	   FIELD_PREP(ATC_SRC_PER, _id); })
#define ATC_DST_PER_ID(id)					       \
	({ typeof(id) _id = (id);				       \
	   FIELD_PREP(ATC_DST_PER_MSB, FIELD_GET(ATC_PER_MSB, _id)) |  \
	   FIELD_PREP(ATC_DST_PER, _id); })



/*--  descriptors  -----------------------------------------------------*/

/* LLI == Linked List Item; aka DMA buffer descriptor */
struct at_lli {
	/* values that are not changed by hardware */
	u32 saddr;
	u32 daddr;
	/* value that may get written back: */
	u32 ctrla;
	/* more values that are not changed by hardware */
	u32 ctrlb;
	u32 dscr;	/* chain to next lli */
};

/**
 * struct atdma_sg - atdma scatter gather entry
 * @len: length of the current Linked List Item.
 * @lli: linked list item that is passed to the DMA controller
 * @lli_phys: physical address of the LLI.
 */
struct atdma_sg {
	unsigned int len;
	struct at_lli *lli;
	dma_addr_t lli_phys;
};

/**
 * struct at_desc - software descriptor
 * @vd: pointer to the virtual dma descriptor.
 * @atchan: pointer to the atmel dma channel.
 * @total_len: total transaction byte count
 * @sg_len: number of sg entries.
 * @sg: array of sgs.
 */
struct at_desc {
	struct				virt_dma_desc vd;
	struct				at_dma_chan *atchan;
	size_t				total_len;
	unsigned int			sglen;
	/* Interleaved data */
	size_t				boundary;
	size_t				dst_hole;
	size_t				src_hole;

	/* Memset temporary buffer */
	bool				memset_buffer;
	dma_addr_t			memset_paddr;
	int				*memset_vaddr;
	struct atdma_sg			sg[] __counted_by(sglen);
};

/*--  Channels  --------------------------------------------------------*/

/**
 * atc_status - information bits stored in channel status flag
 *
 * Manipulated with atomic operations.
 */
enum atc_status {
	ATC_IS_PAUSED = 1,
	ATC_IS_CYCLIC = 24,
};

/**
 * struct at_dma_chan - internal representation of an Atmel HDMAC channel
 * @vc: virtual dma channel entry.
 * @atdma: pointer to the driver data.
 * @ch_regs: memory mapped register base
 * @mask: channel index in a mask
 * @per_if: peripheral interface
 * @mem_if: memory interface
 * @status: transmit status information from irq/prep* functions
 *                to tasklet (use atomic operations)
 * @save_cfg: configuration register that is saved on suspend/resume cycle
 * @save_dscr: for cyclic operations, preserve next descriptor address in
 *             the cyclic list on suspend/resume cycle
 * @dma_sconfig: configuration for slave transfers, passed via
 * .device_config
 * @desc: pointer to the atmel dma descriptor.
 */
struct at_dma_chan {
	struct virt_dma_chan	vc;
	struct at_dma		*atdma;
	void __iomem		*ch_regs;
	u8			mask;
	u8			per_if;
	u8			mem_if;
	unsigned long		status;
	u32			save_cfg;
	u32			save_dscr;
	struct dma_slave_config	dma_sconfig;
	bool			cyclic;
	struct at_desc		*desc;
};

#define	channel_readl(atchan, name) \
	__raw_readl((atchan)->ch_regs + ATC_##name##_OFFSET)

#define	channel_writel(atchan, name, val) \
	__raw_writel((val), (atchan)->ch_regs + ATC_##name##_OFFSET)

/*
 * Fix sconfig's burst size according to at_hdmac. We need to convert them as:
 * 1 -> 0, 4 -> 1, 8 -> 2, 16 -> 3, 32 -> 4, 64 -> 5, 128 -> 6, 256 -> 7.
 *
 * This can be done by finding most significant bit set.
 */
static inline void convert_burst(u32 *maxburst)
{
	if (*maxburst > 1)
		*maxburst = fls(*maxburst) - 2;
	else
		*maxburst = 0;
}

/*
 * Fix sconfig's bus width according to at_hdmac.
 * 1 byte -> 0, 2 bytes -> 1, 4 bytes -> 2.
 */
static inline u8 convert_buswidth(enum dma_slave_buswidth addr_width)
{
	switch (addr_width) {
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		return 1;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		return 2;
	default:
		/* For 1 byte width or fallback */
		return 0;
	}
}

/*--  Controller  ------------------------------------------------------*/

/**
 * struct at_dma - internal representation of an Atmel HDMA Controller
 * @dma_device: dmaengine dma_device object members
 * @atdma_devtype: identifier of DMA controller compatibility
 * @ch_regs: memory mapped register base
 * @clk: dma controller clock
 * @save_imr: interrupt mask register that is saved on suspend/resume cycle
 * @all_chan_mask: all channels availlable in a mask
 * @lli_pool: hw lli table
 * @chan: channels table to store at_dma_chan structures
 */
struct at_dma {
	struct dma_device	dma_device;
	void __iomem		*regs;
	struct clk		*clk;
	u32			save_imr;

	u8			all_chan_mask;

	struct dma_pool		*lli_pool;
	struct dma_pool		*memset_pool;
	/* AT THE END channels table */
	struct at_dma_chan	chan[];
};

#define	dma_readl(atdma, name) \
	__raw_readl((atdma)->regs + AT_DMA_##name)
#define	dma_writel(atdma, name, val) \
	__raw_writel((val), (atdma)->regs + AT_DMA_##name)

static inline struct at_desc *to_atdma_desc(struct dma_async_tx_descriptor *t)
{
	return container_of(t, struct at_desc, vd.tx);
}

static inline struct at_dma_chan *to_at_dma_chan(struct dma_chan *chan)
{
	return container_of(chan, struct at_dma_chan, vc.chan);
}

static inline struct at_dma *to_at_dma(struct dma_device *ddev)
{
	return container_of(ddev, struct at_dma, dma_device);
}


/*--  Helper functions  ------------------------------------------------*/

static struct device *chan2dev(struct dma_chan *chan)
{
	return &chan->dev->device;
}

#if defined(VERBOSE_DEBUG)
static void vdbg_dump_regs(struct at_dma_chan *atchan)
{
	struct at_dma	*atdma = to_at_dma(atchan->vc.chan.device);

	dev_err(chan2dev(&atchan->vc.chan),
		"  channel %d : imr = 0x%x, chsr = 0x%x\n",
		atchan->vc.chan.chan_id,
		dma_readl(atdma, EBCIMR),
		dma_readl(atdma, CHSR));

	dev_err(chan2dev(&atchan->vc.chan),
		"  channel: s0x%x d0x%x ctrl0x%x:0x%x cfg0x%x l0x%x\n",
		channel_readl(atchan, SADDR),
		channel_readl(atchan, DADDR),
		channel_readl(atchan, CTRLA),
		channel_readl(atchan, CTRLB),
		channel_readl(atchan, CFG),
		channel_readl(atchan, DSCR));
}
#else
static void vdbg_dump_regs(struct at_dma_chan *atchan) {}
#endif

static void atc_dump_lli(struct at_dma_chan *atchan, struct at_lli *lli)
{
	dev_crit(chan2dev(&atchan->vc.chan),
		 "desc: s%pad d%pad ctrl0x%x:0x%x l%pad\n",
		 &lli->saddr, &lli->daddr,
		 lli->ctrla, lli->ctrlb, &lli->dscr);
}


static void atc_setup_irq(struct at_dma *atdma, int chan_id, int on)
{
	u32 ebci;

	/* enable interrupts on buffer transfer completion & error */
	ebci =    AT_DMA_BTC(chan_id)
		| AT_DMA_ERR(chan_id);
	if (on)
		dma_writel(atdma, EBCIER, ebci);
	else
		dma_writel(atdma, EBCIDR, ebci);
}

static void atc_enable_chan_irq(struct at_dma *atdma, int chan_id)
{
	atc_setup_irq(atdma, chan_id, 1);
}

static void atc_disable_chan_irq(struct at_dma *atdma, int chan_id)
{
	atc_setup_irq(atdma, chan_id, 0);
}


