summaryrefslogtreecommitdiff
path: root/drivers/crypto/intel/qat/qat_common/adf_rl.c
blob: 86e3e2152b1b00892e875c6ee2b70d5ed5adc63a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright(c) 2023 Intel Corporation */

#define dev_fmt(fmt) "RateLimiting: " fmt

#include <asm/errno.h>
#include <asm/div64.h>

#include <linux/dev_printk.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/units.h>

#include "adf_accel_devices.h"
#include "adf_common_drv.h"
#include "adf_rl_admin.h"
#include "adf_rl.h"
#include "adf_sysfs_rl.h"

#define RL_TOKEN_GRANULARITY_PCIEIN_BUCKET	0U
#define RL_TOKEN_GRANULARITY_PCIEOUT_BUCKET	0U
#define RL_TOKEN_PCIE_SIZE			64
#define RL_TOKEN_ASYM_SIZE			1024
#define RL_CSR_SIZE				4U
#define RL_CAPABILITY_MASK			GENMASK(6, 4)
#define RL_CAPABILITY_VALUE			0x70
#define RL_VALIDATE_NON_ZERO(input)		((input) == 0)
#define ROOT_MASK				GENMASK(1, 0)
#define CLUSTER_MASK				GENMASK(3, 0)
#define LEAF_MASK				GENMASK(5, 0)

static int validate_user_input(struct adf_accel_dev *accel_dev,
			       struct adf_rl_sla_input_data *sla_in,
			       bool is_update)
{
	const unsigned long rp_mask = sla_in->rp_mask;
	size_t rp_mask_size;
	int i, cnt;

	if (sla_in->pir < sla_in->cir) {
		dev_notice(&GET_DEV(accel_dev),
			   "PIR must be >= CIR, setting PIR to CIR\n");
		sla_in->pir = sla_in->cir;
	}

	if (!is_update) {
		cnt = 0;
		rp_mask_size = sizeof(sla_in->rp_mask) * BITS_PER_BYTE;
		for_each_set_bit(i, &rp_mask, rp_mask_size) {
			if (++cnt > RL_RP_CNT_PER_LEAF_MAX) {
				dev_notice(&GET_DEV(accel_dev),
					   "Too many ring pairs selected for this SLA\n");
				return -EINVAL;
			}
		}

		if (sla_in->srv >= ADF_SVC_NONE) {
			dev_notice(&GET_DEV(accel_dev),
				   "Wrong service type\n");
			return -EINVAL;
		}

		if (sla_in->type > RL_LEAF) {
			dev_notice(&GET_DEV(accel_dev),
				   "Wrong node type\n");
			return -EINVAL;
		}

		if (sla_in->parent_id < RL_PARENT_DEFAULT_ID ||
		    sla_in->parent_id >= RL_NODES_CNT_MAX) {
			dev_notice(&GET_DEV(accel_dev),
				   "Wrong parent ID\n");
			return -EINVAL;
		}
	}

	return 0;
}

static int validate_sla_id(struct adf_accel_dev *accel_dev, int sla_id)
{
	struct rl_sla *sla;

	if (sla_id <= RL_SLA_EMPTY_ID || sla_id >= RL_NODES_CNT_MAX) {
		dev_notice(&GET_DEV(accel_dev), "Provided ID is out of bounds\n");
		return -EINVAL;
	}

	sla = accel_dev->rate_limiting->sla[sla_id];

	if (!sla) {
		dev_notice(&GET_DEV(accel_dev), "SLA with provided ID does not exist\n");
		return -EINVAL;
	}

	if (sla->type != RL_LEAF) {
		dev_notice(&GET_DEV(accel_dev), "This ID is reserved for internal use\n");
		return -EINVAL;
	}

	return 0;
}

/**
 * find_parent() - Find the parent for a new SLA
 * @rl_data: pointer to ratelimiting data
 * @sla_in: pointer to user input data for a new SLA
 *
 * Function returns a pointer to the parent SLA. If the parent ID is provided
 * as input in the user data, then such ID is validated and the parent SLA
 * is returned.
 * Otherwise, it returns the default parent SLA (root or cluster) for
 * the new object.
 *
 * Return:
 * * Pointer to the parent SLA object
 * * NULL - when parent cannot be found
 */
static struct rl_sla *find_parent(struct adf_rl *rl_data,
				  struct adf_rl_sla_input_data *sla_in)
{
	int input_parent_id = sla_in->parent_id;
	struct rl_sla *root = NULL;
	struct rl_sla *parent_sla;
	int i;

	if (sla_in->type == RL_ROOT)
		return NULL;

	if (input_parent_id > RL_PARENT_DEFAULT_ID) {
		parent_sla = rl_data->sla[input_parent_id];
		/*
		 * SLA can be a parent if it has the same service as the child
		 * and its type is higher in the hierarchy,
		 * for example the parent type of a LEAF must be a CLUSTER.
		 */
		if (parent_sla && parent_sla->srv == sla_in->srv &&
		    parent_sla->type == sla_in->type - 1)
			return parent_sla;

		return NULL;
	}

	/* If input_parent_id is not valid, get root for this service type. */
	for (i = 0; i < RL_ROOT_MAX; i++) {
		if (rl_data->root[i] && rl_data->root[i]->srv == sla_in->srv) {
			root = rl_data->root[i];
			break;
		}
	}

	if (!root)
		return NULL;

