summaryrefslogtreecommitdiff
path: root/drivers/base/cacheinfo.c
blob: 23b8cba4a2a3b87c34ff7e7b30f25784eab7e4dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
// SPDX-License-Identifier: GPL-2.0
/*
 * cacheinfo support - processor cache information via sysfs
 *
 * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
 * Author: Sudeep Holla <sudeep.holla@arm.com>
 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/acpi.h>
#include <linux/bitops.h>
#include <linux/cacheinfo.h>
#include <linux/compiler.h>
#include <linux/cpu.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/of.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/smp.h>
#include <linux/sysfs.h>

/* pointer to per cpu cacheinfo */
static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
#define ci_cacheinfo(cpu)	(&per_cpu(ci_cpu_cacheinfo, cpu))
#define cache_leaves(cpu)	(ci_cacheinfo(cpu)->num_leaves)
#define per_cpu_cacheinfo(cpu)	(ci_cacheinfo(cpu)->info_list)
#define per_cpu_cacheinfo_idx(cpu, idx)		\
				(per_cpu_cacheinfo(cpu) + (idx))

/* Set if no cache information is found in DT/ACPI. */
static bool use_arch_info;

struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
{
	return ci_cacheinfo(cpu);
}

static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
					   struct cacheinfo *sib_leaf)
{
	/*
	 * For non DT/ACPI systems, assume unique level 1 caches,
	 * system-wide shared caches for all other levels.
	 */
	if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)) ||
	    use_arch_info)
		return (this_leaf->level != 1) && (sib_leaf->level != 1);

	if ((sib_leaf->attributes & CACHE_ID) &&
	    (this_leaf->attributes & CACHE_ID))
		return sib_leaf->id == this_leaf->id;

	return sib_leaf->fw_token == this_leaf->fw_token;
}

bool last_level_cache_is_valid(unsigned int cpu)
{
	struct cacheinfo *llc;

	if (!cache_leaves(cpu))
		return false;

	llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);

	return (llc->attributes & CACHE_ID) || !!llc->fw_token;

}

bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y)
{
	struct cacheinfo *llc_x, *llc_y;

	if (!last_level_cache_is_valid(cpu_x) ||
	    !last_level_cache_is_valid(cpu_y))
		return false;

	llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1);
	llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1);

	return cache_leaves_are_shared(llc_x, llc_y);
}

#ifdef CONFIG_OF

static bool of_check_cache_nodes(struct device_node *np);

/* OF properties to query for a given cache type */
struct cache_type_info {
	const char *size_prop;
	const char *line_size_props[2];
	const char *nr_sets_prop;
};

static const struct cache_type_info cache_type_info[] = {
	{
		.size_prop       = "cache-size",
		.line_size_props = { "cache-line-size",
				     "cache-block-size", },
		.nr_sets_prop    = "cache-sets",
	}, {
		.size_prop       = "i-cache-size",
		.line_size_props = { "i-cache-line-size",
				     "i-cache-block-size", },
		.nr_sets_prop    = "i-cache-sets",
	}, {
		.size_prop       = "d-cache-size",
		.line_size_props = { "d-cache-line-size",
				     "d-cache-block-size", },
		.nr_sets_prop    = "d-cache-sets",
	},
};

static inline int get_cacheinfo_idx(enum cache_type type)
{
	if (type == CACHE_TYPE_UNIFIED)
		return 0;
	return type;
}

static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
{
	const char *propname;
	int ct_idx;

	ct_idx = get_cacheinfo_idx(this_leaf->type);
	propname = cache_type_info[ct_idx].size_prop;

	of_property_read_u32(np, propname, &this_leaf->size);
}

/* not cache_line_size() because that's a macro in include/linux/cache.h */
static void cache_get_line_size(struct cacheinfo *this_leaf,
				struct device_node *np)
{
	int i, lim, ct_idx;

	ct_idx = get_cacheinfo_idx(this_leaf->type);
	lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);

	for (i = 0; i < lim; i++) {
		int ret;
		u32 line_size;
		const char *propname;