/**
 * atc_chan_is_enabled - test if given channel is enabled
 * @atchan: channel we want to test status
 */
static inline int atc_chan_is_enabled(struct at_dma_chan *atchan)
{
	struct at_dma *atdma = to_at_dma(atchan->vc.chan.device);

	return !!(dma_readl(atdma, CHSR) & atchan->mask);
}

/**
 * atc_chan_is_paused - test channel pause/resume status
 * @atchan: channel we want to test status
 */
static inline int atc_chan_is_paused(struct at_dma_chan *atchan)
{
	return test_bit(ATC_IS_PAUSED, &atchan->status);
}

/**
 * atc_chan_is_cyclic - test if given channel has cyclic property set
 * @atchan: channel we want to test status
 */
static inline int atc_chan_is_cyclic(struct at_dma_chan *atchan)
{
	return test_bit(ATC_IS_CYCLIC, &atchan->status);
}

/**
 * set_lli_eol - set end-of-link to descriptor so it will end transfer
 * @desc: descriptor, signle or at the end of a chain, to end chain on
 * @i: index of the atmel scatter gather entry that is at the end of the chain.
 */
static void set_lli_eol(struct at_desc *desc, unsigned int i)
{
	u32 ctrlb = desc->sg[i].lli->ctrlb;

	ctrlb &= ~ATC_IEN;
	ctrlb |= ATC_SRC_DSCR_DIS | ATC_DST_DSCR_DIS;

	desc->sg[i].lli->ctrlb = ctrlb;
	desc->sg[i].lli->dscr = 0;
}

#define	ATC_DEFAULT_CFG		FIELD_PREP(ATC_FIFOCFG, ATC_FIFOCFG_HALFFIFO)
#define	ATC_DEFAULT_CTRLB	(FIELD_PREP(ATC_SIF, AT_DMA_MEM_IF) | \
				 FIELD_PREP(ATC_DIF, AT_DMA_MEM_IF))
#define ATC_DMA_BUSWIDTHS\
	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))

#define ATC_MAX_DSCR_TRIALS	10

/*
 * Initial number of descriptors to allocate for each channel. This could
 * be increased during dma usage.
 */
static unsigned int init_nr_desc_per_channel = 64;
module_param(init_nr_desc_per_channel, uint, 0644);
MODULE_PARM_DESC(init_nr_desc_per_channel,
		 "initial descriptors per channel (default: 64)");

/**
 * struct at_dma_platform_data - Controller configuration parameters
 * @nr_channels: Number of channels supported by hardware (max 8)
 * @cap_mask: dma_capability flags supported by the platform
 */
struct at_dma_platform_data {
	unsigned int	nr_channels;
	dma_cap_mask_t  cap_mask;
};

/**
 * struct at_dma_slave - Controller-specific information about a slave
 * @dma_dev: required DMA master device
 * @cfg: Platform-specific initializer for the CFG register
 */
struct at_dma_slave {
	struct device		*dma_dev;
	u32			cfg;
};

static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
						size_t len)
{
	unsigned int width;

	if (!((src | dst  | len) & 3))
		width = 2;
	else if (!((src | dst | len) & 1))
		width = 1;
	else
		width = 0;

	return width;
}

static void atdma_lli_chain(struct at_desc *desc, unsigned int i)
{
	struct atdma_sg *atdma_sg = &desc->sg[i];

	if (i)
		desc->sg[i - 1].lli->dscr = atdma_sg->lli_phys;
}

/**
 * atc_dostart - starts the DMA engine for real
 * @atchan: the channel we want to start
 */
static void atc_dostart(struct at_dma_chan *atchan)
{
	struct virt_dma_desc *vd = vchan_next_desc(&atchan->vc);
	struct at_desc *desc;

	if (!vd) {
		atchan->desc = NULL;
		return;
	}

	vdbg_dump_regs(atchan);

	list_del(&vd->node);
	atchan->desc = desc = to_atdma_desc(&vd->tx);

	channel_writel(atchan, SADDR, 0);
	channel_writel(atchan, DADDR, 0);
	channel_writel(atchan, CTRLA, 0);
	channel_writel(atchan, CTRLB, 0);
	channel_writel(atchan, DSCR, desc->sg[0].lli_phys);
	channel_writel(atchan, SPIP,
		       FIELD_PREP(ATC_SPIP_HOLE, desc->src_hole) |
		       FIELD_PREP(ATC_SPIP_BOUNDARY, desc->boundary));
	channel_writel(atchan, DPIP,
		       FIELD_PREP(ATC_DPIP_HOLE, desc->dst_hole) |
		       FIELD_PREP(ATC_DPIP_BOUNDARY, desc->boundary));

	/* Don't allow CPU to reorder channel enable. */
	wmb();
	dma_writel(atchan->atdma, CHER, atchan->mask);

	vdbg_dump_regs(atchan);
}

static void atdma_desc_free(struct virt_dma_desc *vd)
{
	struct at_dma *atdma = to_at_dma(vd->tx.chan->device);
	struct at_desc *desc = to_atdma_desc(&vd->tx);
	unsigned int i;

	for (i = 0; i < desc->sglen; i++) {
		if (desc->sg[i].lli)
			dma_pool_free(atdma->lli_pool, desc->sg[i].lli,
				      desc->sg[i].lli_phys);
	}

	/* If the transfer was a memset, free our temporary buffer */
	if (desc->memset_buffer) {
		dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
			      desc->memset_paddr);
		desc->memset_buffer = false;
	}

	kfree(desc);
}

/**
 * atc_calc_bytes_left - calculates the number of bytes left according to the
 * value read from CTRLA.
 *
 * @current_len: the number of bytes left before reading CTRLA
 * @ctrla: the value of CTRLA
 */
static inline u32 atc_calc_bytes_left(u32 current_len, u32 ctrla)
{
	u32 btsize = FIELD_GET(ATC_BTSIZE, ctrla);
	u32 src_width = FIELD_GET(ATC_SRC_WIDTH, ctrla);

	/*
	 * According to the datasheet, when reading the Control A Register
	 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
	 * number of transfers completed on the Source Interface.
	 * So btsize is always a number of source width transfers.
	 */
	return current_len - (btsize << src_width);
}

/**
 * atc_get_llis_residue - Get residue for a hardware linked list transfer
 *
 * Calculate the residue by removing the length of the Linked List Item (LLI)
 * already transferred from the total length. To get the current LLI we can use
 * the value of the channel's DSCR register and compare it against the DSCR
 * value of each LLI.
 *
 * The CTRLA register provides us with the amount of data already read from the
 * source for the LLI. So we can compute a more accurate residue by also
 * removing the number of bytes corresponding to this amount of data.
 *
 * However, the DSCR and CTRLA registers cannot be read both atomically. Hence a
 * race condition may occur: the first read register may refer to one LLI
 * whereas the second read may refer to a later LLI in the list because of the
 * DMA transfer progression inbetween the two reads.
 *
 * One solution could have been to pause the DMA transfer, read the DSCR and
 * CTRLA then resume the DMA transfer. Nonetheless, this approach presents some
 * drawbacks:
 * - If the DMA transfer is paused, RX overruns or TX underruns are more likey
 *   to occur depending on the system latency. Taking the USART driver as an
 *   example, it uses a cyclic DMA transfer to read data from the Receive
 *   Holding Register (RHR) to avoid RX overruns since the RHR is not protected
 *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer to compute the
 *   residue would break the USART driver design.
 * - The atc_pause() function masks interrupts but we'd rather avoid to do so
 * for system latency purpose.
 *
 * Then we'd rather use another solution: the DSCR is read a first time, the
 * CTRLA is read in turn, next the DSCR is read a second time. If the two
 * consecutive read values of the DSCR are the same then we assume both refers
 * to the very same LLI as well as the CTRLA value read inbetween does. For
 * cyclic tranfers, the assumption is that a full loop is "not so fast". If the
 * two DSCR values are different, we read again the CTRLA then the DSCR till two
 * consecutive read values from DSCR are equal or till the maximum trials is
 * reach. This algorithm is very unlikely not to find a stable value for DSCR.
 * @atchan: pointer to an atmel hdmac channel.
 * @desc: pointer to the descriptor for which the residue is calculated.
 * @residue: residue to be set to dma_tx_state.
 * Returns 0 on success, -errno otherwise.
 */
static int atc_get_llis_residue(struct at_dma_chan *atchan,
				struct at_desc *desc, u32 *residue)
{
	u32 len, ctrla, dscr;
	unsigned int i;

	len = desc->total_len;
	dscr = channel_readl(atchan, DSCR);
	rmb(); /* ensure DSCR is read before CTRLA */
	ctrla = channel_readl(atchan, CTRLA);
	for (i = 0; i < ATC_MAX_DSCR_TRIALS; ++i) {
		u32 new_dscr;

		rmb(); /* ensure DSCR is read after CTRLA */
		new_dscr = channel_readl(atchan, DSCR);

