summaryrefslogtreecommitdiff
path: root/arch/x86/coco/tdx/tdx.c
blob: b8998cf0508a6798e3c969d5bbb457f37e5620ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2021-2022 Intel Corporation */

#undef pr_fmt
#define pr_fmt(fmt)     "tdx: " fmt

#include <linux/cpufeature.h>
#include <asm/coco.h>
#include <asm/tdx.h>
#include <asm/vmx.h>
#include <asm/insn.h>
#include <asm/insn-eval.h>
#include <asm/pgtable.h>

/* TDX module Call Leaf IDs */
#define TDX_GET_INFO			1
#define TDX_GET_VEINFO			3
#define TDX_ACCEPT_PAGE			6

/* TDX hypercall Leaf IDs */
#define TDVMCALL_MAP_GPA		0x10001

/* MMIO direction */
#define EPT_READ	0
#define EPT_WRITE	1

/* Port I/O direction */
#define PORT_READ	0
#define PORT_WRITE	1

/* See Exit Qualification for I/O Instructions in VMX documentation */
#define VE_IS_IO_IN(e)		((e) & BIT(3))
#define VE_GET_IO_SIZE(e)	(((e) & GENMASK(2, 0)) + 1)
#define VE_GET_PORT_NUM(e)	((e) >> 16)
#define VE_IS_IO_STRING(e)	((e) & BIT(4))

#define ATTR_SEPT_VE_DISABLE	BIT(28)

/*
 * Wrapper for standard use of __tdx_hypercall with no output aside from
 * return code.
 */
static inline u64 _tdx_hypercall(u64 fn, u64 r12, u64 r13, u64 r14, u64 r15)
{
	struct tdx_hypercall_args args = {
		.r10 = TDX_HYPERCALL_STANDARD,
		.r11 = fn,
		.r12 = r12,
		.r13 = r13,
		.r14 = r14,
		.r15 = r15,
	};

	return __tdx_hypercall(&args, 0);
}

/* Called from __tdx_hypercall() for unrecoverable failure */
void __tdx_hypercall_failed(void)
{
	panic("TDVMCALL failed. TDX module bug?");
}

/*
 * The TDG.VP.VMCALL-Instruction-execution sub-functions are defined
 * independently from but are currently matched 1:1 with VMX EXIT_REASONs.
 * Reusing the KVM EXIT_REASON macros makes it easier to connect the host and
 * guest sides of these calls.
 */
static u64 hcall_func(u64 exit_reason)
{
	return exit_reason;
}

#ifdef CONFIG_KVM_GUEST
long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2,
		       unsigned long p3, unsigned long p4)
{
	struct tdx_hypercall_args args = {
		.r10 = nr,
		.r11 = p1,
		.r12 = p2,
		.r13 = p3,
		.r14 = p4,
	};

	return __tdx_hypercall(&args, 0);
}
EXPORT_SYMBOL_GPL(tdx_kvm_hypercall);
#endif

/*
 * Used for TDX guests to make calls directly to the TD module.  This
 * should only be used for calls that have no legitimate reason to fail
 * or where the kernel can not survive the call failing.
 */
static inline void tdx_module_call(u64 fn, u64 rcx, u64 rdx, u64 r8, u64 r9,
				   struct tdx_module_output *out)
{
	if (__tdx_module_call(fn, rcx, rdx, r8, r9, out))
		panic("TDCALL %lld failed (Buggy TDX module!)\n", fn);
}

static void tdx_parse_tdinfo(u64 *cc_mask)
{
	struct tdx_module_output out;
	unsigned int gpa_width;
	u64 td_attr;

	/*
	 * TDINFO TDX module call is used to get the TD execution environment
	 * information like GPA width, number of available vcpus, debug mode
	 * information, etc. More details about the ABI can be found in TDX
	 * Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL
	 * [TDG.VP.INFO].
	 */
	tdx_module_call(TDX_GET_INFO, 0, 0, 0, 0, &out);

