summaryrefslogtreecommitdiff
path: root/arch/powerpc/mm/hugetlbpage.c
blob: 8558b572e55d3e6ba2ee7b5656b9eb9f9e39b5c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
/*
 * PPC Huge TLB Page Support for Kernel.
 *
 * Copyright (C) 2003 David Gibson, IBM Corporation.
 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
 *
 * Based on the IA-32 version:
 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
 */

#include <linux/mm.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/hugetlb.h>
#include <linux/of_fdt.h>
#include <linux/memblock.h>
#include <linux/bootmem.h>
#include <linux/moduleparam.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>
#include <asm/setup.h>

#define PAGE_SHIFT_64K	16
#define PAGE_SHIFT_16M	24
#define PAGE_SHIFT_16G	34

unsigned int HPAGE_SHIFT;

/*
 * Tracks gpages after the device tree is scanned and before the
 * huge_boot_pages list is ready.  On 64-bit implementations, this is
 * just used to track 16G pages and so is a single array.  32-bit
 * implementations may have more than one gpage size due to limitations
 * of the memory allocators, so we need multiple arrays
 */
#ifdef CONFIG_PPC64
#define MAX_NUMBER_GPAGES	1024
static u64 gpage_freearray[MAX_NUMBER_GPAGES];
static unsigned nr_gpages;
#else
#define MAX_NUMBER_GPAGES	128
struct psize_gpages {
	u64 gpage_list[MAX_NUMBER_GPAGES];
	unsigned int nr_gpages;
};
static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
#endif

static inline int shift_to_mmu_psize(unsigned int shift)
{
	int psize;

	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
		if (mmu_psize_defs[psize].shift == shift)
			return psize;
	return -1;
}

static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
{
	if (mmu_psize_defs[mmu_psize].shift)
		return mmu_psize_defs[mmu_psize].shift;
	BUG();
}

#define hugepd_none(hpd)	((hpd).pd == 0)

pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
{
	pgd_t *pg;
	pud_t *pu;
	pmd_t *pm;
	hugepd_t *hpdp = NULL;
	unsigned pdshift = PGDIR_SHIFT;

	if (shift)
		*shift = 0;

	pg = pgdir + pgd_index(ea);
	if (is_hugepd(pg)) {
		hpdp = (hugepd_t *)pg;
	} else if (!pgd_none(*pg)) {
		pdshift = PUD_SHIFT;
		pu = pud_offset(pg, ea);
		if (is_hugepd(pu))
			hpdp = (hugepd_t *)pu;
		else if (!pud_none(*pu)) {
			pdshift = PMD_SHIFT;
			pm = pmd_offset(pu, ea);
			if (is_hugepd(pm))
				hpdp = (hugepd_t *)pm;
			else if (!pmd_none(*pm)) {
				return pte_offset_kernel(pm, ea);
			}
		}
	}

	if (!hpdp)
		return NULL;

	if (shift)
		*shift = hugepd_shift(*hpdp);
	return hugepte_offset(hpdp, ea, pdshift);
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
}

static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
			   unsigned long address, unsigned pdshift, unsigned pshift)
{
	struct kmem_cache *cachep;
	pte_t *new;

#ifdef CONFIG_PPC64
	cachep = PGT_CACHE(pdshift - pshift);
#else
	int i;
	int num_hugepd = 1 << (pshift - pdshift);
	cachep = hugepte_cache;
#endif

	new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);

	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);

	if (! new)
		return -ENOMEM;

	spin_lock(&mm->page_table_lock);
#ifdef CONFIG_PPC64
	if (!hugepd_none(*hpdp))
		kmem_cache_free(cachep, new);
	else
		hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
#else
	/*
	 * We have multiple higher-level entries that point to the same
	 * actual pte location.  Fill in each as we go and backtrack on error.
	 * We need all of these so the DTLB pgtable walk code can find the
	 * right higher-level entry without knowing if it's a hugepage or not.
	 */
	for (i = 0; i < num_hugepd; i++, hpdp++) {
		if (unlikely(!hugepd_none(*hpdp)))
			break;
		else
			hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
	}
	/* If we bailed from the for loop early, an error occurred, clean up */
	if (i < num_hugepd) {
		for (i = i - 1 ; i >= 0; i--, hpdp--)
			hpdp->pd = 0;
		kmem_cache_free(cachep, new);
	}
#endif
	spin_unlock(&mm->page_table_lock);
	return 0;
}

pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
{
	pgd_t *pg;
	pud_t *pu;
	pmd_t *pm;
	hugepd_t *hpdp = NULL;
	unsigned pshift = __ffs(sz);
	unsigned pdshift = PGDIR_SHIFT;

	addr &= ~(sz-1);

	pg = pgd_offset(mm, addr);
	if (pshift >= PUD_SHIFT) {
		hpdp = (hugepd_t *)pg;
	} else {
		pdshift = PUD_SHIFT;
		pu = pud_alloc(mm, pg, addr);
		if (pshift >= PMD_SHIFT) {
			hpdp = (hugepd_t *)pu;
		} else {
			pdshift = PMD_SHIFT;
			pm = pmd_alloc(mm, pu, addr);
			hpdp = (hugepd_t *)pm;
		}
	}

	if (!hpdp)
		return NULL;

	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));

	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
		return NULL;

	return hugepte_offset(hpdp, addr, pdshift);
}

#ifdef CONFIG_PPC32
/* Build list of addresses of gigantic pages.  This function is used in early
 * boot before the buddy or bootmem allocator is setup.
 */
void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
{
	unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
	int i;

	if (addr == 0)
		return;

	gpage_freearray[idx].nr_gpages = number_of_pages;

	for (i = 0; i < number_of_pages; i++) {
		gpage_freearray[idx].gpage_list[i] = addr;
		addr += page_size;
	}
}

/*
 * Moves the gigantic page addresses from the temporary list to the
 * huge_boot_pages list.
 */
int alloc_bootmem_huge_page(struct hstate *hstate)
{
	struct huge_bootmem_page *m;
	int idx = shift_to_mmu_psize(hstate->order + PAGE_SHIFT);
	int nr_gpages = gpage_freearray[idx].nr_gpages;

	if (nr_gpages == 0)
		return 0;

#ifdef CONFIG_HIGHMEM
	/*
	 * If gpages can be in highmem we can't use the trick of storing the
	 * data structure in the page; allocate space for this
	 */
	m = alloc_bootmem(sizeof(struct huge_bootmem_page));
	m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
#else
	m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
#endif

	list_add(&m->list, &huge_boot_pages);
	gpage_freearray[idx].nr_gpages = nr_gpages;
	gpage_freearray[idx].gpage_list[nr_gpages] = 0;
	m->hstate = hstate;

	return 1;
}
/*
 * Scan the command line hugepagesz= options for gigantic pages; store those in
 * a list that we use to allocate the memory once all options are parsed.
 */

unsigned long gpage_npages[MMU_PAGE_COUNT];

static int __init do_gpage_early_setup(char *param, char *val)
{
	static phys_addr_t size;
	unsigned long npages;

	/*
	 * The hugepagesz and hugepages cmdline options are interleaved.  We
	 * use the size variable to keep track of whether or not this was done
	 * properly and skip over instances where it is incorrect.  Other
	 * command-line parsing code will issue warnings, so we don't need to.
	 *
	 */
	if ((strcmp(param, "default_hugepagesz") == 0) ||
	    (strcmp(param, "hugepagesz") == 0)) {
		size = memparse(val, NULL);
	} else if (strcmp(param, "hugepages") == 0) {
		if (size != 0) {
			if (sscanf(val, "%lu", &npages) <= 0)
				npages = 0;
			gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
			size = 0;
		}
	}
	return 0;
}


/*
 * This function allocates physical space for pages that are larger than the
 * buddy allocator can handle.  We want to allocate these in highmem because
 * the amount of lowmem is limited.  This means that this function MUST be
 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
 * allocate to grab highmem.
 */
void __init reserve_hugetlb_gpages(void)
{
	static __initdata char cmdline[COMMAND_LINE_SIZE];
	phys_addr_t size, base;
	int i;

	strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
	parse_args("hugetlb gpages", cmdline, NULL, 0, &do_gpage_early_setup);

	/*
	 * Walk gpage list in reverse, allocating larger page sizes first.
	 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
	 * When we reach the point in the list where pages are no longer
	 * considered gpages, we're done.
	 */
	for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
		if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
			continue;
		else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
			break;

		size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
		base = memblock_alloc_base(size * gpage_npages[i], size,
					   MEMBLOCK_ALLOC_ANYWHERE);
		add_gpage(base, size, gpage_npages[i]);
	}
}

