1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
|
// SPDX-License-Identifier: GPL-2.0
/*
* Page table allocation functions
*
* Copyright IBM Corp. 2016
* Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
*/
#include <linux/sysctl.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <asm/mmu_context.h>
#include <asm/pgalloc.h>
#include <asm/gmap.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#ifdef CONFIG_PGSTE
int page_table_allocate_pgste = 0;
EXPORT_SYMBOL(page_table_allocate_pgste);
static struct ctl_table page_table_sysctl[] = {
{
.procname = "allocate_pgste",
.data = &page_table_allocate_pgste,
.maxlen = sizeof(int),
.mode = S_IRUGO | S_IWUSR,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
{ }
};
static int __init page_table_register_sysctl(void)
{
return register_sysctl("vm", page_table_sysctl) ? 0 : -ENOMEM;
}
__initcall(page_table_register_sysctl);
#endif /* CONFIG_PGSTE */
unsigned long *crst_table_alloc(struct mm_struct *mm)
{
struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL, CRST_ALLOC_ORDER);
if (!ptdesc)
return NULL;
arch_set_page_dat(ptdesc_page(ptdesc), CRST_ALLOC_ORDER);
return (unsigned long *) ptdesc_to_virt(ptdesc);
}
void crst_table_free(struct mm_struct *mm, unsigned long *table)
{
pagetable_free(virt_to_ptdesc(table));
}
static void __crst_table_upgrade(void *arg)
{
struct mm_struct *mm = arg;
/* change all active ASCEs to avoid the creation of new TLBs */
if (current->active_mm == mm) {
S390_lowcore.user_asce = mm->context.asce;
local_ctl_load(7, &S390_lowcore.user_asce);
}
__tlb_flush_local();
}
int crst_table_upgrade(struct mm_struct *mm, unsigned long end)
{
unsigned long *pgd = NULL, *p4d = NULL, *__pgd;
unsigned long asce_limit = mm->context.asce_limit;
/* upgrade should only happen from 3 to 4, 3 to 5, or 4 to 5 levels */
VM_BUG_ON(asce_limit < _REGION2_SIZE);
if (end <= asce_limit)
return 0;
if (asce_limit == _REGION2_SIZE) {
p4d = crst_table_alloc(mm);
if (unlikely(!p4d))
goto err_p4d;
crst_table_init(p4d, _REGION2_ENTRY_EMPTY);
}
if (end > _REGION1_SIZE) {
pgd = crst_table_alloc(mm);
if (unlikely(!pgd))
goto err_pgd;
crst_table_init(pgd, _REGION1_ENTRY_EMPTY);
}
spin_lock_bh(&mm->page_table_lock);
/*
* This routine gets called with mmap_lock lock held and there is
* no reason to optimize for the case of otherwise. However, if
* that would ever change, the below check will let us know.
*/
VM_BUG_ON(asce_limit != mm->context.asce_limit);
if (p4d) {
__pgd = (unsigned long *) mm->pgd;
p4d_populate(mm, (p4d_t *) p4d, (pud_t *) __pgd);
mm->pgd = (pgd_t *) p4d;
mm->context.asce_limit = _REGION1_SIZE;
mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
_ASCE_USER_BITS | _ASCE_TYPE_REGION2;
mm_inc_nr_puds(mm);
}
if (pgd) {
__pgd = (unsigned long *) mm->pgd;
pgd_populate(mm, (pgd_t *) pgd, (p4d_t *) __pgd);
mm->pgd = (pgd_t *) pgd;
mm->context.asce_limit = TASK_SIZE_MAX;
mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
_ASCE_USER_BITS | _ASCE_TYPE_REGION1;
}
spin_unlock_bh(&mm->page_table_lock);
on_each_cpu(__crst_table_upgrade, mm, 0);
return 0;
err_pgd:
crst_table_free(mm, p4d);
err_p4d:
return -ENOMEM;
}
static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
{
return atomic_fetch_xor(bits, v) ^ bits;
}
#ifdef CONFIG_PGSTE
struct page *page_table_alloc_pgste(struct mm_struct *mm)
{
struct ptdesc *ptdesc;
u64 *table;
ptdesc = pagetable_alloc(GFP_KERNEL, 0);
if (ptdesc) {
table = (u64 *)ptdesc_to_virt(ptdesc);
memset64(table, _PAGE_INVALID, PTRS_PER_PTE);
memset64(table + PTRS_PER_PTE, 0, PTRS_PER_PTE);
}
return ptdesc_page(ptdesc);
}
void page_table_free_pgste(struct page *page)
{
pagetable_free(page_ptdesc(page));
}
#endif /* CONFIG_PGSTE */
/*
* A 2KB-pgtable is either upper or lower half of a normal page.