		propname = cache_type_info[ct_idx].line_size_props[i];
		ret = of_property_read_u32(np, propname, &line_size);
		if (!ret) {
			this_leaf->coherency_line_size = line_size;
			break;
		}
	}
}

static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
{
	const char *propname;
	int ct_idx;

	ct_idx = get_cacheinfo_idx(this_leaf->type);
	propname = cache_type_info[ct_idx].nr_sets_prop;

	of_property_read_u32(np, propname, &this_leaf->number_of_sets);
}

static void cache_associativity(struct cacheinfo *this_leaf)
{
	unsigned int line_size = this_leaf->coherency_line_size;
	unsigned int nr_sets = this_leaf->number_of_sets;
	unsigned int size = this_leaf->size;

	/*
	 * If the cache is fully associative, there is no need to
	 * check the other properties.
	 */
	if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
		this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
}

static bool cache_node_is_unified(struct cacheinfo *this_leaf,
				  struct device_node *np)
{
	return of_property_read_bool(np, "cache-unified");
}

static void cache_of_set_props(struct cacheinfo *this_leaf,
			       struct device_node *np)
{
	/*
	 * init_cache_level must setup the cache level correctly
	 * overriding the architecturally specified levels, so
	 * if type is NONE at this stage, it should be unified
	 */
	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
	    cache_node_is_unified(this_leaf, np))
		this_leaf->type = CACHE_TYPE_UNIFIED;
	cache_size(this_leaf, np);
	cache_get_line_size(this_leaf, np);
	cache_nr_sets(this_leaf, np);
	cache_associativity(this_leaf);
}

static int cache_setup_of_node(unsigned int cpu)
{
	struct device_node *np, *prev;
	struct cacheinfo *this_leaf;
	unsigned int index = 0;

	np = of_cpu_device_node_get(cpu);
	if (!np) {
		pr_err("Failed to find cpu%d device node\n", cpu);
		return -ENOENT;
	}

	if (!of_check_cache_nodes(np)) {
		of_node_put(np);
		return -ENOENT;
	}

	prev = np;

	while (index < cache_leaves(cpu)) {
		this_leaf = per_cpu_cacheinfo_idx(cpu, index);
		if (this_leaf->level != 1) {
			np = of_find_next_cache_node(np);
			of_node_put(prev);
			prev = np;
			if (!np)
				break;
		}
		cache_of_set_props(this_leaf, np);
		this_leaf->fw_token = np;
		index++;
	}

	of_node_put(np);

	if (index != cache_leaves(cpu)) /* not all OF nodes populated */
		return -ENOENT;

	return 0;
}

static bool of_check_cache_nodes(struct device_node *np)
{
	struct device_node *next;

	if (of_property_present(np, "cache-size")   ||
	    of_property_present(np, "i-cache-size") ||
	    of_property_present(np, "d-cache-size") ||
	    of_property_present(np, "cache-unified"))
		return true;

	next = of_find_next_cache_node(np);
	if (next) {
		of_node_put(next);
		return true;
	}

	return false;
}

static int of_count_cache_leaves(struct device_node *np)
{
	unsigned int leaves = 0;

	if (of_property_read_bool(np, "cache-size"))
		++leaves;
	if (of_property_read_bool(np, "i-cache-size"))
		++leaves;
	if (of_property_read_bool(np, "d-cache-size"))
		++leaves;

	if (!leaves) {
		/* The '[i-|d-|]cache-size' property is required, but
		 * if absent, fallback on the 'cache-unified' property.
		 */
		if (of_property_read_bool(np, "cache-unified"))
			return 1;
		else
			return 2;
	}

	return leaves;
}

int init_of_cache_level(unsigned int cpu)
{
	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
	struct device_node *np = of_cpu_device_node_get(cpu);
	struct device_node *prev = NULL;
	unsigned int levels = 0, leaves, level;

	if (!of_check_cache_nodes(np)) {
		of_node_put(np);
		return -ENOENT;
	}

	leaves = of_count_cache_leaves(np);
	if (leaves > 0)
		levels = 1;

