1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
|
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
* Copyright 2003 PathScale, Inc.
* Derived from include/asm-i386/pgtable.h
*/
#ifndef __UM_PGTABLE_H
#define __UM_PGTABLE_H
#include <asm/fixmap.h>
#define _PAGE_PRESENT 0x001
#define _PAGE_NEWPAGE 0x002
#define _PAGE_NEWPROT 0x004
#define _PAGE_RW 0x020
#define _PAGE_USER 0x040
#define _PAGE_ACCESSED 0x080
#define _PAGE_DIRTY 0x100
/* If _PAGE_PRESENT is clear, we use these: */
#define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE;
pte_present gives true */
/* We borrow bit 10 to store the exclusive marker in swap PTEs. */
#define _PAGE_SWP_EXCLUSIVE 0x400
#ifdef CONFIG_3_LEVEL_PGTABLES
#include <asm/pgtable-3level.h>
#else
#include <asm/pgtable-2level.h>
#endif
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
/* zero page used for uninitialized stuff */
extern unsigned long *empty_zero_page;
/* Just any arbitrary offset to the start of the vmalloc VM area: the
* current 8MB value just means that there will be a 8MB "hole" after the
* physical memory until the kernel virtual memory starts. That means that
* any out-of-bounds memory accesses will hopefully be caught.
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
* area for the same reason. ;)
*/
extern unsigned long end_iomem;
#define VMALLOC_OFFSET (__va_space)
#define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
#define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
#define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
#define MODULES_VADDR VMALLOC_START
#define MODULES_END VMALLOC_END
#define MODULES_LEN (MODULES_VADDR - MODULES_END)
#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
#define __PAGE_KERNEL_EXEC \
(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
/*
* The i386 can't do page protection for execute, and considers that the same
* are read.
* Also, write permissions imply read permissions. This is the closest we can
* get..
*/
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
#define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
#define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
#define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
#define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
#define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
#define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
#define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
#define p4d_newpage(x) (p4d_val(x) & _PAGE_NEWPAGE)
#define p4d_mkuptodate(x) (p4d_val(x) &= ~_PAGE_NEWPAGE)
#define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT)
#define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
#define pte_page(x) pfn_to_page(pte_pfn(x))
#define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
/*
* =================================
* Flags checking section.
* =================================
*/
static inline int pte_none(pte_t pte)
{
return pte_is_zero(pte);
}
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
static inline int pte_read(pte_t pte)
{
return((pte_get_bits(pte, _PAGE_USER)) &&
!(pte_get_bits(pte, _PAGE_PROTNONE)));
}
static inline int pte_exec(pte_t pte){
return((pte_get_bits(pte, _PAGE_USER)) &&
!(pte_get_bits(pte, _PAGE_PROTNONE)));
}
static inline int pte_write(pte_t pte)
{
return((pte_get_bits(pte, _PAGE_RW)) &&
!(pte_get_bits(pte, _PAGE_PROTNONE)));
}
static inline int pte_dirty(pte_t pte)
{
return pte_get_bits(pte, _PAGE_DIRTY);
}
static inline int pte_young(pte_t pte)
{
return pte_get_bits(pte, _PAGE_ACCESSED);
}
static inline int pte_newpage(pte_t pte)
{
return pte_get_bits(pte, _PAGE_NEWPAGE);
}
static inline int pte_newprot(pte_t pte)
{
return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
}
/*
* =================================
* Flags setting section.
