summaryrefslogtreecommitdiff
path: root/drivers/crypto/ccp/ccp-dev-v3.c
blob: ae0cc0a4dc5c76e70fe9d7c5e82a46c2cea62def (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
/*
 * AMD Cryptographic Coprocessor (CCP) driver
 *
 * Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
 *
 * Author: Tom Lendacky <thomas.lendacky@amd.com>
 * Author: Gary R Hook <gary.hook@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/kthread.h>
#include <linux/interrupt.h>
#include <linux/ccp.h>

#include "ccp-dev.h"

static u32 ccp_alloc_ksb(struct ccp_cmd_queue *cmd_q, unsigned int count)
{
	int start;
	struct ccp_device *ccp = cmd_q->ccp;

	for (;;) {
		mutex_lock(&ccp->sb_mutex);

		start = (u32)bitmap_find_next_zero_area(ccp->sb,
							ccp->sb_count,
							ccp->sb_start,
							count, 0);
		if (start <= ccp->sb_count) {
			bitmap_set(ccp->sb, start, count);

			mutex_unlock(&ccp->sb_mutex);
			break;
		}

		ccp->sb_avail = 0;

		mutex_unlock(&ccp->sb_mutex);

		/* Wait for KSB entries to become available */
		if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
			return 0;
	}

	return KSB_START + start;
}

static void ccp_free_ksb(struct ccp_cmd_queue *cmd_q, unsigned int start,
			 unsigned int count)
{
	struct ccp_device *ccp = cmd_q->ccp;

	if (!start)
		return;

	mutex_lock(&ccp->sb_mutex);

	bitmap_clear(ccp->sb, start - KSB_START, count);

	ccp->sb_avail = 1;

	mutex_unlock(&ccp->sb_mutex);

	wake_up_interruptible_all(&ccp->sb_queue);
}

static unsigned int ccp_get_free_slots(struct ccp_cmd_queue *cmd_q)
{
	return CMD_Q_DEPTH(ioread32(cmd_q->reg_status));
}

static int ccp_do_cmd(struct ccp_op *op, u32 *cr, unsigned int cr_count)
{
	struct ccp_cmd_queue *cmd_q = op->cmd_q;
	struct ccp_device *ccp = cmd_q->ccp;
	void __iomem *cr_addr;
	u32 cr0, cmd;
	unsigned int i;
	int ret = 0;

	/* We could read a status register to see how many free slots
	 * are actually available, but reading that register resets it
	 * and you could lose some error information.
	 */
	cmd_q->free_slots--;

	cr0 = (cmd_q->id << REQ0_CMD_Q_SHIFT)
	      | (op->jobid << REQ0_JOBID_SHIFT)
	      | REQ0_WAIT_FOR_WRITE;

	if (op->soc)
		cr0 |= REQ0_STOP_ON_COMPLETE
		       | REQ0_INT_ON_COMPLETE;

	if (op->ioc || !cmd_q->free_slots)
		cr0 |= REQ0_INT_ON_COMPLETE;

	/* Start at CMD_REQ1 */
	cr_addr = ccp->io_regs + CMD_REQ0 + CMD_REQ_INCR;

	mutex_lock(&ccp->req_mutex);

	/* Write CMD_REQ1 through CMD_REQx first */
	for (i = 0; i < cr_count; i++, cr_addr += CMD_REQ_INCR)
		iowrite32(*(cr + i), cr_addr);

	/* Tell the CCP to start */
	wmb();
	iowrite32(cr0, ccp->io_regs + CMD_REQ0);

	mutex_unlock(&ccp->req_mutex);

	if (cr0 & REQ0_INT_ON_COMPLETE) {
		/* Wait for the job to complete */
		ret = wait_event_interruptible(cmd_q->int_queue,
					       cmd_q->int_rcvd);
		if (ret || cmd_q->cmd_error) {
			/* On error delete all related jobs from the queue */
			cmd = (cmd_q->id << DEL_Q_ID_SHIFT)
			      | op->jobid;
			if (cmd_q->cmd_error)
				ccp_log_error(cmd_q->ccp,
					      cmd_q->cmd_error);

			iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);

			if (!ret)
				ret = -EIO;
		} else if (op->soc) {
			/* Delete just head job from the queue on SoC */
			cmd = DEL_Q_ACTIVE
			      | (cmd_q->id << DEL_Q_ID_SHIFT)
			      | op->jobid;

			iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
		}

		cmd_q->free_slots = CMD_Q_DEPTH(cmd_q->q_status);

		cmd_q->int_rcvd = 0;
	}

	return ret;
}

static int ccp_perform_aes(struct ccp_op *op)
{
	u32 cr[6];