#else /* PPC64 */

/* Build list of addresses of gigantic pages.  This function is used in early
 * boot before the buddy or bootmem allocator is setup.
 */
void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
{
	if (!addr)
		return;
	while (number_of_pages > 0) {
		gpage_freearray[nr_gpages] = addr;
		nr_gpages++;
		number_of_pages--;
		addr += page_size;
	}
}

/* Moves the gigantic page addresses from the temporary list to the
 * huge_boot_pages list.
 */
int alloc_bootmem_huge_page(struct hstate *hstate)
{
	struct huge_bootmem_page *m;
	if (nr_gpages == 0)
		return 0;
	m = phys_to_virt(gpage_freearray[--nr_gpages]);
	gpage_freearray[nr_gpages] = 0;
	list_add(&m->list, &huge_boot_pages);
	m->hstate = hstate;
	return 1;
}
#endif

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}

#ifdef CONFIG_PPC32
#define HUGEPD_FREELIST_SIZE \
	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))

struct hugepd_freelist {
	struct rcu_head	rcu;
	unsigned int index;
	void *ptes[0];
};

static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);

static void hugepd_free_rcu_callback(struct rcu_head *head)
{
	struct hugepd_freelist *batch =
		container_of(head, struct hugepd_freelist, rcu);
	unsigned int i;

	for (i = 0; i < batch->index; i++)
		kmem_cache_free(hugepte_cache, batch->ptes[i]);

	free_page((unsigned long)batch);
}

static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
{
	struct hugepd_freelist **batchp;

	batchp = &__get_cpu_var(hugepd_freelist_cur);

	if (atomic_read(&tlb->mm->mm_users) < 2 ||
	    cpumask_equal(mm_cpumask(tlb->mm),
			  cpumask_of(smp_processor_id()))) {
		kmem_cache_free(hugepte_cache, hugepte);
		return;
	}

	if (*batchp == NULL) {
		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
		(*batchp)->index = 0;
	}

	(*batchp)->ptes[(*batchp)->index++] = hugepte;
	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
		*batchp = NULL;
	}
}
#endif

static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
			      unsigned long start, unsigned long end,
			      unsigned long floor, unsigned long ceiling)
{
	pte_t *hugepte = hugepd_page(*hpdp);
	int i;

	unsigned long pdmask = ~((1UL << pdshift) - 1);
	unsigned int num_hugepd = 1;

#ifdef CONFIG_PPC64
	unsigned int shift = hugepd_shift(*hpdp);
#else
	/* Note: On 32-bit the hpdp may be the first of several */
	num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
#endif

	start &= pdmask;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= pdmask;
		if (! ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	for (i = 0; i < num_hugepd; i++, hpdp++)
		hpdp->pd = 0;

	tlb->need_flush = 1;
#ifdef CONFIG_PPC64
	pgtable_free_tlb(tlb, hugepte, pdshift - shift);
#else
	hugepd_free(tlb, hugepte);
#endif
}

static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
				   unsigned long addr, unsigned long end,
				   unsigned long floor, unsigned long ceiling)
{
	pmd_t *pmd;
	unsigned long next;
	unsigned long start;

	start = addr;
	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none(*pmd))
			continue;
		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
				  addr, next, floor, ceiling);
	} while (pmd++, addr = next, addr != end);

	start &= PUD_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PUD_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	pmd = pmd_offset(pud, start);
	pud_clear(pud);
	pmd_free_tlb(tlb, pmd, start);
}

static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
				   unsigned long addr, unsigned long end,
				   unsigned long floor, unsigned long ceiling)
{
	pud_t *pud;
	unsigned long next;
	unsigned long start;

	start = addr;
	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (!is_hugepd(pud)) {
			if (pud_none_or_clear_bad(pud))
				continue;
			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
					       ceiling);
		} else {
			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
					  addr, next, floor, ceiling);
		}
	} while (pud++, addr = next, addr != end);

	start &= PGDIR_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PGDIR_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	pud = pud_offset(pgd, start);
	pgd_clear(pgd);
	pud_free_tlb(tlb, pud, start);
}