	prev = np;
	while ((np = of_find_next_cache_node(np))) {
		of_node_put(prev);
		prev = np;
		if (!of_device_is_compatible(np, "cache"))
			goto err_out;
		if (of_property_read_u32(np, "cache-level", &level))
			goto err_out;
		if (level <= levels)
			goto err_out;

		leaves += of_count_cache_leaves(np);
		levels = level;
	}

	of_node_put(np);
	this_cpu_ci->num_levels = levels;
	this_cpu_ci->num_leaves = leaves;

	return 0;

err_out:
	of_node_put(np);
	return -EINVAL;
}

#else
static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
int init_of_cache_level(unsigned int cpu) { return 0; }
#endif

int __weak cache_setup_acpi(unsigned int cpu)
{
	return -ENOTSUPP;
}

unsigned int coherency_max_size;

static int cache_setup_properties(unsigned int cpu)
{
	int ret = 0;

	if (of_have_populated_dt())
		ret = cache_setup_of_node(cpu);
	else if (!acpi_disabled)
		ret = cache_setup_acpi(cpu);

	// Assume there is no cache information available in DT/ACPI from now.
	if (ret && use_arch_cache_info())
		use_arch_info = true;

	return ret;
}

static int cache_shared_cpu_map_setup(unsigned int cpu)
{
	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
	struct cacheinfo *this_leaf, *sib_leaf;
	unsigned int index, sib_index;
	int ret = 0;

	if (this_cpu_ci->cpu_map_populated)
		return 0;

	/*
	 * skip setting up cache properties if LLC is valid, just need
	 * to update the shared cpu_map if the cache attributes were
	 * populated early before all the cpus are brought online
	 */
	if (!last_level_cache_is_valid(cpu) && !use_arch_info) {
		ret = cache_setup_properties(cpu);
		if (ret)
			return ret;
	}

	for (index = 0; index < cache_leaves(cpu); index++) {
		unsigned int i;

		this_leaf = per_cpu_cacheinfo_idx(cpu, index);

		cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
		for_each_online_cpu(i) {
			struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);

			if (i == cpu || !sib_cpu_ci->info_list)
				continue;/* skip if itself or no cacheinfo */
			for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) {
				sib_leaf = per_cpu_cacheinfo_idx(i, sib_index);

				/*
				 * Comparing cache IDs only makes sense if the leaves
				 * belong to the same cache level of same type. Skip
				 * the check if level and type do not match.
				 */
				if (sib_leaf->level != this_leaf->level ||
				    sib_leaf->type != this_leaf->type)
					continue;

				if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
					cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
					cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
					break;
				}
			}
		}
		/* record the maximum cache line size */
		if (this_leaf->coherency_line_size > coherency_max_size)
			coherency_max_size = this_leaf->coherency_line_size;
	}

	/* shared_cpu_map is now populated for the cpu */
	this_cpu_ci->cpu_map_populated = true;
	return 0;
}

static void cache_shared_cpu_map_remove(unsigned int cpu)
{
	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
	struct cacheinfo *this_leaf, *sib_leaf;
	unsigned int sibling, index, sib_index;

	for (index = 0; index < cache_leaves(cpu); index++) {
		this_leaf = per_cpu_cacheinfo_idx(cpu, index);
		for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
			struct cpu_cacheinfo *sib_cpu_ci =
						get_cpu_cacheinfo(sibling);

			if (sibling == cpu || !sib_cpu_ci->info_list)
				continue;/* skip if itself or no cacheinfo */

			for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) {
				sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index);

				/*
				 * Comparing cache IDs only makes sense if the leaves
				 * belong to the same cache level of same type. Skip
				 * the check if level and type do not match.
				 */
				if (sib_leaf->level != this_leaf->level ||
				    sib_leaf->type != this_leaf->type)
					continue;

				if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
					cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
					cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
					break;
				}
			}
		}
	}