* The second half of the page may be unused or used as another
* 2KB-pgtable.
*
* Whenever possible the parent page for a new 2KB-pgtable is picked
* from the list of partially allocated pages mm_context_t::pgtable_list.
* In case the list is empty a new parent page is allocated and added to
* the list.
*
* When a parent page gets fully allocated it contains 2KB-pgtables in both
* upper and lower halves and is removed from mm_context_t::pgtable_list.
*
* When 2KB-pgtable is freed from to fully allocated parent page that
* page turns partially allocated and added to mm_context_t::pgtable_list.
*
* If 2KB-pgtable is freed from the partially allocated parent page that
* page turns unused and gets removed from mm_context_t::pgtable_list.
* Furthermore, the unused parent page is released.
*
* As follows from the above, no unallocated or fully allocated parent
* pages are contained in mm_context_t::pgtable_list.
*
* The upper byte (bits 24-31) of the parent page _refcount is used
* for tracking contained 2KB-pgtables and has the following format:
*
* PP AA
* 01234567 upper byte (bits 24-31) of struct page::_refcount
* || ||
* || |+--- upper 2KB-pgtable is allocated
* || +---- lower 2KB-pgtable is allocated
* |+------- upper 2KB-pgtable is pending for removal
* +-------- lower 2KB-pgtable is pending for removal
*
* (See commit 620b4e903179 ("s390: use _refcount for pgtables") on why
* using _refcount is possible).
*
* When 2KB-pgtable is allocated the corresponding AA bit is set to 1.
* The parent page is either:
* - added to mm_context_t::pgtable_list in case the second half of the
* parent page is still unallocated;
* - removed from mm_context_t::pgtable_list in case both hales of the
* parent page are allocated;
* These operations are protected with mm_context_t::lock.
*
* When 2KB-pgtable is deallocated the corresponding AA bit is set to 0
* and the corresponding PP bit is set to 1 in a single atomic operation.
* Thus, PP and AA bits corresponding to the same 2KB-pgtable are mutually
* exclusive and may never be both set to 1!
* The parent page is either:
* - added to mm_context_t::pgtable_list in case the second half of the
* parent page is still allocated;
* - removed from mm_context_t::pgtable_list in case the second half of
* the parent page is unallocated;
* These operations are protected with mm_context_t::lock.
*
* It is important to understand that mm_context_t::lock only protects
* mm_context_t::pgtable_list and AA bits, but not the parent page itself
* and PP bits.
*
* Releasing the parent page happens whenever the PP bit turns from 1 to 0,
* while both AA bits and the second PP bit are already unset. Then the
* parent page does not contain any 2KB-pgtable fragment anymore, and it has
* also been removed from mm_context_t::pgtable_list. It is safe to release
* the page therefore.
*
* PGSTE memory spaces use full 4KB-pgtables and do not need most of the
* logic described above. Both AA bits are set to 1 to denote a 4KB-pgtable
* while the PP bits are never used, nor such a page is added to or removed
* from mm_context_t::pgtable_list.
*
* pte_free_defer() overrides those rules: it takes the page off pgtable_list,
* and prevents both 2K fragments from being reused. pte_free_defer() has to
* guarantee that its pgtable cannot be reused before the RCU grace period
* has elapsed (which page_table_free_rcu() does not actually guarantee).
* But for simplicity, because page->rcu_head overlays page->lru, and because
* the RCU callback might not be called before the mm_context_t has been freed,
* pte_free_defer() in this implementation prevents both fragments from being
* reused, and delays making the call to RCU until both fragments are freed.
