summaryrefslogtreecommitdiff
path: root/arch/arc/mm/dma.c
blob: 71d3efff99d35c56c6f30bea8a6ab1cf1702d753 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
/*
 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

/*
 * DMA Coherent API Notes
 *
 * I/O is inherently non-coherent on ARC. So a coherent DMA buffer is
 * implemented by accessing it using a kernel virtual address, with
 * Cache bit off in the TLB entry.
 *
 * The default DMA address == Phy address which is 0x8000_0000 based.
 */

#include <linux/dma-mapping.h>
#include <asm/cache.h>
#include <asm/cacheflush.h>


static void *arc_dma_alloc(struct device *dev, size_t size,
		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
{
	unsigned long order = get_order(size);
	struct page *page;
	phys_addr_t paddr;
	void *kvaddr;
	int need_coh = 1, need_kvaddr = 0;

	page = alloc_pages(gfp, order);
	if (!page)
		return NULL;

	/*
	 * IOC relies on all data (even coherent DMA data) being in cache
	 * Thus allocate normal cached memory
	 *
	 * The gains with IOC are two pronged:
	 *   -For streaming data, elides need for cache maintenance, saving
	 *    cycles in flush code, and bus bandwidth as all the lines of a
	 *    buffer need to be flushed out to memory
	 *   -For coherent data, Read/Write to buffers terminate early in cache
	 *   (vs. always going to memory - thus are faster)
	 */
	if ((is_isa_arcv2() && ioc_enable) ||
	    (attrs & DMA_ATTR_NON_CONSISTENT))
		need_coh = 0;

	/*
	 * - A coherent buffer needs MMU mapping to enforce non-cachability
	 * - A highmem page needs a virtual handle (hence MMU mapping)
	 *   independent of cachability
	 */
	if (PageHighMem(page) || need_coh)
		need_kvaddr = 1;

	/* This is linear addr (0x8000_0000 based) */
	paddr = page_to_phys(page);

	*dma_handle = plat_phys_to_dma(dev, paddr);

	/* This is kernel Virtual address (0x7000_0000 based) */
	if (need_kvaddr) {
		kvaddr = ioremap_nocache(paddr, size);
		if (kvaddr == NULL) {
			__free_pages(page, order);
			return NULL;
		}
	} else {
		kvaddr = (void *)(u32)paddr;
	}

	/*
	 * Evict any existing L1 and/or L2 lines for the backing page
	 * in case it was used earlier as a normal "cached" page.
	 * Yeah this bit us - STAR 9000898266
	 *
	 * Although core does call flush_cache_vmap(), it gets kvaddr hence
	 * can't be used to efficiently flush L1 and/or L2 which need paddr
	 * Currently flush_cache_vmap nukes the L1 cache completely which
	 * will be optimized as a separate commit
	 */
	if (need_coh)
		dma_cache_wback_inv(paddr, size);

	return kvaddr;
}

static void arc_dma_free(struct device *dev, size_t size, void *vaddr,
		dma_addr_t dma_handle, unsigned long attrs)
{
	phys_addr_t paddr = plat_dma_to_phys(dev, dma_handle);
	struct page *page = virt_to_page(paddr);
	int is_non_coh = 1;

	is_non_coh = (attrs & DMA_ATTR_NON_CONSISTENT) ||
			(is_isa_arcv2() && ioc_enable);

	if (PageHighMem(page) || !is_non_coh)
		iounmap((void __force __iomem *)vaddr);

	__free_pages(page, get_order(size));
}

static int arc_dma_mmap(struct device *dev, struct vm_area_struct *vma,
			void *cpu_addr, dma_addr_t dma_addr, size_t size,
			unsigned long attrs)
{
	unsigned long user_count = vma_pages(vma);
	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	unsigned long pfn = __phys_to_pfn(plat_dma_to_phys(dev, dma_addr));
	unsigned long off = vma->vm_pgoff;
	int ret = -ENXIO;

	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);

	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
		return ret;

	if (off < count && user_count <= (count - off)) {
		ret = remap_pfn_range(vma, vma->vm_start,
				      pfn + off,
				      user_count << PAGE_SHIFT,
				      vma->vm_page_prot);
	}

	return ret;
}

/*
 * streaming DMA Mapping API...
 * CPU accesses page via normal paddr, thus needs to explicitly made
 * consistent before each use
 */
static void _dma_cache_sync(phys_addr_t paddr, size_t size,
		enum dma_data_direction dir)
{
	switch (dir) {
	case DMA_FROM_DEVICE:
		dma_cache_inv(paddr, size);
		break;
	case DMA_TO_DEVICE:
		dma_cache_wback(paddr, size);
		break;
	case DMA_BIDIRECTIONAL:
		dma_cache_wback_inv(paddr, size);
		break;
	default:
		pr_err("Invalid DMA dir [%d] for OP @ %pa[p]\n", dir, &paddr);
	}
}

static dma_addr_t arc_dma_map_page(struct device *dev, struct page *page,
		unsigned long offset, size_t size, enum dma_data_direction dir,
		unsigned long attrs)
{
	phys_addr_t paddr = page_to_phys(page) + offset;

	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
		_dma_cache_sync(paddr, size, dir);

	return plat_phys_to_dma(dev, paddr);
}

static int arc_dma_map_sg(struct device *dev, struct scatterlist *sg,
	   int nents, enum dma_data_direction dir, unsigned long attrs)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
		s->dma_address = dma_map_page(dev, sg_page(s), s->offset,
					       s->length, dir);

	return nents;
}

static void arc_dma_sync_single_for_cpu(struct device *dev,
		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
{
	_dma_cache_sync(plat_dma_to_phys(dev, dma_handle), size, DMA_FROM_DEVICE);
}

static void arc_dma_sync_single_for_device(struct device *dev,
		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
{
	_dma_cache_sync(plat_dma_to_phys(dev, dma_handle), size, DMA_TO_DEVICE);
}

static void arc_dma_sync_sg_for_cpu(struct device *dev,
		struct scatterlist *sglist, int nelems,
		enum dma_data_direction dir)
{
	int i;
	struct scatterlist *sg;

	for_each_sg(sglist, sg, nelems, i)
		_dma_cache_sync(sg_phys(sg), sg->length, dir);
}

static void arc_dma_sync_sg_for_device(struct device *dev,
		struct scatterlist *sglist, int nelems,
		enum dma_data_direction dir)
{
	int i;
	struct scatterlist *sg;

	for_each_sg(sglist, sg, nelems, i)
		_dma_cache_sync(sg_phys(sg), sg->length, dir);
}

static int arc_dma_supported(struct device *dev, u64 dma_mask)
{
	/* Support 32 bit DMA mask exclusively */
	return dma_mask == DMA_BIT_MASK(32);
}

const struct dma_map_ops arc_dma_ops = {
	.alloc			= arc_dma_alloc,
	.free			= arc_dma_free,
	.mmap			= arc_dma_mmap,
	.map_page		= arc_dma_map_page,
	.map_sg			= arc_dma_map_sg,
	.sync_single_for_device	= arc_dma_sync_single_for_device,
	.sync_single_for_cpu	= arc_dma_sync_single_for_cpu,
	.sync_sg_for_cpu	= arc_dma_sync_sg_for_cpu,
	.sync_sg_for_device	= arc_dma_sync_sg_for_device,
	.dma_supported		= arc_dma_supported,
};
EXPORT_SYMBOL(arc_dma_ops);