	/* Fill out the register contents for REQ1 through REQ6 */
	cr[0] = (CCP_ENGINE_AES << REQ1_ENGINE_SHIFT)
		| (op->u.aes.type << REQ1_AES_TYPE_SHIFT)
		| (op->u.aes.mode << REQ1_AES_MODE_SHIFT)
		| (op->u.aes.action << REQ1_AES_ACTION_SHIFT)
		| (op->sb_key << REQ1_KEY_KSB_SHIFT);
	cr[1] = op->src.u.dma.length - 1;
	cr[2] = ccp_addr_lo(&op->src.u.dma);
	cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
		| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
		| ccp_addr_hi(&op->src.u.dma);
	cr[4] = ccp_addr_lo(&op->dst.u.dma);
	cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
		| ccp_addr_hi(&op->dst.u.dma);

	if (op->u.aes.mode == CCP_AES_MODE_CFB)
		cr[0] |= ((0x7f) << REQ1_AES_CFB_SIZE_SHIFT);

	if (op->eom)
		cr[0] |= REQ1_EOM;

	if (op->init)
		cr[0] |= REQ1_INIT;

	return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
}

static int ccp_perform_xts_aes(struct ccp_op *op)
{
	u32 cr[6];

	/* Fill out the register contents for REQ1 through REQ6 */
	cr[0] = (CCP_ENGINE_XTS_AES_128 << REQ1_ENGINE_SHIFT)
		| (op->u.xts.action << REQ1_AES_ACTION_SHIFT)
		| (op->u.xts.unit_size << REQ1_XTS_AES_SIZE_SHIFT)
		| (op->sb_key << REQ1_KEY_KSB_SHIFT);
	cr[1] = op->src.u.dma.length - 1;
	cr[2] = ccp_addr_lo(&op->src.u.dma);
	cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
		| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
		| ccp_addr_hi(&op->src.u.dma);
	cr[4] = ccp_addr_lo(&op->dst.u.dma);
	cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
		| ccp_addr_hi(&op->dst.u.dma);

	if (op->eom)
		cr[0] |= REQ1_EOM;

	if (op->init)
		cr[0] |= REQ1_INIT;

	return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
}

static int ccp_perform_sha(struct ccp_op *op)
{
	u32 cr[6];

	/* Fill out the register contents for REQ1 through REQ6 */
	cr[0] = (CCP_ENGINE_SHA << REQ1_ENGINE_SHIFT)
		| (op->u.sha.type << REQ1_SHA_TYPE_SHIFT)
		| REQ1_INIT;
	cr[1] = op->src.u.dma.length - 1;
	cr[2] = ccp_addr_lo(&op->src.u.dma);
	cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
		| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
		| ccp_addr_hi(&op->src.u.dma);

	if (op->eom) {
		cr[0] |= REQ1_EOM;
		cr[4] = lower_32_bits(op->u.sha.msg_bits);
		cr[5] = upper_32_bits(op->u.sha.msg_bits);
	} else {
		cr[4] = 0;
		cr[5] = 0;
	}

	return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
}

static int ccp_perform_rsa(struct ccp_op *op)
{
	u32 cr[6];

	/* Fill out the register contents for REQ1 through REQ6 */
	cr[0] = (CCP_ENGINE_RSA << REQ1_ENGINE_SHIFT)
		| (op->u.rsa.mod_size << REQ1_RSA_MOD_SIZE_SHIFT)
		| (op->sb_key << REQ1_KEY_KSB_SHIFT)
		| REQ1_EOM;
	cr[1] = op->u.rsa.input_len - 1;
	cr[2] = ccp_addr_lo(&op->src.u.dma);
	cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
		| (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
		| ccp_addr_hi(&op->src.u.dma);
	cr[4] = ccp_addr_lo(&op->dst.u.dma);
	cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
		| ccp_addr_hi(&op->dst.u.dma);

	return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
}

static int ccp_perform_passthru(struct ccp_op *op)
{
	u32 cr[6];