*/
unsigned long *page_table_alloc(struct mm_struct *mm)
{
unsigned long *table;
struct ptdesc *ptdesc;
unsigned int mask, bit;
/* Try to get a fragment of a 4K page as a 2K page table */
if (!mm_alloc_pgste(mm)) {
table = NULL;
spin_lock_bh(&mm->context.lock);
if (!list_empty(&mm->context.pgtable_list)) {
ptdesc = list_first_entry(&mm->context.pgtable_list,
struct ptdesc, pt_list);
mask = atomic_read(&ptdesc->_refcount) >> 24;
/*
* The pending removal bits must also be checked.
* Failure to do so might lead to an impossible
* value of (i.e 0x13 or 0x23) written to _refcount.
* Such values violate the assumption that pending and
* allocation bits are mutually exclusive, and the rest
* of the code unrails as result. That could lead to
* a whole bunch of races and corruptions.
*/
mask = (mask | (mask >> 4)) & 0x03U;
if (mask != 0x03U) {
table = (unsigned long *) ptdesc_to_virt(ptdesc);
bit = mask & 1; /* =1 -> second 2K */
if (bit)
table += PTRS_PER_PTE;
atomic_xor_bits(&ptdesc->_refcount,
0x01U << (bit + 24));
list_del_init(&ptdesc->pt_list);
}
}
spin_unlock_bh(&mm->context.lock);
if (table)
return table;
}
/* Allocate a fresh page */
ptdesc = pagetable_alloc(GFP_KERNEL, 0);
if (!ptdesc)
return NULL;
if (!pagetable_pte_ctor(ptdesc)) {
pagetable_free(ptdesc);
return NULL;
}
arch_set_page_dat(ptdesc_page(ptdesc), 0);
/* Initialize page table */
table = (unsigned long *) ptdesc_to_virt(ptdesc);
if (mm_alloc_pgste(mm)) {
/* Return 4K page table with PGSTEs */
INIT_LIST_HEAD(&ptdesc->pt_list);
atomic_xor_bits(&ptdesc->_refcount, 0x03U << 24);
memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE);
memset64((u64 *)table + PTRS_PER_PTE, 0, PTRS_PER_PTE);
} else {
/* Return the first 2K fragment of the page */
atomic_xor_bits(&ptdesc->_refcount, 0x01U << 24);
memset64((u64 *)table, _PAGE_INVALID, 2 * PTRS_PER_PTE);
spin_lock_bh(&mm->context.lock);
list_add(&ptdesc->pt_list, &mm->context.pgtable_list);
spin_unlock_bh(&mm->context.lock);
}
return table;
}
static void page_table_release_check(struct page *page, void *table,
unsigned int half, unsigned int mask)
{
char msg[128];
if (!IS_ENABLED(CONFIG_DEBUG_VM))
return;
if (!mask && list_empty(&page->lru))
return;
snprintf(msg, sizeof(msg),
"Invalid pgtable %p release half 0x%02x mask 0x%02x",
table, half, mask);
dump_page(page, msg);
}
static void pte_free_now(struct rcu_head *head)
{
struct ptdesc *ptdesc;
ptdesc = container_of(head, struct ptdesc, pt_rcu_head);
pagetable_pte_dtor(ptdesc);
pagetable_free(ptdesc);
}
void page_table_free(struct mm_struct *mm, unsigned long *table)
{
unsigned int mask, bit, half;
struct ptdesc *ptdesc = virt_to_ptdesc(table);
if (!mm_alloc_pgste(mm)) {
/* Free 2K page table fragment of a 4K page */
bit = ((unsigned long) table & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t));
spin_lock_bh(&mm->context.lock);
/*
* Mark the page for delayed release. The actual release
* will happen outside of the critical section from this
* function or from __tlb_remove_table()
*/
mask = atomic_xor_bits(&ptdesc->_refcount, 0x11U << (bit + 24));
mask >>= 24;
if ((mask & 0x03U) && !folio_test_active(ptdesc_folio(ptdesc))) {
/*
* Other half is allocated, and neither half has had
* its free deferred: add page to head of list, to make
* this freed half available for immediate reuse.