	/*
	 * If the type of this SLA is cluster, then return the root.
	 * Otherwise, find the default (i.e. first) cluster for this service.
	 */
	if (sla_in->type == RL_CLUSTER)
		return root;

	for (i = 0; i < RL_CLUSTER_MAX; i++) {
		if (rl_data->cluster[i] && rl_data->cluster[i]->parent == root)
			return rl_data->cluster[i];
	}

	return NULL;
}

static enum adf_cfg_service_type srv_to_cfg_svc_type(enum adf_base_services rl_srv)
{
	switch (rl_srv) {
	case ADF_SVC_ASYM:
		return ASYM;
	case ADF_SVC_SYM:
		return SYM;
	case ADF_SVC_DC:
		return COMP;
	default:
		return UNUSED;
	}
}

/**
 * get_sla_arr_of_type() - Returns a pointer to SLA type specific array
 * @rl_data: pointer to ratelimiting data
 * @type: SLA type
 * @sla_arr: pointer to variable where requested pointer will be stored
 *
 * Return: Max number of elements allowed for the returned array
 */
static u32 get_sla_arr_of_type(struct adf_rl *rl_data, enum rl_node_type type,
			       struct rl_sla ***sla_arr)
{
	switch (type) {
	case RL_LEAF:
		*sla_arr = rl_data->leaf;
		return RL_LEAF_MAX;
	case RL_CLUSTER:
		*sla_arr = rl_data->cluster;
		return RL_CLUSTER_MAX;
	case RL_ROOT:
		*sla_arr = rl_data->root;
		return RL_ROOT_MAX;
	default:
		*sla_arr = NULL;
		return 0;
	}
}

static bool is_service_enabled(struct adf_accel_dev *accel_dev,
			       enum adf_base_services rl_srv)
{
	enum adf_cfg_service_type arb_srv = srv_to_cfg_svc_type(rl_srv);
	struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev);
	u8 rps_per_bundle = hw_data->num_banks_per_vf;
	int i;

	for (i = 0; i < rps_per_bundle; i++) {
		if (GET_SRV_TYPE(accel_dev, i) == arb_srv)
			return true;
	}

	return false;
}

/**
 * prepare_rp_ids() - Creates an array of ring pair IDs from bitmask
 * @accel_dev: pointer to acceleration device structure
 * @sla: SLA object data where result will be written
 * @rp_mask: bitmask of ring pair IDs
 *
 * Function tries to convert provided bitmap to an array of IDs. It checks if
 * RPs aren't in use, are assigned to SLA  service or if a number of provided
 * IDs is not too big. If successful, writes the result into the field
 * sla->ring_pairs_cnt.
 *
 * Return:
 * * 0		- ok
 * * -EINVAL	- ring pairs array cannot be created from provided mask
 */
static int prepare_rp_ids(struct adf_accel_dev *accel_dev, struct rl_sla *sla,
			  const unsigned long rp_mask)
{
	enum adf_cfg_service_type arb_srv = srv_to_cfg_svc_type(sla->srv);
	u16 rps_per_bundle = GET_HW_DATA(accel_dev)->num_banks_per_vf;
	bool *rp_in_use = accel_dev->rate_limiting->rp_in_use;
	size_t rp_cnt_max = ARRAY_SIZE(sla->ring_pairs_ids);
	u16 rp_id_max = GET_HW_DATA(accel_dev)->num_banks;
	u16 cnt = 0;
	u16 rp_id;

	for_each_set_bit(rp_id, &rp_mask, rp_id_max) {
		if (cnt >= rp_cnt_max) {
			dev_notice(&GET_DEV(accel_dev),
				   "Assigned more ring pairs than supported");
			return -EINVAL;
		}

		if (rp_in_use[rp_id]) {
			dev_notice(&GET_DEV(accel_dev),
				   "RP %u already assigned to other SLA", rp_id);
			return -EINVAL;
		}

		if (GET_SRV_TYPE(accel_dev, rp_id % rps_per_bundle) != arb_srv) {
			dev_notice(&GET_DEV(accel_dev),
				   "RP %u does not support SLA service", rp_id);
			return -EINVAL;
		}

		sla->ring_pairs_ids[cnt++] = rp_id;
	}

	sla->ring_pairs_cnt = cnt;

	return 0;
}

static void mark_rps_usage(struct rl_sla *sla, bool *rp_in_use, bool used)
{
	u16 rp_id;
	int i;

	for (i = 0; i < sla->ring_pairs_cnt; i++) {
		rp_id = sla->ring_pairs_ids[i];
		rp_in_use[rp_id] = used;
	}
}