	/* cpu is no longer populated in the shared map */
	this_cpu_ci->cpu_map_populated = false;
}

static void free_cache_attributes(unsigned int cpu)
{
	if (!per_cpu_cacheinfo(cpu))
		return;

	cache_shared_cpu_map_remove(cpu);
}

int __weak early_cache_level(unsigned int cpu)
{
	return -ENOENT;
}

int __weak init_cache_level(unsigned int cpu)
{
	return -ENOENT;
}

int __weak populate_cache_leaves(unsigned int cpu)
{
	return -ENOENT;
}

static inline
int allocate_cache_info(int cpu)
{
	per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
					 sizeof(struct cacheinfo), GFP_ATOMIC);
	if (!per_cpu_cacheinfo(cpu)) {
		cache_leaves(cpu) = 0;
		return -ENOMEM;
	}

	return 0;
}

int fetch_cache_info(unsigned int cpu)
{
	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
	unsigned int levels = 0, split_levels = 0;
	int ret;

	if (acpi_disabled) {
		ret = init_of_cache_level(cpu);
	} else {
		ret = acpi_get_cache_info(cpu, &levels, &split_levels);
		if (!ret) {
			this_cpu_ci->num_levels = levels;
			/*
			 * This assumes that:
			 * - there cannot be any split caches (data/instruction)
			 *   above a unified cache
			 * - data/instruction caches come by pair
			 */
			this_cpu_ci->num_leaves = levels + split_levels;
		}
	}

	if (ret || !cache_leaves(cpu)) {
		ret = early_cache_level(cpu);
		if (ret)
			return ret;

		if (!cache_leaves(cpu))
			return -ENOENT;

		this_cpu_ci->early_ci_levels = true;
	}

	return allocate_cache_info(cpu);
}

static inline int init_level_allocate_ci(unsigned int cpu)
{
	unsigned int early_leaves = cache_leaves(cpu);

	/* Since early initialization/allocation of the cacheinfo is allowed
	 * via fetch_cache_info() and this also gets called as CPU hotplug
	 * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped
	 * as it will happen only once (the cacheinfo memory is never freed).
	 * Just populate the cacheinfo. However, if the cacheinfo has been
	 * allocated early through the arch-specific early_cache_level() call,
	 * there is a chance the info is wrong (this can happen on arm64). In
	 * that case, call init_cache_level() anyway to give the arch-specific
	 * code a chance to make things right.
	 */
	if (per_cpu_cacheinfo(cpu) && !ci_cacheinfo(cpu)->early_ci_levels)
		return 0;

	if (init_cache_level(cpu) || !cache_leaves(cpu))
		return -ENOENT;

	/*
	 * Now that we have properly initialized the cache level info, make
	 * sure we don't try to do that again the next time we are called
	 * (e.g. as CPU hotplug callbacks).
	 */
	ci_cacheinfo(cpu)->early_ci_levels = false;

	if (cache_leaves(cpu) <= early_leaves)
		return 0;

	kfree(per_cpu_cacheinfo(cpu));
	return allocate_cache_info(cpu);
}

int detect_cache_attributes(unsigned int cpu)
{
	int ret;

	ret = init_level_allocate_ci(cpu);
	if (ret)
		return ret;

	/*
	 * If LLC is valid the cache leaves were already populated so just go to
	 * update the cpu map.
	 */
	if (!last_level_cache_is_valid(cpu)) {
		/*
		 * populate_cache_leaves() may completely setup the cache leaves and
		 * shared_cpu_map or it may leave it partially setup.
		 */
		ret = populate_cache_leaves(cpu);
		if (ret)
			goto free_ci;
	}

	/*
	 * For systems using DT for cache hierarchy, fw_token
	 * and shared_cpu_map will be set up here only if they are
	 * not populated already
	 */
	ret = cache_shared_cpu_map_setup(cpu);
	if (ret) {
		pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
		goto free_ci;
	}

	return 0;

free_ci:
	free_cache_attributes(cpu);
	return ret;
}

/* pointer to cpuX/cache device */
static DEFINE_PER_CPU(struct device *, ci_cache_dev);
#define per_cpu_cache_dev(cpu)	(per_cpu(ci_cache_dev, cpu))

static cpumask_t cache_dev_map;