	/*
	 * The highest bit of a guest physical address is the "sharing" bit.
	 * Set it for shared pages and clear it for private pages.
	 *
	 * The GPA width that comes out of this call is critical. TDX guests
	 * can not meaningfully run without it.
	 */
	gpa_width = out.rcx & GENMASK(5, 0);
	*cc_mask = BIT_ULL(gpa_width - 1);

	/*
	 * The kernel can not handle #VE's when accessing normal kernel
	 * memory.  Ensure that no #VE will be delivered for accesses to
	 * TD-private memory.  Only VMM-shared memory (MMIO) will #VE.
	 */
	td_attr = out.rdx;
	if (!(td_attr & ATTR_SEPT_VE_DISABLE))
		panic("TD misconfiguration: SEPT_VE_DISABLE attibute must be set.\n");
}

/*
 * The TDX module spec states that #VE may be injected for a limited set of
 * reasons:
 *
 *  - Emulation of the architectural #VE injection on EPT violation;
 *
 *  - As a result of guest TD execution of a disallowed instruction,
 *    a disallowed MSR access, or CPUID virtualization;
 *
 *  - A notification to the guest TD about anomalous behavior;
 *
 * The last one is opt-in and is not used by the kernel.
 *
 * The Intel Software Developer's Manual describes cases when instruction
 * length field can be used in section "Information for VM Exits Due to
 * Instruction Execution".
 *
 * For TDX, it ultimately means GET_VEINFO provides reliable instruction length
 * information if #VE occurred due to instruction execution, but not for EPT
 * violations.
 */
static int ve_instr_len(struct ve_info *ve)
{
	switch (ve->exit_reason) {
	case EXIT_REASON_HLT:
	case EXIT_REASON_MSR_READ:
	case EXIT_REASON_MSR_WRITE:
	case EXIT_REASON_CPUID:
	case EXIT_REASON_IO_INSTRUCTION:
		/* It is safe to use ve->instr_len for #VE due instructions */
		return ve->instr_len;
	case EXIT_REASON_EPT_VIOLATION:
		/*
		 * For EPT violations, ve->insn_len is not defined. For those,
		 * the kernel must decode instructions manually and should not
		 * be using this function.
		 */
		WARN_ONCE(1, "ve->instr_len is not defined for EPT violations");
		return 0;
	default:
		WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason);
		return ve->instr_len;
	}
}

static u64 __cpuidle __halt(const bool irq_disabled, const bool do_sti)
{
	struct tdx_hypercall_args args = {
		.r10 = TDX_HYPERCALL_STANDARD,
		.r11 = hcall_func(EXIT_REASON_HLT),
		.r12 = irq_disabled,
	};

	/*
	 * Emulate HLT operation via hypercall. More info about ABI
	 * can be found in TDX Guest-Host-Communication Interface
	 * (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>.
	 *
	 * The VMM uses the "IRQ disabled" param to understand IRQ
	 * enabled status (RFLAGS.IF) of the TD guest and to determine
	 * whether or not it should schedule the halted vCPU if an
	 * IRQ becomes pending. E.g. if IRQs are disabled, the VMM
	 * can keep the vCPU in virtual HLT, even if an IRQ is
	 * pending, without hanging/breaking the guest.
	 */
	return __tdx_hypercall(&args, do_sti ? TDX_HCALL_ISSUE_STI : 0);
}

static int handle_halt(struct ve_info *ve)
{
	/*
	 * Since non safe halt is mainly used in CPU offlining
	 * and the guest will always stay in the halt state, don't
	 * call the STI instruction (set do_sti as false).
	 */
	const bool irq_disabled = irqs_disabled();
	const bool do_sti = false;

	if (__halt(irq_disabled, do_sti))
		return -EIO;

	return ve_instr_len(ve);
}

void __cpuidle tdx_safe_halt(void)
{
	 /*
	  * For do_sti=true case, __tdx_hypercall() function enables
	  * interrupts using the STI instruction before the TDCALL. So
	  * set irq_disabled as false.
	  */
	const bool irq_disabled = false;
	const bool do_sti = true;