	/* Fill out the register contents for REQ1 through REQ6 */
	cr[0] = (CCP_ENGINE_PASSTHRU << REQ1_ENGINE_SHIFT)
		| (op->u.passthru.bit_mod << REQ1_PT_BW_SHIFT)
		| (op->u.passthru.byte_swap << REQ1_PT_BS_SHIFT);

	if (op->src.type == CCP_MEMTYPE_SYSTEM)
		cr[1] = op->src.u.dma.length - 1;
	else
		cr[1] = op->dst.u.dma.length - 1;

	if (op->src.type == CCP_MEMTYPE_SYSTEM) {
		cr[2] = ccp_addr_lo(&op->src.u.dma);
		cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
			| ccp_addr_hi(&op->src.u.dma);

		if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
			cr[3] |= (op->sb_key << REQ4_KSB_SHIFT);
	} else {
		cr[2] = op->src.u.sb * CCP_SB_BYTES;
		cr[3] = (CCP_MEMTYPE_SB << REQ4_MEMTYPE_SHIFT);
	}

	if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
		cr[4] = ccp_addr_lo(&op->dst.u.dma);
		cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
			| ccp_addr_hi(&op->dst.u.dma);
	} else {
		cr[4] = op->dst.u.sb * CCP_SB_BYTES;
		cr[5] = (CCP_MEMTYPE_SB << REQ6_MEMTYPE_SHIFT);
	}

	if (op->eom)
		cr[0] |= REQ1_EOM;

	return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
}

static int ccp_perform_ecc(struct ccp_op *op)
{
	u32 cr[6];

	/* Fill out the register contents for REQ1 through REQ6 */
	cr[0] = REQ1_ECC_AFFINE_CONVERT
		| (CCP_ENGINE_ECC << REQ1_ENGINE_SHIFT)
		| (op->u.ecc.function << REQ1_ECC_FUNCTION_SHIFT)
		| REQ1_EOM;
	cr[1] = op->src.u.dma.length - 1;
	cr[2] = ccp_addr_lo(&op->src.u.dma);
	cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
		| ccp_addr_hi(&op->src.u.dma);
	cr[4] = ccp_addr_lo(&op->dst.u.dma);
	cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
		| ccp_addr_hi(&op->dst.u.dma);

	return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
}

static void ccp_disable_queue_interrupts(struct ccp_device *ccp)
{
	iowrite32(0x00, ccp->io_regs + IRQ_MASK_REG);
}

static void ccp_enable_queue_interrupts(struct ccp_device *ccp)
{
	iowrite32(ccp->qim, ccp->io_regs + IRQ_MASK_REG);
}

static void ccp_irq_bh(unsigned long data)
{
	struct ccp_device *ccp = (struct ccp_device *)data;
	struct ccp_cmd_queue *cmd_q;
	u32 q_int, status;
	unsigned int i;

	status = ioread32(ccp->io_regs + IRQ_STATUS_REG);

	for (i = 0; i < ccp->cmd_q_count; i++) {
		cmd_q = &ccp->cmd_q[i];

		q_int = status & (cmd_q->int_ok | cmd_q->int_err);
		if (q_int) {
			cmd_q->int_status = status;
			cmd_q->q_status = ioread32(cmd_q->reg_status);
			cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);

			/* On error, only save the first error value */
			if ((q_int & cmd_q->int_err) && !cmd_q->cmd_error)
				cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);

			cmd_q->int_rcvd = 1;