static void assign_rps_to_leaf(struct adf_accel_dev *accel_dev,
			       struct rl_sla *sla, bool clear)
{
	struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev);
	void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev);
	u32 base_offset = hw_data->rl_data.r2l_offset;
	u32 node_id = clear ? 0U : (sla->node_id & LEAF_MASK);
	u32 offset;
	int i;

	for (i = 0; i < sla->ring_pairs_cnt; i++) {
		offset = base_offset + (RL_CSR_SIZE * sla->ring_pairs_ids[i]);
		ADF_CSR_WR(pmisc_addr, offset, node_id);
	}
}

static void assign_leaf_to_cluster(struct adf_accel_dev *accel_dev,
				   struct rl_sla *sla, bool clear)
{
	struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev);
	void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev);
	u32 base_offset = hw_data->rl_data.l2c_offset;
	u32 node_id = sla->node_id & LEAF_MASK;
	u32 parent_id = clear ? 0U : (sla->parent->node_id & CLUSTER_MASK);
	u32 offset;

	offset = base_offset + (RL_CSR_SIZE * node_id);
	ADF_CSR_WR(pmisc_addr, offset, parent_id);
}

static void assign_cluster_to_root(struct adf_accel_dev *accel_dev,
				   struct rl_sla *sla, bool clear)
{
	struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev);
	void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev);
	u32 base_offset = hw_data->rl_data.c2s_offset;
	u32 node_id = sla->node_id & CLUSTER_MASK;
	u32 parent_id = clear ? 0U : (sla->parent->node_id & ROOT_MASK);
	u32 offset;

	offset = base_offset + (RL_CSR_SIZE * node_id);
	ADF_CSR_WR(pmisc_addr, offset, parent_id);
}

static void assign_node_to_parent(struct adf_accel_dev *accel_dev,
				  struct rl_sla *sla, bool clear_assignment)
{
	switch (sla->type) {
	case RL_LEAF:
		assign_rps_to_leaf(accel_dev, sla, clear_assignment);
		assign_leaf_to_cluster(accel_dev, sla, clear_assignment);
		break;
	case RL_CLUSTER:
		assign_cluster_to_root(accel_dev, sla, clear_assignment);
		break;
	default:
		break;
	}
}

/**
 * can_parent_afford_sla() - Verifies if parent allows to create an SLA
 * @sla_in: pointer to user input data for a new SLA
 * @sla_parent: pointer to parent SLA object
 * @sla_cir: current child CIR value (only for update)
 * @is_update: request is a update
 *
 * Algorithm verifies if parent has enough remaining budget to take assignment
 * of a child with provided parameters. In update case current CIR value must be
 * returned to budget first.
 * PIR value cannot exceed the PIR assigned to parent.
 *
 * Return:
 * * true	- SLA can be created
 * * false	- SLA cannot be created
 */
static bool can_parent_afford_sla(struct adf_rl_sla_input_data *sla_in,
				  struct rl_sla *sla_parent, u32 sla_cir,
				  bool is_update)
{
	u32 rem_cir = sla_parent->rem_cir;

	if (is_update)
		rem_cir += sla_cir;

	if (sla_in->cir > rem_cir || sla_in->pir > sla_parent->pir)
		return false;

	return true;
}

/**
 * can_node_afford_update() - Verifies if SLA can be updated with input data
 * @sla_in: pointer to user input data for a new SLA
 * @sla: pointer to SLA object selected for update
 *
 * Algorithm verifies if a new CIR value is big enough to satisfy currently
 * assigned child SLAs and if PIR can be updated
 *
 * Return:
 * * true	- SLA can be updated
 * * false	- SLA cannot be updated
 */
static bool can_node_afford_update(struct adf_rl_sla_input_data *sla_in,
				   struct rl_sla *sla)
{
	u32 cir_in_use = sla->cir - sla->rem_cir;

	/* new CIR cannot be smaller then currently consumed value */
	if (cir_in_use > sla_in->cir)
		return false;

	/* PIR of root/cluster cannot be reduced in node with assigned children */
	if (sla_in->pir < sla->pir && sla->type != RL_LEAF && cir_in_use > 0)
		return false;

	return true;
}

static bool is_enough_budget(struct adf_rl *rl_data, struct rl_sla *sla,
			     struct adf_rl_sla_input_data *sla_in,
			     bool is_update)
{
	u32 max_val = rl_data->device_data->scale_ref;
	struct rl_sla *parent = sla->parent;
	bool ret = true;

	if (sla_in->cir > max_val || sla_in->pir > max_val)
		ret = false;

	switch (sla->type) {
	case RL_LEAF:
		ret &= can_parent_afford_sla(sla_in, parent, sla->cir,
						  is_update);
		break;
	case RL_CLUSTER:
		ret &= can_parent_afford_sla(sla_in, parent, sla->cir,
						  is_update);