		/*
		 * If the DSCR register value has not changed inside the DMA
		 * controller since the previous read, we assume that both the
		 * dscr and ctrla values refers to the very same descriptor.
		 */
		if (likely(new_dscr == dscr))
			break;

		/*
		 * DSCR has changed inside the DMA controller, so the previouly
		 * read value of CTRLA may refer to an already processed
		 * descriptor hence could be outdated. We need to update ctrla
		 * to match the current descriptor.
		 */
		dscr = new_dscr;
		rmb(); /* ensure DSCR is read before CTRLA */
		ctrla = channel_readl(atchan, CTRLA);
	}
	if (unlikely(i == ATC_MAX_DSCR_TRIALS))
		return -ETIMEDOUT;

	/* For the first descriptor we can be more accurate. */
	if (desc->sg[0].lli->dscr == dscr) {
		*residue = atc_calc_bytes_left(len, ctrla);
		return 0;
	}
	len -= desc->sg[0].len;

	for (i = 1; i < desc->sglen; i++) {
		if (desc->sg[i].lli && desc->sg[i].lli->dscr == dscr)
			break;
		len -= desc->sg[i].len;
	}

	/*
	 * For the current LLI in the chain we can calculate the remaining bytes
	 * using the channel's CTRLA register.
	 */
	*residue = atc_calc_bytes_left(len, ctrla);
	return 0;

}

/**
 * atc_get_residue - get the number of bytes residue for a cookie.
 * The residue is passed by address and updated on success.
 * @chan: DMA channel
 * @cookie: transaction identifier to check status of
 * @residue: residue to be updated.
 * Return 0 on success, -errono otherwise.
 */
static int atc_get_residue(struct dma_chan *chan, dma_cookie_t cookie,
			   u32 *residue)
{
	struct at_dma_chan *atchan = to_at_dma_chan(chan);
	struct virt_dma_desc *vd;
	struct at_desc *desc = NULL;
	u32 len, ctrla;

	vd = vchan_find_desc(&atchan->vc, cookie);
	if (vd)
		desc = to_atdma_desc(&vd->tx);
	else if (atchan->desc && atchan->desc->vd.tx.cookie == cookie)
		desc = atchan->desc;

	if (!desc)
		return -EINVAL;

	if (desc->sg[0].lli->dscr)
		/* hardware linked list transfer */
		return atc_get_llis_residue(atchan, desc, residue);

	/* single transfer */
	len = desc->total_len;
	ctrla = channel_readl(atchan, CTRLA);
	*residue = atc_calc_bytes_left(len, ctrla);
	return 0;
}

/**
 * atc_handle_error - handle errors reported by DMA controller
 * @atchan: channel where error occurs.
 * @i: channel index
 */
static void atc_handle_error(struct at_dma_chan *atchan, unsigned int i)
{
	struct at_desc *desc = atchan->desc;

	/* Disable channel on AHB error */
	dma_writel(atchan->atdma, CHDR, AT_DMA_RES(i) | atchan->mask);

	/*
	 * KERN_CRITICAL may seem harsh, but since this only happens
	 * when someone submits a bad physical address in a
	 * descriptor, we should consider ourselves lucky that the
	 * controller flagged an error instead of scribbling over
	 * random memory locations.
	 */
	dev_crit(chan2dev(&atchan->vc.chan), "Bad descriptor submitted for DMA!\n");
	dev_crit(chan2dev(&atchan->vc.chan), "cookie: %d\n",
		 desc->vd.tx.cookie);
	for (i = 0; i < desc->sglen; i++)
		atc_dump_lli(atchan, desc->sg[i].lli);
}

static void atdma_handle_chan_done(struct at_dma_chan *atchan, u32 pending,
				   unsigned int i)
{
	struct at_desc *desc;

	spin_lock(&atchan->vc.lock);
	desc = atchan->desc;

	if (desc) {
		if (pending & AT_DMA_ERR(i)) {
			atc_handle_error(atchan, i);
			/* Pretend the descriptor completed successfully */
		}

		if (atc_chan_is_cyclic(atchan)) {
			vchan_cyclic_callback(&desc->vd);
		} else {
			vchan_cookie_complete(&desc->vd);
			atchan->desc = NULL;
			if (!(atc_chan_is_enabled(atchan)))
				atc_dostart(atchan);
		}
	}
	spin_unlock(&atchan->vc.lock);
}

static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
{
	struct at_dma		*atdma = dev_id;
	struct at_dma_chan	*atchan;
	int			i;
	u32			status, pending, imr;
	int			ret = IRQ_NONE;

	do {
		imr = dma_readl(atdma, EBCIMR);
		status = dma_readl(atdma, EBCISR);
		pending = status & imr;

		if (!pending)
			break;

		dev_vdbg(atdma->dma_device.dev,
			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
			 status, imr, pending);

		for (i = 0; i < atdma->dma_device.chancnt; i++) {
			atchan = &atdma->chan[i];
			if (!(pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))))
				continue;
			atdma_handle_chan_done(atchan, pending, i);
			ret = IRQ_HANDLED;
		}

	} while (pending);

	return ret;
}

/*--  DMA Engine API  --------------------------------------------------*/
/**
 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
 * @chan: the channel to prepare operation on
 * @xt: Interleaved transfer template
 * @flags: tx descriptor status flags
 */
static struct dma_async_tx_descriptor *
atc_prep_dma_interleaved(struct dma_chan *chan,
			 struct dma_interleaved_template *xt,
			 unsigned long flags)
{
	struct at_dma		*atdma = to_at_dma(chan->device);
	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
	struct data_chunk	*first;
	struct atdma_sg		*atdma_sg;
	struct at_desc		*desc;
	struct at_lli		*lli;
	size_t			xfer_count;
	unsigned int		dwidth;
	u32			ctrla;
	u32			ctrlb;
	size_t			len = 0;
	int			i;

	if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
		return NULL;

	first = xt->sgl;

	dev_info(chan2dev(chan),
		 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
		__func__, &xt->src_start, &xt->dst_start, xt->numf,
		xt->frame_size, flags);

	/*
	 * The controller can only "skip" X bytes every Y bytes, so we
	 * need to make sure we are given a template that fit that
	 * description, ie a template with chunks that always have the
	 * same size, with the same ICGs.
	 */
	for (i = 0; i < xt->frame_size; i++) {
		struct data_chunk *chunk = xt->sgl + i;

		if ((chunk->size != xt->sgl->size) ||
		    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
		    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
			dev_err(chan2dev(chan),
				"%s: the controller can transfer only identical chunks\n",
				__func__);
			return NULL;
		}

		len += chunk->size;
	}

	dwidth = atc_get_xfer_width(xt->src_start, xt->dst_start, len);

	xfer_count = len >> dwidth;
	if (xfer_count > ATC_BTSIZE_MAX) {
		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
		return NULL;
	}

	ctrla = FIELD_PREP(ATC_SRC_WIDTH, dwidth) |
		FIELD_PREP(ATC_DST_WIDTH, dwidth);

	ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
		FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
		FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
		ATC_SRC_PIP | ATC_DST_PIP |
		FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);

	desc = kzalloc(struct_size(desc, sg, 1), GFP_ATOMIC);
	if (!desc)
		return NULL;
	desc->sglen = 1;

	atdma_sg = desc->sg;
	atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
				       &atdma_sg->lli_phys);
	if (!atdma_sg->lli) {
		kfree(desc);
		return NULL;
	}
	lli = atdma_sg->lli;

	lli->saddr = xt->src_start;
	lli->daddr = xt->dst_start;
	lli->ctrla = ctrla | xfer_count;
	lli->ctrlb = ctrlb;

	desc->boundary = first->size >> dwidth;
	desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
	desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;

	atdma_sg->len = len;
	desc->total_len = len;

	set_lli_eol(desc, 0);
	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
}

/**
 * atc_prep_dma_memcpy - prepare a memcpy operation
 * @chan: the channel to prepare operation on
 * @dest: operation virtual destination address
 * @src: operation virtual source address
 * @len: operation length
 * @flags: tx descriptor status flags
 */
static struct dma_async_tx_descriptor *
atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
		size_t len, unsigned long flags)
{
	struct at_dma		*atdma = to_at_dma(chan->device);
	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
	struct at_desc		*desc = NULL;
	size_t			xfer_count;
	size_t			offset;
	size_t			sg_len;
	unsigned int		src_width;
	unsigned int		dst_width;
	unsigned int		i;
	u32			ctrla;
	u32			ctrlb;

	dev_dbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
		&dest, &src, len, flags);

	if (unlikely(!len)) {
		dev_err(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
		return NULL;
	}

	sg_len = DIV_ROUND_UP(len, ATC_BTSIZE_MAX);
	desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
	if (!desc)
		return NULL;
	desc->sglen = sg_len;

	ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
		FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
		FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
		FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);

	/*
	 * We can be a lot more clever here, but this should take care
	 * of the most common optimization.
	 */
	src_width = dst_width = atc_get_xfer_width(src, dest, len);

	ctrla = FIELD_PREP(ATC_SRC_WIDTH, src_width) |
		FIELD_PREP(ATC_DST_WIDTH, dst_width);

	for (offset = 0, i = 0; offset < len;
	     offset += xfer_count << src_width, i++) {
		struct atdma_sg *atdma_sg = &desc->sg[i];
		struct at_lli *lli;

		atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
					       &atdma_sg->lli_phys);
		if (!atdma_sg->lli)
			goto err_desc_get;
		lli = atdma_sg->lli;

		xfer_count = min_t(size_t, (len - offset) >> src_width,
				   ATC_BTSIZE_MAX);

		lli->saddr = src + offset;
		lli->daddr = dest + offset;
		lli->ctrla = ctrla | xfer_count;
		lli->ctrlb = ctrlb;

		desc->sg[i].len = xfer_count << src_width;

		atdma_lli_chain(desc, i);
	}

	desc->total_len = len;

	/* set end-of-link to the last link descriptor of list*/
	set_lli_eol(desc, i - 1);

	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);

err_desc_get:
	atdma_desc_free(&desc->vd);
	return NULL;
}

static int atdma_create_memset_lli(struct dma_chan *chan,
				   struct atdma_sg *atdma_sg,
				   dma_addr_t psrc, dma_addr_t pdst, size_t len)
{
	struct at_dma *atdma = to_at_dma(chan->device);
	struct at_lli *lli;
	size_t xfer_count;
	u32 ctrla = FIELD_PREP(ATC_SRC_WIDTH, 2) | FIELD_PREP(ATC_DST_WIDTH, 2);
	u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
		    FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_FIXED) |
		    FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
		    FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);

	xfer_count = len >> 2;
	if (xfer_count > ATC_BTSIZE_MAX) {
		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
		return -EINVAL;
	}

	atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
				       &atdma_sg->lli_phys);
	if (!atdma_sg->lli)
		return -ENOMEM;
	lli = atdma_sg->lli;

	lli->saddr = psrc;
	lli->daddr = pdst;
	lli->ctrla = ctrla | xfer_count;
	lli->ctrlb = ctrlb;

	atdma_sg->len = len;

	return 0;
}

/**
 * atc_prep_dma_memset - prepare a memcpy operation
 * @chan: the channel to prepare operation on
 * @dest: operation virtual destination address
 * @value: value to set memory buffer to
 * @len: operation length
 * @flags: tx descriptor status flags
 */
static struct dma_async_tx_descriptor *
atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
		    size_t len, unsigned long flags)
{
	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
	struct at_dma		*atdma = to_at_dma(chan->device);
	struct at_desc		*desc;
	void __iomem		*vaddr;
	dma_addr_t		paddr;
	char			fill_pattern;
	int			ret;

	dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
		&dest, value, len, flags);

	if (unlikely(!len)) {
		dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
		return NULL;
	}

	if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
		dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
			__func__);
		return NULL;
	}

	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
	if (!vaddr) {
		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
			__func__);
		return NULL;
	}

	/* Only the first byte of value is to be used according to dmaengine */
	fill_pattern = (char)value;

	*(u32*)vaddr = (fill_pattern << 24) |
		       (fill_pattern << 16) |
		       (fill_pattern << 8) |
		       fill_pattern;

	desc = kzalloc(struct_size(desc, sg, 1), GFP_ATOMIC);
	if (!desc)
		goto err_free_buffer;
	desc->sglen = 1;

	ret = atdma_create_memset_lli(chan, desc->sg, paddr, dest, len);
	if (ret)
		goto err_free_desc;

	desc->memset_paddr = paddr;
	desc->memset_vaddr = vaddr;
	desc->memset_buffer = true;

	desc->total_len = len;

	/* set end-of-link on the descriptor */
	set_lli_eol(desc, 0);

	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);

err_free_desc:
	kfree(desc);
err_free_buffer:
	dma_pool_free(atdma->memset_pool, vaddr, paddr);
	return NULL;
}

static struct dma_async_tx_descriptor *
atc_prep_dma_memset_sg(struct dma_chan *chan,
		       struct scatterlist *sgl,
		       unsigned int sg_len, int value,
		       unsigned long flags)
{
	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
	struct at_dma		*atdma = to_at_dma(chan->device);
	struct at_desc		*desc;
	struct scatterlist	*sg;
	void __iomem		*vaddr;
	dma_addr_t		paddr;
	size_t			total_len = 0;
	int			i;
	int			ret;

	dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
		 value, sg_len, flags);

	if (unlikely(!sgl || !sg_len)) {
		dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
			__func__);
		return NULL;
	}

	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
	if (!vaddr) {
		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
			__func__);
		return NULL;
	}
	*(u32*)vaddr = value;

	desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
	if (!desc)
		goto err_free_dma_buf;
	desc->sglen = sg_len;

	for_each_sg(sgl, sg, sg_len, i) {
		dma_addr_t dest = sg_dma_address(sg);
		size_t len = sg_dma_len(sg);

		dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
			 __func__, &dest, len);

		if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
			dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
				__func__);
			goto err_free_desc;
		}

		ret = atdma_create_memset_lli(chan, &desc->sg[i], paddr, dest,
					      len);
		if (ret)
			goto err_free_desc;

		atdma_lli_chain(desc, i);
		total_len += len;
	}

	desc->memset_paddr = paddr;
	desc->memset_vaddr = vaddr;
	desc->memset_buffer = true;

	desc->total_len = total_len;

	/* set end-of-link on the descriptor */
	set_lli_eol(desc, i - 1);

	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);

err_free_desc:
	atdma_desc_free(&desc->vd);
err_free_dma_buf:
	dma_pool_free(atdma->memset_pool, vaddr, paddr);
	return NULL;
}