/*
 * This function frees user-level page tables of a process.
 *
 * Must be called with pagetable lock held.
 */
void hugetlb_free_pgd_range(struct mmu_gather *tlb,
			    unsigned long addr, unsigned long end,
			    unsigned long floor, unsigned long ceiling)
{
	pgd_t *pgd;
	unsigned long next;

	/*
	 * Because there are a number of different possible pagetable
	 * layouts for hugepage ranges, we limit knowledge of how
	 * things should be laid out to the allocation path
	 * (huge_pte_alloc(), above).  Everything else works out the
	 * structure as it goes from information in the hugepd
	 * pointers.  That means that we can't here use the
	 * optimization used in the normal page free_pgd_range(), of
	 * checking whether we're actually covering a large enough
	 * range to have to do anything at the top level of the walk
	 * instead of at the bottom.
	 *
	 * To make sense of this, you should probably go read the big
	 * block comment at the top of the normal free_pgd_range(),
	 * too.
	 */

	do {
		next = pgd_addr_end(addr, end);
		pgd = pgd_offset(tlb->mm, addr);
		if (!is_hugepd(pgd)) {
			if (pgd_none_or_clear_bad(pgd))
				continue;
			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
		} else {
#ifdef CONFIG_PPC32
			/*
			 * Increment next by the size of the huge mapping since
			 * on 32-bit there may be more than one entry at the pgd
			 * level for a single hugepage, but all of them point to
			 * the same kmem cache that holds the hugepte.
			 */
			next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
#endif
			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
					  addr, next, floor, ceiling);
		}
	} while (addr = next, addr != end);
}

struct page *
follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
{
	pte_t *ptep;
	struct page *page;
	unsigned shift;
	unsigned long mask;

	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);

	/* Verify it is a huge page else bail. */
	if (!ptep || !shift)
		return ERR_PTR(-EINVAL);

	mask = (1UL << shift) - 1;
	page = pte_page(*ptep);
	if (page)
		page += (address & mask) / PAGE_SIZE;

	return page;
}

int pmd_huge(pmd_t pmd)
{
	return 0;
}

int pud_huge(pud_t pud)
{
	return 0;
}

struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	BUG();
	return NULL;
}

static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
		       unsigned long end, int write, struct page **pages, int *nr)
{
	unsigned long mask;
	unsigned long pte_end;
	struct page *head, *page, *tail;
	pte_t pte;
	int refs;

	pte_end = (addr + sz) & ~(sz-1);
	if (pte_end < end)
		end = pte_end;

	pte = *ptep;
	mask = _PAGE_PRESENT | _PAGE_USER;
	if (write)
		mask |= _PAGE_RW;

	if ((pte_val(pte) & mask) != mask)
		return 0;

	/* hugepages are never "special" */
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));

	refs = 0;
	head = pte_page(pte);

	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
	tail = page;
	do {
		VM_BUG_ON(compound_head(page) != head);
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

	if (!page_cache_add_speculative(head, refs)) {
		*nr -= refs;
		return 0;
	}

	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
		/* Could be optimized better */
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

	/*
	 * Any tail page need their mapcount reference taken before we
	 * return.
	 */
	while (refs--) {
		if (PageTail(tail))
			get_huge_page_tail(tail);
		tail++;
	}

	return 1;
}

static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
				      unsigned long sz)
{
	unsigned long __boundary = (addr + sz) & ~(sz-1);
	return (__boundary - 1 < end - 1) ? __boundary : end;
}

int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
	       unsigned long addr, unsigned long end,
	       int write, struct page **pages, int *nr)
{
	pte_t *ptep;
	unsigned long sz = 1UL << hugepd_shift(*hugepd);
	unsigned long next;

	ptep = hugepte_offset(hugepd, addr, pdshift);
	do {
		next = hugepte_addr_end(addr, end, sz);
		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
			return 0;
	} while (ptep++, addr = next, addr != end);

	return 1;
}

unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
					unsigned long len, unsigned long pgoff,
					unsigned long flags)
{
#ifdef CONFIG_PPC_MM_SLICES
	struct hstate *hstate = hstate_file(file);
	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));