*/
list_add(&ptdesc->pt_list, &mm->context.pgtable_list);
} else {
/* If page is on list, now remove it. */
list_del_init(&ptdesc->pt_list);
}
spin_unlock_bh(&mm->context.lock);
mask = atomic_xor_bits(&ptdesc->_refcount, 0x10U << (bit + 24));
mask >>= 24;
if (mask != 0x00U)
return;
half = 0x01U << bit;
} else {
half = 0x03U;
mask = atomic_xor_bits(&ptdesc->_refcount, 0x03U << 24);
mask >>= 24;
}
page_table_release_check(ptdesc_page(ptdesc), table, half, mask);
if (folio_test_clear_active(ptdesc_folio(ptdesc)))
call_rcu(&ptdesc->pt_rcu_head, pte_free_now);
else
pte_free_now(&ptdesc->pt_rcu_head);
}
void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
unsigned long vmaddr)
{
struct mm_struct *mm;
unsigned int bit, mask;
struct ptdesc *ptdesc = virt_to_ptdesc(table);
mm = tlb->mm;
if (mm_alloc_pgste(mm)) {
gmap_unlink(mm, table, vmaddr);
table = (unsigned long *) ((unsigned long)table | 0x03U);
tlb_remove_ptdesc(tlb, table);
return;
}
bit = ((unsigned long) table & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t));
spin_lock_bh(&mm->context.lock);
/*
* Mark the page for delayed release. The actual release will happen
* outside of the critical section from __tlb_remove_table() or from
* page_table_free()
*/
mask = atomic_xor_bits(&ptdesc->_refcount, 0x11U << (bit + 24));
mask >>= 24;
if ((mask & 0x03U) && !folio_test_active(ptdesc_folio(ptdesc))) {
/*
* Other half is allocated, and neither half has had
* its free deferred: add page to end of list, to make
* this freed half available for reuse once its pending
* bit has been cleared by __tlb_remove_table().
*/
list_add_tail(&ptdesc->pt_list, &mm->context.pgtable_list);
} else {
/* If page is on list, now remove it. */
list_del_init(&ptdesc->pt_list);
}
spin_unlock_bh(&mm->context.lock);
table = (unsigned long *) ((unsigned long) table | (0x01U << bit));
tlb_remove_table(tlb, table);
}
void __tlb_remove_table(void *_table)
{
unsigned int mask = (unsigned long) _table & 0x03U, half = mask;
void *table = (void *)((unsigned long) _table ^ mask);
struct ptdesc *ptdesc = virt_to_ptdesc(table);
switch (half) {
case 0x00U: /* pmd, pud, or p4d */
pagetable_free(ptdesc);
return;
case 0x01U: /* lower 2K of a 4K page table */
case 0x02U: /* higher 2K of a 4K page table */
mask = atomic_xor_bits(&ptdesc->_refcount, mask << (4 + 24));
mask >>= 24;
if (mask != 0x00U)
return;
break;
case 0x03U: /* 4K page table with pgstes */
mask = atomic_xor_bits(&ptdesc->_refcount, 0x03U << 24);
mask >>= 24;
break;
}
page_table_release_check(ptdesc_page(ptdesc), table, half, mask);
if (folio_test_clear_active(ptdesc_folio(ptdesc)))
call_rcu(&ptdesc->pt_rcu_head, pte_free_now);
else
pte_free_now(&ptdesc->pt_rcu_head);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable)
{
struct page *page;
page = virt_to_page(pgtable);
SetPageActive(page);
page_table_free(mm, (unsigned long *)pgtable);
/*
* page_table_free() does not do the pgste gmap_unlink() which
* page_table_free_rcu() does: warn us if pgste ever reaches here.
*/
WARN_ON_ONCE(mm_has_pgste(mm));
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
/*
* Base infrastructure required to generate basic asces, region, segment,
* and page tables that do not make use of enhanced features like EDAT1.