/**
 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
 * @chan: DMA channel
 * @sgl: scatterlist to transfer to/from
 * @sg_len: number of entries in @scatterlist
 * @direction: DMA direction
 * @flags: tx descriptor status flags
 * @context: transaction context (ignored)
 */
static struct dma_async_tx_descriptor *
atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
		unsigned int sg_len, enum dma_transfer_direction direction,
		unsigned long flags, void *context)
{
	struct at_dma		*atdma = to_at_dma(chan->device);
	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
	struct at_dma_slave	*atslave = chan->private;
	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
	struct at_desc		*desc;
	u32			ctrla;
	u32			ctrlb;
	dma_addr_t		reg;
	unsigned int		reg_width;
	unsigned int		mem_width;
	unsigned int		i;
	struct scatterlist	*sg;
	size_t			total_len = 0;

	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
			sg_len,
			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
			flags);

	if (unlikely(!atslave || !sg_len)) {
		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
		return NULL;
	}

	desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
	if (!desc)
		return NULL;
	desc->sglen = sg_len;

	ctrla = FIELD_PREP(ATC_SCSIZE, sconfig->src_maxburst) |
		FIELD_PREP(ATC_DCSIZE, sconfig->dst_maxburst);
	ctrlb = ATC_IEN;

	switch (direction) {
	case DMA_MEM_TO_DEV:
		reg_width = convert_buswidth(sconfig->dst_addr_width);
		ctrla |= FIELD_PREP(ATC_DST_WIDTH, reg_width);
		ctrlb |= FIELD_PREP(ATC_DST_ADDR_MODE,
				    ATC_DST_ADDR_MODE_FIXED) |
			 FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
			 FIELD_PREP(ATC_FC, ATC_FC_MEM2PER) |
			 FIELD_PREP(ATC_SIF, atchan->mem_if) |
			 FIELD_PREP(ATC_DIF, atchan->per_if);
		reg = sconfig->dst_addr;
		for_each_sg(sgl, sg, sg_len, i) {
			struct atdma_sg *atdma_sg = &desc->sg[i];
			struct at_lli *lli;
			u32		len;
			u32		mem;

			atdma_sg->lli = dma_pool_alloc(atdma->lli_pool,
						       GFP_NOWAIT,
						       &atdma_sg->lli_phys);
			if (!atdma_sg->lli)
				goto err_desc_get;
			lli = atdma_sg->lli;

			mem = sg_dma_address(sg);
			len = sg_dma_len(sg);
			if (unlikely(!len)) {
				dev_dbg(chan2dev(chan),
					"prep_slave_sg: sg(%d) data length is zero\n", i);
				goto err;
			}
			mem_width = 2;
			if (unlikely(mem & 3 || len & 3))
				mem_width = 0;

			lli->saddr = mem;
			lli->daddr = reg;
			lli->ctrla = ctrla |
				     FIELD_PREP(ATC_SRC_WIDTH, mem_width) |
				     len >> mem_width;
			lli->ctrlb = ctrlb;

			atdma_sg->len = len;
			total_len += len;

			desc->sg[i].len = len;
			atdma_lli_chain(desc, i);
		}
		break;
	case DMA_DEV_TO_MEM:
		reg_width = convert_buswidth(sconfig->src_addr_width);
		ctrla |= FIELD_PREP(ATC_SRC_WIDTH, reg_width);
		ctrlb |= FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
			 FIELD_PREP(ATC_SRC_ADDR_MODE,
				    ATC_SRC_ADDR_MODE_FIXED) |
			 FIELD_PREP(ATC_FC, ATC_FC_PER2MEM) |
			 FIELD_PREP(ATC_SIF, atchan->per_if) |
			 FIELD_PREP(ATC_DIF, atchan->mem_if);

		reg = sconfig->src_addr;
		for_each_sg(sgl, sg, sg_len, i) {
			struct atdma_sg *atdma_sg = &desc->sg[i];
			struct at_lli *lli;
			u32		len;
			u32		mem;

			atdma_sg->lli = dma_pool_alloc(atdma->lli_pool,
						       GFP_NOWAIT,
						       &atdma_sg->lli_phys);
			if (!atdma_sg->lli)
				goto err_desc_get;
			lli = atdma_sg->lli;

			mem = sg_dma_address(sg);
			len = sg_dma_len(sg);
			if (unlikely(!len)) {
				dev_dbg(chan2dev(chan),
					"prep_slave_sg: sg(%d) data length is zero\n", i);
				goto err;
			}
			mem_width = 2;
			if (unlikely(mem & 3 || len & 3))
				mem_width = 0;

			lli->saddr = reg;
			lli->daddr = mem;
			lli->ctrla = ctrla |
				     FIELD_PREP(ATC_DST_WIDTH, mem_width) |
				     len >> reg_width;
			lli->ctrlb = ctrlb;

			desc->sg[i].len = len;
			total_len += len;

			atdma_lli_chain(desc, i);
		}
		break;
	default:
		return NULL;
	}

	/* set end-of-link to the last link descriptor of list*/
	set_lli_eol(desc, i - 1);

	desc->total_len = total_len;

	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);

err_desc_get:
	dev_err(chan2dev(chan), "not enough descriptors available\n");
err:
	atdma_desc_free(&desc->vd);
	return NULL;
}

/*
 * atc_dma_cyclic_check_values
 * Check for too big/unaligned periods and unaligned DMA buffer
 */
static int
atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
		size_t period_len)
{
	if (period_len > (ATC_BTSIZE_MAX << reg_width))
		goto err_out;
	if (unlikely(period_len & ((1 << reg_width) - 1)))
		goto err_out;
	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
		goto err_out;

	return 0;

err_out:
	return -EINVAL;
}

/*
 * atc_dma_cyclic_fill_desc - Fill one period descriptor
 */
static int
atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
		unsigned int i, dma_addr_t buf_addr,
		unsigned int reg_width, size_t period_len,
		enum dma_transfer_direction direction)
{
	struct at_dma		*atdma = to_at_dma(chan->device);
	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
	struct atdma_sg		*atdma_sg = &desc->sg[i];
	struct at_lli		*lli;

	atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_ATOMIC,
				       &atdma_sg->lli_phys);
	if (!atdma_sg->lli)
		return -ENOMEM;
	lli = atdma_sg->lli;

	switch (direction) {
	case DMA_MEM_TO_DEV:
		lli->saddr = buf_addr + (period_len * i);
		lli->daddr = sconfig->dst_addr;
		lli->ctrlb = FIELD_PREP(ATC_DST_ADDR_MODE,
					ATC_DST_ADDR_MODE_FIXED) |
			     FIELD_PREP(ATC_SRC_ADDR_MODE,
					ATC_SRC_ADDR_MODE_INCR) |
			     FIELD_PREP(ATC_FC, ATC_FC_MEM2PER) |
			     FIELD_PREP(ATC_SIF, atchan->mem_if) |
			     FIELD_PREP(ATC_DIF, atchan->per_if);

		break;

	case DMA_DEV_TO_MEM:
		lli->saddr = sconfig->src_addr;
		lli->daddr = buf_addr + (period_len * i);
		lli->ctrlb = FIELD_PREP(ATC_DST_ADDR_MODE,
					ATC_DST_ADDR_MODE_INCR) |
			     FIELD_PREP(ATC_SRC_ADDR_MODE,
					ATC_SRC_ADDR_MODE_FIXED) |
			     FIELD_PREP(ATC_FC, ATC_FC_PER2MEM) |
			     FIELD_PREP(ATC_SIF, atchan->per_if) |
			     FIELD_PREP(ATC_DIF, atchan->mem_if);
		break;

	default:
		return -EINVAL;
	}

	lli->ctrla = FIELD_PREP(ATC_SCSIZE, sconfig->src_maxburst) |
		     FIELD_PREP(ATC_DCSIZE, sconfig->dst_maxburst) |
		     FIELD_PREP(ATC_DST_WIDTH, reg_width) |
		     FIELD_PREP(ATC_SRC_WIDTH, reg_width) |
		     period_len >> reg_width;
	desc->sg[i].len = period_len;

	return 0;
}

/**
 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
 * @chan: the DMA channel to prepare
 * @buf_addr: physical DMA address where the buffer starts
 * @buf_len: total number of bytes for the entire buffer
 * @period_len: number of bytes for each period
 * @direction: transfer direction, to or from device
 * @flags: tx descriptor status flags
 */
static struct dma_async_tx_descriptor *
atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
		size_t period_len, enum dma_transfer_direction direction,
		unsigned long flags)
{
	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
	struct at_dma_slave	*atslave = chan->private;
	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
	struct at_desc		*desc;
	unsigned long		was_cyclic;
	unsigned int		reg_width;
	unsigned int		periods = buf_len / period_len;
	unsigned int		i;

