1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Based on arch/arm/mm/context.c
*
* Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved.
* Copyright (C) 2012 ARM Ltd.
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <asm/cpufeature.h>
#include <asm/mmu_context.h>
#include <asm/smp.h>
#include <asm/tlbflush.h>
static u32 asid_bits;
static DEFINE_RAW_SPINLOCK(cpu_asid_lock);
static atomic64_t asid_generation;
static unsigned long *asid_map;
static DEFINE_PER_CPU(atomic64_t, active_asids);
static DEFINE_PER_CPU(u64, reserved_asids);
static cpumask_t tlb_flush_pending;
#define ASID_MASK (~GENMASK(asid_bits - 1, 0))
#define ASID_FIRST_VERSION (1UL << asid_bits)
#define NUM_USER_ASIDS ASID_FIRST_VERSION
#define asid2idx(asid) ((asid) & ~ASID_MASK)
#define idx2asid(idx) asid2idx(idx)
/* Get the ASIDBits supported by the current CPU */
static u32 get_cpu_asid_bits(void)
{
u32 asid;
int fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64MMFR0_EL1),
ID_AA64MMFR0_ASID_SHIFT);
switch (fld) {
default:
pr_warn("CPU%d: Unknown ASID size (%d); assuming 8-bit\n",
smp_processor_id(), fld);
/* Fallthrough */
case 0:
asid = 8;
break;
case 2:
asid = 16;
}
return asid;
}
/* Check if the current cpu's ASIDBits is compatible with asid_bits */
void verify_cpu_asid_bits(void)
{
u32 asid = get_cpu_asid_bits();
if (asid < asid_bits) {
/*
* We cannot decrease the ASID size at runtime, so panic if we support
* fewer ASID bits than the boot CPU.
*/
pr_crit("CPU%d: smaller ASID size(%u) than boot CPU (%u)\n",
smp_processor_id(), asid, asid_bits);
cpu_panic_kernel();
}
}
static void set_kpti_asid_bits(void)
{
unsigned int len = BITS_TO_LONGS(NUM_USER_ASIDS) * sizeof(unsigned long);
/*
* In case of KPTI kernel/user ASIDs are allocated in
* pairs, the bottom bit distinguishes the two: if it
* is set, then the ASID will map only userspace. Thus
* mark even as reserved for kernel.
*/
memset(asid_map, 0xaa, len);
}
static void set_reserved_asid_bits(void)
{
if (arm64_kernel_unmapped_at_el0())
set_kpti_asid_bits();
else
bitmap_clear(asid_map, 0, NUM_USER_ASIDS);
}
#define asid_gen_match(asid) \
(!(((asid) ^ atomic64_read(&asid_generation)) >> asid_bits))
static void flush_context(void)
{
int i;
u64 asid;
/* Update the list of reserved ASIDs and the ASID bitmap. */
set_reserved_asid_bits();
for_each_possible_cpu(i) {
asid = atomic64_xchg_relaxed(&per_cpu(active_asids, i), 0);
/*
* If this CPU has already been through a
* rollover, but hasn't run another task in
* the meantime, we must preserve its reserved
* ASID, as this is the only trace we have of
* the process it is still running.
*/
if (asid == 0)
asid = per_cpu(reserved_asids, i);
__set_bit(asid2idx(asid), asid_map);
per_cpu(reserved_asids, i) = asid;
}
/*
* Queue a TLB invalidation for each CPU to perform on next
* context-switch
*/
cpumask_setall(&tlb_flush_pending);
}
static bool check_update_reserved_asid(u64 asid, u64 newasid)
{
int cpu;
bool hit = false;
/*
* Iterate over the set of reserved ASIDs looking for a match.
* If we find one, then we can update our mm to use newasid
* (i.e. the same ASID in the current generation) but we can't
* exit the loop early, since we need to ensure that all copies
* of the old ASID are updated to reflect the mm. Failure to do
* so could result in us missing the reserved ASID in a future
* generation.
*/
for_each_possible_cpu(cpu) {
if (per_cpu(reserved_asids, cpu) == asid) {
hit = true;
per_cpu(reserved_asids, cpu) = newasid;
}
}
return hit;
}
static u64 new_context(struct mm_struct *mm)
{
static u32 cur_idx = 1;
u64 asid = atomic64_read(&mm->context.id);
u64 generation = atomic64_read(&asid_generation);
if (asid != 0) {
u64 newasid = generation | (asid & ~ASID_MASK);
/*
* If our current ASID was active during a rollover, we
* can continue to use it and this was just a false alarm.
*/
if (check_update_reserved_asid(asid, newasid))
return newasid;
/*
* We had a valid ASID in a previous life, so try to re-use
* it if possible.
*/
if (!__test_and_set_bit(asid2idx(asid), asid_map))
return newasid;
}
/*
* Allocate a free ASID. If we can't find one, take a note of the
* currently active ASIDs and mark the TLBs as requiring flushes. We
* always count from ASID #2 (index 1), as we use ASID #0 when setting
* a reserved TTBR0 for the init_mm and we allocate ASIDs in even/odd
* pairs.