	/*
	 * Use WARN_ONCE() to report the failure.
	 */
	if (__halt(irq_disabled, do_sti))
		WARN_ONCE(1, "HLT instruction emulation failed\n");
}

static int read_msr(struct pt_regs *regs, struct ve_info *ve)
{
	struct tdx_hypercall_args args = {
		.r10 = TDX_HYPERCALL_STANDARD,
		.r11 = hcall_func(EXIT_REASON_MSR_READ),
		.r12 = regs->cx,
	};

	/*
	 * Emulate the MSR read via hypercall. More info about ABI
	 * can be found in TDX Guest-Host-Communication Interface
	 * (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>".
	 */
	if (__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT))
		return -EIO;

	regs->ax = lower_32_bits(args.r11);
	regs->dx = upper_32_bits(args.r11);
	return ve_instr_len(ve);
}

static int write_msr(struct pt_regs *regs, struct ve_info *ve)
{
	struct tdx_hypercall_args args = {
		.r10 = TDX_HYPERCALL_STANDARD,
		.r11 = hcall_func(EXIT_REASON_MSR_WRITE),
		.r12 = regs->cx,
		.r13 = (u64)regs->dx << 32 | regs->ax,
	};

	/*
	 * Emulate the MSR write via hypercall. More info about ABI
	 * can be found in TDX Guest-Host-Communication Interface
	 * (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>".
	 */
	if (__tdx_hypercall(&args, 0))
		return -EIO;

	return ve_instr_len(ve);
}

static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve)
{
	struct tdx_hypercall_args args = {
		.r10 = TDX_HYPERCALL_STANDARD,
		.r11 = hcall_func(EXIT_REASON_CPUID),
		.r12 = regs->ax,
		.r13 = regs->cx,
	};

	/*
	 * Only allow VMM to control range reserved for hypervisor
	 * communication.
	 *
	 * Return all-zeros for any CPUID outside the range. It matches CPU
	 * behaviour for non-supported leaf.
	 */
	if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) {
		regs->ax = regs->bx = regs->cx = regs->dx = 0;
		return ve_instr_len(ve);
	}

	/*
	 * Emulate the CPUID instruction via a hypercall. More info about
	 * ABI can be found in TDX Guest-Host-Communication Interface
	 * (GHCI), section titled "VP.VMCALL<Instruction.CPUID>".
	 */
	if (__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT))
		return -EIO;

	/*
	 * As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of
	 * EAX, EBX, ECX, EDX registers after the CPUID instruction execution.
	 * So copy the register contents back to pt_regs.
	 */
	regs->ax = args.r12;
	regs->bx = args.r13;
	regs->cx = args.r14;
	regs->dx = args.r15;

	return ve_instr_len(ve);
}

static bool mmio_read(int size, unsigned long addr, unsigned long *val)
{
	struct tdx_hypercall_args args = {
		.r10 = TDX_HYPERCALL_STANDARD,
		.r11 = hcall_func(EXIT_REASON_EPT_VIOLATION),
		.r12 = size,
		.r13 = EPT_READ,
		.r14 = addr,
		.r15 = *val,
	};

	if (__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT))
		return false;
	*val = args.r11;
	return true;
}

static bool mmio_write(int size, unsigned long addr, unsigned long val)
{
	return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size,
			       EPT_WRITE, addr, val);
}

static int handle_mmio(struct pt_regs *regs, struct ve_info *ve)
{
	unsigned long *reg, val, vaddr;
	char buffer[MAX_INSN_SIZE];
	struct insn insn = {};
	enum mmio_type mmio;
	int size, extend_size;
	u8 extend_val = 0;

	/* Only in-kernel MMIO is supported */
	if (WARN_ON_ONCE(user_mode(regs)))
		return -EFAULT;

	if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE))
		return -EFAULT;

	if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64))
		return -EINVAL;

	mmio = insn_decode_mmio(&insn, &size);
	if (WARN_ON_ONCE(mmio == MMIO_DECODE_FAILED))
		return -EINVAL;

	if (mmio != MMIO_WRITE_IMM && mmio != MMIO_MOVS) {
		reg = insn_get_modrm_reg_ptr(&insn, regs);
		if (!reg)
			return -EINVAL;
	}