	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
			&buf_addr,
			periods, buf_len, period_len);

	if (unlikely(!atslave || !buf_len || !period_len)) {
		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
		return NULL;
	}

	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
	if (was_cyclic) {
		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
		return NULL;
	}

	if (unlikely(!is_slave_direction(direction)))
		goto err_out;

	if (direction == DMA_MEM_TO_DEV)
		reg_width = convert_buswidth(sconfig->dst_addr_width);
	else
		reg_width = convert_buswidth(sconfig->src_addr_width);

	/* Check for too big/unaligned periods and unaligned DMA buffer */
	if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
		goto err_out;

	desc = kzalloc(struct_size(desc, sg, periods), GFP_ATOMIC);
	if (!desc)
		goto err_out;
	desc->sglen = periods;

	/* build cyclic linked list */
	for (i = 0; i < periods; i++) {
		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
					     reg_width, period_len, direction))
			goto err_fill_desc;
		atdma_lli_chain(desc, i);
	}
	desc->total_len = buf_len;
	/* lets make a cyclic list */
	desc->sg[i - 1].lli->dscr = desc->sg[0].lli_phys;

	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);

err_fill_desc:
	atdma_desc_free(&desc->vd);
err_out:
	clear_bit(ATC_IS_CYCLIC, &atchan->status);
	return NULL;
}

static int atc_config(struct dma_chan *chan,
		      struct dma_slave_config *sconfig)
{
	struct at_dma_chan	*atchan = to_at_dma_chan(chan);

	dev_vdbg(chan2dev(chan), "%s\n", __func__);

	/* Check if it is chan is configured for slave transfers */
	if (!chan->private)
		return -EINVAL;

	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));

	convert_burst(&atchan->dma_sconfig.src_maxburst);
	convert_burst(&atchan->dma_sconfig.dst_maxburst);

	return 0;
}

static int atc_pause(struct dma_chan *chan)
{
	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
	struct at_dma		*atdma = to_at_dma(chan->device);
	int			chan_id = atchan->vc.chan.chan_id;
	unsigned long		flags;

	dev_vdbg(chan2dev(chan), "%s\n", __func__);

	spin_lock_irqsave(&atchan->vc.lock, flags);

	dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
	set_bit(ATC_IS_PAUSED, &atchan->status);

	spin_unlock_irqrestore(&atchan->vc.lock, flags);

	return 0;
}

static int atc_resume(struct dma_chan *chan)
{
	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
	struct at_dma		*atdma = to_at_dma(chan->device);
	int			chan_id = atchan->vc.chan.chan_id;
	unsigned long		flags;

	dev_vdbg(chan2dev(chan), "%s\n", __func__);

	if (!atc_chan_is_paused(atchan))
		return 0;

	spin_lock_irqsave(&atchan->vc.lock, flags);

	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
	clear_bit(ATC_IS_PAUSED, &atchan->status);

	spin_unlock_irqrestore(&atchan->vc.lock, flags);

	return 0;
}

static int atc_terminate_all(struct dma_chan *chan)
{
	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
	struct at_dma		*atdma = to_at_dma(chan->device);
	int			chan_id = atchan->vc.chan.chan_id;
	unsigned long		flags;

	LIST_HEAD(list);

	dev_vdbg(chan2dev(chan), "%s\n", __func__);

	/*
	 * This is only called when something went wrong elsewhere, so
	 * we don't really care about the data. Just disable the
	 * channel. We still have to poll the channel enable bit due
	 * to AHB/HSB limitations.
	 */
	spin_lock_irqsave(&atchan->vc.lock, flags);

	/* disabling channel: must also remove suspend state */
	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);

	/* confirm that this channel is disabled */
	while (dma_readl(atdma, CHSR) & atchan->mask)
		cpu_relax();

	if (atchan->desc) {
		vchan_terminate_vdesc(&atchan->desc->vd);
		atchan->desc = NULL;
	}

	vchan_get_all_descriptors(&atchan->vc, &list);

	clear_bit(ATC_IS_PAUSED, &atchan->status);
	/* if channel dedicated to cyclic operations, free it */
	clear_bit(ATC_IS_CYCLIC, &atchan->status);

	spin_unlock_irqrestore(&atchan->vc.lock, flags);

	vchan_dma_desc_free_list(&atchan->vc, &list);

	return 0;
}

/**
 * atc_tx_status - poll for transaction completion
 * @chan: DMA channel
 * @cookie: transaction identifier to check status of
 * @txstate: if not %NULL updated with transaction state
 *
 * If @txstate is passed in, upon return it reflect the driver
 * internal state and can be used with dma_async_is_complete() to check
 * the status of multiple cookies without re-checking hardware state.
 */
static enum dma_status
atc_tx_status(struct dma_chan *chan,
		dma_cookie_t cookie,
		struct dma_tx_state *txstate)
{
	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
	unsigned long		flags;
	enum dma_status		dma_status;
	u32 residue;
	int ret;

	dma_status = dma_cookie_status(chan, cookie, txstate);
	if (dma_status == DMA_COMPLETE || !txstate)
		return dma_status;

	spin_lock_irqsave(&atchan->vc.lock, flags);
	/*  Get number of bytes left in the active transactions */
	ret = atc_get_residue(chan, cookie, &residue);
	spin_unlock_irqrestore(&atchan->vc.lock, flags);

	if (unlikely(ret < 0)) {
		dev_vdbg(chan2dev(chan), "get residual bytes error\n");
		return DMA_ERROR;
	} else {
		dma_set_residue(txstate, residue);
	}

	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %u\n",
		 dma_status, cookie, residue);

	return dma_status;
}

static void atc_issue_pending(struct dma_chan *chan)
{
	struct at_dma_chan *atchan = to_at_dma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&atchan->vc.lock, flags);
	if (vchan_issue_pending(&atchan->vc) && !atchan->desc) {
		if (!(atc_chan_is_enabled(atchan)))
			atc_dostart(atchan);
	}
	spin_unlock_irqrestore(&atchan->vc.lock, flags);
}

/**
 * atc_alloc_chan_resources - allocate resources for DMA channel
 * @chan: allocate descriptor resources for this channel
 *
 * return - the number of allocated descriptors
 */
static int atc_alloc_chan_resources(struct dma_chan *chan)
{
	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
	struct at_dma		*atdma = to_at_dma(chan->device);
	struct at_dma_slave	*atslave;
	u32			cfg;

	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");

	/* ASSERT:  channel is idle */
	if (atc_chan_is_enabled(atchan)) {
		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
		return -EIO;
	}

	cfg = ATC_DEFAULT_CFG;

	atslave = chan->private;
	if (atslave) {
		/*
		 * We need controller-specific data to set up slave
		 * transfers.
		 */
		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_device.dev);

		/* if cfg configuration specified take it instead of default */
		if (atslave->cfg)
			cfg = atslave->cfg;
	}

	/* channel parameters */
	channel_writel(atchan, CFG, cfg);

	return 0;
}

/**
 * atc_free_chan_resources - free all channel resources
 * @chan: DMA channel
 */
static void atc_free_chan_resources(struct dma_chan *chan)
{
	struct at_dma_chan	*atchan = to_at_dma_chan(chan);