		if (is_update)
			ret &= can_node_afford_update(sla_in, sla);

		break;
	case RL_ROOT:
		if (is_update)
			ret &= can_node_afford_update(sla_in, sla);

		break;
	default:
		ret = false;
		break;
	}

	return ret;
}

static void update_budget(struct rl_sla *sla, u32 old_cir, bool is_update)
{
	switch (sla->type) {
	case RL_LEAF:
		if (is_update)
			sla->parent->rem_cir += old_cir;

		sla->parent->rem_cir -= sla->cir;
		sla->rem_cir = 0;
		break;
	case RL_CLUSTER:
		if (is_update) {
			sla->parent->rem_cir += old_cir;
			sla->rem_cir = sla->cir - (old_cir - sla->rem_cir);
		} else {
			sla->rem_cir = sla->cir;
		}

		sla->parent->rem_cir -= sla->cir;
		break;
	case RL_ROOT:
		if (is_update)
			sla->rem_cir = sla->cir - (old_cir - sla->rem_cir);
		else
			sla->rem_cir = sla->cir;
		break;
	default:
		break;
	}
}

/**
 * get_next_free_sla_id() - finds next free ID in the SLA array
 * @rl_data: Pointer to ratelimiting data structure
 *
 * Return:
 * * 0 : RL_NODES_CNT_MAX	- correct ID
 * * -ENOSPC			- all SLA slots are in use
 */
static int get_next_free_sla_id(struct adf_rl *rl_data)
{
	int i = 0;

	while (i < RL_NODES_CNT_MAX && rl_data->sla[i++])
		;

	if (i == RL_NODES_CNT_MAX)
		return -ENOSPC;

	return i - 1;
}

/**
 * get_next_free_node_id() - finds next free ID in the array of that node type
 * @rl_data: Pointer to ratelimiting data structure
 * @sla: Pointer to SLA object for which the ID is searched
 *
 * Return:
 * * 0 : RL_[NODE_TYPE]_MAX	- correct ID
 * * -ENOSPC			- all slots of that type are in use
 */
static int get_next_free_node_id(struct adf_rl *rl_data, struct rl_sla *sla)
{
	struct adf_hw_device_data *hw_device = GET_HW_DATA(rl_data->accel_dev);
	int max_id, i, step, rp_per_leaf;
	struct rl_sla **sla_list;

	rp_per_leaf = hw_device->num_banks / hw_device->num_banks_per_vf;

	/*
	 * Static nodes mapping:
	 * root0 - cluster[0,4,8,12] - leaf[0-15]
	 * root1 - cluster[1,5,9,13] - leaf[16-31]
	 * root2 - cluster[2,6,10,14] - leaf[32-47]
	 */
	switch (sla->type) {
	case RL_LEAF:
		i = sla->srv * rp_per_leaf;
		step = 1;
		max_id = i + rp_per_leaf;
		sla_list = rl_data->leaf;
		break;
	case RL_CLUSTER:
		i = sla->srv;
		step = 4;
		max_id = RL_CLUSTER_MAX;
		sla_list = rl_data->cluster;
		break;
	case RL_ROOT:
		return sla->srv;
	default:
		return -EINVAL;
	}

	while (i < max_id && sla_list[i])
		i += step;

	if (i >= max_id)
		return -ENOSPC;

	return i;
}

u32 adf_rl_calculate_slice_tokens(struct adf_accel_dev *accel_dev, u32 sla_val,
				  enum adf_base_services svc_type)
{
	struct adf_rl_hw_data *device_data = &accel_dev->hw_device->rl_data;
	struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev);
	u64 avail_slice_cycles, allocated_tokens;

	if (!sla_val)
		return 0;

	avail_slice_cycles = hw_data->clock_frequency;

	switch (svc_type) {
	case ADF_SVC_ASYM:
		avail_slice_cycles *= device_data->slices.pke_cnt;
		break;
	case ADF_SVC_SYM:
		avail_slice_cycles *= device_data->slices.cph_cnt;
		break;
	case ADF_SVC_DC:
		avail_slice_cycles *= device_data->slices.dcpr_cnt;
		break;
	default:
		break;
	}

	do_div(avail_slice_cycles, device_data->scan_interval);
	allocated_tokens = avail_slice_cycles * sla_val;
	do_div(allocated_tokens, device_data->scale_ref);

	return allocated_tokens;
}

u32 adf_rl_calculate_ae_cycles(struct adf_accel_dev *accel_dev, u32 sla_val,
			       enum adf_base_services svc_type)
{
	struct adf_rl_hw_data *device_data = &accel_dev->hw_device->rl_data;
	struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev);
	u64 allocated_ae_cycles, avail_ae_cycles;

	if (!sla_val)
		return 0;

	avail_ae_cycles = hw_data->clock_frequency;
	avail_ae_cycles *= hw_data->get_num_aes(hw_data) - 1;
	do_div(avail_ae_cycles, device_data->scan_interval);