*/
static struct kmem_cache *base_pgt_cache;
static unsigned long *base_pgt_alloc(void)
{
unsigned long *table;
table = kmem_cache_alloc(base_pgt_cache, GFP_KERNEL);
if (table)
memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE);
return table;
}
static void base_pgt_free(unsigned long *table)
{
kmem_cache_free(base_pgt_cache, table);
}
static unsigned long *base_crst_alloc(unsigned long val)
{
unsigned long *table;
struct ptdesc *ptdesc;
ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, CRST_ALLOC_ORDER);
if (!ptdesc)
return NULL;
table = ptdesc_address(ptdesc);
crst_table_init(table, val);
return table;
}
static void base_crst_free(unsigned long *table)
{
pagetable_free(virt_to_ptdesc(table));
}
#define BASE_ADDR_END_FUNC(NAME, SIZE) \
static inline unsigned long base_##NAME##_addr_end(unsigned long addr, \
unsigned long end) \
{ \
unsigned long next = (addr + (SIZE)) & ~((SIZE) - 1); \
\
return (next - 1) < (end - 1) ? next : end; \
}
BASE_ADDR_END_FUNC(page, _PAGE_SIZE)
BASE_ADDR_END_FUNC(segment, _SEGMENT_SIZE)
BASE_ADDR_END_FUNC(region3, _REGION3_SIZE)
BASE_ADDR_END_FUNC(region2, _REGION2_SIZE)
BASE_ADDR_END_FUNC(region1, _REGION1_SIZE)
static inline unsigned long base_lra(unsigned long address)
{
unsigned long real;
asm volatile(
" lra %0,0(%1)\n"
: "=d" (real) : "a" (address) : "cc");
return real;
}
static int base_page_walk(unsigned long *origin, unsigned long addr,
unsigned long end, int alloc)
{
unsigned long *pte, next;
if (!alloc)
return 0;
pte = origin;
pte += (addr & _PAGE_INDEX) >> _PAGE_SHIFT;
do {
next = base_page_addr_end(addr, end);
*pte = base_lra(addr);
} while (pte++, addr = next, addr < end);
return 0;
}
static int base_segment_walk(unsigned long *origin, unsigned long addr,
unsigned long end, int alloc)
{
unsigned long *ste, next, *table;
int rc;
ste = origin;
ste += (addr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
do {
next = base_segment_addr_end(addr, end);
if (*ste & _SEGMENT_ENTRY_INVALID) {
if (!alloc)
continue;
table = base_pgt_alloc();
if (!table)
return -ENOMEM;
*ste = __pa(table) | _SEGMENT_ENTRY;
}
table = __va(*ste & _SEGMENT_ENTRY_ORIGIN);
rc = base_page_walk(table, addr, next, alloc);
if (rc)
return rc;
if (!alloc)
base_pgt_free(table);
cond_resched();
} while (ste++, addr = next, addr < end);
return 0;
}
static int base_region3_walk(unsigned long *origin, unsigned long addr,
unsigned long end, int alloc)
{
unsigned long *rtte, next, *table;
int rc;
rtte = origin;
rtte += (addr & _REGION3_INDEX) >> _REGION3_SHIFT;
do {
next = base_region3_addr_end(addr, end);
if (*rtte & _REGION_ENTRY_INVALID) {
if (!alloc)
continue;
table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY);
if (!table)
return -ENOMEM;
*rtte = __pa(table) | _REGION3_ENTRY;
}
table = __va(*rtte & _REGION_ENTRY_ORIGIN);
rc = base_segment_walk(table, addr, next, alloc);
if (rc)
return rc;
if (!alloc)
base_crst_free(table);
} while (rtte++, addr = next, addr < end);
return 0;
}
static int base_region2_walk(unsigned long *origin, unsigned long addr,
unsigned long end, int alloc)
{
unsigned long *rste, next, *table;
int rc;
rste = origin;
rste += (addr & _REGION2_INDEX) >> _REGION2_SHIFT;
do {
next = base_region2_addr_end(addr, end);
if (*rste & _REGION_ENTRY_INVALID) {
if (!alloc)
continue;
table = base_crst_alloc(_REGION3_ENTRY_EMPTY);
if (!table)
return -ENOMEM;
*rste = __pa(table) | _REGION2_ENTRY;
}
table = __va(*rste & _REGION_ENTRY_ORIGIN);
rc = base_region3_walk(table, addr, next, alloc);
if (rc)
return rc;
if (!alloc)
base_crst_free(table);
} while (rste++, addr = next, addr < end);
return 0;
}
static int base_region1_walk(unsigned long *origin, unsigned long addr,
unsigned long end, int alloc)
{
unsigned long *rfte, next, *table;
int rc;
rfte = origin;
rfte += (addr & _REGION1_INDEX) >> _REGION1_SHIFT;
do {
next = base_region1_addr_end(addr, end);
if (*rfte & _REGION_ENTRY_INVALID) {
if (!alloc)
continue;
table = base_crst_alloc(_REGION2_ENTRY_EMPTY);
if (!table)
return -ENOMEM;
*rfte = __pa(table) | _REGION1_ENTRY;
}
table = __va(*rfte & _REGION_ENTRY_ORIGIN);
rc = base_region2_walk(table, addr, next, alloc);
if (rc)
return rc;
if (!alloc)
base_crst_free(table);
} while (rfte++, addr = next, addr < end);
return 0;
}
/**
* base_asce_free - free asce and tables returned from base_asce_alloc()
* @asce: asce to be freed
*
* Frees all region, segment, and page tables that were allocated with a
* corresponding base_asce_alloc() call.