	BUG_ON(atc_chan_is_enabled(atchan));

	vchan_free_chan_resources(to_virt_chan(chan));
	atchan->status = 0;

	/*
	 * Free atslave allocated in at_dma_xlate()
	 */
	kfree(chan->private);
	chan->private = NULL;

	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
}

#ifdef CONFIG_OF
static bool at_dma_filter(struct dma_chan *chan, void *slave)
{
	struct at_dma_slave *atslave = slave;

	if (atslave->dma_dev == chan->device->dev) {
		chan->private = atslave;
		return true;
	} else {
		return false;
	}
}

static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
				     struct of_dma *of_dma)
{
	struct dma_chan *chan;
	struct at_dma_chan *atchan;
	struct at_dma_slave *atslave;
	dma_cap_mask_t mask;
	unsigned int per_id;
	struct platform_device *dmac_pdev;

	if (dma_spec->args_count != 2)
		return NULL;

	dmac_pdev = of_find_device_by_node(dma_spec->np);
	if (!dmac_pdev)
		return NULL;

	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);

	atslave = kmalloc(sizeof(*atslave), GFP_KERNEL);
	if (!atslave) {
		put_device(&dmac_pdev->dev);
		return NULL;
	}

	atslave->cfg = ATC_DST_H2SEL | ATC_SRC_H2SEL;
	/*
	 * We can fill both SRC_PER and DST_PER, one of these fields will be
	 * ignored depending on DMA transfer direction.
	 */
	per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
	atslave->cfg |= ATC_DST_PER_ID(per_id) |  ATC_SRC_PER_ID(per_id);
	/*
	 * We have to translate the value we get from the device tree since
	 * the half FIFO configuration value had to be 0 to keep backward
	 * compatibility.
	 */
	switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
	case AT91_DMA_CFG_FIFOCFG_ALAP:
		atslave->cfg |= FIELD_PREP(ATC_FIFOCFG,
					   ATC_FIFOCFG_LARGESTBURST);
		break;
	case AT91_DMA_CFG_FIFOCFG_ASAP:
		atslave->cfg |= FIELD_PREP(ATC_FIFOCFG,
					   ATC_FIFOCFG_ENOUGHSPACE);
		break;
	case AT91_DMA_CFG_FIFOCFG_HALF:
	default:
		atslave->cfg |= FIELD_PREP(ATC_FIFOCFG, ATC_FIFOCFG_HALFFIFO);
	}
	atslave->dma_dev = &dmac_pdev->dev;

	chan = dma_request_channel(mask, at_dma_filter, atslave);
	if (!chan) {
		put_device(&dmac_pdev->dev);
		kfree(atslave);
		return NULL;
	}

	atchan = to_at_dma_chan(chan);
	atchan->per_if = dma_spec->args[0] & 0xff;
	atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;

	return chan;
}
#else
static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
				     struct of_dma *of_dma)
{
	return NULL;
}
#endif

/*--  Module Management  -----------------------------------------------*/

/* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
static struct at_dma_platform_data at91sam9rl_config = {
	.nr_channels = 2,
};
static struct at_dma_platform_data at91sam9g45_config = {
	.nr_channels = 8,
};

#if defined(CONFIG_OF)
static const struct of_device_id atmel_dma_dt_ids[] = {
	{
		.compatible = "atmel,at91sam9rl-dma",
		.data = &at91sam9rl_config,
	}, {
		.compatible = "atmel,at91sam9g45-dma",
		.data = &at91sam9g45_config,
	}, {
		/* sentinel */
	}
};

MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
#endif

static const struct platform_device_id atdma_devtypes[] = {
	{
		.name = "at91sam9rl_dma",
		.driver_data = (unsigned long) &at91sam9rl_config,
	}, {
		.name = "at91sam9g45_dma",
		.driver_data = (unsigned long) &at91sam9g45_config,
	}, {
		/* sentinel */
	}
};

static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
						struct platform_device *pdev)
{
	if (pdev->dev.of_node) {
		const struct of_device_id *match;
		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
		if (match == NULL)
			return NULL;
		return match->data;
	}
	return (struct at_dma_platform_data *)
			platform_get_device_id(pdev)->driver_data;
}

/**
 * at_dma_off - disable DMA controller
 * @atdma: the Atmel HDAMC device
 */
static void at_dma_off(struct at_dma *atdma)
{
	dma_writel(atdma, EN, 0);

	/* disable all interrupts */
	dma_writel(atdma, EBCIDR, -1L);

	/* confirm that all channels are disabled */
	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
		cpu_relax();
}

static int __init at_dma_probe(struct platform_device *pdev)
{
	struct at_dma		*atdma;
	int			irq;
	int			err;
	int			i;
	const struct at_dma_platform_data *plat_dat;

	/* setup platform data for each SoC */
	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
	dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
	dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
	dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
	dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);

	/* get DMA parameters from controller type */
	plat_dat = at_dma_get_driver_data(pdev);
	if (!plat_dat)
		return -ENODEV;

	atdma = devm_kzalloc(&pdev->dev,
			     struct_size(atdma, chan, plat_dat->nr_channels),
			     GFP_KERNEL);
	if (!atdma)
		return -ENOMEM;

	atdma->regs = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(atdma->regs))
		return PTR_ERR(atdma->regs);

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	/* discover transaction capabilities */
	atdma->dma_device.cap_mask = plat_dat->cap_mask;
	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;

	atdma->clk = devm_clk_get(&pdev->dev, "dma_clk");
	if (IS_ERR(atdma->clk))
		return PTR_ERR(atdma->clk);

	err = clk_prepare_enable(atdma->clk);
	if (err)
		return err;

	/* force dma off, just in case */
	at_dma_off(atdma);

	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
	if (err)
		goto err_irq;

	platform_set_drvdata(pdev, atdma);

	/* create a pool of consistent memory blocks for hardware descriptors */
	atdma->lli_pool = dma_pool_create("at_hdmac_lli_pool",
					  &pdev->dev, sizeof(struct at_lli),
					  4 /* word alignment */, 0);
	if (!atdma->lli_pool) {
		dev_err(&pdev->dev, "Unable to allocate DMA LLI descriptor pool\n");
		err = -ENOMEM;
		goto err_desc_pool_create;
	}

	/* create a pool of consistent memory blocks for memset blocks */
	atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
					     &pdev->dev, sizeof(int), 4, 0);
	if (!atdma->memset_pool) {
		dev_err(&pdev->dev, "No memory for memset dma pool\n");
		err = -ENOMEM;
		goto err_memset_pool_create;
	}

	/* clear any pending interrupt */
	while (dma_readl(atdma, EBCISR))
		cpu_relax();

	/* initialize channels related values */
	INIT_LIST_HEAD(&atdma->dma_device.channels);
	for (i = 0; i < plat_dat->nr_channels; i++) {
		struct at_dma_chan	*atchan = &atdma->chan[i];

		atchan->mem_if = AT_DMA_MEM_IF;
		atchan->per_if = AT_DMA_PER_IF;

		atchan->ch_regs = atdma->regs + ch_regs(i);
		atchan->mask = 1 << i;

		atchan->atdma = atdma;
		atchan->vc.desc_free = atdma_desc_free;
		vchan_init(&atchan->vc, &atdma->dma_device);
		atc_enable_chan_irq(atdma, i);
	}

	/* set base routines */
	atdma->dma_device.device_alloc_chan_resources = atc_alloc_chan_resources;
	atdma->dma_device.device_free_chan_resources = atc_free_chan_resources;
	atdma->dma_device.device_tx_status = atc_tx_status;
	atdma->dma_device.device_issue_pending = atc_issue_pending;
	atdma->dma_device.dev = &pdev->dev;