	sla_val *= device_data->max_tp[svc_type];
	sla_val /= device_data->scale_ref;

	allocated_ae_cycles = (sla_val * avail_ae_cycles);
	do_div(allocated_ae_cycles, device_data->max_tp[svc_type]);

	return allocated_ae_cycles;
}

u32 adf_rl_calculate_pci_bw(struct adf_accel_dev *accel_dev, u32 sla_val,
			    enum adf_base_services svc_type, bool is_bw_out)
{
	struct adf_rl_hw_data *device_data = &accel_dev->hw_device->rl_data;
	u64 sla_to_bytes, allocated_bw, sla_scaled;

	if (!sla_val)
		return 0;

	sla_to_bytes = sla_val;
	sla_to_bytes *= device_data->max_tp[svc_type];
	do_div(sla_to_bytes, device_data->scale_ref);

	sla_to_bytes *= (svc_type == ADF_SVC_ASYM) ? RL_TOKEN_ASYM_SIZE :
						     BYTES_PER_MBIT;
	if (svc_type == ADF_SVC_DC && is_bw_out)
		sla_to_bytes *= device_data->slices.dcpr_cnt -
				device_data->dcpr_correction;

	sla_scaled = sla_to_bytes * device_data->pcie_scale_mul;
	do_div(sla_scaled, device_data->pcie_scale_div);
	allocated_bw = sla_scaled;
	do_div(allocated_bw, RL_TOKEN_PCIE_SIZE);
	do_div(allocated_bw, device_data->scan_interval);

	return allocated_bw;
}

/**
 * add_new_sla_entry() - creates a new SLA object and fills it with user data
 * @accel_dev: pointer to acceleration device structure
 * @sla_in: pointer to user input data for a new SLA
 * @sla_out: Pointer to variable that will contain the address of a new
 *	     SLA object if the operation succeeds
 *
 * Return:
 * * 0		- ok
 * * -ENOMEM	- memory allocation failed
 * * -EINVAL	- invalid user input
 * * -ENOSPC	- all available SLAs are in use
 */
static int add_new_sla_entry(struct adf_accel_dev *accel_dev,
			     struct adf_rl_sla_input_data *sla_in,
			     struct rl_sla **sla_out)
{
	struct adf_rl *rl_data = accel_dev->rate_limiting;
	struct rl_sla *sla;
	int ret = 0;

	sla = kzalloc(sizeof(*sla), GFP_KERNEL);
	if (!sla) {
		ret = -ENOMEM;
		goto ret_err;
	}
	*sla_out = sla;

	if (!is_service_enabled(accel_dev, sla_in->srv)) {
		dev_notice(&GET_DEV(accel_dev),
			   "Provided service is not enabled\n");
		ret = -EINVAL;
		goto ret_err;
	}

	sla->srv = sla_in->srv;
	sla->type = sla_in->type;
	ret = get_next_free_node_id(rl_data, sla);
	if (ret < 0) {
		dev_notice(&GET_DEV(accel_dev),
			   "Exceeded number of available nodes for that service\n");
		goto ret_err;
	}
	sla->node_id = ret;

	ret = get_next_free_sla_id(rl_data);
	if (ret < 0) {
		dev_notice(&GET_DEV(accel_dev),
			   "Allocated maximum SLAs number\n");
		goto ret_err;
	}
	sla->sla_id = ret;

	sla->parent = find_parent(rl_data, sla_in);
	if (!sla->parent && sla->type != RL_ROOT) {
		if (sla_in->parent_id != RL_PARENT_DEFAULT_ID)
			dev_notice(&GET_DEV(accel_dev),
				   "Provided parent ID does not exist or cannot be parent for this SLA.");
		else
			dev_notice(&GET_DEV(accel_dev),
				   "Unable to find parent node for this service. Is service enabled?");
		ret = -EINVAL;
		goto ret_err;
	}

	if (sla->type == RL_LEAF) {
		ret = prepare_rp_ids(accel_dev, sla, sla_in->rp_mask);
		if (!sla->ring_pairs_cnt || ret) {
			dev_notice(&GET_DEV(accel_dev),
				   "Unable to find ring pairs to assign to the leaf");
			if (!ret)
				ret = -EINVAL;

			goto ret_err;
		}
	}

	return 0;

ret_err:
	kfree(sla);
	*sla_out = NULL;

	return ret;
}

static int initialize_default_nodes(struct adf_accel_dev *accel_dev)
{
	struct adf_rl *rl_data = accel_dev->rate_limiting;
	struct adf_rl_hw_data *device_data = rl_data->device_data;
	struct adf_rl_sla_input_data sla_in = { };
	int ret = 0;
	int i;