	/*
	 * Reject EPT violation #VEs that split pages.
	 *
	 * MMIO accesses are supposed to be naturally aligned and therefore
	 * never cross page boundaries. Seeing split page accesses indicates
	 * a bug or a load_unaligned_zeropad() that stepped into an MMIO page.
	 *
	 * load_unaligned_zeropad() will recover using exception fixups.
	 */
	vaddr = (unsigned long)insn_get_addr_ref(&insn, regs);
	if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE)
		return -EFAULT;

	/* Handle writes first */
	switch (mmio) {
	case MMIO_WRITE:
		memcpy(&val, reg, size);
		if (!mmio_write(size, ve->gpa, val))
			return -EIO;
		return insn.length;
	case MMIO_WRITE_IMM:
		val = insn.immediate.value;
		if (!mmio_write(size, ve->gpa, val))
			return -EIO;
		return insn.length;
	case MMIO_READ:
	case MMIO_READ_ZERO_EXTEND:
	case MMIO_READ_SIGN_EXTEND:
		/* Reads are handled below */
		break;
	case MMIO_MOVS:
	case MMIO_DECODE_FAILED:
		/*
		 * MMIO was accessed with an instruction that could not be
		 * decoded or handled properly. It was likely not using io.h
		 * helpers or accessed MMIO accidentally.
		 */
		return -EINVAL;
	default:
		WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?");
		return -EINVAL;
	}

	/* Handle reads */
	if (!mmio_read(size, ve->gpa, &val))
		return -EIO;

	switch (mmio) {
	case MMIO_READ:
		/* Zero-extend for 32-bit operation */
		extend_size = size == 4 ? sizeof(*reg) : 0;
		break;
	case MMIO_READ_ZERO_EXTEND:
		/* Zero extend based on operand size */
		extend_size = insn.opnd_bytes;
		break;
	case MMIO_READ_SIGN_EXTEND:
		/* Sign extend based on operand size */
		extend_size = insn.opnd_bytes;
		if (size == 1 && val & BIT(7))
			extend_val = 0xFF;
		else if (size > 1 && val & BIT(15))
			extend_val = 0xFF;
		break;
	default:
		/* All other cases has to be covered with the first switch() */
		WARN_ON_ONCE(1);
		return -EINVAL;
	}

	if (extend_size)
		memset(reg, extend_val, extend_size);
	memcpy(reg, &val, size);
	return insn.length;
}

static bool handle_in(struct pt_regs *regs, int size, int port)
{
	struct tdx_hypercall_args args = {
		.r10 = TDX_HYPERCALL_STANDARD,
		.r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION),
		.r12 = size,
		.r13 = PORT_READ,
		.r14 = port,
	};
	u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
	bool success;

	/*
	 * Emulate the I/O read via hypercall. More info about ABI can be found
	 * in TDX Guest-Host-Communication Interface (GHCI) section titled
	 * "TDG.VP.VMCALL<Instruction.IO>".
	 */
	success = !__tdx_hypercall(&args, TDX_HCALL_HAS_OUTPUT);

	/* Update part of the register affected by the emulated instruction */
	regs->ax &= ~mask;
	if (success)
		regs->ax |= args.r11 & mask;

	return success;
}

static bool handle_out(struct pt_regs *regs, int size, int port)
{
	u64 mask = GENMASK(BITS_PER_BYTE * size, 0);

	/*
	 * Emulate the I/O write via hypercall. More info about ABI can be found
	 * in TDX Guest-Host-Communication Interface (GHCI) section titled
	 * "TDG.VP.VMCALL<Instruction.IO>".
	 */
	return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size,
			       PORT_WRITE, port, regs->ax & mask);
}