	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
#else
	return get_unmapped_area(file, addr, len, pgoff, flags);
#endif
}

unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
#ifdef CONFIG_PPC_MM_SLICES
	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);

	return 1UL << mmu_psize_to_shift(psize);
#else
	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	return huge_page_size(hstate_vma(vma));
#endif
}

static inline bool is_power_of_4(unsigned long x)
{
	if (is_power_of_2(x))
		return (__ilog2(x) % 2) ? false : true;
	return false;
}

static int __init add_huge_page_size(unsigned long long size)
{
	int shift = __ffs(size);
	int mmu_psize;

	/* Check that it is a page size supported by the hardware and
	 * that it fits within pagetable and slice limits. */
#ifdef CONFIG_PPC_FSL_BOOK3E
	if ((size < PAGE_SIZE) || !is_power_of_4(size))
		return -EINVAL;
#else
	if (!is_power_of_2(size)
	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
		return -EINVAL;
#endif

	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
		return -EINVAL;

#ifdef CONFIG_SPU_FS_64K_LS
	/* Disable support for 64K huge pages when 64K SPU local store
	 * support is enabled as the current implementation conflicts.
	 */
	if (shift == PAGE_SHIFT_64K)
		return -EINVAL;
#endif /* CONFIG_SPU_FS_64K_LS */

	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);

	/* Return if huge page size has already been setup */
	if (size_to_hstate(size))
		return 0;

	hugetlb_add_hstate(shift - PAGE_SHIFT);

	return 0;
}

static int __init hugepage_setup_sz(char *str)
{
	unsigned long long size;

	size = memparse(str, &str);

	if (add_huge_page_size(size) != 0)
		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);

	return 1;
}
__setup("hugepagesz=", hugepage_setup_sz);

#ifdef CONFIG_FSL_BOOKE
struct kmem_cache *hugepte_cache;
static int __init hugetlbpage_init(void)
{
	int psize;

	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
		unsigned shift;

		if (!mmu_psize_defs[psize].shift)
			continue;

		shift = mmu_psize_to_shift(psize);

		/* Don't treat normal page sizes as huge... */
		if (shift != PAGE_SHIFT)
			if (add_huge_page_size(1ULL << shift) < 0)
				continue;
	}

	/*
	 * Create a kmem cache for hugeptes.  The bottom bits in the pte have
	 * size information encoded in them, so align them to allow this
	 */
	hugepte_cache =  kmem_cache_create("hugepte-cache", sizeof(pte_t),
					   HUGEPD_SHIFT_MASK + 1, 0, NULL);
	if (hugepte_cache == NULL)
		panic("%s: Unable to create kmem cache for hugeptes\n",
		      __func__);

	/* Default hpage size = 4M */
	if (mmu_psize_defs[MMU_PAGE_4M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
	else
		panic("%s: Unable to set default huge page size\n", __func__);


	return 0;
}
#else
static int __init hugetlbpage_init(void)
{
	int psize;

	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
		return -ENODEV;

	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
		unsigned shift;
		unsigned pdshift;

		if (!mmu_psize_defs[psize].shift)
			continue;

		shift = mmu_psize_to_shift(psize);

		if (add_huge_page_size(1ULL << shift) < 0)
			continue;

		if (shift < PMD_SHIFT)
			pdshift = PMD_SHIFT;
		else if (shift < PUD_SHIFT)
			pdshift = PUD_SHIFT;
		else
			pdshift = PGDIR_SHIFT;

		pgtable_cache_add(pdshift - shift, NULL);
		if (!PGT_CACHE(pdshift - shift))
			panic("hugetlbpage_init(): could not create "
			      "pgtable cache for %d bit pagesize\n", shift);
	}

	/* Set default large page size. Currently, we pick 16M or 1M
	 * depending on what is available
	 */
	if (mmu_psize_defs[MMU_PAGE_16M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;

	return 0;
}
#endif
module_init(hugetlbpage_init);

void flush_dcache_icache_hugepage(struct page *page)
{
	int i;
	void *start;

	BUG_ON(!PageCompound(page));

	for (i = 0; i < (1UL << compound_order(page)); i++) {
		if (!PageHighMem(page)) {
			__flush_dcache_icache(page_address(page+i));
		} else {
			start = kmap_atomic(page+i, KM_PPC_SYNC_ICACHE);
			__flush_dcache_icache(start);
			kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
		}
	}
}