	/* Init root for each enabled service */
	sla_in.type = RL_ROOT;
	sla_in.parent_id = RL_PARENT_DEFAULT_ID;

	for (i = 0; i < ADF_SVC_NONE; i++) {
		if (!is_service_enabled(accel_dev, i))
			continue;

		sla_in.cir = device_data->scale_ref;
		sla_in.pir = sla_in.cir;
		sla_in.srv = i;

		ret = adf_rl_add_sla(accel_dev, &sla_in);
		if (ret)
			return ret;
	}

	/* Init default cluster for each root */
	sla_in.type = RL_CLUSTER;
	for (i = 0; i < ADF_SVC_NONE; i++) {
		if (!rl_data->root[i])
			continue;

		sla_in.cir = rl_data->root[i]->cir;
		sla_in.pir = sla_in.cir;
		sla_in.srv = rl_data->root[i]->srv;

		ret = adf_rl_add_sla(accel_dev, &sla_in);
		if (ret)
			return ret;
	}

	return 0;
}

static void clear_sla(struct adf_rl *rl_data, struct rl_sla *sla)
{
	bool *rp_in_use = rl_data->rp_in_use;
	struct rl_sla **sla_type_arr = NULL;
	int i, sla_id, node_id;
	u32 old_cir;

	sla_id = sla->sla_id;
	node_id = sla->node_id;
	old_cir = sla->cir;
	sla->cir = 0;
	sla->pir = 0;

	for (i = 0; i < sla->ring_pairs_cnt; i++)
		rp_in_use[sla->ring_pairs_ids[i]] = false;

	update_budget(sla, old_cir, true);
	get_sla_arr_of_type(rl_data, sla->type, &sla_type_arr);
	assign_node_to_parent(rl_data->accel_dev, sla, true);
	adf_rl_send_admin_delete_msg(rl_data->accel_dev, node_id, sla->type);
	mark_rps_usage(sla, rl_data->rp_in_use, false);

	kfree(sla);
	rl_data->sla[sla_id] = NULL;
	sla_type_arr[node_id] = NULL;
}

/**
 * add_update_sla() - handles the creation and the update of an SLA
 * @accel_dev: pointer to acceleration device structure
 * @sla_in: pointer to user input data for a new/updated SLA
 * @is_update: flag to indicate if this is an update or an add operation
 *
 * Return:
 * * 0		- ok
 * * -ENOMEM	- memory allocation failed
 * * -EINVAL	- user input data cannot be used to create SLA
 * * -ENOSPC	- all available SLAs are in use
 */
static int add_update_sla(struct adf_accel_dev *accel_dev,
			  struct adf_rl_sla_input_data *sla_in, bool is_update)
{
	struct adf_rl *rl_data = accel_dev->rate_limiting;
	struct rl_sla **sla_type_arr = NULL;
	struct rl_sla *sla = NULL;
	u32 old_cir = 0;
	int ret;

	if (!sla_in) {
		dev_warn(&GET_DEV(accel_dev),
			 "SLA input data pointer is missing\n");
		ret = -EFAULT;
		goto ret_err;
	}

	/* Input validation */
	ret = validate_user_input(accel_dev, sla_in, is_update);
	if (ret)
		goto ret_err;

	mutex_lock(&rl_data->rl_lock);

	if (is_update) {
		ret = validate_sla_id(accel_dev, sla_in->sla_id);
		if (ret)
			goto ret_err;

		sla = rl_data->sla[sla_in->sla_id];
		old_cir = sla->cir;
	} else {
		ret = add_new_sla_entry(accel_dev, sla_in, &sla);
		if (ret)
			goto ret_err;
	}

	if (!is_enough_budget(rl_data, sla, sla_in, is_update)) {
		dev_notice(&GET_DEV(accel_dev),
			   "Input value exceeds the remaining budget%s\n",
			   is_update ? " or more budget is already in use" : "");
		ret = -EINVAL;
		goto ret_err;
	}
	sla->cir = sla_in->cir;
	sla->pir = sla_in->pir;

	/* Apply SLA */
	assign_node_to_parent(accel_dev, sla, false);
	ret = adf_rl_send_admin_add_update_msg(accel_dev, sla, is_update);
	if (ret) {
		dev_notice(&GET_DEV(accel_dev),
			   "Failed to apply an SLA\n");
		goto ret_err;
	}
	update_budget(sla, old_cir, is_update);

	if (!is_update) {
		mark_rps_usage(sla, rl_data->rp_in_use, true);
		get_sla_arr_of_type(rl_data, sla->type, &sla_type_arr);
		sla_type_arr[sla->node_id] = sla;
		rl_data->sla[sla->sla_id] = sla;
	}

	sla_in->sla_id = sla->sla_id;
	goto ret_ok;

ret_err:
	if (!is_update) {
		sla_in->sla_id = -1;
		kfree(sla);
	}
ret_ok:
	mutex_unlock(&rl_data->rl_lock);
	return ret;
}