*/
void base_asce_free(unsigned long asce)
{
unsigned long *table = __va(asce & _ASCE_ORIGIN);
if (!asce)
return;
switch (asce & _ASCE_TYPE_MASK) {
case _ASCE_TYPE_SEGMENT:
base_segment_walk(table, 0, _REGION3_SIZE, 0);
break;
case _ASCE_TYPE_REGION3:
base_region3_walk(table, 0, _REGION2_SIZE, 0);
break;
case _ASCE_TYPE_REGION2:
base_region2_walk(table, 0, _REGION1_SIZE, 0);
break;
case _ASCE_TYPE_REGION1:
base_region1_walk(table, 0, TASK_SIZE_MAX, 0);
break;
}
base_crst_free(table);
}
static int base_pgt_cache_init(void)
{
static DEFINE_MUTEX(base_pgt_cache_mutex);
unsigned long sz = _PAGE_TABLE_SIZE;
if (base_pgt_cache)
return 0;
mutex_lock(&base_pgt_cache_mutex);
if (!base_pgt_cache)
base_pgt_cache = kmem_cache_create("base_pgt", sz, sz, 0, NULL);
mutex_unlock(&base_pgt_cache_mutex);
return base_pgt_cache ? 0 : -ENOMEM;
}
/**
* base_asce_alloc - create kernel mapping without enhanced DAT features
* @addr: virtual start address of kernel mapping
* @num_pages: number of consecutive pages
*
* Generate an asce, including all required region, segment and page tables,
* that can be used to access the virtual kernel mapping. The difference is
* that the returned asce does not make use of any enhanced DAT features like
* e.g. large pages. This is required for some I/O functions that pass an
* asce, like e.g. some service call requests.
*
* Note: the returned asce may NEVER be attached to any cpu. It may only be
* used for I/O requests. tlb entries that might result because the
* asce was attached to a cpu won't be cleared.
*/
unsigned long base_asce_alloc(unsigned long addr, unsigned long num_pages)
{
unsigned long asce, *table, end;
int rc;
if (base_pgt_cache_init())
return 0;
end = addr + num_pages * PAGE_SIZE;
if (end <= _REGION3_SIZE) {
table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY);
if (!table)
return 0;
rc = base_segment_walk(table, addr, end, 1);
asce = __pa(table) | _ASCE_TYPE_SEGMENT | _ASCE_TABLE_LENGTH;
} else if (end <= _REGION2_SIZE) {
table = base_crst_alloc(_REGION3_ENTRY_EMPTY);
if (!table)
return 0;
rc = base_region3_walk(table, addr, end, 1);
asce = __pa(table) | _ASCE_TYPE_REGION3 | _ASCE_TABLE_LENGTH;
} else if (end <= _REGION1_SIZE) {
table = base_crst_alloc(_REGION2_ENTRY_EMPTY);
if (!table)
return 0;
rc = base_region2_walk(table, addr, end, 1);
asce = __pa(table) | _ASCE_TYPE_REGION2 | _ASCE_TABLE_LENGTH;
} else {
table = base_crst_alloc(_REGION1_ENTRY_EMPTY);
if (!table)
return 0;
rc = base_region1_walk(table, addr, end, 1);
asce = __pa(table) | _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH;
}
if (rc) {
base_asce_free(asce);
asce = 0;
}
return asce;
}
|