			/* Acknowledge the interrupt and wake the kthread */
			iowrite32(q_int, ccp->io_regs + IRQ_STATUS_REG);
			wake_up_interruptible(&cmd_q->int_queue);
		}
	}
	ccp_enable_queue_interrupts(ccp);
}

static irqreturn_t ccp_irq_handler(int irq, void *data)
{
	struct ccp_device *ccp = (struct ccp_device *)data;

	ccp_disable_queue_interrupts(ccp);
	if (ccp->use_tasklet)
		tasklet_schedule(&ccp->irq_tasklet);
	else
		ccp_irq_bh((unsigned long)ccp);

	return IRQ_HANDLED;
}

static int ccp_init(struct ccp_device *ccp)
{
	struct device *dev = ccp->dev;
	struct ccp_cmd_queue *cmd_q;
	struct dma_pool *dma_pool;
	char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
	unsigned int qmr, i;
	int ret;

	/* Find available queues */
	ccp->qim = 0;
	qmr = ioread32(ccp->io_regs + Q_MASK_REG);
	for (i = 0; i < MAX_HW_QUEUES; i++) {
		if (!(qmr & (1 << i)))
			continue;

		/* Allocate a dma pool for this queue */
		snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
			 ccp->name, i);
		dma_pool = dma_pool_create(dma_pool_name, dev,
					   CCP_DMAPOOL_MAX_SIZE,
					   CCP_DMAPOOL_ALIGN, 0);
		if (!dma_pool) {
			dev_err(dev, "unable to allocate dma pool\n");
			ret = -ENOMEM;
			goto e_pool;
		}

		cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
		ccp->cmd_q_count++;

		cmd_q->ccp = ccp;
		cmd_q->id = i;
		cmd_q->dma_pool = dma_pool;

		/* Reserve 2 KSB regions for the queue */
		cmd_q->sb_key = KSB_START + ccp->sb_start++;
		cmd_q->sb_ctx = KSB_START + ccp->sb_start++;
		ccp->sb_count -= 2;

		/* Preset some register values and masks that are queue
		 * number dependent
		 */
		cmd_q->reg_status = ccp->io_regs + CMD_Q_STATUS_BASE +
				    (CMD_Q_STATUS_INCR * i);
		cmd_q->reg_int_status = ccp->io_regs + CMD_Q_INT_STATUS_BASE +
					(CMD_Q_STATUS_INCR * i);
		cmd_q->int_ok = 1 << (i * 2);
		cmd_q->int_err = 1 << ((i * 2) + 1);

		cmd_q->free_slots = ccp_get_free_slots(cmd_q);

		init_waitqueue_head(&cmd_q->int_queue);

		/* Build queue interrupt mask (two interrupts per queue) */
		ccp->qim |= cmd_q->int_ok | cmd_q->int_err;

#ifdef CONFIG_ARM64
		/* For arm64 set the recommended queue cache settings */
		iowrite32(ccp->axcache, ccp->io_regs + CMD_Q_CACHE_BASE +
			  (CMD_Q_CACHE_INC * i));
#endif

		dev_dbg(dev, "queue #%u available\n", i);
	}
	if (ccp->cmd_q_count == 0) {
		dev_notice(dev, "no command queues available\n");
		ret = -EIO;
		goto e_pool;
	}
	dev_notice(dev, "%u command queues available\n", ccp->cmd_q_count);

	/* Disable and clear interrupts until ready */
	ccp_disable_queue_interrupts(ccp);
	for (i = 0; i < ccp->cmd_q_count; i++) {
		cmd_q = &ccp->cmd_q[i];

		ioread32(cmd_q->reg_int_status);
		ioread32(cmd_q->reg_status);
	}
	iowrite32(ccp->qim, ccp->io_regs + IRQ_STATUS_REG);

	/* Request an irq */
	ret = sp_request_ccp_irq(ccp->sp, ccp_irq_handler, ccp->name, ccp);
	if (ret) {
		dev_err(dev, "unable to allocate an IRQ\n");
		goto e_pool;
	}