*/
asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, cur_idx);
if (asid != NUM_USER_ASIDS)
goto set_asid;
/* We're out of ASIDs, so increment the global generation count */
generation = atomic64_add_return_relaxed(ASID_FIRST_VERSION,
&asid_generation);
flush_context();
/* We have more ASIDs than CPUs, so this will always succeed */
asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, 1);
set_asid:
__set_bit(asid, asid_map);
cur_idx = asid;
return idx2asid(asid) | generation;
}
void check_and_switch_context(struct mm_struct *mm, unsigned int cpu)
{
unsigned long flags;
u64 asid, old_active_asid;
if (system_supports_cnp())
cpu_set_reserved_ttbr0();
asid = atomic64_read(&mm->context.id);
/*
* The memory ordering here is subtle.
* If our active_asids is non-zero and the ASID matches the current
* generation, then we update the active_asids entry with a relaxed
* cmpxchg. Racing with a concurrent rollover means that either:
*
* - We get a zero back from the cmpxchg and end up waiting on the
* lock. Taking the lock synchronises with the rollover and so
* we are forced to see the updated generation.
*
* - We get a valid ASID back from the cmpxchg, which means the
* relaxed xchg in flush_context will treat us as reserved
* because atomic RmWs are totally ordered for a given location.
*/
old_active_asid = atomic64_read(&per_cpu(active_asids, cpu));
if (old_active_asid && asid_gen_match(asid) &&
atomic64_cmpxchg_relaxed(&per_cpu(active_asids, cpu),
old_active_asid, asid))
goto switch_mm_fastpath;
raw_spin_lock_irqsave(&cpu_asid_lock, flags);
/* Check that our ASID belongs to the current generation. */
asid = atomic64_read(&mm->context.id);
if (!asid_gen_match(asid)) {
asid = new_context(mm);
atomic64_set(&mm->context.id, asid);
}
if (cpumask_test_and_clear_cpu(cpu, &tlb_flush_pending))
local_flush_tlb_all();
atomic64_set(&per_cpu(active_asids, cpu), asid);
raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
switch_mm_fastpath:
arm64_apply_bp_hardening();
/*
* Defer TTBR0_EL1 setting for user threads to uaccess_enable() when
* emulating PAN.
*/
if (!system_uses_ttbr0_pan())
cpu_switch_mm(mm->pgd, mm);
}
/* Errata workaround post TTBRx_EL1 update. */
asmlinkage void post_ttbr_update_workaround(void)
{
if (!IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456))
return;
asm(ALTERNATIVE("nop; nop; nop",
"ic iallu; dsb nsh; isb",
ARM64_WORKAROUND_CAVIUM_27456));
}
void cpu_do_switch_mm(phys_addr_t pgd_phys, struct mm_struct *mm)
{
unsigned long ttbr1 = read_sysreg(ttbr1_el1);
unsigned long asid = ASID(mm);
unsigned long ttbr0 = phys_to_ttbr(pgd_phys);
/* Skip CNP for the reserved ASID */
if (system_supports_cnp() && asid)
ttbr0 |= TTBR_CNP_BIT;
/* SW PAN needs a copy of the ASID in TTBR0 for entry */
if (IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN))
ttbr0 |= FIELD_PREP(TTBR_ASID_MASK, asid);
/* Set ASID in TTBR1 since TCR.A1 is set */
ttbr1 &= ~TTBR_ASID_MASK;
ttbr1 |= FIELD_PREP(TTBR_ASID_MASK, asid);
write_sysreg(ttbr1, ttbr1_el1);
isb();
write_sysreg(ttbr0, ttbr0_el1);
isb();
post_ttbr_update_workaround();
}
static int asids_update_limit(void)
{
unsigned long num_available_asids = NUM_USER_ASIDS;
if (arm64_kernel_unmapped_at_el0())
num_available_asids /= 2;
/*
* Expect allocation after rollover to fail if we don't have at least
* one more ASID than CPUs. ASID #0 is reserved for init_mm.
*/
WARN_ON(num_available_asids - 1 <= num_possible_cpus());
pr_info("ASID allocator initialised with %lu entries\n",
num_available_asids);
return 0;
}
arch_initcall(asids_update_limit);
static int asids_init(void)
{
asid_bits = get_cpu_asid_bits();
atomic64_set(&asid_generation, ASID_FIRST_VERSION);
asid_map = kcalloc(BITS_TO_LONGS(NUM_USER_ASIDS), sizeof(*asid_map),
GFP_KERNEL);
if (!asid_map)
panic("Failed to allocate bitmap for %lu ASIDs\n",
NUM_USER_ASIDS);
/*
* We cannot call set_reserved_asid_bits() here because CPU
* caps are not finalized yet, so it is safer to assume KPTI
* and reserve kernel ASID's from beginning.
*/
if (IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0))
set_kpti_asid_bits();
return 0;
}
early_initcall(asids_init);
|