/*
 * Emulate I/O using hypercall.
 *
 * Assumes the IO instruction was using ax, which is enforced
 * by the standard io.h macros.
 *
 * Return True on success or False on failure.
 */
static int handle_io(struct pt_regs *regs, struct ve_info *ve)
{
	u32 exit_qual = ve->exit_qual;
	int size, port;
	bool in, ret;

	if (VE_IS_IO_STRING(exit_qual))
		return -EIO;

	in   = VE_IS_IO_IN(exit_qual);
	size = VE_GET_IO_SIZE(exit_qual);
	port = VE_GET_PORT_NUM(exit_qual);


	if (in)
		ret = handle_in(regs, size, port);
	else
		ret = handle_out(regs, size, port);
	if (!ret)
		return -EIO;

	return ve_instr_len(ve);
}

/*
 * Early #VE exception handler. Only handles a subset of port I/O.
 * Intended only for earlyprintk. If failed, return false.
 */
__init bool tdx_early_handle_ve(struct pt_regs *regs)
{
	struct ve_info ve;
	int insn_len;

	tdx_get_ve_info(&ve);

	if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION)
		return false;

	insn_len = handle_io(regs, &ve);
	if (insn_len < 0)
		return false;

	regs->ip += insn_len;
	return true;
}

void tdx_get_ve_info(struct ve_info *ve)
{
	struct tdx_module_output out;

	/*
	 * Called during #VE handling to retrieve the #VE info from the
	 * TDX module.
	 *
	 * This has to be called early in #VE handling.  A "nested" #VE which
	 * occurs before this will raise a #DF and is not recoverable.
	 *
	 * The call retrieves the #VE info from the TDX module, which also
	 * clears the "#VE valid" flag. This must be done before anything else
	 * because any #VE that occurs while the valid flag is set will lead to
	 * #DF.
	 *
	 * Note, the TDX module treats virtual NMIs as inhibited if the #VE
	 * valid flag is set. It means that NMI=>#VE will not result in a #DF.
	 */
	tdx_module_call(TDX_GET_VEINFO, 0, 0, 0, 0, &out);

	/* Transfer the output parameters */
	ve->exit_reason = out.rcx;
	ve->exit_qual   = out.rdx;
	ve->gla         = out.r8;
	ve->gpa         = out.r9;
	ve->instr_len   = lower_32_bits(out.r10);
	ve->instr_info  = upper_32_bits(out.r10);
}

/*
 * Handle the user initiated #VE.
 *
 * On success, returns the number of bytes RIP should be incremented (>=0)
 * or -errno on error.
 */
static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve)
{
	switch (ve->exit_reason) {
	case EXIT_REASON_CPUID:
		return handle_cpuid(regs, ve);
	default:
		pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
		return -EIO;
	}
}

/*
 * Handle the kernel #VE.
 *
 * On success, returns the number of bytes RIP should be incremented (>=0)
 * or -errno on error.
 */
static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve)
{
	switch (ve->exit_reason) {
	case EXIT_REASON_HLT:
		return handle_halt(ve);
	case EXIT_REASON_MSR_READ:
		return read_msr(regs, ve);
	case EXIT_REASON_MSR_WRITE:
		return write_msr(regs, ve);
	case EXIT_REASON_CPUID:
		return handle_cpuid(regs, ve);
	case EXIT_REASON_EPT_VIOLATION:
		return handle_mmio(regs, ve);
	case EXIT_REASON_IO_INSTRUCTION:
		return handle_io(regs, ve);
	default:
		pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
		return -EIO;
	}
}

bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve)
{
	int insn_len;

	if (user_mode(regs))
		insn_len = virt_exception_user(regs, ve);
	else
		insn_len = virt_exception_kernel(regs, ve);
	if (insn_len < 0)
		return false;