	/* set prep routines based on capability */
	if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_device.cap_mask))
		atdma->dma_device.device_prep_interleaved_dma = atc_prep_dma_interleaved;

	if (dma_has_cap(DMA_MEMCPY, atdma->dma_device.cap_mask))
		atdma->dma_device.device_prep_dma_memcpy = atc_prep_dma_memcpy;

	if (dma_has_cap(DMA_MEMSET, atdma->dma_device.cap_mask)) {
		atdma->dma_device.device_prep_dma_memset = atc_prep_dma_memset;
		atdma->dma_device.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
		atdma->dma_device.fill_align = DMAENGINE_ALIGN_4_BYTES;
	}

	if (dma_has_cap(DMA_SLAVE, atdma->dma_device.cap_mask)) {
		atdma->dma_device.device_prep_slave_sg = atc_prep_slave_sg;
		/* controller can do slave DMA: can trigger cyclic transfers */
		dma_cap_set(DMA_CYCLIC, atdma->dma_device.cap_mask);
		atdma->dma_device.device_prep_dma_cyclic = atc_prep_dma_cyclic;
		atdma->dma_device.device_config = atc_config;
		atdma->dma_device.device_pause = atc_pause;
		atdma->dma_device.device_resume = atc_resume;
		atdma->dma_device.device_terminate_all = atc_terminate_all;
		atdma->dma_device.src_addr_widths = ATC_DMA_BUSWIDTHS;
		atdma->dma_device.dst_addr_widths = ATC_DMA_BUSWIDTHS;
		atdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
		atdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
	}

	dma_writel(atdma, EN, AT_DMA_ENABLE);

	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
	  dma_has_cap(DMA_MEMCPY, atdma->dma_device.cap_mask) ? "cpy " : "",
	  dma_has_cap(DMA_MEMSET, atdma->dma_device.cap_mask) ? "set " : "",
	  dma_has_cap(DMA_SLAVE, atdma->dma_device.cap_mask)  ? "slave " : "",
	  plat_dat->nr_channels);

	err = dma_async_device_register(&atdma->dma_device);
	if (err) {
		dev_err(&pdev->dev, "Unable to register: %d.\n", err);
		goto err_dma_async_device_register;
	}

	/*
	 * Do not return an error if the dmac node is not present in order to
	 * not break the existing way of requesting channel with
	 * dma_request_channel().
	 */
	if (pdev->dev.of_node) {
		err = of_dma_controller_register(pdev->dev.of_node,
						 at_dma_xlate, atdma);
		if (err) {
			dev_err(&pdev->dev, "could not register of_dma_controller\n");
			goto err_of_dma_controller_register;
		}
	}

	return 0;

err_of_dma_controller_register:
	dma_async_device_unregister(&atdma->dma_device);
err_dma_async_device_register:
	dma_pool_destroy(atdma->memset_pool);
err_memset_pool_create:
	dma_pool_destroy(atdma->lli_pool);
err_desc_pool_create:
	free_irq(platform_get_irq(pdev, 0), atdma);
err_irq:
	clk_disable_unprepare(atdma->clk);
	return err;
}

static void at_dma_remove(struct platform_device *pdev)
{
	struct at_dma		*atdma = platform_get_drvdata(pdev);
	struct dma_chan		*chan, *_chan;

	at_dma_off(atdma);
	if (pdev->dev.of_node)
		of_dma_controller_free(pdev->dev.of_node);
	dma_async_device_unregister(&atdma->dma_device);

	dma_pool_destroy(atdma->memset_pool);
	dma_pool_destroy(atdma->lli_pool);
	free_irq(platform_get_irq(pdev, 0), atdma);

	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
			device_node) {
		/* Disable interrupts */
		atc_disable_chan_irq(atdma, chan->chan_id);
		list_del(&chan->device_node);
	}

	clk_disable_unprepare(atdma->clk);
}

static void at_dma_shutdown(struct platform_device *pdev)
{
	struct at_dma	*atdma = platform_get_drvdata(pdev);

	at_dma_off(platform_get_drvdata(pdev));
	clk_disable_unprepare(atdma->clk);
}

static int at_dma_prepare(struct device *dev)
{
	struct at_dma *atdma = dev_get_drvdata(dev);
	struct dma_chan *chan, *_chan;

	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
			device_node) {
		struct at_dma_chan *atchan = to_at_dma_chan(chan);
		/* wait for transaction completion (except in cyclic case) */
		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
			return -EAGAIN;
	}
	return 0;
}

static void atc_suspend_cyclic(struct at_dma_chan *atchan)
{
	struct dma_chan	*chan = &atchan->vc.chan;

	/* Channel should be paused by user
	 * do it anyway even if it is not done already */
	if (!atc_chan_is_paused(atchan)) {
		dev_warn(chan2dev(chan),
		"cyclic channel not paused, should be done by channel user\n");
		atc_pause(chan);
	}

	/* now preserve additional data for cyclic operations */
	/* next descriptor address in the cyclic list */
	atchan->save_dscr = channel_readl(atchan, DSCR);

	vdbg_dump_regs(atchan);
}

static int at_dma_suspend_noirq(struct device *dev)
{
	struct at_dma *atdma = dev_get_drvdata(dev);
	struct dma_chan *chan, *_chan;

	/* preserve data */
	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
			device_node) {
		struct at_dma_chan *atchan = to_at_dma_chan(chan);

		if (atc_chan_is_cyclic(atchan))
			atc_suspend_cyclic(atchan);
		atchan->save_cfg = channel_readl(atchan, CFG);
	}
	atdma->save_imr = dma_readl(atdma, EBCIMR);

	/* disable DMA controller */
	at_dma_off(atdma);
	clk_disable_unprepare(atdma->clk);
	return 0;
}

static void atc_resume_cyclic(struct at_dma_chan *atchan)
{
	struct at_dma	*atdma = to_at_dma(atchan->vc.chan.device);

	/* restore channel status for cyclic descriptors list:
	 * next descriptor in the cyclic list at the time of suspend */
	channel_writel(atchan, SADDR, 0);
	channel_writel(atchan, DADDR, 0);
	channel_writel(atchan, CTRLA, 0);
	channel_writel(atchan, CTRLB, 0);
	channel_writel(atchan, DSCR, atchan->save_dscr);
	dma_writel(atdma, CHER, atchan->mask);

	/* channel pause status should be removed by channel user
	 * We cannot take the initiative to do it here */

	vdbg_dump_regs(atchan);
}

static int at_dma_resume_noirq(struct device *dev)
{
	struct at_dma *atdma = dev_get_drvdata(dev);
	struct dma_chan *chan, *_chan;

	/* bring back DMA controller */
	clk_prepare_enable(atdma->clk);
	dma_writel(atdma, EN, AT_DMA_ENABLE);

	/* clear any pending interrupt */
	while (dma_readl(atdma, EBCISR))
		cpu_relax();

	/* restore saved data */
	dma_writel(atdma, EBCIER, atdma->save_imr);
	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
			device_node) {
		struct at_dma_chan *atchan = to_at_dma_chan(chan);

		channel_writel(atchan, CFG, atchan->save_cfg);
		if (atc_chan_is_cyclic(atchan))
			atc_resume_cyclic(atchan);
	}
	return 0;
}

static const struct dev_pm_ops __maybe_unused at_dma_dev_pm_ops = {
	.prepare = at_dma_prepare,
	.suspend_noirq = at_dma_suspend_noirq,
	.resume_noirq = at_dma_resume_noirq,
};

static struct platform_driver at_dma_driver = {
	.remove_new	= at_dma_remove,
	.shutdown	= at_dma_shutdown,
	.id_table	= atdma_devtypes,
	.driver = {
		.name	= "at_hdmac",
		.pm	= pm_ptr(&at_dma_dev_pm_ops),
		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
	},
};

static int __init at_dma_init(void)
{
	return platform_driver_probe(&at_dma_driver, at_dma_probe);
}
subsys_initcall(at_dma_init);

static void __exit at_dma_exit(void)
{
	platform_driver_unregister(&at_dma_driver);
}
module_exit(at_dma_exit);

MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:at_hdmac");