/* pointer to array of devices for cpuX/cache/indexY */
static DEFINE_PER_CPU(struct device **, ci_index_dev);
#define per_cpu_index_dev(cpu)	(per_cpu(ci_index_dev, cpu))
#define per_cache_index_dev(cpu, idx)	((per_cpu_index_dev(cpu))[idx])

#define show_one(file_name, object)				\
static ssize_t file_name##_show(struct device *dev,		\
		struct device_attribute *attr, char *buf)	\
{								\
	struct cacheinfo *this_leaf = dev_get_drvdata(dev);	\
	return sysfs_emit(buf, "%u\n", this_leaf->object);	\
}

show_one(id, id);
show_one(level, level);
show_one(coherency_line_size, coherency_line_size);
show_one(number_of_sets, number_of_sets);
show_one(physical_line_partition, physical_line_partition);
show_one(ways_of_associativity, ways_of_associativity);

static ssize_t size_show(struct device *dev,
			 struct device_attribute *attr, char *buf)
{
	struct cacheinfo *this_leaf = dev_get_drvdata(dev);

	return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10);
}

static ssize_t shared_cpu_map_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
	const struct cpumask *mask = &this_leaf->shared_cpu_map;

	return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask);
}

static ssize_t shared_cpu_list_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
	const struct cpumask *mask = &this_leaf->shared_cpu_map;

	return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask);
}

static ssize_t type_show(struct device *dev,
			 struct device_attribute *attr, char *buf)
{
	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
	const char *output;

	switch (this_leaf->type) {
	case CACHE_TYPE_DATA:
		output = "Data";
		break;
	case CACHE_TYPE_INST:
		output = "Instruction";
		break;
	case CACHE_TYPE_UNIFIED:
		output = "Unified";
		break;
	default:
		return -EINVAL;
	}

	return sysfs_emit(buf, "%s\n", output);
}

static ssize_t allocation_policy_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
	unsigned int ci_attr = this_leaf->attributes;
	const char *output;

	if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
		output = "ReadWriteAllocate";
	else if (ci_attr & CACHE_READ_ALLOCATE)
		output = "ReadAllocate";
	else if (ci_attr & CACHE_WRITE_ALLOCATE)
		output = "WriteAllocate";
	else
		return 0;

	return sysfs_emit(buf, "%s\n", output);
}

static ssize_t write_policy_show(struct device *dev,
				 struct device_attribute *attr, char *buf)
{
	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
	unsigned int ci_attr = this_leaf->attributes;
	int n = 0;

	if (ci_attr & CACHE_WRITE_THROUGH)
		n = sysfs_emit(buf, "WriteThrough\n");
	else if (ci_attr & CACHE_WRITE_BACK)
		n = sysfs_emit(buf, "WriteBack\n");
	return n;
}

static DEVICE_ATTR_RO(id);
static DEVICE_ATTR_RO(level);
static DEVICE_ATTR_RO(type);
static DEVICE_ATTR_RO(coherency_line_size);
static DEVICE_ATTR_RO(ways_of_associativity);
static DEVICE_ATTR_RO(number_of_sets);
static DEVICE_ATTR_RO(size);
static DEVICE_ATTR_RO(allocation_policy);
static DEVICE_ATTR_RO(write_policy);
static DEVICE_ATTR_RO(shared_cpu_map);
static DEVICE_ATTR_RO(shared_cpu_list);
static DEVICE_ATTR_RO(physical_line_partition);

static struct attribute *cache_default_attrs[] = {
	&dev_attr_id.attr,
	&dev_attr_type.attr,
	&dev_attr_level.attr,
	&dev_attr_shared_cpu_map.attr,
	&dev_attr_shared_cpu_list.attr,
	&dev_attr_coherency_line_size.attr,
	&dev_attr_ways_of_associativity.attr,
	&dev_attr_number_of_sets.attr,
	&dev_attr_size.attr,
	&dev_attr_allocation_policy.attr,
	&dev_attr_write_policy.attr,
	&dev_attr_physical_line_partition.attr,
	NULL
};