	/* After successful #VE handling, move the IP */
	regs->ip += insn_len;

	return true;
}

static bool tdx_tlb_flush_required(bool private)
{
	/*
	 * TDX guest is responsible for flushing TLB on private->shared
	 * transition. VMM is responsible for flushing on shared->private.
	 *
	 * The VMM _can't_ flush private addresses as it can't generate PAs
	 * with the guest's HKID.  Shared memory isn't subject to integrity
	 * checking, i.e. the VMM doesn't need to flush for its own protection.
	 *
	 * There's no need to flush when converting from shared to private,
	 * as flushing is the VMM's responsibility in this case, e.g. it must
	 * flush to avoid integrity failures in the face of a buggy or
	 * malicious guest.
	 */
	return !private;
}

static bool tdx_cache_flush_required(void)
{
	/*
	 * AMD SME/SEV can avoid cache flushing if HW enforces cache coherence.
	 * TDX doesn't have such capability.
	 *
	 * Flush cache unconditionally.
	 */
	return true;
}

static bool try_accept_one(phys_addr_t *start, unsigned long len,
			  enum pg_level pg_level)
{
	unsigned long accept_size = page_level_size(pg_level);
	u64 tdcall_rcx;
	u8 page_size;

	if (!IS_ALIGNED(*start, accept_size))
		return false;

	if (len < accept_size)
		return false;

	/*
	 * Pass the page physical address to the TDX module to accept the
	 * pending, private page.
	 *
	 * Bits 2:0 of RCX encode page size: 0 - 4K, 1 - 2M, 2 - 1G.
	 */
	switch (pg_level) {
	case PG_LEVEL_4K:
		page_size = 0;
		break;
	case PG_LEVEL_2M:
		page_size = 1;
		break;
	case PG_LEVEL_1G:
		page_size = 2;
		break;
	default:
		return false;
	}

	tdcall_rcx = *start | page_size;
	if (__tdx_module_call(TDX_ACCEPT_PAGE, tdcall_rcx, 0, 0, 0, NULL))
		return false;

	*start += accept_size;
	return true;
}

/*
 * Inform the VMM of the guest's intent for this physical page: shared with
 * the VMM or private to the guest.  The VMM is expected to change its mapping
 * of the page in response.
 */
static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc)
{
	phys_addr_t start = __pa(vaddr);
	phys_addr_t end   = __pa(vaddr + numpages * PAGE_SIZE);

	if (!enc) {
		/* Set the shared (decrypted) bits: */
		start |= cc_mkdec(0);
		end   |= cc_mkdec(0);
	}

	/*
	 * Notify the VMM about page mapping conversion. More info about ABI
	 * can be found in TDX Guest-Host-Communication Interface (GHCI),
	 * section "TDG.VP.VMCALL<MapGPA>"
	 */
	if (_tdx_hypercall(TDVMCALL_MAP_GPA, start, end - start, 0, 0))
		return false;

	/* private->shared conversion  requires only MapGPA call */
	if (!enc)
		return true;

	/*
	 * For shared->private conversion, accept the page using
	 * TDX_ACCEPT_PAGE TDX module call.
	 */
	while (start < end) {
		unsigned long len = end - start;

		/*
		 * Try larger accepts first. It gives chance to VMM to keep
		 * 1G/2M SEPT entries where possible and speeds up process by
		 * cutting number of hypercalls (if successful).
		 */

		if (try_accept_one(&start, len, PG_LEVEL_1G))
			continue;

		if (try_accept_one(&start, len, PG_LEVEL_2M))
			continue;

		if (!try_accept_one(&start, len, PG_LEVEL_4K))
			return false;
	}

	return true;
}

void __init tdx_early_init(void)
{
	u64 cc_mask;
	u32 eax, sig[3];

	cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2],  &sig[1]);

	if (memcmp(TDX_IDENT, sig, sizeof(sig)))
		return;

	setup_force_cpu_cap(X86_FEATURE_TDX_GUEST);

	cc_set_vendor(CC_VENDOR_INTEL);
	tdx_parse_tdinfo(&cc_mask);
	cc_set_mask(cc_mask);

	/*
	 * All bits above GPA width are reserved and kernel treats shared bit
	 * as flag, not as part of physical address.
	 *
	 * Adjust physical mask to only cover valid GPA bits.
	 */
	physical_mask &= cc_mask - 1;

	x86_platform.guest.enc_cache_flush_required = tdx_cache_flush_required;
	x86_platform.guest.enc_tlb_flush_required   = tdx_tlb_flush_required;
	x86_platform.guest.enc_status_change_finish = tdx_enc_status_changed;

	pr_info("Guest detected\n");
}