/**
 * adf_rl_add_sla() - handles the creation of an SLA
 * @accel_dev: pointer to acceleration device structure
 * @sla_in: pointer to user input data required to add an SLA
 *
 * Return:
 * * 0		- ok
 * * -ENOMEM	- memory allocation failed
 * * -EINVAL	- invalid user input
 * * -ENOSPC	- all available SLAs are in use
 */
int adf_rl_add_sla(struct adf_accel_dev *accel_dev,
		   struct adf_rl_sla_input_data *sla_in)
{
	return add_update_sla(accel_dev, sla_in, false);
}

/**
 * adf_rl_update_sla() - handles the update of an SLA
 * @accel_dev: pointer to acceleration device structure
 * @sla_in: pointer to user input data required to update an SLA
 *
 * Return:
 * * 0		- ok
 * * -EINVAL	- user input data cannot be used to update SLA
 */
int adf_rl_update_sla(struct adf_accel_dev *accel_dev,
		      struct adf_rl_sla_input_data *sla_in)
{
	return add_update_sla(accel_dev, sla_in, true);
}

/**
 * adf_rl_get_sla() - returns an existing SLA data
 * @accel_dev: pointer to acceleration device structure
 * @sla_in: pointer to user data where SLA info will be stored
 *
 * The sla_id for which data are requested should be set in sla_id structure
 *
 * Return:
 * * 0		- ok
 * * -EINVAL	- provided sla_id does not exist
 */
int adf_rl_get_sla(struct adf_accel_dev *accel_dev,
		   struct adf_rl_sla_input_data *sla_in)
{
	struct rl_sla *sla;
	int ret, i;

	ret = validate_sla_id(accel_dev, sla_in->sla_id);
	if (ret)
		return ret;

	sla = accel_dev->rate_limiting->sla[sla_in->sla_id];
	sla_in->type = sla->type;
	sla_in->srv = sla->srv;
	sla_in->cir = sla->cir;
	sla_in->pir = sla->pir;
	sla_in->rp_mask = 0U;
	if (sla->parent)
		sla_in->parent_id = sla->parent->sla_id;
	else
		sla_in->parent_id = RL_PARENT_DEFAULT_ID;

	for (i = 0; i < sla->ring_pairs_cnt; i++)
		sla_in->rp_mask |= BIT(sla->ring_pairs_ids[i]);

	return 0;
}

/**
 * adf_rl_get_capability_remaining() - returns the remaining SLA value (CIR) for
 *				       selected service or provided sla_id
 * @accel_dev: pointer to acceleration device structure
 * @srv: service ID for which capability is requested
 * @sla_id: ID of the cluster or root to which we want assign a new SLA
 *
 * Check if the provided SLA id is valid. If it is and the service matches
 * the requested service and the type is cluster or root, return the remaining
 * capability.
 * If the provided ID does not match the service or type, return the remaining
 * capacity of the default cluster for that service.
 *
 * Return:
 * * Positive value	- correct remaining value
 * * -EINVAL		- algorithm cannot find a remaining value for provided data
 */
int adf_rl_get_capability_remaining(struct adf_accel_dev *accel_dev,
				    enum adf_base_services srv, int sla_id)
{
	struct adf_rl *rl_data = accel_dev->rate_limiting;
	struct rl_sla *sla = NULL;
	int i;

	if (srv >= ADF_SVC_NONE)
		return -EINVAL;

	if (sla_id > RL_SLA_EMPTY_ID && !validate_sla_id(accel_dev, sla_id)) {
		sla = rl_data->sla[sla_id];

		if (sla->srv == srv && sla->type <= RL_CLUSTER)
			goto ret_ok;
	}

	for (i = 0; i < RL_CLUSTER_MAX; i++) {
		if (!rl_data->cluster[i])
			continue;

		if (rl_data->cluster[i]->srv == srv) {
			sla = rl_data->cluster[i];
			goto ret_ok;
		}
	}

	return -EINVAL;
ret_ok:
	return sla->rem_cir;
}

/**
 * adf_rl_remove_sla() - removes provided sla_id
 * @accel_dev: pointer to acceleration device structure
 * @sla_id: ID of the cluster or root to which we want assign an new SLA
 *
 * Return:
 * * 0		- ok
 * * -EINVAL	- wrong sla_id or it still have assigned children
 */
int adf_rl_remove_sla(struct adf_accel_dev *accel_dev, u32 sla_id)
{
	struct adf_rl *rl_data = accel_dev->rate_limiting;
	struct rl_sla *sla;
	int ret = 0;

	mutex_lock(&rl_data->rl_lock);
	ret = validate_sla_id(accel_dev, sla_id);
	if (ret)
		goto err_ret;

	sla = rl_data->sla[sla_id];

	if (sla->type < RL_LEAF && sla->rem_cir != sla->cir) {
		dev_notice(&GET_DEV(accel_dev),
			   "To remove parent SLA all its children must be removed first");
		ret = -EINVAL;
		goto err_ret;
	}

	clear_sla(rl_data, sla);

err_ret:
	mutex_unlock(&rl_data->rl_lock);
	return ret;
}

/**
 * adf_rl_remove_sla_all() - removes all SLAs from device
 * @accel_dev: pointer to acceleration device structure
 * @incl_default: set to true if default SLAs also should be removed
 */
void adf_rl_remove_sla_all(struct adf_accel_dev *accel_dev, bool incl_default)
{
	struct adf_rl *rl_data = accel_dev->rate_limiting;
	int end_type = incl_default ? RL_ROOT : RL_LEAF;
	struct rl_sla **sla_type_arr = NULL;
	u32 max_id;
	int i, j;

	mutex_lock(&rl_data->rl_lock);