static umode_t
cache_default_attrs_is_visible(struct kobject *kobj,
			       struct attribute *attr, int unused)
{
	struct device *dev = kobj_to_dev(kobj);
	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
	const struct cpumask *mask = &this_leaf->shared_cpu_map;
	umode_t mode = attr->mode;

	if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
		return mode;
	if ((attr == &dev_attr_type.attr) && this_leaf->type)
		return mode;
	if ((attr == &dev_attr_level.attr) && this_leaf->level)
		return mode;
	if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
		return mode;
	if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
		return mode;
	if ((attr == &dev_attr_coherency_line_size.attr) &&
	    this_leaf->coherency_line_size)
		return mode;
	if ((attr == &dev_attr_ways_of_associativity.attr) &&
	    this_leaf->size) /* allow 0 = full associativity */
		return mode;
	if ((attr == &dev_attr_number_of_sets.attr) &&
	    this_leaf->number_of_sets)
		return mode;
	if ((attr == &dev_attr_size.attr) && this_leaf->size)
		return mode;
	if ((attr == &dev_attr_write_policy.attr) &&
	    (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
		return mode;
	if ((attr == &dev_attr_allocation_policy.attr) &&
	    (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
		return mode;
	if ((attr == &dev_attr_physical_line_partition.attr) &&
	    this_leaf->physical_line_partition)
		return mode;

	return 0;
}

static const struct attribute_group cache_default_group = {
	.attrs = cache_default_attrs,
	.is_visible = cache_default_attrs_is_visible,
};

static const struct attribute_group *cache_default_groups[] = {
	&cache_default_group,
	NULL,
};

static const struct attribute_group *cache_private_groups[] = {
	&cache_default_group,
	NULL, /* Place holder for private group */
	NULL,
};

const struct attribute_group *
__weak cache_get_priv_group(struct cacheinfo *this_leaf)
{
	return NULL;
}

static const struct attribute_group **
cache_get_attribute_groups(struct cacheinfo *this_leaf)
{
	const struct attribute_group *priv_group =
			cache_get_priv_group(this_leaf);

	if (!priv_group)
		return cache_default_groups;

	if (!cache_private_groups[1])
		cache_private_groups[1] = priv_group;

	return cache_private_groups;
}

/* Add/Remove cache interface for CPU device */
static void cpu_cache_sysfs_exit(unsigned int cpu)
{
	int i;
	struct device *ci_dev;

	if (per_cpu_index_dev(cpu)) {
		for (i = 0; i < cache_leaves(cpu); i++) {
			ci_dev = per_cache_index_dev(cpu, i);
			if (!ci_dev)
				continue;
			device_unregister(ci_dev);
		}
		kfree(per_cpu_index_dev(cpu));
		per_cpu_index_dev(cpu) = NULL;
	}
	device_unregister(per_cpu_cache_dev(cpu));
	per_cpu_cache_dev(cpu) = NULL;
}

static int cpu_cache_sysfs_init(unsigned int cpu)
{
	struct device *dev = get_cpu_device(cpu);

	if (per_cpu_cacheinfo(cpu) == NULL)
		return -ENOENT;

	per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
	if (IS_ERR(per_cpu_cache_dev(cpu)))
		return PTR_ERR(per_cpu_cache_dev(cpu));

	/* Allocate all required memory */
	per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
					 sizeof(struct device *), GFP_KERNEL);
	if (unlikely(per_cpu_index_dev(cpu) == NULL))
		goto err_out;

	return 0;

err_out:
	cpu_cache_sysfs_exit(cpu);
	return -ENOMEM;
}

static int cache_add_dev(unsigned int cpu)
{
	unsigned int i;
	int rc;
	struct device *ci_dev, *parent;
	struct cacheinfo *this_leaf;
	const struct attribute_group **cache_groups;

	rc = cpu_cache_sysfs_init(cpu);
	if (unlikely(rc < 0))
		return rc;