* =================================
*/
static inline pte_t pte_mknewprot(pte_t pte)
{
pte_set_bits(pte, _PAGE_NEWPROT);
return(pte);
}
static inline pte_t pte_mkclean(pte_t pte)
{
pte_clear_bits(pte, _PAGE_DIRTY);
return(pte);
}
static inline pte_t pte_mkold(pte_t pte)
{
pte_clear_bits(pte, _PAGE_ACCESSED);
return(pte);
}
static inline pte_t pte_wrprotect(pte_t pte)
{
if (likely(pte_get_bits(pte, _PAGE_RW)))
pte_clear_bits(pte, _PAGE_RW);
else
return pte;
return(pte_mknewprot(pte));
}
static inline pte_t pte_mkread(pte_t pte)
{
if (unlikely(pte_get_bits(pte, _PAGE_USER)))
return pte;
pte_set_bits(pte, _PAGE_USER);
return(pte_mknewprot(pte));
}
static inline pte_t pte_mkdirty(pte_t pte)
{
pte_set_bits(pte, _PAGE_DIRTY);
return(pte);
}
static inline pte_t pte_mkyoung(pte_t pte)
{
pte_set_bits(pte, _PAGE_ACCESSED);
return(pte);
}
static inline pte_t pte_mkwrite(pte_t pte)
{
if (unlikely(pte_get_bits(pte, _PAGE_RW)))
return pte;
pte_set_bits(pte, _PAGE_RW);
return(pte_mknewprot(pte));
}
static inline pte_t pte_mkuptodate(pte_t pte)
{
pte_clear_bits(pte, _PAGE_NEWPAGE);
if(pte_present(pte))
pte_clear_bits(pte, _PAGE_NEWPROT);
return(pte);
}
static inline pte_t pte_mknewpage(pte_t pte)
{
pte_set_bits(pte, _PAGE_NEWPAGE);
return(pte);
}
static inline void set_pte(pte_t *pteptr, pte_t pteval)
{
pte_copy(*pteptr, pteval);
/* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
* fix_range knows to unmap it. _PAGE_NEWPROT is specific to
* mapped pages.
*/
*pteptr = pte_mknewpage(*pteptr);
if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
}
#define PFN_PTE_SHIFT PAGE_SHIFT
#define __HAVE_ARCH_PTE_SAME
static inline int pte_same(pte_t pte_a, pte_t pte_b)
{
return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE);
}
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
#define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
#define __virt_to_page(virt) phys_to_page(__pa(virt))
#define page_to_phys(page) pfn_to_phys(page_to_pfn(page))
#define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
#define mk_pte(page, pgprot) \
({ pte_t pte; \
\
pte_set_val(pte, page_to_phys(page), (pgprot)); \
if (pte_present(pte)) \
pte_mknewprot(pte_mknewpage(pte)); \
pte;})
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
return pte;
}
/*
* the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
*
* this macro returns the index of the entry in the pmd page which would
* control the given virtual address
*/
#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
struct mm_struct;
extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
#define update_mmu_cache(vma,address,ptep) do {} while (0)
#define update_mmu_cache_range(vmf, vma, address, ptep, nr) do {} while (0)
/*
* Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
* are !pte_none() && !pte_present().
*
* Format of swap PTEs:
*
* 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* <--------------- offset ----------------> E < type -> 0 0 0 1 0
*
* E is the exclusive marker that is not stored in swap entries.
* _PAGE_NEWPAGE (bit 1) is always set to 1 in set_pte().
*/
#define __swp_type(x) (((x).val >> 5) & 0x1f)
#define __swp_offset(x) ((x).val >> 11)
#define __swp_entry(type, offset) \
((swp_entry_t) { (((type) & 0x1f) << 5) | ((offset) << 11) })
#define __pte_to_swp_entry(pte) \
((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
static inline int pte_swp_exclusive(pte_t pte)
{
return pte_get_bits(pte, _PAGE_SWP_EXCLUSIVE);
}
static inline pte_t pte_swp_mkexclusive(pte_t pte)
{
pte_set_bits(pte, _PAGE_SWP_EXCLUSIVE);
return pte;
}
static inline pte_t pte_swp_clear_exclusive(pte_t pte)
{
pte_clear_bits(pte, _PAGE_SWP_EXCLUSIVE);
return pte;
}
/* Clear a kernel PTE and flush it from the TLB */
#define kpte_clear_flush(ptep, vaddr) \
do { \
pte_clear(&init_mm, (vaddr), (ptep)); \
__flush_tlb_one((vaddr)); \
} while (0)
#endif
|