	/* Unregister and remove all SLAs */
	for (j = RL_LEAF; j >= end_type; j--) {
		max_id = get_sla_arr_of_type(rl_data, j, &sla_type_arr);

		for (i = 0; i < max_id; i++) {
			if (!sla_type_arr[i])
				continue;

			clear_sla(rl_data, sla_type_arr[i]);
		}
	}

	mutex_unlock(&rl_data->rl_lock);
}

int adf_rl_init(struct adf_accel_dev *accel_dev)
{
	struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev);
	struct adf_rl_hw_data *rl_hw_data = &hw_data->rl_data;
	struct adf_rl *rl;
	int ret = 0;

	/* Validate device parameters */
	if (RL_VALIDATE_NON_ZERO(rl_hw_data->max_tp[ADF_SVC_ASYM]) ||
	    RL_VALIDATE_NON_ZERO(rl_hw_data->max_tp[ADF_SVC_SYM]) ||
	    RL_VALIDATE_NON_ZERO(rl_hw_data->max_tp[ADF_SVC_DC]) ||
	    RL_VALIDATE_NON_ZERO(rl_hw_data->scan_interval) ||
	    RL_VALIDATE_NON_ZERO(rl_hw_data->pcie_scale_div) ||
	    RL_VALIDATE_NON_ZERO(rl_hw_data->pcie_scale_mul) ||
	    RL_VALIDATE_NON_ZERO(rl_hw_data->scale_ref)) {
		ret = -EOPNOTSUPP;
		goto err_ret;
	}

	rl = kzalloc(sizeof(*rl), GFP_KERNEL);
	if (!rl) {
		ret = -ENOMEM;
		goto err_ret;
	}

	mutex_init(&rl->rl_lock);
	rl->device_data = &accel_dev->hw_device->rl_data;
	rl->accel_dev = accel_dev;
	accel_dev->rate_limiting = rl;

err_ret:
	return ret;
}

int adf_rl_start(struct adf_accel_dev *accel_dev)
{
	struct adf_rl_hw_data *rl_hw_data = &GET_HW_DATA(accel_dev)->rl_data;
	void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev);
	u16 fw_caps =  GET_HW_DATA(accel_dev)->fw_capabilities;
	int ret;

	if (!accel_dev->rate_limiting) {
		ret = -EOPNOTSUPP;
		goto ret_err;
	}

	if ((fw_caps & RL_CAPABILITY_MASK) != RL_CAPABILITY_VALUE) {
		dev_info(&GET_DEV(accel_dev), "not supported\n");
		ret = -EOPNOTSUPP;
		goto ret_free;
	}

	ADF_CSR_WR(pmisc_addr, rl_hw_data->pciin_tb_offset,
		   RL_TOKEN_GRANULARITY_PCIEIN_BUCKET);
	ADF_CSR_WR(pmisc_addr, rl_hw_data->pciout_tb_offset,
		   RL_TOKEN_GRANULARITY_PCIEOUT_BUCKET);

	ret = adf_rl_send_admin_init_msg(accel_dev, &rl_hw_data->slices);
	if (ret) {
		dev_err(&GET_DEV(accel_dev), "initialization failed\n");
		goto ret_free;
	}

	ret = initialize_default_nodes(accel_dev);
	if (ret) {
		dev_err(&GET_DEV(accel_dev),
			"failed to initialize default SLAs\n");
		goto ret_sla_rm;
	}

	ret = adf_sysfs_rl_add(accel_dev);
	if (ret) {
		dev_err(&GET_DEV(accel_dev), "failed to add sysfs interface\n");
		goto ret_sysfs_rm;
	}

	return 0;

ret_sysfs_rm:
	adf_sysfs_rl_rm(accel_dev);
ret_sla_rm:
	adf_rl_remove_sla_all(accel_dev, true);
ret_free:
	kfree(accel_dev->rate_limiting);
	accel_dev->rate_limiting = NULL;
ret_err:
	return ret;
}

void adf_rl_stop(struct adf_accel_dev *accel_dev)
{
	if (!accel_dev->rate_limiting)
		return;

	adf_sysfs_rl_rm(accel_dev);
	adf_rl_remove_sla_all(accel_dev, true);
}

void adf_rl_exit(struct adf_accel_dev *accel_dev)
{
	if (!accel_dev->rate_limiting)
		return;

	kfree(accel_dev->rate_limiting);
	accel_dev->rate_limiting = NULL;
}