	parent = per_cpu_cache_dev(cpu);
	for (i = 0; i < cache_leaves(cpu); i++) {
		this_leaf = per_cpu_cacheinfo_idx(cpu, i);
		if (this_leaf->disable_sysfs)
			continue;
		if (this_leaf->type == CACHE_TYPE_NOCACHE)
			break;
		cache_groups = cache_get_attribute_groups(this_leaf);
		ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
					   "index%1u", i);
		if (IS_ERR(ci_dev)) {
			rc = PTR_ERR(ci_dev);
			goto err;
		}
		per_cache_index_dev(cpu, i) = ci_dev;
	}
	cpumask_set_cpu(cpu, &cache_dev_map);

	return 0;
err:
	cpu_cache_sysfs_exit(cpu);
	return rc;
}

static unsigned int cpu_map_shared_cache(bool online, unsigned int cpu,
					 cpumask_t **map)
{
	struct cacheinfo *llc, *sib_llc;
	unsigned int sibling;

	if (!last_level_cache_is_valid(cpu))
		return 0;

	llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);

	if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED)
		return 0;

	if (online) {
		*map = &llc->shared_cpu_map;
		return cpumask_weight(*map);
	}

	/* shared_cpu_map of offlined CPU will be cleared, so use sibling map */
	for_each_cpu(sibling, &llc->shared_cpu_map) {
		if (sibling == cpu || !last_level_cache_is_valid(sibling))
			continue;
		sib_llc = per_cpu_cacheinfo_idx(sibling, cache_leaves(sibling) - 1);
		*map = &sib_llc->shared_cpu_map;
		return cpumask_weight(*map);
	}

	return 0;
}

/*
 * Calculate the size of the per-CPU data cache slice.  This can be
 * used to estimate the size of the data cache slice that can be used
 * by one CPU under ideal circumstances.  UNIFIED caches are counted
 * in addition to DATA caches.  So, please consider code cache usage
 * when use the result.
 *
 * Because the cache inclusive/non-inclusive information isn't
 * available, we just use the size of the per-CPU slice of LLC to make
 * the result more predictable across architectures.
 */
static void update_per_cpu_data_slice_size_cpu(unsigned int cpu)
{
	struct cpu_cacheinfo *ci;
	struct cacheinfo *llc;
	unsigned int nr_shared;

	if (!last_level_cache_is_valid(cpu))
		return;

	ci = ci_cacheinfo(cpu);
	llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);

	if (llc->type != CACHE_TYPE_DATA && llc->type != CACHE_TYPE_UNIFIED)
		return;

	nr_shared = cpumask_weight(&llc->shared_cpu_map);
	if (nr_shared)
		ci->per_cpu_data_slice_size = llc->size / nr_shared;
}

static void update_per_cpu_data_slice_size(bool cpu_online, unsigned int cpu,
					   cpumask_t *cpu_map)
{
	unsigned int icpu;

	for_each_cpu(icpu, cpu_map) {
		if (!cpu_online && icpu == cpu)
			continue;
		update_per_cpu_data_slice_size_cpu(icpu);
		setup_pcp_cacheinfo(icpu);
	}
}

static int cacheinfo_cpu_online(unsigned int cpu)
{
	int rc = detect_cache_attributes(cpu);
	cpumask_t *cpu_map;

	if (rc)
		return rc;
	rc = cache_add_dev(cpu);
	if (rc)
		goto err;
	if (cpu_map_shared_cache(true, cpu, &cpu_map))
		update_per_cpu_data_slice_size(true, cpu, cpu_map);
	return 0;
err:
	free_cache_attributes(cpu);
	return rc;
}

static int cacheinfo_cpu_pre_down(unsigned int cpu)
{
	cpumask_t *cpu_map;
	unsigned int nr_shared;

	nr_shared = cpu_map_shared_cache(false, cpu, &cpu_map);
	if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
		cpu_cache_sysfs_exit(cpu);

	free_cache_attributes(cpu);
	if (nr_shared > 1)
		update_per_cpu_data_slice_size(false, cpu, cpu_map);
	return 0;
}

static int __init cacheinfo_sysfs_init(void)
{
	return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE,
				 "base/cacheinfo:online",
				 cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
}
device_initcall(cacheinfo_sysfs_init);