	/* Initialize the ISR tasklet? */
	if (ccp->use_tasklet)
		tasklet_init(&ccp->irq_tasklet, ccp_irq_bh,
			     (unsigned long)ccp);

	dev_dbg(dev, "Starting threads...\n");
	/* Create a kthread for each queue */
	for (i = 0; i < ccp->cmd_q_count; i++) {
		struct task_struct *kthread;

		cmd_q = &ccp->cmd_q[i];

		kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
					 "%s-q%u", ccp->name, cmd_q->id);
		if (IS_ERR(kthread)) {
			dev_err(dev, "error creating queue thread (%ld)\n",
				PTR_ERR(kthread));
			ret = PTR_ERR(kthread);
			goto e_kthread;
		}

		cmd_q->kthread = kthread;
		wake_up_process(kthread);
	}

	dev_dbg(dev, "Enabling interrupts...\n");
	/* Enable interrupts */
	ccp_enable_queue_interrupts(ccp);

	dev_dbg(dev, "Registering device...\n");
	ccp_add_device(ccp);

	ret = ccp_register_rng(ccp);
	if (ret)
		goto e_kthread;

	/* Register the DMA engine support */
	ret = ccp_dmaengine_register(ccp);
	if (ret)
		goto e_hwrng;

	return 0;

e_hwrng:
	ccp_unregister_rng(ccp);

e_kthread:
	for (i = 0; i < ccp->cmd_q_count; i++)
		if (ccp->cmd_q[i].kthread)
			kthread_stop(ccp->cmd_q[i].kthread);

	sp_free_ccp_irq(ccp->sp, ccp);

e_pool:
	for (i = 0; i < ccp->cmd_q_count; i++)
		dma_pool_destroy(ccp->cmd_q[i].dma_pool);

	return ret;
}

static void ccp_destroy(struct ccp_device *ccp)
{
	struct ccp_cmd_queue *cmd_q;
	struct ccp_cmd *cmd;
	unsigned int i;

	/* Unregister the DMA engine */
	ccp_dmaengine_unregister(ccp);

	/* Unregister the RNG */
	ccp_unregister_rng(ccp);

	/* Remove this device from the list of available units */
	ccp_del_device(ccp);

	/* Disable and clear interrupts */
	ccp_disable_queue_interrupts(ccp);
	for (i = 0; i < ccp->cmd_q_count; i++) {
		cmd_q = &ccp->cmd_q[i];

		ioread32(cmd_q->reg_int_status);
		ioread32(cmd_q->reg_status);
	}
	iowrite32(ccp->qim, ccp->io_regs + IRQ_STATUS_REG);

	/* Stop the queue kthreads */
	for (i = 0; i < ccp->cmd_q_count; i++)
		if (ccp->cmd_q[i].kthread)
			kthread_stop(ccp->cmd_q[i].kthread);

	sp_free_ccp_irq(ccp->sp, ccp);

	for (i = 0; i < ccp->cmd_q_count; i++)
		dma_pool_destroy(ccp->cmd_q[i].dma_pool);

	/* Flush the cmd and backlog queue */
	while (!list_empty(&ccp->cmd)) {
		/* Invoke the callback directly with an error code */
		cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
		list_del(&cmd->entry);
		cmd->callback(cmd->data, -ENODEV);
	}
	while (!list_empty(&ccp->backlog)) {
		/* Invoke the callback directly with an error code */
		cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
		list_del(&cmd->entry);
		cmd->callback(cmd->data, -ENODEV);
	}
}

static const struct ccp_actions ccp3_actions = {
	.aes = ccp_perform_aes,
	.xts_aes = ccp_perform_xts_aes,
	.des3 = NULL,
	.sha = ccp_perform_sha,
	.rsa = ccp_perform_rsa,
	.passthru = ccp_perform_passthru,
	.ecc = ccp_perform_ecc,
	.sballoc = ccp_alloc_ksb,
	.sbfree = ccp_free_ksb,
	.init = ccp_init,
	.destroy = ccp_destroy,
	.get_free_slots = ccp_get_free_slots,
	.irqhandler = ccp_irq_handler,
};

const struct ccp_vdata ccpv3_platform = {
	.version = CCP_VERSION(3, 0),
	.setup = NULL,
	.perform = &ccp3_actions,
	.offset = 0,
	.rsamax = CCP_RSA_MAX_WIDTH,
};

const struct ccp_vdata ccpv3 = {
	.version = CCP_VERSION(3, 0),
	.setup = NULL,
	.perform = &ccp3_actions,
	.offset = 0x20000,
	.rsamax = CCP_RSA_MAX_WIDTH,
};